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Zero-sum analogues of van der Waerden’s theorem
on arithmetic progressions

Aaron Robertson

Let r and k be positive integers with r | k. Denote by z(k; r)
the minimum integer such that every coloring χ : [1, z(k; r)] →
{0, 1, . . . , r − 1} admits a k-term arithmetic progression a, a +

d, . . . , a + (k − 1)d with
∑k−1

j=0 χ(a + jd) ≡ 0 (mod r). We investi-
gate these numbers as well as a “mixed” monochromatic/zero-sum
analogue. We also present an interesting reciprocity between the
van der Waerden numbers and z(k; r).

1. Introduction

Van der Waerden’s theorem [16] on arithmetic progressions states that for
k, r ∈ Z+, there exists a minimum integer w(k; r) such that every r-coloring
of [1, w(k; r)] admits a monochromatic k-term arithmetic progression. The
determination of these numbers is notoriously difficult; in fact, only seven
such nontrivial numbers are known.

In this article we investigate some zero-sum analogues of van der Waer-
den’s theorem.

Definition 1. Let a1, a2, . . . , an be a sequence of non-negative integers and
let r ∈ Z+. We say that the sequence is r-zero-sum if

∑n
i=1 ai ≡ 0 (mod r).

The seminal result in the area of zero-sum sequences is the Erdős-
Ginzberg-Ziv theorem [10], which states that any sequence of 2n − 1 in-
tegers contains an n-zero-sum subsequence of n integers. Since around 1990,
research activity concerning zero-sum results has flourished, through both
the lens of additive number theory and Ramsey theory. For example, the
weighted Erdős-Ginzberg-Ziv theorem due to Grynkiewicz [12] allows us to
multiply the integers in the Erdős-Ginzberg-Ziv theorem by weights. This
result states, in particular, that if w1, w2, . . . , wn is an n-zero-sum sequence
and a1, a2, . . . , a2n−1 is a sequence of 2n − 1 integers, then there exists an
n-term subsequence ai1 , ai2 , . . . , ain and a permutation π of {i1, i2, . . . , in}
such that

∑n
j=1wjaπ(ij) ≡ 0 (modn). Further recent results can be found in

[1], [3], and [11] among many others.
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Most investigations of zero-sum sequences do not have a structure im-
posed on them. This is in contrast to zero-sum results on edgewise colored
graphs, which have been around for many years (see, e.g., [2], [4], [7], and
[9]). Some notable exceptions are found in works of Bialostocki, such as [6]
and [8] where the zero-sum sequence x1, x2, . . . , xn satisfies

∑n−1
i=1 xi < xn

and in [5] where xi+1 − xi ≤ xi − xi−1 for 1 ≤ i ≤ n− 1. These exceptions,
however, do not have a rigid structure imposed on them due to the use of
inequalities. In this article we investigate arithmetic progressions, thereby
imposing a rigid structure on the sequences (as we note later, in [2] there is
one result in this direction). In article [15] we investigate zero-sum sequences
with a different rigid structure (where one term is the sum of all other terms).

The first two zero-sum analogues of van der Waerden’s theorem we will
investigate are given in the following definitions.

Definition 2. Let k and r be positive integers such that r | k. We denote
by z(k; r) the minimum integer such that every coloring χ : [1, z(k; r)] →
{0, 1, . . . , r−1} admits a k-term arithmetic progression a, a+d, . . . , a+(k−
1)d such that

∑k−1
j=0 χ(a + jd) ≡ 0 (mod r); in other word, every coloring

of [1, z(k; r)] with the colors 0, 1, . . . , r − 1 (which we may refer to by Zr)
admits a k-term r-zero-sum arithmetic progression.

Definition 3. Let k and r be positive integers such that r | k. We denote
by z̄r(k) the minimum integer such that every coloring [1, z̄r(k)] with the
colors 0 and 1 admits a k-term r-zero-sum arithmetic progression.

Implicit in the above definitions is the existences of the respective min-
imum numbers, both of which follow directly from the existence of w(k; r).
Note that we need only prove the existence of z(k; r) since we easily have
z̄r(k) ≤ z(k; r) as Z2 ⊆ Zr. The existence of z(k; r) comes from z(k; r) ≤
w(k; r) as any k-term monochromatic arithmetic progression is r-zero-sum
when r | k. When r � k, coloring every integer of Z+ with the color 1 does
not admit a k-term r-zero-sum arithmetic progression. In an interesting turn
of events, we will see later in this article that the independent existence of
z(k; r) implies the existence of w(k; r).

2. Some computation

We start with results from computer calculations. We wrote the Fortran
programs ZSAP.f and ZSAP2.f, available at the author’s website, for the
determinations of z(k; r) and z̄r(k), respectively, for small values of k and r.
The algorithm used in both is a standard backtrack model to exhaustively
search the colorings for k-term r-zero-sum arithmetic progressions.
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Based on the values in Tables 1 and 2, below, we find some patterns.
For r = 2, we clearly have z(k; 2) = z̄2(k) by definition, but it appears that
z(k; 2) = 2k− 1. We prove this in the next section. (It is interesting to note
that 2k− 1 is the formula from the Erdős-Ginzberg-Ziv zero-sum theorem.)
For k = 3, 6, 9, 12, we have z(k; 3) = z̄3(k) = k2 and we also investigate
this in the next section. Along the diagonal, we see some familiar van der
Waerden numbers appear which is addressed in Section 3 as well.

