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Consider the weight λ that is the sum of all simple roots of a simple
Lie algebra g. Using Kostant’s weight multiplicity formula we de-
scribe and enumerate the contributing terms to the multiplicity of
an integral weight μ in the representation of g with highest weight
λ, which we denote by L(λ). We prove that in Lie algebras of type
A and B, the number of terms contributing a nonzero value in
the multiplicity of the zero-weight in L(λ) is given by a Fibonacci
number, and that in the Lie algebras of type C and D, the analo-
gous result is given by a multiple of a Lucas number. When μ is a
nonzero integral weight we show that in Lie types A and B there
is only one term contributing a nonzero value to the multiplicity
of μ in L(λ), and that in the Lie algebras of type C and D, all
terms contribute a value of zero. We conclude by using these re-
sults to compute the q-multiplicity of an integral weight μ in the
representation L(λ) in all classical Lie algebras.
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1. Introduction

Let G be a simple linear algebraic group over C, T a maximal algebraic torus
in G of dimension r, and B, T ⊆ B ⊆ G, a choice of Borel subgroup. Then
let g, h, and b denote the Lie algebras of G, T , and B respectively. We let
Φ denote the set of roots corresponding to (g, h), and Φ+ ⊆ Φ is the set of
positive roots with respect to b. Let Δ ⊆ Φ+ be the set of simple roots. The
denote the set of integral and dominant integral weights by P (g) and P+(g)
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respectively. Let W = NormG(T )/T denote the Weyl group corresponding
to G and T , and for any w ∈ W , we let �(w) denote the length of w.

We recall that with a choice of a Cartan subalgebra it is well known that
the finite-dimensional irreducible representations of a Lie algebra g on the
vector space V can be studied by decomposing

V = ⊕Vα(1)

where the direct sum is indexed by a finite set of weights. Given a weight α,
the corresponding subspace Vα is called a weight space and the dimension
of Vα is called the multiplicity of α. Thus to study representations of g it
suffices to determine the multiplicity of the weights appearing in (1). For a
more detailed account of this theory we refer the reader to [2].

In this work we consider the weight λ which is the sum of all simple
roots of g. We formally use Kostant’s weight multiplicity formula to compute
the multiplicity of μ an integral weight in the representation with highest
weight λ, which we denote by m(λ, μ). When μ is the zero weight, this
representation is the adjoint representation in the Lie algebra of type A
and the defining representation in type B; these cases were considered by
Harris in [3] and [5], respectively. In the remaining Lie types it is a virtual
representation: a representation arising from a nondominant integral highest
weight.

One way to compute the multiplicity of a weight μ is via Kostant’s weight
multiplicity formula [9]:

m(λ, μ) =
∑
σ∈W

(−1)�(σ)℘(σ(λ+ ρ)− (μ+ ρ)),(2)

where W denotes the Weyl group of g, ℘ denotes Kostant’s partition func-
tion, and ρ = 1

2

∑
α∈Φ+ α, with Φ+ denoting the set of positive roots of g.

We recall that the Weyl group is generated by reflections about hyperplanes
lying perpendicular to the simple roots of the Lie algebra g, and for each
σ ∈ W , the length �(σ) represents the minimum number k such that σ is
a product of k reflections. Kostant’s partition function ℘ : h∗ → Z is the
nonnegative integer-valued function such that for each ξ ∈ h∗, ℘(ξ) counts
the number of ways ξ may be written as a nonnegative Z-linear combination
of positive roots.

A challenge in using Equation (2) for weight multiplicity computations is
the fact that the order of the Weyl group, indexing the sum, increases factori-
ally as the rank of the Lie algebra considered increases. Additionally, many
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Weyl group elements contribute trivially to the alternating sum, thereby
yielding another source of great inefficiency. In light of this, our work focuses
on describing the elements of the Weyl group that contribute a nonzero term
to the multiplicity formula, which leads to the following definition.

Definition 1. For λ, μ integral weights of g, we define the Weyl alternation
set by

A(λ, μ) = {σ ∈ W : ℘(σ(λ+ ρ)− (μ+ ρ)) > 0}.(3)

The above definition implies that σ ∈ W satisfies σ ∈ A(λ, μ) if and only
if σ(λ+ ρ)− (μ+ ρ) can be written as a nonnegative Z-linear combination
of positive roots.

Harris, Insko, and Williams described and enumerated the Weyl alter-
nation sets for the zero weight in the adjoint representation of the classical
Lie algebras and showed that the cardinality of these sets is given by linear
recurrences with constant coefficients [4, 8]. In addition, Harris, Lescinsky,
and Mabie have provided visualizations for the Weyl alternation sets for
different pairs of integral weights λ and μ in the Lie algebra sl3(C) [4, 6].

Our research continues this work by describing and enumerating the
elements of the Weyl alternation sets A(λ, μ), where λ is the sum of all the
simple roots of a simple Lie algebra and μ is an integral weight. We find
that when μ is the zero weight the cardinality of these Weyl alternation sets
in the Lie algebras of type A and B, are given by a Fibonacci number [5]
and in the Lie algebras of type C and D, the analogous result is given by a
multiple of a Lucas number. Our main results are summarized in Table 1,
where Fr and Lr denote the rth Fibonacci and Lucas numbers, respectively.
We remark that the results of Table 1 for the exceptional Lie algebras is
a finite computation that was verified using the computer implementation
presented in [7]. In this work, we also consider the cases where μ is a nonzero
integral weight and show that in Lie types A and B the sets A(λ, μ) consist
of only the identity element of the Weyl group, while in Lie types C and D
the sets A(λ, μ) are empty.

We note that these results give a glimpse into the complicated nature
of weight multiplicity computations. Although our results establish that the
number of terms contributing nontrivially to m(λ, 0) is given by either a Fi-
bonacci or a multiple of a Lucas number, thereby reducing the computation
from a factorial number of terms, to a number that grows exponentially, and
one cannot reduce the computation any further. However, this reduction is
enough to allow the development of new formulas for the partition func-
tion involved in the weight multiplicity formula. We present such results in
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Table 1: Summary of main results

Classical Lie Algebras |A(λ, 0)|
Ar (r ≥ 1) Fr

Br (r ≥ 2) Fr+1

Cr (r ≥ 5) 2Lr−2

Dr (r ≥ 7) 2Lr−3

Exceptional Lie Algebras |A(λ, 0)|
G2 2
F4 4
E6 12
E7 18
E8 30

Section 6 by working more generally with the q-analog of Kostant’s weight
multiplicity formula, a polynomial valued function that when evaluated at
q = 1 recovers (2). Our results in this section establish the following.

Theorem 1.1. Let λ = α1 +α2 + · · ·+αr and μ be an integral weight of a
simple Lie algebra g. If

• g = slr+1(C), then m(λ, μ) =

⎧⎪⎨
⎪⎩
r if μ = 0

1 if μ ∈ Φ

0 otherwise

• g = so2r+1(C), then m(λ, μ) =

{
1 if μ = 0 or μ ∈ W · λ
0 otherwise

where W ·λ denotes the orbit of λ under the action of the Weyl group
• g = spr(C) or so2r(C), then m(λ, μ) = 0.

This work is organized as follows: In Sections 2-5 we consider a specific
Lie algebra (in alphabetical order), provide needed background and present
the results regarding the Weyl alternation sets A(λ, μ) when μ is an integral
weight and λ = α1 + α2 + · · · + αr. The results in each of these sections is
separated by whether μ is the zero weight, or a nonzero integral weight. Sec-
tion 6 uses the results in the previous sections to compute the q-multiplicity
of μ an integral weight in the representation with highest weight λ. Thereby
establishing Theorem 1.1.

