
Journal of Combinatorics

Volume 11, Number 2, 305–328, 2020

Weighted variants of the Andrásfai-Erdős-Sós theorem
Clara Marie Lüders and Christian Reiher

˚

A well known result due to Andrásfai, Erdős, and Sós asserts that
for r ě 2 every Kr`1-free graph G on n vertices with δpGq ą

3r´4
3r´1n

is r-partite. We study related questions in the context of weighted
graphs, which are motivated by recent work on the Ramsey-Turán
problem for cliques.

1. Introduction

1.1. Simple graphs

Extremal graph theory began with Turán’s discovery [20] that for r ě 2
every n-vertex graph G with more than r´1

r ¨
n2

2 edges contains a Kr`1, i.e.,
a clique on r` 1 vertices. The constant r´1

r appearing here is optimal, as can
be seen by looking at balanced complete r-partite graphs. Simonovits [16]
proved that this extremal configuration is subject to a stability phenomenon
roughly saying that a Kr`1-free graph with almost the maximum number of
edges is “almost” r-partite.

Theorem 1.1 (Simonovits). For every r ě 2 and ε ą 0 there exists some
δ ą 0 such that every Kr`1-free graph G on n vertices with at least

`

r´1
r ´δ

˘

n2

2
edges admits a partition V pGq “ W1 Ÿ . . . ŸWr satisfying

řr
i“1 epWiq ă εn2.

A standard proof of Theorem 1.1 starts with the observation that an
iterative deletion of vertices with small degree allows us to reduce to the
case that δpGq ą

`

r´1
r ´ η

˘

n holds for an arbitrary constant η ! ε chosen in
advance. One then takes a clique of order r in G, whose existence is guaranteed
by Turán’s theorem, and observes that the joint neighbourhoods ĂW1, . . . ,ĂWr

of the pr´1q-subsets of this clique are mutually disjoint independent sets, since
otherwise G would contain a Kr`1. Finally, the minimum degree condition
ensures that these sets cover all but at most rηn vertices of G, for which
reason any partition V pGq “ W1 Ÿ . . . Ÿ Wr with Wi Ě ĂWi for all i P rrs has
the desired property.

˚The second author was supported by the European Research Council (ERC
grant PEPCo 724903).
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As a matter of fact, however, the second part of the argument can be omit-
ted by appealing instead to a result of Andrásfai, Erdős, and Sós [1] telling us
that an appropriate minimum degree condition of the form δpGq ą

`

r´1
r ´ η

˘

n
implies that Kr`1-free graphs are r-partite. For an elegant alternative proof
of this fact we refer to Brandt [4].

Theorem 1.2 (Andrásfai, Erdős, and Sós). Let G be for some r ě 2 a
Kr`1-free graph on n vertices satisfying δpGq ą

3r´4
3r´1n. Then there is a ho-

momorphism from G to Kr, i.e., G is r-colourable.

The constant 3r´4
3r´1 appearing here is optimal. This can be seen by con-

structing for some n divisible by p3r ´ 1q a graph G on a set V of n vertices
having a partition

V “ A1 Ÿ . . . Ÿ A5 Ÿ B1 Ÿ . . . Ÿ Br´2

such that

|A1| “ . . . “ |A5| “
n

3r´1 and |B1| “ . . . “ |Br´2| “
3n

3r´1 ,

and whose set of edges is as follows:

‚ there are all edges from a vertex in Ai to a vertex in Ai`1, where the
indices are taken modulo 5;

‚ all edges from Ai to Bj , where i P r5s, j P rr ´ 2s;
‚ and all edges from Bj to Bj1 , where j, j1 P rr ´ 2s are distinct.

A1

A2

A3 A4

A5

B1 B2

Figure 1.1: The extremal graph for the case r “ 4 of Theorem 1.2.
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1.2. Weighted graphs

The concepts and problems discussed in the previous subsection make sense
in the broader context of weighted graphs as well. For the purposes of this
article, these are defined as follows.
Definition 1.3. A weighted graph is a pair G “ pV,wq consisting of a finite
vertex set V and a symmetric function w : V 2 ÝÑ Rě0 such that wpx, xq “ 0
holds for all x P V .