Table 1: Values and lower bounds for z(k; r) for small k and r

k � r 2 3 4 5

2 3 ∞ ∞ ∞
3 ∞ 9 ∞ ∞
4 7 ∞ 35 ∞
5 ∞ ∞ ∞ ≥ 294
6 11 36 ∞ ∞
7 ∞ ∞ ∞ ∞
8 15 ∞ ≥ 108 ∞
9 ∞ 81 ∞ ∞
10 19 ∞ ∞ ?
11 ∞ ∞ ∞ ∞
12 23 144 ≥ 163 ∞

Table 2: Values and lower bounds for z̄r(k) for small k and r

k � r 2 3 4 5

2 3 ∞ ∞ ∞
3 ∞ 9 ∞ ∞
4 7 ∞ 35 ∞
5 ∞ ∞ ∞ 178
6 11 36 ∞ ∞
7 ∞ ∞ ∞ ∞
8 15 ∞ 80 ∞
9 ∞ 81 ∞ ∞
10 19 ∞ ∞ ≥ 194
11 ∞ ∞ ∞ ∞
12 23 144 244 ∞

Remark. The lower bounds for z(8; 4) and z(5; 5) were obtained within a
few hours but were not improved upon after 770 hours of computation. The
lower bound for z(12; 4) was obtained after a couple of hours of computation,
with no extended time used to try to improve upon it.
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Remark. The determination of z̄4(12) took about 8 days, while the lower
bound for z̄5(10) was established after only a few minutes of searching, but
further impovement was not achieved after several hours. All other values
took less than a few hours.

3. Formulas

As previously mentioned, some interesting patterns can be seen in Tables 1
and 2. In this section we explore these patterns. We start with a formula
for the r = 2 columns and note that it also proves the existence of z(k; 2)
for all even k, independent of the existence of the van der Waerden number
w(k; 2). This was first discovered by Alon and Caro as Proposition 4.5 in
[2]. The proof here was independently discovered (and is different).

Proposition 4 (Alon and Caro [2]). Let k ∈ Z+ be even. Then z(k; 2) =
z̄2(k) = 2k − 1.

Proof. The first equality is by definition. To show that z(k; 2) = 2k − 1 we
will provide matching upper and lower bounds. First, it is easy to check
that the 2-coloring of [1, 2k−2] with all integers colored 0 except for integer
k avoids k-term 2-zero-sum arithmetic progressions as any such arithmetic
progression must consist of k consecutive integers and, hence, exactly one
integer of color 1. Hence, z(k; 2) ≥ 2k − 1.

We next show that z(k; 2) ≤ 2k−1 by contradiction, assuming that there
exists a coloring χ of [1, 2k− 1] by Z2 with no k-term 2-zero-sum arithmetic
progression. Let A = {1, 3, 5, . . . , k − 1} and B = {k + 1, k + 3, . . . , 2k − 1}.
Since A ∪B is a k-term arithmetic progression, we assume that the sum of
the colors of the integers in A ∪ B is odd. Hence, one of A and B has an
even number of integers of color 1, while the other has an odd number of
integers of color 1. Without loss of generality, let A have an even number of
integers of color 1.

Consider S(x) =
∑k+x−1

i=x χ(i) for x ∈ [1, k]. Next note that S(x + 1) −
S(x) = χ(k + x) − χ(x) for x ∈ [1, k − 1]. Since we assume that S(x) ≡
1 (mod 2) for all x ∈ [1, k] we must have χ(k + x) = χ(x) for x ∈ [1, k − 1].
This means that [k+1, 2k− 1] is colored in the exact same way as [1, k− 1].
This contradicts our determination that A has an even number of integers
of color 1, while B has an odd number of integers of color 1.

For the r = 3 column (in both Table 1 and Table 2), we can justify lower
bounds that match all of the calculated numbers via Theorems 5, which we
present next.
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Theorem 5. Let k ∈ Z+ with 3 | k. If k + 1 ∈ {p, 2p}, with p prime, then
z̄3(k) ≥ k2.

Proof. First, consider k + 1 = p. We will show that the 2-coloring χ of
[1, k2 − 1] defined by

(0k−111)k−1

(i.e., the color pattern of k − 1 consecutive 0s followed by two 1s, repeated
k − 1 times) avoids k-term 3-zero-sum arithmetic progressions.

Consider an arbitrary k-term arithmetic progression a, a+ d, a+2d, . . . ,
a+(k− 1)d. Note that a+(k− 1)d ≤ k2− 1 gives us that d ≤ k. Since k+1
is prime, we have (d, k + 1) = 1. It follows that {a, a+ d, . . . , a+ (k − 1)d}
when reduced modulo k + 1 is a set of k (distinct) elements of Zk+1.

Looking at our coloring, we interpret it as χ(x) = 1 if x ≡ 0 or k (mod k+
1) and χ(x) = 0 otherwise. Since our arithmetic progression hits k distinct
residues modulo k+ 1 we see that

∑k−1
j=0 χ(a+ jd) = 1 or 2 so that it is not

3-zero-sum.
Next, consider the case when k + 1 = 2p. Before presenting the general

case, we note that case when p = 2, i.e., k = 3, holds since z̄3(3) = 9 (see
Table 2). Hence, it is safe to assume that p ≥ 3 for the rest of the proof.

We will show that the 2-coloring χ of [1, k2 − 1] defined by

(0p−2101p−201)k−1

avoids k-term 3-zero-sum arithmetic progressions.
Consider an arbitrary k-term arithmetic progression a, a + d, . . . , a +

(k − 1)d. Note that a + (k − 1)d ≤ k2 − 1 gives us that d ≤ k. Hence,
(d, k + 1) ∈ {1, 2, p}. We will determine

∑k−1
j=0 χ(a + jd) (mod 3) based on

the value of (d, k + 1). We will also use the fact that p ≡ 2 (mod 3) which
follows from k = 2p− 1 ≡ 0 (mod 3).