2. Lie algebra of type A

In this section, we consider the Lie algebra slr+1(C) for r ≥ 2. In this case,
the set of simple roots is given by Δ = {α1, α2, · · · , αr}, and the set of
positive roots is given by Φ+ = Δ ∪ {αi + αi+1 + · · ·+ αj : 1 ≤ i < j ≤ r}.
The weight ρ is defined as the half sum of the positive roots, ρ = 1

2

∑
α∈Φ+ α,

which is equivalent to ρ = 	1 +	2 + · · ·+	r, where λ,	2, . . . , 	r are the
fundamental weights of slr+1(C). The Weyl group elements are generated by
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reflections about the hyperplanes that lie perpendicular to the simple roots
αi. We denote these simple reflections by si, where 1 ≤ i ≤ r, whose action
on the simple roots is defined by si(αj) = αj if |i − j| > 1, si(αj) = −αj if
i = j, and si(αj) = αi + αj if |i − j| = 1. The Weyl group elements act on
the fundamental weights by si(	j) = 	j − δi,jαi, where δi,j = 1 when i = j
and 0 otherwise. We separate the results of this section into the cases where
μ is the zero weight and when it is a nonzero weight.

2.1. Zero weight space

We now state the main result of this section.

Theorem 2.1. Let g = slr+1(C) with r ≥ 2. Then σ ∈ A(λ, 0) if and only
if σ = 1 or σ = si1si2 · · · sik for some collection of nonconsecutive integers
2 ≤ i1, i2, . . . , ik ≤ r − 1.

Theorem 2.1 first appeared in [3, Proposition 2.1] and its proof used
the fact that the Weyl group of slr+1 is isomorphic to the symmetric group
Sr+1. Below we present a new proof using the fact that the Weyl group
is generated by the root reflections s1, s2, . . . , sr. In particular, this proof
technique illustrates the use of the root reflection action on λ + ρ,which
provides us with a more direct style of proof..

Proof of Theorem 2.1. (⇒) We prove this by establishing the contraposi-
tive. Suppose that σ is neither the identity nor si1si2 · · · sik for some non-
consecutive integers 2 ≤ i1, i2, . . . , ik ≤ r − 1. Then σ must contain s1, or
sr, or sisj for consecutive integers i and j. If σ = s1, then we have that
s1(λ + ρ) − ρ = s1(λ) + s1(ρ) − ρ = λ − α1 + ρ − α1 − ρ = λ − 2α1, which
cannot be written as a sum of positive roots given the negative coefficient of
α1. Hence, s1 /∈ A(λ, 0). Now [8, Proposition 3.4] shows that if σ /∈ A(λ, 0),
then neither is any σ′ containing σ in its reduced word expression. Thus any
σ ∈ W containing s1 in its reduced word expression cannot be in A(λ, 0).
Similarly, if σ = sr, then we have that sr(λ + ρ) − ρ = sr(λ) + sr(ρ) − ρ =
λ−αr + ρ−αr − ρ = λ− 2αr, which cannot be written as a sum of positive
roots because of the negative coefficient of αr. This implies that sr /∈ A(λ, 0),
and so any σ containing sr in its reduced word expression is not in A(λ, 0).

Now suppose we have an arbitrary pair of consecutive integers i, i + 1
such that 2 ≤ i < r − 1. Using the property that the action of Weyl group
elements on weights behave linearly, we have that sisi+1(λ+ρ)−ρ = si(λ+
ρ− αi+1)− ρ = (λ+ ρ− αi − si(αi+1))− ρ = λ− 2αi − αi+1, which cannot
be written as a nonnegative Z-linear combination of the positive roots and,
thus, sisi+1 /∈ A(λ, 0). Therefore any σ containing sisi+1 as a subword in
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its reduced word expression cannot be in A(λ, 0). A similar argument shows

that si+1si /∈ A(λ, 0). Thus, if σ ∈ A(λ, 0), then σ = 1 or σ = si1si2 · · · sik
for some nonconsecutive integers 2 ≤ i1, i2, . . . , ik ≤ r − 1, as claimed.

(⇐) If σ = 1, then 1(λ+ρ)−ρ = λ. Hence 1 ∈ A(λ, 0). If σ = si1si2 · · · sik
for some nonconsecutive integers 2 ≤ i1, i2, . . . , ik ≤ r − 1 we observe that

si1si2 · · · sik(λ+ ρ)− ρ = λ−
k∑

j=1

αij(4)

which can be written as a sum of positive roots. Thus σ = si1si2 · · · sik is in

A(λ, 0).

Before stating our next result, we recall that the Fibonacci numbers

follow the recurrence Fr = Fr−1 + Fr−2 with F1 = F2 = 1.

Corollary 2.1. If r ≥ 2 and λ is the highest root of slr+1, then |A(λ, 0)| =
Fr, where Fr denotes the rth Fibonacci number.

The above result first appeared in [3, Theorem 2.1], but for sake of

completeness we present a proof below, which uses the description of the

elements of the Weyl group as products of root reflections.

Proof of Corollary 2.1. We proceed by induction. If r = 2, then by Theorem

2.1 we know A2(λ, 0) = {1}, which shows that |A2(λ, 0)| = 1 = F2. If

r = 3, then A3(λ, 0) = {1, s2}, which shows that |A3(λ, 0)| = 2 = F3.

Assume that for all r, with 3 ≤ r ≤ k, |Ar(λ, 0)| = Fr. We consider the

case when r = k + 1. Notice that all of the elements σ ∈ W consisting of

nonconsecutive products of the generators s2, s3, . . . , sk will either contain

sk or not. If they do not contain sk, then by our induction hypothesis, the

number of Weyl group elements consisting of nonconsecutive products of

the generators s2, s3, . . . , sk−1 is given by Fk. If the Weyl group element

contains sk, then we must count the number of nonconsecutive products of

the reflections s2, s3, . . . , sk−2, which by our induction hypothesis is given

by Fk−1. Therefore |Ak+1(λ, 0)| = Fk−1 + Fk = Fk+1.

2.2. Nonzero weight spaces

For the Lie algebra of type Ar we consider the case where μ is a positive

root of the Lie algebra was considered in the work of Harris [3], where the

following result was established.
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Theorem 2.2 (Theorem 4.1 [3]). If μ �= 0 is a dominant integral weight of

slr+1(C) and λ is the highest root, then A(λ, μ) =

{
{1} if μ = λ

∅ otherwise.

3. Lie algebra of type B

In this section, we consider the Lie algebra so2r+1(C) for r ≥ 2. Whenever
1 ≤ i ≤ r, let εi denote the ith standard basis vector in Rr. If αi = εi − εi+1

for 1 ≤ i ≤ r − 1 and αr = εr, then the set of simple roots of so2r+1(C) is
given by Δ = {α1, . . . , αr} and the set of positive roots is given by

Φ+ = {εi − εj , εi + εj : 1 ≤ i < j ≤ n} ∪ {εi : 1 ≤ i ≤ r}.

The fundamental weights of so2r+1(C) are defined by 	i = ε1 + · · ·+ εi for
1 ≤ i ≤ r− 1, 	r =

1
2(ε1 + ε2 + · · ·+ εr), and ρ = 	1 + · · ·+	r. Note that

λ = α1 + α2 + · · ·+ αr = ε1 = 	1.
The simple root reflections act on the simple roots and fundamental

weights as follows. If 1 ≤ i ≤ r− 1, then si(αi) = −αi, si(αi−1) = αi−1+αi,
si(αi+1) = αi + αi+1, and sr(αr) = −αr, sr(αr−1) = αr−1 + 2αr. For any
1 ≤ i, j ≤ r, si(	j) = 	j − δi,jαi.

We separate the results of this section into the cases where μ is the zero
weight and when it is a nonzero weight.

3.1. Zero weight space

We begin with the following technical result for so2r+1(C).

Proposition 3.1. Let σ = si1si2 · · · sik where the indices of the simple
reflections form a collection of nonconsecutive integers 2 ≤ i1, . . . , ik ≤ r.
Then σ(λ+ ρ)− ρ = λ−

∑k
j=1 αij is a nonnegative Z-linear combination of

positive roots.

Proof. Let σ = si1si2 · · · sik for some collection of nonconsecutive integers
2 ≤ i1, . . . , ik ≤ r. Note that σ(λ) = λ, and σ(ρ) = ρ −

∑k
j=1 αij . Thus

σ(λ+ ρ)− ρ = λ−
∑k

j=1 αij which is a nonnegative Z-linear combination of
positive roots.