Here the word “symmetric” means that we require wpx, yq “ wpy, xq for
all x, y P V . The notions of subgraphs, induced subgraphs, and isomorphisms
extend in the following way from ordinary graphs to weighted graphs.
Definition 1.4. Let G “ pV,wq and G1 “ pV 1, w1q be two weighted graphs.
We say that G1 is a subgraph of G if V 1 Ď V and, additionally, w1px, yq ď

wpx, yq holds for all x, y P V 1. If this conditions holds with equality throughout
we call G1 an induced subgraph of G. Finally, G and G1 are said to be isomor-
phic if there is a bijection ϕ : V ÝÑ V 1 satisfying wpx, yq “ w1

`

ϕpxq, ϕpyq
˘

for all x, y P V .
For two weighted graphs F and G we say that G is F -free if G does

not possess any subgraph isomorphic to F . More generally, if F is a set of
weighted graphs such that G is F -free for every F P F , then G is said to be
F -free. The natural analogue of the “number of edges” of a weighted graph
G “ pV,wq is, of course, the quantity

epGq “
1
2

ÿ

px,yqPV 2

wpx, yq .

Now for every such set F of weigthed graphs and every finite set D Ď Rě0
one may look at the extremal function n ÞÝÑ exDpn,F q sending every pos-
itive integer n to the maximum of epGq as G varies over F -free weighted
graphs of order n whose weight function only attains values in D. The natu-
ral generalisation of Turán’s problem to this context asks to determine these
functions for all choices of F and D, the classical case being D “ t0, 1u.

Similar as in this case, the generalised Turán densities

(1.1) πDpF q “ lim
nÑ8

exDpn,F q

n2{2

are easily shown to exist. Questions concerning exDpn,F q and πDpF q are
often studied in the literature, both for their own sake (see e.g. [9, 15]) and
due to their connection with other parts of extremal combinatorics.
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For instance, De Caen and Füredi [5] realised that such results can be
applied to determine the Turán density of the Fano plane. To this end,
they needed to know the value of πDpF q, where D “ t0, 1, 2, 3, 4u and F
denotes the set of all corresponding weighted graphs F on four vertices
with epF q ě 21. Their approach is occasionally called the link multigraph
method and led to many further results on Turán’s hypergraph problem (see
also [2, 10–12,14]).

An earlier occurrence of a Turán problem for weighted graphs appeared in
the determination of the so-called Ramsey-Turán density of even cliques due
to Erdős, Hajnal, Szemerédi, and Sós [6]. This result belongs to an area initi-
ated by Vera T. Sós, which is called Ramsey-Turán theory. Given a graph F ,
a number n of vertices, and a real number m ą 0 she defined the Ramsey-
Turán number RTpn,m, F q to be the maximum number of edges that an
F -free graph G on n vertices with αpGq ă m can have. The problem is espe-
cially interesting if F is a clique and it is customary in this setting to pass to
the Ramsey-Turán density function ft : p0, 1q Ñ R defined by

ftpδq “ lim
nÑ8

RTpn, δn,Ktq

n2{2 .

A further simplification can be obtained by restricting the attention to the
Ramsey-Turán densities

�pKtq “ lim
δÑ0

ftpδq .

Such quantities have been intensively studied in the literature (see e.g.
[3, 6, 7, 18] for important milestones and [17] for a beautiful survey). Owing
to all these efforts it is known that

(1.2) �pKtq “

#

t´3
t´1 if t ě 3 is odd,
3t´10
3t´4 if t ě 4 is even.

The even case is much harder and in their solution Erdős, Hajnal, Szemerédi,
and Sós applied a result on the Turán density of a certain t0, 1, 2u-valued col-
lection Ft of weighted graphs to a reduced graph obtained by means of Sze-
merédi’s regularity lemma [19]. These specific families Ft of weighted graphs
are introduced in Definiton 1.5 below.

A few years ago, Fox, Loh, and Zhao [8] proved f4pδq “
1
4 ` Θpδq. In

an attempt to generalise some of their arguments to larger even cliques we
realised that the values of the Ramsey-Turán density function ftpδq can be
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determined explicitly for δ ! t´1. Notably in [13] we proved that

ftpδq “

#

t´3
t´1 ` δ if t ě 3 is odd,
3t´10
3t´4 ` δ ´ δ2 if t ě 4 is even

holds provided that δ is sufficiently small in a sense depending on t. In order
to obtain these precise formulae we needed a stability result in the spirit of
Theorem 1.1 but for the collections Ft of weighted graphs mentioned above
(see e.g. [13, Proposition 3.5]). While working on this subject, we proved
analogues of the Andrásfai-Erdős-Sós theorem as well. They form the main
contribution of the present work.