Case 1. (d, k+1) = 1. It follows that {a, a+d, . . . , a+(k−1)d} when reduced
modulo k+1 is a set of k (distinct) residues of Zk+1. Hence,

∑k−1
j=0 χ(a+jd) =

p− 1 or p. Since p ≡ 2 (mod 3) we have
∑k−1

j=0 χ(a+ jd) ≡ 1 or 2 (mod 3) so
that our arithmetic progression is not 3-zero-sum. 

Case 2. (d, k+ 1) = 2. By reducing all terms of {a, a+ d, . . . , a+ (k− 1)d}
modulo k+1 we see that we have either {0, 2, 4, . . . , k−1} or {1, 3, 5, . . . , k}.
Looking at 0p−2101p−201 we see that the coloring of the even terms is
0

p−3

2 1
p+3

2 , while the coloring of the odd terms is 0
p+1

2 1
p−3

2 0.
Next, when reducing all terms of {a, a+d, . . . , a+(k−1)d} modulo k+1

we see that every residue except for one of {0, 2, 4, . . . , k − 1} is congruent
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modulo k+1 to precisely two terms of the arithmetic progression. The same
holds for the residue set {1, 3, 5, . . . , k}.

In the situation where {a, a + d, . . . , a + (k − 1)d} modulo k + 1 is
{0, 2, 4, . . . , k − 1} we have

∑k−1
j=0 χ(a+ jd) = 2(p+3

2 ) + ε where ε ∈ {−1, 0}.
We have 2(p+3

2 ) + ε ≡ p + ε (mod 3). Since p ≡ 2 (mod 3), we see that our
arithmetic progression is not 3-zero-sum in this situation.

In the situation where {a, a + d, . . . , a + (k − 1)d} modulo k + 1 is
{1, 3, 5, . . . , k} we have

∑k−1
j=0 χ(a + jd) = 2(p−3

2 ) + ε where ε ∈ {−1, 0}.
We have 2(p−3

2 ) + ε ≡ p + ε (mod 3). Since p ≡ 2 (mod 3), we see that our
arithmetic progression is not 3-zero-sum in this situation. 

Case 3. (d, k + 1) = p. We must have d = p in this situation since d ≤ k.
Looking at 0p−2101p−201 as a coloring of [1, k + 1] = [1, 2p] we see that
χ (p+ i) = χ(i)+1 (mod 2) for i = 1, 2, . . . , p. In particular, χ(x)+χ(x+p) =
1 for any x ∈ [1, p]. Given that our coloring 0p−2101p−201 is repeated k − 1
times, we have χ(x) + χ(x+ p) = 1 for any x where, for x̄ ≡ x (mod k + 1),
we have x̄ ∈ [1, p].

If a (mod k + 1) is between 1 and p, inclusive, then we have

k−1∑
j=0

χ(a+jd) =

k−1∑
j=0

χ(a+jp) = χ(a+(k−1)p)+
∑

0≤j≤k−3

j even

(
χ(a+jp)+χ(a+(j+1)p)

)

= χ(a+ (k − 1)p) + 1 · k − 1

2
.

= χ(a+ (k − 1)p) + p− 1.

Now, since p ≡ 2 (mod 3), we see that regardless of the value of χ(a+(k−
1)p) we have

∑k−1
j=0 χ(a+jd) �≡ 0 (mod 3) so that our arithmetic progression

is not 3-zero-sum.

If a (mod k + 1) is between p+ 1 and k + 1, inclusive, then we have

k−1∑
j=0

χ(a+ jd) =

k−1∑
j=0

χ(a+ jp) = χ(a) +
∑

1≤j≤k−2

j odd

(
χ(a+ jp) + χ(a+ (j + 1)p)

)

= χ(a) + 1 · k − 1

2
.

= χ(a) + p− 1.
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Again, since p ≡ 2 (mod 3), regardless of the value of χ(a) our arithmetic

progression is not 3-zero-sum. 

As we have exhausted all possible values of (d, k+1) and shown that no

k-term 3-zero-sum arithmetic progression exists under our coloring in each

situation, we are done.

Remark. Theorem 5 also gives lower bounds for z(k; 3) with k being a

prime or twice a prime.

The next proposition explains the appearance of the van der Waerden

numbers along the main diagonal of Table 2. These same numbers are lower

bounds for the main diagonal of Table 1, where we see divergence occurring

at z(5; 5).

Proposition 6. Let k ∈ Z+. Then w(k; 2) = z̄k(k) ≤ z(k; k),

Proof. The equality w(k; 2) = z̄k(k) follows from the fact that the only way

a k-term sequence of 0s and 1s can be k-zero-sum is if all terms are 0s or all

terms are 1s, i.e., monochromatic. Since Z2 ⊆ Zr, we have z̄r(k) ≤ z(k; r)

so we are done.

4. A “mixed” monochromatic/zero-sum analogue

In this section we investigate an interplay between monochromatic and zero-

sum arithmetic progressions. We start with the question of whether or not by

avoiding certain monochromatic arithmetic progressions we can guarantee

certain zero-sum arithmetic progressions. To this end, consider the following

definition.

Definition 7. Let k, �, r ∈ Z+ with k, �, r ≥ 2. Define m(k, �; r) to be the

minimum integer n such that any coloring of [1, n] by Zr admits either a

k-term monochromatic arithmetic progression of a color other than 0 or an

�-term r-zero-sum arithmetic progression.