Theorem 3.1. Let g = so2r+1(C) with r ≥ 2. Then σ ∈ A(λ, 0) if and only if
σ = 1 or σ = si1si2 · · · sik for some nonconsecutive integers 2 ≤ i1, . . . , ik ≤ r.

Proof. (⇐) Let σ = 1, then 1(λ + ρ) − ρ = λ is a nonnegative Z-linear
combination of positive roots, thus 1 ∈ A(λ, 0), and Proposition 3.1 implies
that if σ = si1si2 · · · sik for some nonconsecutive integers i1, . . . , ik between
and including 2 and r, then σ ∈ A(λ, 0).
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(⇒) Suppose σ ∈ A(λ, 0). We proceed by induction on �(σ). If �(σ) = 0,
then σ = 1, which satisfies the needed condition. If �(σ) = 1, then σ = si
for some 1 ≤ i ≤ r. If i = 1, then s1(λ + ρ) − ρ = λ − 2α1, which implies
s1 /∈ A(λ, 0), a contradiction. Thus, σ ∈ A(λ, 0) cannot contain s1 in its
reduced word expression. If 1 < i ≤ r, then si(λ + ρ) − ρ = λ − αi, and
si ∈ A(λ, 0) and si is of the required form.

If �(σ) = 2, then σ = sisj for distinct integers i, j satisfying 1 < i, j ≤ r.
Without loss of generality, assume i < j. If i, j are consecutive integers, then
i = j − 1, with 1 < i, j < r or i = r − 1 and j = r. In either case we note
sj−1sj(λ+ρ)−ρ = λ−αi−2αj and sr−1sr(λ+ρ)−ρ = λ−αr−1−3αr neither of
which can be written as a nonnegative Z-linear combination of positive root.
Thus, sr−1sr, srsr−1, sj−1sj , sjsj−1 /∈ A(λ, 0), a contradiction. Moreover,
any σ ∈ W containing sjsj−1 or sj−1sj in its reduced word expression cannot
be in A(λ, 0) for all 2 < j ≤ r. The case were i, j are consecutive was already
considered in Proposition 5.1.

Suppose that for all σ ∈ A(λ, 0) with 1 < �(σ) ≤ k, there exists some
nonconsecutive integers 2 ≤ i1, . . . , i�(σ) ≤ r such that σ = si1si2 · · · si�(σ).
Now consider τ ∈ A(λ, 0) with �(τ) = k+1. Then τ = slσ for some 2 ≤ l ≤ r
and for some σ ∈ W with �(σ) = k. Note that in fact σ ∈ A(λ, 0), as
otherwise τ would not be in A(λ, 0), giving a contradiction. Hence, by our
induction hypothesis there exist nonconsecutive integers 2 ≤ i1, i2, · · · , ik ≤
r such that σ = si1 · · · sik . By Proposition 3.1, σ(λ+ ρ) = λ+ ρ−

∑k
j=1 αij .

Hence τ(λ + ρ) − ρ = slσ(λ + ρ) − ρ = λ − αl −
∑k

j=1 sl(αij ) = λ − αl −∑k
j=1(αij + cl,ijαl) where cl,ij = 2 if il = r and ij = r − 1, cl,ij = 0 if

|l − ij | > 1 and cl,ij = 1 otherwise. Observe that whenever cl,j1 = 1 or
2, the expression τ(λ + ρ) − ρ contains a negative coefficient on a simple
root, and thus τ /∈ A(λ, 0), a contradiction. Therefore, l, i1, · · · , ik must be
nonconsecutive integers between and including 2 and r.

Corollary 3.1. If r ≥ 2 and λ = α1 + α2 + · · · + αr is a fundamental
weight of so2r+1(C), then |A(λ, 0)| = Fr+1, where Fr+1 denotes the (r+1)th

Fibonacci number.

The proof of Corollary 3.1 is analogous to that of Corollary 2.1, hence
we omit it.

We remark that the results in this section first appeared in an unpub-
lished preprint of the second author as [5, Proposition 2.1, Theorem 2.1,
and Theorem 1.1], respectively. However, the proofs presented in this cur-
rent manuscript are new and, as in the previous section, they use the action
of root reflections on λ+ρ without using the definition of the root reflections
involving the symmetric bilinear form on h∗ corresponding to the trace form
as in [2].
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3.2. Nonzero weight spaces

Throughout this section r ≥ 2 and as before λ = α1 + α2 + · · ·+ αr.

Theorem 3.2. If μ �= 0 is a dominant integral weight of so2r+1(C), then

A(λ, μ) =

{
{1} if μ = λ

∅ otherwise.

We begin by proving the following technical results from which Theorem

3.2 follows.

Proposition 3.2. If λ =
∑

α∈Δ α is a fundamental weight of so2r+1(C),

then A(λ, λ) = {1}.

Proof. Since λ = α1+· · ·+αr, notice σ(λ+ρ)−ρ−λ is a nonnegative Z-linear

combination of positive roots only if σ(λ+ρ)−ρ is. By Theorem 3.1 we know

σ(λ+ρ)−ρ is a nonnegative Z-linear combination of positive roots if and only

if σ = si1si2 · · · sik , for some nonconsecutive integers i1, . . . , ik between 2 and

r. Hence A(λ, λ) ⊂ A(λ, 0). Suppose that σ ∈ A(λ, λ) with �(σ) = k ≥ 1,

then there exist nonconsecutive integers i1, . . . , ik between 2 and r such that

σ = si1si2 · · · sik . By Proposition 3.1 we have that σ(λ+ρ)−ρ = λ−
∑k

j=1 αij .

Then notice σ(λ+ρ)−ρ−λ will not be a nonnegative Z-linear combination

of positive roots, reaching a contradiction. Thus �(σ) = 0 and σ = 1.

Proposition 3.3. Let μ �= 0 be a dominant integral weight of so2r+1(C).

Then there exists σ ∈ W such that ℘(σ(λ + ρ) − ρ − μ) > 0 if and only if

μ = λ.

Proof. (⇒) Let μ ∈ P+(so2r+1(C)) with μ �= 0, and assume σ ∈ W such

that ℘(σ(λ + ρ) − ρ − μ) > 0. By [2, Proposition 3.1.19], we know that

P+(so2r+1(C)) consists of all weights μ = k1ε1 + k2ε2 + · · · + krεr, with

k1 ≥ k2 ≥ · · · ≥ kr ≥ 0 and satisfy that 2ki and ki − kj are integers for all

i, j. Now observe that

σ (λ+ ρ)− ρ− μ = σ

((
r +

1

2

)
ε1 +

(
r − 3

2

)
ε2 + · · ·+ 3

2
εr−1 +

1

2
εr

)

−
((

r − 1

2

)
ε1 +

(
r − 3

2

)
ε2 + · · ·+ 1

2
εr

)
− (k1ε1 + · · ·+ krεr) .
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Let ai denote the coefficient of αi in σ(λ+ ρ)− ρ− μ. Then

a1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−i+ 1− k1 if σ(εi) = ε1 for some 2 ≤ i ≤ r

−2r + i− k1 if σ(εi) = −ε1 for some 2 ≤ i ≤ r

1− k1 if σ(ε1) = ε1

−2r − k1 if σ(ε1) = −ε1.

Since r ≥ 2 and a1 ∈ N, it must be that σ(ε1) = ε1 and a1 = 1 − k1. If
k1 = 0, then ki = 0 for all 1 ≤ i ≤ r, and so μ = 0, a contradiction. Hence
k1 = 1. Since ki − kj ∈ Z for all i and j, and since 1 = k1 ≥ k2 ≥ k3 ≥ · · · ≥
kr ≥ 0, we have that ki = 0 or 1, for all 2 ≤ i ≤ r. We want to show that
ki = 0 for all 2 ≤ i ≤ r. It suffices to show k2 = 0. A simple computation
shows that

a2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−i+ 2− k2 if σ(εi) = ε2 for some 3 ≤ i ≤ r

−2r + i+ 1− k2 if σ(εi) = −ε2 for some 3 ≤ i ≤ r

−k2 if σ(ε2) = ε2

−2r + 3− k2 if σ(ε2) = −ε2.