1.3. Results

Throughout the rest of this article we only need to deal with weighted graphs
G “ pV,wq satisfying wrV 2s Ď t0, 1, 2u. We regard such structures as coloured
complete graphs on V by drawing a green, blue, or red edge between any two
distinct vertices x, y P V depending on whether wpx, yq attains the value 0, 1,
or 2. For a nonnegative integer n the red and blue n-vertex clique are denoted
by RKn and BKn, respectively. Moreover, for n ě 2 we mean by RK´

n the
graph obtained from an RKn by recolouring one of its edges blue.

Definition 1.5. For two integers a ě b ě 1 the coloured graph Ga`b,b of
order a consists of an RKb and a BKa´b that are connected to each other by
blue edges. Moreover, for every positive integer t we write

Ft “
�

Gt,i : 1 ď i ď
t
2
(

.

BK2r´1

(a) G2r,1

BK2r´4

(b) G2r,2

RKi

BK2r´2i

(c) G2r,i

RKr´1

(d) G2r,r´1

RKr

(e) G2r,r

Figure 1.2: The family F2r “ tG2r,1, G2r,2, . . . , G2r,ru.
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Erdős, Hajnal, Szemerédi, and Sós proved in [6] that

πt0,1,2upFtq “

#

2pt´3q

t´1 if t ě 3 is odd,
2p3t´10q

3t´4 if t ě 4 is even,

which in turn leads to (1.2) via the regularity method for graphs. In order to
state the related results in the spirit of Theorem 1.2 one needs a notion of
minimum degree for coloured graphs and it will be useful to have a notion of
homomorphisms as well.

Now if G “ pV,wq denotes a coloured graph and x P V , it is natural to
call

dpxq “
ÿ

yPV

wpx, yq

the degree of x. Moreover, the quantity δpGq “ mintdpvq : v P V u will be
referred to as the minimum degree of G.

Definition 1.6. A homomorphism from a weighted graph G “ pV,wq to a
weighted graph G1 “ pV 1, w1q is a map ϕ : V ÝÑ V 1 with the property that
any two distinct vertices x, y P V satisfy wpx, yq ď w1

`

ϕpxq, ϕpyq
˘

.

For odd indices, we shall obtain the following.

Theorem 1.7. Suppose that for some r ě 2 we have an F2r`1-free coloured
graph G of order n with δpGq ą

6r´8
3r´1n. Then there is a homomorphism from G

to RKr or, explicitly, there is a partition

V pGq “ W1 Ÿ . . . Ÿ Wr

such that all edges within the partition classes are green.

Consider the coloured graph obtained from the extremal graph described
in Subsection 1.1 by replacing the edges there by red edges and colouring all
other pairs green. This coloured graph has a minimum degree of exactly 6r´8

3r´1n
but, as it does not contain a BKr`1, it cannot contain a member of F2r`1
either. On the other hand, it does not admit a homomorphism to RKr and
thus it shows that the constant 6r´8

3r´1 appearing in Theorem 1.7 is optimal. Let
us also note that the extremal graphs for πt0,1,2upF2r`1q “

2pr´1q

r are RKr

and its symmetric blow-ups, which is why we aimed to get a homomorphism
into RKr in the conclusion of Theorem 1.7.

As in Ramsey-Turán theory, the even case will be much harder. Let us
recall that in [6] the extremal graphs for πt0,1,2upF2rq “

2p3r´5q

3r´2 have been
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determined to be certain blow-ups of RK´
r . (E.g., the two “special” vertices

get blown up by a factor of 2, while the r ´ 2 remaining vertices receive a
factor of 3.) Therefore, our goal is to enforce, by an appropriate minimum
degree condition, that an F2r-free coloured graph admits a homomorphism
into RK´

r .

Theorem 1.8. Let r ě 3 be an integer and let G be a F2r-free coloured
graph of order n with δpGq ą

14r´24
7r´5 n. Then there is a homomorphism from G

to RK´
r . In other words, there is a partition

V pGq “ W1 Ÿ . . . Ÿ Wr

such that all edges within the partition classes are green and no edge from W1
to W2 is red.