Inherent in this definition is the existence of m(k, �; r) for all positive

integers k, �, and r, so we must justify this existence. The existence follows

easily from van der Waerden’s theorem. For the situation when k ≥ �, we

know that any coloring of [1, w(k; r)] admits a monochromatic k-term arith-

metic progression. If the color is anything but color 0, then we are done,

so we assume that it is of color 0. But then we have an �-term arithmetic

progression of color 0, which is necessarily r-zero-sum for any r. For the

situation when k < �, any coloring of [1, w(�; r)] admits a monochromatic
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�-term arithmetic progression. If this color is 0, then it is r-zero-sum. Oth-
erwise, it contains a k-term monochromatic arithmetic progression of color
other than 0.

Having the existence of m(k, �; r), we see that these “mixed” mono-
chromatic/zero-sum numbers, in particular m(k, k; r), address the non-
existence of z(k; r) when r � k (recall that the counterexample was coloring
all integers with color 1).

Using the Fortran programs MZSAP.f and MZSAP2.f, available at the
author’s website, we have calculated the values in Tables 3 and 4.

Table 3: Values and lower bounds for m(k, �; r) for small k, �, and r

� = 2 � = 3 � = 4 � = 5

k r
2 3 6 7 10

2 3 3 7 7 15
4 4 8 12 20
2 3 7 7 15

3 3 7 9 16 25
4 7 21 28 47
2 3 8 7 20

4 3 7 9 18 33
4 11 53 35 ≥ 97
2 3 8 7 21

5 3 10 9 21 33
4 15 219 35 ≥ 103

Remark. All exact values were achieved within a few hours of computa-
tion time. The lower bound for m(4, 5; 4) was attained quite quickly but
not improved upon after 370 hours of computation. The lower bound for
m(5, 5; 4) was reached after about 15 minutes, but was not improved after
several hours of computation.

Examining Table 3, patterns do not pop out as they did in Tables 1 and 2.
There seems to be different behavior for a given k depending on, perhaps,
the value of the gcd(�, r) (see, e.g., the rows for k = 4, 5). We do see that for
k = 2, 3, and 4 we have m(k, k; k) = w(k; 2), and for � = 3, 4, and 5 we have
m(3, �) = �2. However, further calculation shows that m(3, 6) = 33 �= 62.
We can, however, provide formulas for the first three rows.

Theorem 8. Let � ≥ 2 be an integer. Then

m(2, �; 2) =

{
2�− 1 if 2 | �
2� if 2 � �

;



Zero-sum analogues of van der Waerden’s theorem 239

m(2, �; 3) =

⎧⎨
⎩

2�− 1 if � ≡ 0, 2, 4 (mod 6)
3�− 2 if � ≡ 3 (mod 6)
3� if � ≡ 1, 5 (mod 6)

;

and

m(2, �; 4) =

{
3� if � ≡ 0, 2, 3, 4 (mod 6)
4� if � ≡ 1, 5 (mod 6)

.

Proof. m(2, �; 2). We first consider m(2, �; 2). If � is even, consider the col-
oring 0�−110�−2; if � is odd, consider the coloring 0�−110�−1. It is routine to
check that these do not admit 2-term arithmetic progressions of color 1 or
�-term 2-zero-sum arithmetic progressions. Now, with � even, let n = 2�− 1
and assume, for a contradiction, that there exists a 2-coloring of [1, n] that
avoids the requisite arithmetic progressions. Clearly, we may have at most
one integer of color 1. Furthermore, we can have at most � − 1 consecutive
integers of color 0. Hence, the only way to have a valid 2-coloring of [1, n]
is with 0�−110�−1. But then 1, 3, 5, . . . , 2�− 1 is an �-term 2-zero-sum arith-
metic progression, a contradiction. The case when � is odd is easier since, by
the same reasoning, we can only have 2�− 1 integers colored (by 0�−110�−1)
and avoid the relevant arithmetic progression. Hence, every 2-coloring of
[1, 2�] admits either a 2-term arithmetic progressions of color 1 or an �-term
2-zero-sum arithmetic progressions.

m(2, �; 3). Next, consider m(2, �; 3) and let � ≡ 0, 2, 4 (mod 6) so that � is
even. Again, it is easy to see that 0�−110�−2 does not admit 2-term arithmetic
progressions of color 1 or 2, or �-term 2-zero-sum arithmetic progressions.
Assume, for a contradiction, that χ : [1, 2� − 1] → {0, 1, 2} does not admit
the relevant arithmetic progressions. Then at most one integer has color 1
and at most one integer has color 2. Hence, if we use both colors 1 and 2
then our coloring has form 0s10t20u or its reverse. The following argument
works for either form, so we will assume we have 0s10t20u. We know that
s, t, u ≤ �−1, subject to s+t+u = 2�−3. However, if t ≤ �−2 then 0x10t20y

with x+ y+ t = �− 2 is an �-term 3-zero-sum arithmetic progression. Since
s+t+u = 2�−3 while 10t2 is at most � terms, we see that s+u ≥ �−1, which
gives us that for some x, y ≥ 0 we indeed have the existence of 0x10t20y with
x + y + t = � − 2 contained in χ, a contradiction. If χ does not use both
colors 1 and 2, then our coloring has form 0s10t or 0s20t. We will assume the
former (the argument is the same for the latter). We must have s+t = 2�−2
and, hence, s = t = �−1. But then 1, 3, 5, . . . , 2�−1 is an �-term 3-zero-sum
arithmetic progression, a contradiction. Hence, m(2, �; 3) = 2�−1 for � even.