Since r ≥ 2 and a2 ∈ N, it must be that σ(ε2) = ε2, and hence k2 = 0. Thus
μ = ε1 = λ.

(⇐) By Proposition 3.2, we know if μ = λ, then ℘(σ(λ+ ρ)− ρ−λ) > 0
when σ = 1.

4. Lie algebra of type C

In this section, we consider the Lie algebra sp2r(C) for r ≥ 3. Whenever
1 ≤ i ≤ r let εi denote the ith standard basis vector in Rr. If αi = εi − εi+1

for 1 ≤ i ≤ r − 1 and αr = 2εr, then the set of simple roots of sp2r(C) is
given by Δ = {α1, . . . , αr} and the set of positive roots is given by

Φ+ = {εi − εj , εi + εj : 1 ≤ i < j ≤ r} ∪ {2εi : 1 ≤ i ≤ r}.

The fundamental weights of sp2r(C) are 	i = ε1+ · · ·+εi for 1 ≤ i ≤ r, and
ρ = 	1 + · · ·+	r. The simple root reflections act on the simple roots and
fundamental weights as follows. If 1 ≤ i ≤ r, then si(αj) = αj if |i− j| > 1,
si(αj) = −αj if i = j, si(αj) = αi+αj if |i− j| = 1 and i �= r−1, j �= r, and
sr−1(αr) = 2αr−1 + αr. As before si(	j) = 	j − δi,jαi for all 1 ≤ i, j ≤ r.
Throughout this section, we let λ = α1 + α2 + · · ·+ αr.

We separate the results of this section into the cases where μ is the zero
weight and when it is a nonzero weight.
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4.1. Zero weight space

We begin with the following technical result for sp2r(C).

Proposition 4.1. Let σ = si1si2 · · · sik for some nonconsecutive integers
2 ≤ i1, . . . , ik ≤ r−1. If σ contains sr−1 in its reduced word expression, then
σ(λ+ ρ)− ρ = λ+αr−1 −

∑k
j=1 αij , otherwise σ(λ+ ρ)− ρ = λ−

∑k
j=1 αij ,

both of which are nonnegative Z-linear combinations of positive roots.

Proof. Let σ = si1si2 · · · sik for some nonconsecutive integers satisfying
2 ≤ i1, . . . , ik ≤ r − 1. Note that

sr−1(λ+ ρ) = α1 + α2 + · · ·+ αr−3 + (αr−2 + αr−1)− αr−1

+ (2αr−1 + αr) + ρ− αr−1

= λ+ ρ.

Hence, if σ contains sr−1, without loss of generality, let ik = r − 1, and
observe that σ(λ+ρ)−ρ = si1si2 · · · sik−1

sr−1(λ+ρ)−ρ = si1si2 · · · sik−1
(λ+

ρ)− ρ = λ+ αr−1 −
∑k−1

j=1 αij = λ+ αr−1 −
∑k

j=1 αij . If σ does not contain

sr−1, then σ(λ+ρ)−ρ = si1si2 · · · sik(λ+ρ)−ρ = λ+ρ−ρ−
∑k

j=1 αij = λ−∑k
j=1 αij . Lastly, note that both expressions can be written as nonnegative

integrals sum of positive roots.

Proposition 4.2. If σ = si1si2 · · · sik for some nonconsecutive integers sat-
isfying 2 ≤ i1, . . . , ik ≤ r − 4, then

• σsr−2sr−1(λ+ ρ)− ρ = λ−
(∑k

j=1 αij

)
− αr−2

• σsr−1sr−2(λ+ ρ)− ρ = σsr−2sr−1sr−2(λ+ ρ)− ρ = λ−
(∑k

j=1 αij

)
−

αr−2 − αr−1

all of which can be represented as nonnegative Z-linear combinations of
positive roots.

Proof. The result follows from Proposition 4.1 and by computing the action
of the simple roots sr−2 and sr−1 on λ+ ρ.

The following result describes all of the elements of A(λ, 0) for the Lie
algebra of type C.

Theorem 4.1. Let g = sp2r(C) with r ≥ 3. Then σ ∈ A(λ, 0) if and only if

1. σ = 1 or
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2. σ = si1si2 · · · sik for some nonconsecutive integers 2 ≤ i1, i2, . . . , ik ≤
r − 1 or

3. σ = si1si2 · · · sikπ for some nonconsecutive integers 2 ≤ i1, i2, . . . , ik ≤
r − 4 and π ∈ {sr−2sr−1, sr−1sr−2, sr−2sr−1sr−2}.

Proof. (⇐) Let σ = 1, then 1(λ + ρ) − ρ = λ is a nonnegative Z-linear
combination of positive roots, thus 1 ∈ A(λ, 0). Propositions 4.1 and 4.2
show that if σ is of the form listed in (2) or (3) above, then then σ ∈ A(λ, 0).

(⇒) Suppose σ ∈ W is not of the three forms listed above. Then σ
contains s1 or sr, or sisj where i, j are consecutive integers, but not of the
forms sr−2sr−1 or sr−1sr−2. We observe that s1(λ+ρ)−ρ = (λ−α1+ρ−α1)−
ρ = λ−2α1 and sr(λ+ρ)−ρ = (λ−αr+ρ−αr)−ρ = λ−2αr, which cannot
be written as sums of positive roots because of the negative coefficient of
α1 and of αr, respectively. This implies that s1, sr /∈ A(λ, 0), and hence if σ
contains s1 or sr in its reduced word expression, then σ /∈ A(λ, 0).

For consecutive integers 1 < j− 1, j < r− 1 we have sj−1sj(λ+ρ)−ρ =
λ − 2αj−1 − αj and sjsj−1(λ + ρ) − ρ = λ − αj−1 − 2αj , which implies
that sj−1sj , sjsj−1 /∈ A(λ, 0). Hence if σ contains sisj for some consecutive
integers 2 ≤ i, j ≤ r − 2 then σ /∈ A(λ, 0). Thus σ must be of one of the
three forms listed in the theorem in order for σ ∈ A(λ, 0).

Recall that the Lucas numbers follow the recurrence Lr = Lr−1 +Lr−2,
with L1 = 1 and L2 = 3. We can now connect our work with this famous
sequence of integers.

Corollary 4.1. If r ≥ 3 and λ = α1 + α2 + · · ·+ αr is a weight of sp2r(C),
then |A(λ, 0)| = 2Lr−2, where Lk denotes the kth Lucas number.

Proof. As in Corollary 2.1, we know that there are Fr Weyl group elements
in A(λ, 0) arising from parts 1 and 2 of Theorem 4.1. By the same reasoning,
there are Fr−3 elements σ = si1si2 · · · sikπ for some nonconsecutive integers
2 ≤ i1, i2, . . . , ik ≤ r−4, for each π as specified in part 3 of Theorem 4.1. This
yields an additional 3Fr−3 elements in A(λ, 0). Thus |A(λ, 0)| = Fr+3Fr−3,
where Fk denotes the kth Fibonacci number. The result follows from the fact
that Fr + 3Fr−3 = 2Lr−2.

4.2. Nonzero weight spaces

Throughout this section r ≥ 3 and as before λ = α1 + α2 + · · ·+ αr.

Theorem 4.2. If μ �= 0 is a dominant integral weight of sp2r(C), then
A(λ, μ) = ∅
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We begin by proving the following technical results from which Theorem
4.2 follows.

Proposition 4.3. Let μ �= 0 be a dominant integral weight of sp2r(C). If
there exists σ ∈ W such that ℘(σ(λ+ ρ)− ρ− μ) > 0, then μ = 	1.