6n
7r´5

B2

6n
7r´5

B1

7n
7r´5

Ar´3
7n

7r´5

A1

2n
7r´5

C 1

2n
7r´5

C2

Figure 1.3: Extremal graph for Theorem 1.8.

The reason why we stated this only for r ě 3 is that for r “ 2 one
can easily show a stronger result. This is because F2 consists only of a red
edge and a blue triangle. Hence a direct application of the case r “ 2 of
Theorem 1.2 shows that the desired conclusion can already be obtained from
the weaker minimum degree assumption that δpGq ą

2
5n. For r ě 3, however,

the constant 14r´24
7r´5 appearing in Theorem 1.8 is optimal. This can be seen

by taking n to be an arbitrary multiple of 7r ´ 5, a vertex set V of size n
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with a partition

V “ A1 Ÿ . . . Ÿ Ar´3 Ÿ B1
Ÿ B2

Ÿ C 1
Ÿ C2

satisfying

|A1| “ . . . “ |Ar´3| “
7n

7r´5 , |B1
| “ |B2

| “
6n

7r´5 , and |C 1
| “ |C2

| “
2n

7r´5 ,

and colouring

‚ the edges within the partition classes green,
‚ the edges from C 1 to C2 green as well,
‚ the edges from B1 to C 1 and from B2 to C2 blue,
‚ and all remaining edges red.

We would like to remark that whenever a weighted Turán density πDpF q

and the corresponding family E of extremal graphs have been determined
one may ask, similarly, for the Andrásfai-Erdős-Sós threshold αDpF q, de-
fined to be the infimal real number α with the following property: Every
F -free weighted graph pV,wq with wrV 2s Ď D and δpGq ą α|V | admits an
homomorphism into a member of E . For instance, Theorem 1.8 and the graph
in Figure 1.3 show αt0,1,2upF2rq “

14r´24
7r´5 for r ě 3. It would be interesting

to study such thresholds αDpF q in further cases, e.g. for the pairs pD,F q

whose Turán densities have been determined in [9].

2. Excluding blue cliques

Many intermediate steps in the proofs of our main results are of the following
form: We already know that the coloured graph G under consideration is F -
free for some set F of coloured graphs and we would like to show that for a
certain other coloured graph F it must be the case that G is F -free as well.
The usual strategy for handling such a problem begins by assigning a positive
integral weight γz to every z P V pF q. Assuming for simplicity that F itself
would be a subgraph of G we obtain

ÿ

xPV

ÿ

zPV pF q

γzwpx, zq “
ÿ

zPV pF q

γzdGpzq ě δpGq
ÿ

zPV pF q

γz .

Consequently there will exist some vertex x P V such that

ÿ

zPV pF q

γzwpx, zq ě
δpGq

n

ÿ

zPV pF q

γz .(2.1)
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The basic plan to proceed from this point is that we try to prove by means
of some case analysis that this conditions implies V pF qYtxu to support some
member of F , contrary to G being F -free. Often the situation will be a bit
more complicated and we will need to iterate this argument multiple times
before such a contradiction emerges. For analysing the condition (2.1) it is
usually helpful to rewrite it in terms of the function rw : V 2 ÝÑ t0, 1, 2u

defined by rwpu, vq “ 2 ´ wpu, vq for all u, v P V . In fact one can easily check
that (2.1) is equivalent to

ÿ

zPV pF q

γz rwpx, zq ď

ˆ

2 ´
δpGq

n

˙

ÿ

zPV pF q

γz .(2.2)

Our first argument of this form will establish the following lemma, which
will later be used to show that a coloured graph G satisfying the assumption of
either Theorem 1.7 or Theorem 1.8 cannot contain a BKr`1 (see Lemma 3.1
and Lemma 4.1 below).

Lemma 2.1. Let q ą b ě 1 be integers and suppose that G is a coloured
graph on n vertices with δpGq ą

`

2 ´
12

3q`3b´5
˘

n containing a BKq. Then
either BKq`1 or Gq`b,b is a subgraph of G.

Proof. Assume contrariwise that G is tBKq`1, Gq`b,bu-free. For each integer
k P r0, b ´ 1s we define

pk “ maxp0, k ` q ` 1 ´ 2bq .