We next look at m(2, �; 3) for � ≡ 3 (mod 6). For a lower bound, consider
the coloring of [1, 3� − 3] given by 0�−110�−120�−3. Clearly we have no 2-
term arithmetic progression of color 1 or 2 and we do not have � consecutive
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integers that are 3-zero-sum. Hence, the only possible �-term 3-zero-sum
arithmetic progression must have common gap 2. Since � ≡ 3 (mod 6) we
see that � is odd. This means that any arithmetic progression with common
gap 2 cannot contain both the color 1 and color 2. Let a, a+2, . . . , a+2(�−1)
be any arbitrary arithmetic progresion with common gap 2. In order to have
a + 2(� − 1) ≤ 3(� − 1) we must have a ≤ � − 1. This means that one of
the terms must have either color 1 or color 2, but that both colors 1 and 2
cannot occur in the progression. Hence,

∑�−1
i=0 χ(a+ 2i) = 1 or 2 and is not

3-zero-sum. We conclude that m(2, �; 3) ≥ 3�− 2.
To show that m(2, �; 3) ≤ 3� − 2 for � ≡ 3 (mod 6), assume that χ :

[1, 3�− 2] → {0, 1, 2} is a coloring with no 2-term arithmetic progression of
color 1 or 2 and no �-term 3-zero-sum arithmetic progression. We easily see
that χ must use all 3 colors for otherwise we cannot have more than 2�− 1
integers of colors only 0 and 1 (or 0 and 2) since we are allowed only one
integer of a non-zero color and we cannot have � consecutive integers of color
0. Thus, we see that χ has form 0s10t20u (or its reverse) with s+t+u = 3�−4
and s, t, u ≤ �− 1. As argued previously, we must have t be even, and hence
t = � − 1 so that we have 0s10�−120t with s + t = 2� − 3. Hence, one of
s and t must be � − 1 and the other must be � − 2. We assume s = � − 1
(the case s = � − 2 is very similar). Now that we have 0�−110�−120�−2,
consider 1, 4, 7, . . . , 3�−2 (note that we are using the fact that � ≡ 3 (mod 6)
to end our arithmetic progression at 3� − 2). Notice that this arithmetic
progression consists of integers congruent to 1 (mod 3) while the colors 1
and 2 are on integers congruent to 0 (mod �). Since � ≡ 0 (mod 3), the
arithmetic progression 1, 4, 7, . . . , 3� − 2 is monochromatic of color 0, and
hence is an �-term 3-zero-sum arithmetic progression, a contradiction. Thus,
we can conclude that m(2, �; 3) = 3�− 2 for � ≡ 3 (mod 6).

Lastly, for the r = 3 case, we consider m(2, �; 3) for � ≡ 1, 5 (mod 6). For
the lower bound, consider the coloring of [1, 3�−1] given by 0�−110�−120�−1.
As argued above, the only necessary arithmetic progressions to checkare �-
term ones with common gap 3. The possibilities are 1, 4, 7, . . . , 3� − 2 and
2, 5, 8, . . . , 3�− 1, i.e., the integers congruent to 1 modulo 3 and the integers
congruent to 2 modulo 3, respectively. Since we know that � ≡ 1, 5 (mod 6)
we have that one of � and 2� is congruent to 1 modulo 3, while the other
is congruent to 2 modulo 3. Regardless of which is which, we see that nei-
ther of these arithmetic progressions are 3-zero-sum, thereby proving that
m(2, �; 3) ≥ 3� for � ≡ 1, 5 (mod 6).

The upper bound is easy in this case since any 3-coloring of [1, 3�] using
only one 1 and one 2 must have 3�− 2 integers of color 0, without � consec-
utive integers of color 0. This is not possible. Hence, we can conclude that
m(2, �; 3) = 3� for � ≡ 1, 5 (mod 6).
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m(2, �; 4). We now move ontom(2, �; 4). We will start with the lower bounds

by giving colorings that avoid the relevant arithmetic progressions.

For � ≡ 0, 2 (mod 6), we may assume � ≥ 6 since we have calculated the

value of the function when� = 2. Consider the coloring of [1, 3�−1] given by

0�−110�−220�−5304. In this situation, {�, 2� − 1, 3� − 5}, which are the non-

zero colored integers, forms a complete residue system modulo 3. Hence, any

possible �-term 4-zero-sum arithmetic progression a, a + d, . . . , a + (� − 1)d

cannot have d = 3. Clearly we do not have such a progression with d = 1; so,

d = 2 is the only possibility to check. Since we require a+ (�− 1)d ≤ 3�− 1

we see that a ≤ �+1. If a ≤ �− 1, our progression contains exactly one of �

and 2� − 1, so that it cannot be 4-zero-sum. If a = �, then in order for our

progression to be 4-zero-sum, 3�− 5 (which has color 3) must be part of the

progression. This means that a+ 2j = 3�− 5 for some j ∈ {1, 2, . . . , �− 1}.
Since a = � this means 2j = 2�−5, which is not possible. Lastly, if a = �+1,

then our progression has sum congruent to 1 modulo 4 as it contains both

2�− 1 and 3�− 5.

For � ≡ 3 (mod 6), we may assume � ≥ 9 since we have calculated the

value of the function when � = 3. Consider the coloring of [1, 3� − 1] given

by 0�−110�−320�−6306. The non-zero colored elements here are �, 2�− 2, and

3�− 7 and these form a complete residue system modulo 3. Hence, the only

possible �-term 4-zero-sum arithmetic progression a, a + d, . . . , a + (� − 1)d

has d = 2. We must still have a ≤ � + 1. If a ≤ � we use the facts that � is

odd while 2�− 2 and 3�− 7 are even to see that our progression cannot be

4-zero-sum as every such progression contains at least one of these elements,

but cannot contain both � and 3� − 7. If a = � + 1, then the arithmetic

progression contains both 2�− 2 and 3�− 7 and is not 4-zero-sum.