Proof. (⇒) Let μ ∈ P+(sp2r(C)) with μ �= 0, and assume σ ∈ W such
that ℘(σ(λ + ρ) − ρ − μ) > 0. By [2, Proposition 3.1.19], we know that
P+(sp2r(C)) consists of all weights μ = k1ε1 + k2ε2 + · · · + krεr, satisfying
k1 ≥ k2 ≥ · · · ≥ kr ≥ 0 with ki an integer for all i.

Now observe that

σ(λ+ ρ)− ρ− μ = σ((r + 1)ε1 + (r − 1)ε2 + · · ·+ 3εr−2 + 2εr−1 + 2εr)

− (rε1 + (r − 1)ε2 + · · ·+ 2εr−1 + εr)

− (k1ε1 + k2ε2 + · · ·+ krεr).

Let ai denote the coefficient of αi in σ(λ+ ρ)− ρ− μ. Then

a1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− k1 if σ(ε1) = ε1

−2r − 1− k1 if σ(ε1) = −ε1

−i+ 1− k1 if σ(εi) = ε1 for some 2 ≤ i ≤ r − 1

−2r − 1 + i− k1 if σ(εi) = −ε1 for some 2 ≤ i ≤ r − 1

2− r − k1 if σ(εr) = ε1

−2− r − k1 if σ(εr) = −ε1.

(5)

Since r ≥ 3 and a1 ∈ N, it must be that σ(ε1) = ε1 and a1 = 1− k1. Hence,
k1 = 0 or k1 = 1. If k1 = 0, then ki = 0 for all 1 ≤ i ≤ r, and so μ = 0,
a contradiction. Thus k1 = 1. Since 1 = k1 ≥ k2 ≥ k3 ≥ · · · ≥ kr ≥ 0, we
have that ki = 0 or 1, for all 2 ≤ i ≤ r. We want to show that ki = 0 for all
2 ≤ i ≤ r. It suffices to show k2 = 0. A simple computation shows that

a2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−k2 if σ(ε2) = ε2

−2(r − 1)− k2 if σ(ε2) = −ε2

−i+ 2− k2 if σ(εi) = ε2 for some 3 ≤ i ≤ r − 1

−2r + i− k2 if σ(εi) = −ε2 for some 3 ≤ i ≤ r − 1

3− r − k2 if σ(εr) = ε2

−r − 1− k2 if σ(εr) = −ε2.

(6)

Since r ≥ 3 and a2 ∈ N, it must be that either
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1. σ(ε2) = ε2 and a2 = −k2 or
2. r = 3, σ(εr) = ε2, and a2 = 3− r − k2 = −k2.

However, in either case it must be that k2 = 0 in order for a2 ∈ N. This
implies that ki = 0 for all 2 ≤ i ≤ r. Thus μ = ε1 = 	1.

Proposition 4.4. If 	1 is a fundamental weight of the Lie algebra sp2r(C),
then A(λ,	1) = ∅.
Proof. We begin by noting that 	1 = ε1 = α1 + · · ·+ αr−1 +

1
2αr. Now we

compute

1(λ+ ρ)− ρ−	1 =
1

2
αr(7)

s1(λ+ ρ)− ρ−	1 = −2α1 +
1

2
αr(8)

si(λ+ ρ)− ρ−	1 = −αi +
1

2
αr for 2 ≤ i ≤ r − 2(9)

sr−1(λ+ ρ)− ρ−	1 =
1

2
αr(10)

sr(λ+ ρ)− ρ−	1 = −3

2
αr(11)

none of which are nonnegative Z-linear combinations of positive roots. Hence
1 /∈ A(λ,	1) and si /∈ A(λ,	1) for all 1 ≤ i ≤ r. Then by [8, Proposition
3.4] it follows that since si /∈ A(λ,	1) for any 1 ≤ i ≤ r, then neither is any
σ ∈ W containing any si in its reduced word expression. This establishes
that A(λ,	1) = ∅.

5. Lie algebra of type D

In this section, we consider the Lie algebra g = so2r(C) for r ≥ 4. For
1 ≤ i ≤ r let εi denote the ith standard basis vector in Rr. If αi = εi − εi+1

for 1 ≤ i ≤ r − 1 and αr = εr−1 + εr, then the set of simple roots is
given by Δ = {α1, . . . , αr} and the set of positive roots is given by Φ+ =
{εi − εj , εi + εj : 1 ≤ i < j ≤ r}. The fundamental weights of so2r(C)
are 	i = ε1 + · · · + εi for 1 ≤ i ≤ r − 2, 	r−1 = 1

2(ε1 + · · · + εr−1 − εr),
	r =

1
2(ε1+· · ·+εr−1+εr), and ρ = 	1+· · ·+	r. The simple root reflections

act on the simple roots and fundamental weights as follows. If 1 ≤ i ≤ r, then
si(αi) = −αi. If 1 ≤ i < j ≤ r − 1 with |i− j| = 1 or if i = r − 2 and j = r,
then si(αj) = sj(αi) = αi + αj . Lastly, sr−1(αr) = αr, sr(αr−1) = αr−1,
and in all other cases si(αj) = αj . As before si(	j) = 	j − δi,jαi for all
1 ≤ i, j ≤ r. Throughout this section, we let λ = α1 + α2 + · · ·+ αr.
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We separate the results of this section into the cases where μ is the zero
weight and when it is a nonzero weight.

5.1. Zero weight space

We begin with the following technical result for so2r(C).

Proposition 5.1. Let σ = si1si2 · · · sik for some nonconsecutive integers
satisfying 2 ≤ i1, . . . , ik ≤ r − 2. If σ contains sr−2, then σ(λ + ρ) − ρ =
λ+ αr−2 −

∑k
j=1 αij , otherwise σ(λ+ ρ)− ρ = λ−

∑k
j=1 αij , both of which

are nonnegative Z-linear combinations of positive roots.

Proof. Let σ = si1si2 · · · sik for some nonconsecutive integers satisfying
2 ≤ i1, . . . , ik ≤ r − 2. If σ contains sr−2, then without loss of general-
ity assume ik = r−2 and note σ(λ+ρ)−ρ = si1si2 · · · sik−1

sr−2(λ+ρ)−ρ =

si1si2 · · · sik−1
(λ + ρ) − ρ = λ −

∑k−1
j=1 αij = λ + αr−2 −

∑k
j=1 αij . However,

if σ does not contain sr−2, then σ(λ + ρ) − ρ = si1si2 · · · sik(λ + ρ) − ρ =
λ −

∑k
j=1 αij . Lastly, note that both expressions can be written as a non-

negative Z-linear combination of positive roots.

Proposition 5.2. If σ = si1si2 · · · sik for some nonconsecutive integers sat-
isfying 2 ≤ i1, . . . , ik ≤ r − 5, then

• σsr−3sr−2(λ+ ρ)− ρ = λ−
(∑k

j=1 αij

)
− αr−3,

• σsr−2sr−3(λ+ ρ)− ρ = σsr−3sr−2sr−3(λ+ ρ)− ρ = λ−
(∑k

j=1 αij

)
−

αr−3 − αr−2,

both of which can be written as nonnegative Z-linear combinations of posi-
tive roots.

Proof. The result follows from Proposition 5.1 and by computing the action
of the simple roots sr−3 and sr−2 on λ+ ρ.

Theorem 5.1. Let g = so2r(C) with r ≥ 4. Then σ ∈ A(λ, 0) if and only if

1. σ = 1 or
2. σ = si1si2 · · · sik for some nonconsecutive integers 2 ≤ i1, . . . , ik ≤ r−2

or
3. σ = si1si2 · · · sikπ for some nonconsecutive integers 2 ≤ i1, . . . , ik ≤

r − 5 and π ∈ {sr−3sr−2, sr−2sr−3, sr−3sr−2sr−3}.

Proof. (⇐) Let σ = 1, then 1(λ+ ρ)− ρ = λ is a nonnegative Z-linear com-
bination of positive roots. Hence 1 ∈ A(λ, 0). If σ ∈ W has one of the forms
listed in (2) or (3), then Propositions 5.1 and 5.2 show that σ ∈ A(λ, 0).