For � ≡ 4 (mod 6), we consider the coloring of [1, 3� − 1] given by

0�−110�−220�−13. The non-zero colored elements here are �, 2�−1, and 3�−1,

the first two being congruent to 1 modulo 3 and the last congruent to 2 mod-

ulo 3. Letting a, a+d, . . . , a+(�−1)d be an arbitrary �-term arithmetic pro-

gression, consider d = 3. If our progression consists of integers congruent to 1

modulo 3 then its sum of colors is 1+2 ≡ 3 (mod 4); if it consists of integers

congruent to 2 modulo 3 then its sum of colors is 3 (mod 4); if it consists of

integers congruent to 0 modulo 3, then a+(�−1)d ≥ 3+3(�−1) = 3� > 3�−1.

This leaves d = 2 as the only possibility. As above, we have a ≤ � + 1. We

also have than � is even while 2�−1 and 3�−1 are odd. Hence, for a ≤ � our

progression contains � but not 3�− 1 or it contains 2�− 1. In all situations,

our progression is not 4-zero-sum. If a = �+1, the progression has color sum

2 + 3 ≡ 1 (mod 4) and, again, the progression is not 4-zero-sum.
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For � ≡ 1, 5 (mod 6), we consider the coloring of [1, 4� − 1] given by

0�−110�−120�−130�−1. The non-zero colored elements �, 2�, and 3� form a

complete residue system modulo 3. Let a, a+d, . . . , a+(�−1)d be an arbitrary

�-term arithmetic progression. If d = 3 we have a ≤ � + 2. If a ≤ �, then

our progression contains exactly one of �, 2�, and 3� and is not 4-zero-sum.

If a = � + 1, then a ≡ 2 (mod 3) if � ≡ 1 (mod 6) and a ≡ 0 (mod 3) if

� ≡ 5 (mod 6). In the former case, our progression contains 2�; in the latter

case, our progression contains 3�. In either case, we see that the arithmetic

progression is not 4-zero-sum. If a = �+2 then we cannot have � ≡ 1 (mod 6)

since then a ≡ 0 (mod 3), which tells us that 3� is part of the progression so

that the progression cannot be 4-zero-sum. Hence, we have a ≡ 1 (mod 3)

since we have � ≡ 5 (mod 6). But then 2� ≡ 1 (mod 3) so our progression

contains 2�, giving us that our progression cannot be 4-zero-sum. Noting

that � and 3� are odd, while 2� is even, consider d = 2. Note that, in this

situation, � and 3� cannot both be members of our progression. We must

have a ≤ 2� + 1 so that our progression clearly contains at least one of

�, 2�, 3� and not both � and 3�, yielding that the arithmetic progression is

not 4-zero-sum. Hence, if d = 2 our progression is not 4-zero-sum. What

remains is the case d = 4. Here we must have a ≤ 3. If a = 1, or a = 3, then

our progression consists of integers congruent to 1 modulo 4, respectively,

3 modulo 4. We next note that one of � and 3� is congruent to 1 modulo 4

while the other is congruent to 3 modulo 4. Hence, our progression cannot

be 4-zero-sum. If a = 2, then 2� is a member of the arithmetic progression

so that it is not 4-zero-sum.

We now move onto the upper bounds for m(2, �; 4).

The cases � ≡ 1, 5 (mod 6) are easy so we will do them first. Assume,

for a contradiction, that there exists a coloring of [1, 4�] by Z4 that does

not admit two terms of the same non-zero color or an �-term 4-zero-sum

arithmetic progression. Since any such coloring of [1, 4�] uses at most one

of each non-zero color, it must have at least 4�− 3 integers of color 0. This

gives us at least � consecutive integers of color 0, a contradiction since these

consecutive integers form an �-term 4-zero-sum arithmetic progression.

For the cases � ≡ 0, 2, 3, 4 (mod 6), we will consider the coloring forms of

[1, 3�] given by: (i) 0s10t20u30v; (ii) 0s10t30u20v; and (iii) 0s20t10u30v, and

leave the reverse colorings’ argument details to the reader (which follow by

application of the involution of [1, 3�] given by i �→ 3�+ 1− i). We assume,

for a contradiction, that each coloring avoids the requisite progressions.

For any of the colorings we have: s, t, u, v ≤ �−1 and s+t+u+v = 3�−2.

Furthermore, in order to avoid the �-term 4-zero-sum arithmetic progression



Zero-sum analogues of van der Waerden’s theorem 243

given by all integers congruent to i modulo 3 for some i, we see that all non-

zero colored integers must form a complete residue system modulo 3.

We start with coloring (i): 0s10t20u30v. We know that s+ t+u ≥ 2�− 2

so that 0s10t20u contains the coloring of [1, 2�]. In order for 1, 3, 5, . . . , 2�−1

and 2, 4, . . . , 2� to avoid being 4-zero-sum, the parity of the integers colored

1 and 2 must be different. Similarly, by considering 0t20u30v we can deduce

that the parity of the integers colored 2 and 3 must be different. Hence, the

integers colored 1 and 3 have the same parity. The integers colored 1 and 3

are s + 1 and s + t + u + 3. If t + u < 2� − 3 then s + 1, s + 3, . . . , s + t +

u+3, . . . , s+2�− 1 is an �-term 4-zero-sum arithmetic progression. We can

conclude that t+u ≥ 2�−3. Since t, u ≤ �−1, we may have (a) t = u = �−1;

(b) t = �− 1 and u = �− 2; or (c) t = �− 2 and u = �− 1.