156 Kevin Chang et al.

(⇒) Suppose σ ∈ W is not of the three forms listed above. Then σ

contains s1, sr−1, sr, or consecutive reflections si and sj , where {i, j} �=
{r−3, r−2}. Note that s1(λ+ρ)−ρ = λ−2α1, sr−1(λ+ρ)−ρ = λ−2αr−1,

and sr(λ+ρ)−ρ = λ−2αr, none of which can be written as sums of positive

roots because of the negative coefficients of α1, αr−1 and αr, respectively.

This implies that s1, sr−1, sr /∈ A(λ, 0), and hence if σ contains s1, sr−1, or

sr in its reduced word expression, then σ /∈ A(λ, 0).

For consecutive integers 2 ≤ j− 1, j ≤ r− 3 we have sj−1sj(λ+ρ)−ρ =

λ− 2αj−1 − αj and sjsj−1(λ+ ρ)− ρ = λ− αj−1 − 2αj , which implies that

sj−1sj , sjsj−1 /∈ A(λ, 0). Hence if σ contains si, sj for some consecutive in-

tegers 2 ≤ i, j ≤ r− 3 then σ /∈ A(λ, 0). Thus σ must be of one of the three

forms listed in the theorem in order for σ ∈ A(λ, 0).

Corollary 5.1. If r ≥ 4 and λ = α1 + α2 + · · ·+ αr is a weight of so2r(C),

then |A(λ, 0)| = 2Lr−3, where Lk denotes the kth Lucas number.

The proof of Corollary 5.1 is analogous to that of Corollary 4.1, hence

we omit it.

5.2. Nonzero weight spaces

Throughout this section r ≥ 4 and as before λ = α1 + α2 + · · ·+ αr.

Theorem 5.2. If μ �= 0 is a dominant integral weight of so2r(C), then

A(λ, μ) = ∅.

We begin by proving the following technical results from which Theorem

5.2 follows.

Proposition 5.3. Let μ �= 0 be a dominant integral weight of so2r(C). If

there exists σ ∈ W such that ℘(σ(λ+ ρ)− ρ− μ) > 0, then μ = 	1.

Proof. (⇒) Let μ ∈ P+(so2r(C)) with μ �= 0, and assume σ ∈ W such that

℘(σ(λ+ρ)−ρ−μ) > 0. By [2, Proposition 3.1.19], we know that P+(so2r(C))

consists of all weights μ = k1ε1 + k2ε2 + · · · + krεr, satisfying k1 ≥ k2 ≥
· · · ≥ |kr| where 2ki and ki − kj are integers for all i. Now observe that

σ(λ+ ρ)− ρ− μ = σ(rε1 + (r − 2)ε2 + (r − 3)ε3 + · · ·+ 2εr−2 + 2εr−1)

− ((r − 1)ε1 + (r − 2)ε2 + · · ·+ 2εr−2 + εr−1)

− (k1ε1 + k2ε2 + · · ·+ krεr).
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Let ai denote the coefficient of αi in σ(λ+ ρ)− ρ− μ. Then

a1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− k1 if σ(ε1) = ε1

−2r + 1− k1 if σ(ε1) = −ε1

−i+ 1− k1 if σ(εi) = ε1 for some 2 ≤ i ≤ r − 1

−2r + 1 + i− k1 if σ(εi) = −ε1 for some 2 ≤ i ≤ r − 1

3− r − k1 if σ(εr) = ε1

−1− r − k1 if σ(εr) = −ε1.

(12)

Since r ≥ 4 and a1 ∈ N, it must be that σ(ε1) = ε1 and a1 = 1− k1. Hence,
k1 = 0 or k1 = 1. If k1 = 0, then ki = 0 for all 1 ≤ i ≤ r, so μ = 0, a
contradiction. Thus k1 = 1. Since ki − kj ∈ Z for all i and j, and since
1 = k1 ≥ k2 ≥ k3 ≥ · · · ≥ |kr|, we have that ki = 0 or 1, for all 2 ≤ i ≤ r.
We want to show that ki = 0 for all 2 ≤ i ≤ r. It suffices to show k2 = 0. A
simple computation shows

a2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−k2 if σ(ε2) = ε2

−2(r − 2)− k2 if σ(ε2) = −ε2

−i+ 2− k2 if σ(εi) = ε2 for some 3 ≤ i ≤ r − 1

−2r + i+ 2− k2 if σ(εi) = −ε2 for some 3 ≤ i ≤ r − 1

4− r − k2 if σ(εr) = ε2

−r − k2 if σ(εr) = −ε2.

(13)

Since r ≥ 4 and a2 ∈ N, it must be that either

1. σ(ε2) = ε2 and a2 = −k2 or
2. r = 4, σ(εr) = ε2, and a2 = 4− r − k2 = −k2.

However, in either case it must be that k2 = 0 in order for a2 ∈ N. This
implies that ki = 0 for all 2 ≤ i ≤ r. Thus μ = ε1 = 	1.

Proposition 5.4. If 	1 is a fundamental weight of the Lie algebra so2r(C),
then A(λ,	1) = ∅.
Proof. We begin by noting that 	1 = ε1 = α1 + · · ·+ αr−2 +

1
2αr−1 +

1
2αr.

Now we compute

1(λ+ ρ)− ρ−	1 =
1

2
(αr−1 + αr)(14)

s1(λ+ ρ)− ρ−	1 = −2α1 +
1

2
(αr−1 + αr)(15)
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si(λ+ ρ)− ρ−	1 = −αi +
1

2
(αr−1 + αr)αr for 2 ≤ i ≤ r − 3(16)

sr−2(λ+ ρ)− ρ−	1 =
1

2
(αr−1 + αr)(17)

sr−1(λ+ ρ)− ρ−	1 = −3

2
αr−1 +

1

2
αr(18)

sr(λ+ ρ)− ρ−	1 =
1

2
αr−1 −

3

2
αr(19)

none of which are nonnegative Z-linear combinations of positive roots. Hence
1 /∈ A(λ,	1) and si /∈ A(λ,	1) for all 1 ≤ i ≤ r. Then by [8, Proposition
3.4] it follows that since si /∈ A(λ,	1) for any 1 ≤ i ≤ r, then neither is any
σ ∈ W containing any si in its reduced word expression. This establishes
that A(λ,	1) = ∅.

6. A q-analog

The q-analog of Kostant’s partition function is the polynomial valued func-
tion, ℘q, defined on h∗ by ℘q(ξ) = c0 + c1q+ · · ·+ ckq

k, where cj equals the
number of ways to write ξ as a nonnegative Z-linear combination of exactly
j positive roots, for ξ ∈ h∗. The q-analog of Kostant’s weight multiplicity
formula is defined, in [10], as:

mq(λ, μ) =
∑

σ∈W
(−1)�(σ)℘q(σ(λ+ ρ)− (μ+ ρ)).

In the sections that follow we consider the classical Lie algebras and
provide formulas for the value of mq(λ, μ) when λ = α1 + α2 + · · ·+ αr and
μ is a dominant integral weight.

6.1. Lie algebra of type A

Note λ = α1 + α2 + · · · + αr is the highest root of slr+1(C). In this case
it is known that mq(λ, 0) =

∑r
i=1 q

i, where 1, 2, . . . , r are the exponents of
slr+1(C) [10]. A combinatorial proof of this result was presented in [3]; how-
ever, we provide the results and their proofs here for sake of completeness.

Theorem 6.1. If λ = α1 + α2 + · · · + αr is the highest root of slr+1(C),
then mq(λ, 0) = q + q2 + · · ·+ qr.

In order to establish Theorem 6.1, we will make use of the following
technical result.

Lemma 6.1. The cardinality of the set {σ ∈ A(λ, 0) | �(σ) = k} is
(
r−1−k

k

)
and max{ �(σ) | σ ∈ A(λ, 0)} = � r−1

2 �.
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Proof. This result follows from Theorem 2.1 and the fact that for any n, k ∈
N satisfying k ≤ n

1. the number of ways to select k nonconsecutive numbers from the set
{1, 2, . . . , n} is given by

(
n−k+1

k

)
and

2. the maximum number of nonconsecutive numbers that can selected
from the set {1, 2, . . . , n} is �n+1

2 �.
We now prove the following combinatorial identity.

Proposition 6.1. If λ = α1 + α2 + · · ·+ αr is the highest root of slr+1(C)
and σ ∈ A(λ, 0), then ℘q(σ(λ+ ρ)− ρ) = q1+�(σ)(1 + q)r−1−2�(σ).

Proof. If σ ∈ A(λ, 0) with �(σ) = 0, then σ = 1 and σ(λ + ρ) − ρ = λ =
α1 + · · ·+ αr. Since Φ+ = {αi : 1 ≤ i ≤ r} ∪ {αi + · · ·+ αj : 1 ≤ i < j ≤ r},
for any i ≥ 0, we can think of ci+1, the coefficient of qi+1 in ℘q(α1+ · · ·+αr),
as the number of ways to place i lines in r− 1 slots. Hence ci+1 =

(
r−1
i

)
and

℘q(λ) =
∑r−1

i=0

(
r−1
i

)
qi+1 = q(1 + q)r−1.

If σ ∈ A(λ, 0) with �(σ) = k �= 0, then Theorem 2.1 implies that σ =
s1s2 · · · sk, for some nonconsecutive integers 2 ≤ i1, i2, . . . , ik ≤ r − 1. Then
by (4), σ(λ + ρ) − ρ = λ −

∑k
j=1 αij . Let cj denote the coefficient of qj in

℘q(σ(λ+ρ)−ρ). Since σ subtracts k many nonconsecutive simple roots from

λ, we will at a minimum need k+1 positive roots to write λ−
∑k

j=1 αij . So

cj = 0, whenever j < k + 1. Also observe that λ−
∑k

j=1 αij can be written
with at most r − k positive roots. Hence cj = 0, whenever j > n− k.

For i ≥ 0, we can think of ck+1+i as the number of ways to place i lines
in r − 1 − 2k slots. This is because for each simple root that σ removes
from λ, we lose 2 slots in which to place a line, one before and one after. So
ck+1+i =

(
r−1−2k

i

)
, whenever 0 ≤ i ≤ r−1−2k. Therefore ℘q(σ(λ+ρ)−ρ) =

r−1−2k∑
i=0

(
r−1−2k

i

)
qk+1+i = q1+k(1 + q)r−1−2k.

The following proposition will be used in the proof of Theorem 6.1.

Proposition 6.2. For r ≥ 1,

� r−1

2
�∑

k=0

(−1)k
(
r − 1− k

k

)
q1+k(1 + q)r−1−2k =

r∑
i=1

qi.

Proof. Equation (4.3.7) in [11] shows that for integers k and n ≥ 0

∑
k≤n

2

(−1)k
(
n− k

k

)
qk(1 + q)n−2k =

1− qn+1

1− q
.(20)
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Suppose r ≥ 1, and let n = r − 1 ≥ 0. Then by (20) we have that

� r−1

2
�∑

k=0

(−1)k
(
r − 1− k

k

)
q1+k(1 + q)r−1−2k = q

(
1− qn+1

1− q

)
.

Now observe that

r∑
i=1

qi =

n+1∑
i=1

qi = q

n∑
i=0

qi = q

(
1− qn+1

1− q

)
.

Therefore

� r−1

2
�∑

k=0

(−1)k
(
r − 1− k

k

)
q1+k(1 + q)r−1−2k =

r∑
i=1

qi.

Proof of Theorem 6.1. By Lemma 6.1 and Propositions 6.1 and 6.2, if k =
�(σ), then

mq(λ, 0) =
∑
σ∈W

(−1)�(σ)℘q(σ(λ+ ρ)− ρ)

=
∑

σ∈A(λ,0)

(−1)�(σ)℘q(σ(λ+ ρ)− ρ)

=

� r−1

2
�∑

k=0

(−1)k
(
r − 1− k

k

)
q1+k(1 + q)r−1−2k

= q + q2 + q3 + · · ·+ qr.

We now present the multiplicity result when μ is an integral weight of
slr+1(C).

Corollary 6.1. If μ ∈ P (slr+1(C)), then m(λ, μ) =

⎧⎪⎨
⎪⎩
r if μ = 0

1 if μ ∈ Φ

0 otherwise.

Proof. The fact that m(λ, 0) = r follows from Theorem 6.1 and the fact that
mq(λ, 0)|q=1 = m(λ, 0). To see that m(λ, μ) = 1 when μ is a positive root,
recall that if μ ∈ P (slr+1(C)), then there exists w ∈ W and ξ ∈ P+(slr+1(C))
such that w(ξ) = μ [2, Proposition 3.1.20]. Also by [2, Proposition 3.2.27]
we know that weight multiplicities are invariant under W . Thus it suffices to
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compute m(λ, μ) for μ ∈ P+(slr+1(C)). By Theorem 2.2 we know A(λ, λ) =
{1}, and A(λ, μ) = ∅ whenever μ ∈ P+(slr+1(C))−{0, λ}. This implies that
m(λ, λ) = ℘(1(λ + ρ) − ρ − λ) = ℘(0) = 1, and that m(λ, μ) = 0 whenever
μ ∈ P+(slr+1(C))− {0, λ}.

6.2. Lie algebra of type B

It is known that the multiplicity of the zero weight in the representation
with highest weight λ = α1+α2+ · · ·+αr = 	1 is equal to 1, see [1]. In this
section, we give a combinatorial proof of this result by proving the following.

Theorem 6.2. Let r ≥ 2 and let λ = α1 + α2 + · · · + αr = 	1 be a
fundamental weight of so2r+1(C). Then mq(λ, 0) = qr.

Observe that the subset of positive roots of so2r+1(C) used to write
σ(λ + ρ) − ρ, for any σ ∈ A(λ, 0), is equal to the set of positive roots of
slr+1(C). Thus we state the following technical results.

Lemma 6.2. The cardinality of the sets

{σ ∈ A(λ, 0) : �(σ) = k and σ does not contain sr }

and

{σ ∈ A(λ, 0) : �(σ) = k + 1 and σ contains sr}
are

(
r−1−k

k

)
and

(
r−2−k

k

)
, respectively. Also

max{�(σ) : σ ∈ A(λ, 0) and σ does not contain sr} =

⌊
r − 1

2

⌋
and

max{�(σ) : σ ∈ A(λ, 0) and σ contain sr} =

⌊
r − 2

2

⌋
.

Lemma 6.2 is analogous to Lemma 6.1 and hence we omit the proof.

Proposition 6.3. Let r ≥ 2 and let λ = α1 + α2 + · · · + αr = 	1 be a
fundamental weight of so2r+1(C). If σ ∈ A(λ, 0), then

℘q(σ(λ+ ρ)− ρ) =

{
q1+�(σ)(1 + q)r−1−2�(σ) if σ does not contain sr

q�(σ)(1 + q)r−2�(σ) if σ contains sr.

To see that the statement of Proposition 6.3 holds, it suffices to note
that whenever σ does not contain sr, then the count is precisely that of
Proposition 6.3, while if σ contains sr, then it reduces to Proposition 6.3
with r replaced by r − 1 and �(σ) replaced by �(σ)− 1. With the results at
hand we can now prove Theorem 6.2.
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Proof of Theorem 6.2. Observe that

mq(λ, 0) =
∑

σ∈A(λ,0)
no sr in σ

(−1)�(σ)℘q(σ(λ+ ρ)− ρ)

+
∑

σ∈A(λ,0)
sr in σ

(−1)�(σ)℘q(σ(λ+ ρ)− ρ).