If we have (a), then our non-zero integers are s+1, s+�+1, and s+2�+1.

Since these must form a complete residue system modulo 3, we cannot have

� ≡ 0, 3 (mod 6). Since s + 1 and s + � + 1 must have different parities, we

cannot have � ≡ 2, 4 (mod 6). We conclude that (a) may not occur.

If (b) holds, then t+1 = �. Since the non-zero integers must have different

values modulo 3, we cannot have t+1 ≡ 0 (mod 3). Hence, � �≡ 0, 3 (mod 6).

Similarly, we cannot have u + 1 ≡ 0 (mod 3). Since u = � − 2 we have

u+ 1 ≡ �− 1 so that � �≡ 4 (mod 6). Lastly, in order for the integers colored

1 and 3 to be different modulo 3, we cannot have t + u + 2 ≡ 0 (mod 3).

Since t+ u = 2�− 3, we cannot have � ≡ 2 (mod 6).

If (c) holds, essentially the same argument as that for (b) can be em-

ployed.

Next, we consider the coloring (ii): 0s10t30u20v. We must have t = �− 1

for otherwise 0s10t30u contains � consecutive terms, including the integers

colored 1 and 3; that is, an �-term 4-zero-sum arithmetic progression. Fur-

ther, by considering 1, 3, 5, . . . , 2�−1 and 2, 4, . . . , 2� we see that the integers

colored 1 and 3 cannot have the same parity. This means that � must be

odd so that � �≡ 0, 2, 4 (mod 6). However, if � ≡ 3 (mod 6) we see that these

two integers are equivalent modulo 3, which is also not allowed.

The coloring (iii) can be analyzed by essentially the same argument as

that given for (ii).

Having provided matching upper and lower bounds for this last formula,

the proof is complete.

We can also provide a formula for the first column of Table 3. The fact

that m(k, 2; 2) = 3 for all k is trivial.
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Theorem 9. Let k ≥ 2 be an integer. Then

m(k, 2; 3) =

{
2k − 1 if 2 | k
2k if 2 � k

and

m(k, 2; 4) =

⎧⎨
⎩

3k − 2 if k ≡ 0, 2, 3 (mod 6)
3k − 1 if k ≡ 4 (mod 6)
3k if k ≡ 1, 5 (mod 6).

Proof. We first prove the formula for m(k, 2; 3). For the lower bounds, con-

sider the colorings 1k−101k−2 for k odd and 1k−101k−1 for k even. For the

upper bounds, to avoid 2-term 3-zero-sum arithmetic progressions we may

only use the color 0 once and we cannot have both colors 1 and 2. Let c be

1 or 2. We cannot have k consecutive integers of color c, so our coloring has

form cs0ct with s, t ≤ k− 1. If k is odd, then we are done since our coloring

has maximum length 2k − 1. If k is even, we cannot have s = t = k − 1 for

otherwise the k-term arithmetic progressions 1, 3, 5, . . . , 2k− 1 is monochro-

matic of color c. This completes the proof of the formula for m(k, 2; 3).

We now consider m(k, 2; 4). For the lower bounds, it is left to the reader

to check that the following colorings avoid the requisite arithmetic pro-

gressions: 1k−201k−121k−2 for k ≡ 0, 2, 3 (mod 6); 1k−101k−121k−2 for k ≡
4 (mod 6); and 1k−101k−121k−1 for k ≡ 1, 5 (mod 6)

To finish the proof, we now justify upper bounds for m(k, 2; 4). We as-

sume, for a contradiction, that in each case we have a coloring that avoids

the relevant arithmetic progressions. We can have at most one integer of

each of color 0 and 2. Further, we cannot have both colors 1 and 3. Let

c be either 1 or 3. Hence, we can conclude that any coloring that avoids

k-term monochromatic arithmetic progressions of a non-zero color and 2-

term 3-zero-sum arithmetic progressions has form cs0ct2cu or its reverse

(the situation where we use only one of the colors 0 and 2 is easily dismissed

as a possibility since we cannot have length longer than 2k). We will only

consider this coloring and leave the reverse coloring’s analysis to the reader.

If k ≡ 1, 5 (mod 6), the argument is essentially identical to the one for

m(2, �; 3) in the proof of Theorem 8 by replacing � with k, changing the color

0 to c, and changing the color 1 to 0.

If k ≡ 4 (mod 6), in order for cs0ct2cu with s, t, u ≤ k − 1 to have

length 3k − 1, we must have s = t = u = k − 1. Hence, our coloring is

ck−10ck−12ck−1. By considering the integers congruent to 2 modulo 3, we

see that the integers of color 0 and 2 are congruent to 0 modulo k, and
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hence are both congruent to 1 modulo 3. Hence, 2, 5, 7, . . . , 3k − 1 is a k-

term monochromatic arithmetic progression of color c �= 0, a contradiction,

thereby finishing this case.

If k ≡ 0, 2, 3 (mod 6), in order for cs0ct2cu with s, t, u ≤ k − 1 to have

length 3k − 2, we must have one of s, t, u equal to k − 2 and the other two

equal to k−1. If s = t = k−1 and u = k−2, then the integers congruent to

1 modulo 3 form a monochromatic k-term arithmetic progression of color c

since the integers of color 0 and 2 are congruent to either 0 or 2 modulo 3.

If s = k − 2 and t = u = k − 1, first consider k ≡ 0, 2 (mod 6) so that k is

even. Then k, k+ 2, k+ 4, . . . , 3k− 2 is a k-term monochromatic arithmetic

progression of color c. Next, consider k ≡ 3 (mod 6). In this situation, the

integers of color 0 and 2 are both congruent to 2 modulo 3. Hence, the

integers congruent to 1 modulo 3 form a monochromatic k-term arithmetic

progression of color c. Lastly, consider s = u = k−1 and t = k−2. Then the

integers of color 0 and 2 are k and 2k − 1. Since k ≡ 3 (mod 6) we see that

both of these integers are congruent to either 0 or 2 modulo 3. Hence, the

integers congruent to 1 modulo 3 form a monochromatic k-term arithmetic

progression of color c.

One final piece we can take from Table 3 concerns m(k, k; k). We have

m(k, k; k) ≥ w(k; 2). This holds, since, by definition, there exists a 2-coloring

χ : [1, w(k; 2) − 1] → {0, 1} that does not admit a monochromatic k-term

arithmetic progression. Necessarily, we do not have a k-term k-zero-sum

arithmetic progression since such a progression must be monochromatic.

As was done when considering the 2-color restriction z̄r(k) of z(k; r), we

investigate what happens when we restrict the number of colors to two for

these mixed numbers. This will hopefully allow us to bound m(k, �; r).

Definition 10. Let k, �, r ∈ Z+ with k, �, r ≥ 2. Define m̄r(k, �) to be the

minimum integer n such that any coloring of [1, n] by Z2 admits either a

k-term monochromatic arithmetic progression of color 1 or an �-term r-zero-

sum arithmetic progression.

The existence of m̄r(k, �) is clear since m̄r(k, �) ≤ m(k, �; r) holds be-

cause Z2 ⊆ Zr.

As we can see, the values in Table 4 are not as irregular as in Table 3.

However, as explained in the observations below, attempting to find a for-

mula or constructive lower bound other than the apparent (2k − 1)/2k and

(2�− 1)/2� formula occurring in the first column and first few rows (which

we leave to the reader to investigate), does not seem hopeful.
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Table 4: Values for m̄r(k, �) for small k, �, and r

� = 2 � = 3 � = 4 � = 5

k r
2 3 6 7 10

2 3 3 6 7 10
4 3 6 7 10
2 3 7 7 15

3 3 6 9 14 21
4 6 9 18 22
2 3 8 7 20

4 3 7 9 16 23
4 7 18 35 33
2 3 8 7 21

5 3 10 9 18 26
4 10 22 35 37

Observations. Via essentially the same argument as that presented for the
proof of Proposition 6, we have m̄k(k, k) = w(k; 2). We also have relation-
ships with the classical van der Waerden numbers in at least two other ways.
First, we have m̄t(k, 3) = w(k, 3) for all t ≥ 4, where w(k, 3) is the minimum
integer such that any 2-coloring of [1, w(k, 3)] admits either a monochromatic
k-term arithmetic progression of the first color or a monochromatic 3-term
arithmetic progression of the second color. Hence, a result due to Li and Shu
[14] gives us that m̄t(k, 3) >

(
8

729

)
k2

log2 k
for sufficiently large k when t ≥ 4.

Generalizing this, we see that m̄t(k, �) = w(k, �) for all t ≥ � + 1. Second,
we have m̄�(k, �) = m̄�(�, �) = w(�; 2) for all k ≥ �. This holds since the
first � terms of a k-term arithmetic progression of color 1 form an �-term
�-zero-sum arithmetic progression provided k ≥ �.

Given that many instances of m̄r(k, �) are equal to certain classical van
der Waerden numbers, attempting to find a formula for these does not seem
to be a good use of time.

5. Conclusion and open questions

If we had a proof of the existence of z(k; k) (resp., m(k, k; k)) that did not
rely on the existence of w(k; k), we would have a proof of the existence of
w(k; 2) by Proposition 6 (resp., the observation above). It is an elementary
exercise (see [13]) to deduce the existence of w(k; r) from w(k; 2) for any r ∈
Z+. Hence, the independent existence of z(k; r) (or m(k, k; k)) implies the
existence of w(k; r). We can state this (for z(k; r)) in the following manner.
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Theorem 11. Under the condition that r | k the following holds: z(k; r)
exists for all r and k if and only if w(k; r) exists for all r and k.

Unfortunately, all attempts by this author to prove the existence of
z(k; r) independently from the existence of w(k; r) and its proofs have been
unsuccessful.

We end with some open questions and problems.

Q1. Is it true that z(k; 3) = z̄3(k)?

Q2. Prove or disprove: z̄3(k) = k2.

Q3. Prove the existence of z(k; r) and/or m(k, �; r) independently from van
der Waerden’s theorem and its proofs.

Q4. One useful extension of van der Waerden’s theorem is that we can
also guarantee that the common gap in the arithmetic progression has
the same color as the arithmetic progression. Along these lines, when
r | k, investigate the minimum integer z̄∗r (k) such that every coloring
χ : [1, z̄∗r (k)] → {0, 1} admits a (k − 1)-term arithmetic progression
a, a + d, a + 2d, . . . , a + (k − 2)d such that χ(d) +

∑k−2
i=0 χ(a + id) ≡

0 (mod r). The same can be investigated via an appropriate analogue
of m(k, �; r).
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and the Ramsey numbers for stars and matchings, Discrete Math. 110
(1992), 1–8. MR1197440

[8] A. Bialostocki, R. Sabar, and D. Schaal, On a zero-sum generalization
of a variation of Schur’s equation, Graphs Combin. 24 (2008), 511–518.
MR2461590

[9] Y. Caro, Zero-sum problems – a survey, Discrete Math. 152 (1996),
93–113. MR1388634
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