By Lemma 6.2, Proposition 6.3 and Proposition 6.2 it follows that

∑
σ∈A(λ,0)
no sr in σ

(−1)�(σ)℘q(σ(λ+ ρ)− ρ)

=

� r−1

2
�∑

k=0

(−1)k
(
r− 1− k

k

)
q1+k(1 + q)r−1−2k

=

r∑
i=1

qi, and

∑
σ∈A(λ,0)
sr in σ

(−1)�(σ)℘q(σ(λ+ ρ)− ρ)

=

� r−2

2
�∑

k=0

(−1)1+k

(
r− 2− k

k

)
q1+k(1 + q)r−2−2k

= −
r−1∑
i=1

qi.

Therefore, mq(λ, 0) = (q+q2+· · ·+qr−1+qr)−(q+q2+· · ·+qr−1) = qr.

We can now present the following multiplicity result regarding the nonzero
weight spaces.

Corollary 6.2. If μ ∈ P (so2r+1(C)), then

m(λ, μ) =

{
1 if μ = 0 or μ ∈ W · λ
0 otherwise

where W · λ denotes the orbit of λ under the action of the Weyl group.
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Proof. The fact that m(λ, 0) = 1 follows directly from Theorem 6.2, since

m(λ, 0) = mq(λ, 0)|q=1 = 1. Recall that given μ ∈ P (so2r+1(C)), there exists

w ∈ W and ξ ∈ P+(so2r+1(C)) such that w(ξ) = μ and also recall that weight

multiplicities are invariant under W [2, Propositions 3.1.20, 3.2.27]. Thus it

suffices to consider μ ∈ P+(so2r+1(C)). Theorem 3.2 implies m(λ, λ) = 1

and hence m(λ, μ) = 1 whenever μ ∈ W · λ. Moreover, Theorem 3.2 also

shows m(λ, μ) = 0, whenever μ ∈ P+(so2r+1(C)) \ {0, λ}.

6.3. Lie algebra of type C

In this section, we give a result regarding the multiplicity of an integral

weight μ in a highest weight representation of sp2r(C) with highest weight

λ = α1 + α2 + · · ·+ αr.

Theorem 6.3. If r ≥ 3 and λ = α1+α2+ · · ·+αr is a fundamental weight

of sp2r(C), then mq(λ, 0) = 0.

Proof. By Corollary 4.1 we know that the number of elements in A(λ, 0) is

even. Hence, we will establish this result by showing that we can pair up

elements σ, τ ∈ A(λ, 0) such that �(τ) = �(σ)± 1 and σ(λ+ ρ)− ρ = τ(λ+

ρ)−ρ. This implies that the value ℘q(σ(λ+ρ)−ρ) appears in mq(λ, 0) with

opposite signs. Thus the contributions of these terms cancel in mq(λ, 0). By

pairing all of the elements in A(λ, 0) in this way, we establish mq(λ, 0) = 0.

To prove the claim we recall that by Theorem 4.1 the elements of A(λ, 0)

consist of

1. σ = 1 or

2. σ = si1si2 · · · sik for some nonconsecutive integers 2 ≤ i1, i2, . . . , ik ≤
r − 1 or

3. σ = si1si2 · · · sikπ for some nonconsecutive integers 2 ≤ i1, i2, . . . , ik ≤
r − 4 and π ∈ {sr−2sr−1, sr−1sr−2, sr−2sr−1sr−2}.

By Propositions 4.1 and 4.2 note that if σ = si1si2 · · · sik for some non-

consecutive integers 2 ≤ i1, i2, . . . , ik ≤ r − 3, then

σ(λ+ ρ)− ρ = σsr−1(λ+ ρ)− ρ.

Thus, we pair σ with τ = σsr−1, which satisfies �(τ) = �(σ) + 1, and the

contribution of these terms cancel each other out.

The only remaining elements in A(λ, 0) are of the form σ = si1si2 · · · sikπ
for some nonconsecutive integers 2 ≤ i1, i2, . . . , ik ≤ r − 4, where π ∈
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{sr−2, sr−2sr−1, sr−1sr−2, sr−2sr−1sr−2}. Then by Propositions 4.1 and 4.2
note that

σsr−2(λ+ ρ)− ρ = σsr−2sr−1(λ+ ρ)− ρ

σsr−1sr−2(λ+ ρ)− ρ = σsr−2sr−1sr−2(λ+ ρ)− ρ.

Thus, we pair σsr−2 with τ = σsr−2sr−1 and we pair σsr−1sr−2 with τ =
σsr−2sr−1sr−2 which satisfy �(τ) = �(σ) + 1, and the contributions of these
terms cancel each other out. This completes the proof.

Corollary 6.3. If μ ∈ P (sp2r(C)), then m(λ, μ) = 0.

The above result follows directly from Theorems 4.2 and 6.3.

6.4. Lie algebra of type D

In this section, we give a result regarding the multiplicity of an integral
weight μ in a highest weight representation of so2r with highest weight λ =
α1 + α2 + · · ·+ αr.

Theorem 6.4. If r ≥ 4 and λ = α1+α2+ · · ·+αr is a fundamental weight
of so2r(C), then mq(λ, 0) = 0.

Proof. By Corollary 5.1 we know that the number of elements in A(λ, 0) is
even. Hence, we will establish this result by showing that we can pair up
elements σ, τ ∈ A(λ, 0) such that �(τ) = �(σ)± 1 and σ(λ+ ρ)− ρ = τ(λ+
ρ)−ρ. This implies that the value ℘q(σ(λ+ρ)−ρ) appears in mq(λ, 0) with
opposite signs. Thus the contributions of these terms cancel in mq(λ, 0). By
pairing all of the elements in A(λ, 0) in this way, we establish mq(λ, 0) = 0.

To prove the claim we recall that by Theorem 5.1 the elements of A(λ, 0)
consist of

1. σ = 1 or
2. σ = si1si2 · · · sik for some nonconsecutive integers 2 ≤ i1, i2, . . . , ik ≤

r − 2 or
3. σ = si1si2 · · · sikπ for some nonconsecutive integers 2 ≤ i1, i2, . . . , ik ≤

r − 5 and π ∈ {sr−3sr−2, sr−2sr−3, sr−3sr−2sr−3}.

By Propositions 5.1 and 5.2 note that if σ = si1si2 · · · sik for some noncon-
secutive integers 2 ≤ i1, i2, . . . , ik ≤ r − 4, then

σ(λ+ ρ)− ρ = σsr−2(λ+ ρ)− ρ

σsr−2sr−3(λ+ ρ)− ρ = σsr−3σsr−2sr−3(λ+ ρ)− ρ.
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Thus, we pair σ with τ = σsr−2, and σsr−2sr−3 with τ = σsr−3σsr−2sr−3.

In either case �(τ) = �(σ) + 1, and the contributions of these terms cancel

each other out.

The only remaining elements in A(λ, 0) are of the form σ = si1si2 · · · sikπ
for some nonconsecutive integers 2 ≤ i1, i2, . . . , ik ≤ r − 5, where π = sr−3

or π = sr−3sr−2. Then by Propositions 5.1 and 5.2 note that

σsr−3(λ+ ρ)− ρ = σsr−3sr−2(λ+ ρ)− ρ.

Thus, we pair σsr−3 with τ = σsr−3sr−2, which satisfies �(τ) = �(σ) + 1,

and the contributions of these terms cancel each other out. This completes

the proof.

Corollary 6.4. If μ ∈ P (so2r(C)), then m(λ, μ) = 0.

The above result follows directly from Theorems 5.2 and 6.4.

7. Future work

Determining Weyl alternation sets is a new way to describe the complexity

of computing weight multiplicities, having only been defined in 2011 by the

second author. The only cases where a concrete description of the elements

of the Weyl alternation sets exists is in the adjoint representation of the

classical Lie algebras (i.e. the representation whose highest weight is the

highest root) [5, 8] and in the present work, where we considered the weight

λ as the sum of the simple roots and μ and integral weight of the classical Lie

algebras. Extending these techniques to other representations can be rather

difficult as the Weyl group action on the highest weight of the representation

is not as straight forward to describe as in these cases. However, it would be

of interest to provide a classification of highest weights where the techniques

presented in this manuscript can be extended to describe the elements of

other Weyl alternation sets.
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