In view of

k ` pk “ maxpk, 2k ` q ` 1 ´ 2bq ď maxpb ´ 1, q ´ 1q ă q(2.3)

there exists a coloured graph Hk of order q having a vertex partition

V pHkq “ A Ÿ B Ÿ C

satisfying

‚ |A| “ k, |B| “ pk, |C| “ q ´ pk ` pkq,
‚ all edges of Hk connecting a vertex in A with a vertex in AYC are red,
‚ and all other edges of Hk are blue (see Fig. 2.1 on the next page).

Since all edges of H0 are blue and V pH0q has size q, we know that G
contains a copy of H0. Now let k˚ denote the largest integer in r0, b´ 1s with
the property that G contains a copy of Hk˚ and put p˚ “ pk˚ .
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RKk BKp

BKq´pk`pq

A B

C

Figure 2.1: The coloured graph Hk.

Let A ŸB ŸC Ď V pGq be the vertex set of such a copy with the notation
as above. Notice that the calculation (2.3) shows C ‰ ∅. So if k˚ “ b ´ 1,
then A and an arbitrary vertex in C would form an RKb, while the remaining
vertices in B Y C would form a BKq´b. Due to the absence of green edges
from A to B ŸC this means that G would contain a Gq`b,b, which is absurd.

This consideration proves

(2.4) k˚ ď b ´ 2

and our maximal choice of k˚ entails that G does not contain an Hk˚`1.

First Case: k˚ ă 2b ´ q ´ 1.

This yields p˚ “ pk˚`1 “ 0 and B “ ∅. We assign the weight 3 to the
vertices in A and the weight 2 to the vertices in C. In view of q ą b the total
weight of all vertices in A Ÿ C is

3k˚`2pq´k˚q “ 2q`k˚ ď 2b`q´2 ď 2b`q´2`
1
2pq´b´1q “

1
2p3q`3b´5q .

Writing γz for the weight of every vertex z P A ŸC we find, by the argument
leading to (2.2), a vertex x P V pGq satisfying

ÿ

zPAYC

γz rwpx, zq ă
6p3q ` 3b ´ 5q

3q ` 3b ´ 5 “ 6 .

Owing to the integrality of the left side we obtain

(2.5) 3
ÿ

aPA

rwpx, aq ` 2
ÿ

cPC

rwpx, cq ď 5 .
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Because of BKq`1 Ę G there exists a vertex z P A Y C with rwpx, zq “ 2. In
view of (2.5) this can only happen if z P C and thus we infer

3
ÿ

aPA

rwpx, aq ` 2
ÿ

c PC�tzu

rwpx, cq ď 1 ,

which in turn tells us that all members of A Y C � tzu are red neighbours
of x. Moreover, z P C and rwpx, zq “ 2 imply x R A. Consequently,

pA Y txuq Ÿ pC � tzuq

is the vertex partition of an Hk˚`1 in G and we have reached a contradiction.

Second Case: k˚ ě 2b ´ q ´ 1.

Observe that now we have p˚ “ k˚ ` q ` 1 ´ 2b and pk˚`1 “ p˚ ` 1. This
time we assign the weight γz “ 2 to every z P A and the weight γz “ 1 to
every z P B Ÿ C. As before we find a vertex x P V pGq with

ÿ

zPAYBYC

γz rwpx, zq ă
12pk˚ ` qq

3q ` 3b ´ 5
(2.4)
ă

12pq ` b ´ 2q

3pq ` b ´ 2q
“ 4 ,

i.e.,
2
ÿ

aPA

rwpx, aq `
ÿ

yPBYC

rwpx, yq ď 3 .

Again the absence of a BKq`1 in G leads us to a vertex z P B Y C with
rwpx, zq “ 2. Moreover, there are only red edges from x to A and at most
one blue but no green edges from x to B Y C � tzu. This implies, however,
that pA Y txuq Y pB Y C � tzuq supports an Hk˚`1 in G, which is again a
contradiction.

3. The proof of Theorem 1.7

An iterative application of Lemma 2.1 leads to the following result.
Lemma 3.1. For r ě 2 every F2r`1-free coloured graph G of order n with
δpGq ą

6r´8
3r´1n is BKr`1-free.

Proof. Let q be maximal with BKq Ď G and assume for the sake of contra-
diction that q ě r`1. Due to G2r`1,1 “ BK2r we have q ă 2r and, hence, the
number b “ 2r ` 1 ´ q satisfies q ą b ě 1. Since δpGq ą

`

2 ´
12

3p2r`1q´5
˘

n, it
follows from Lemma 2.1 that either BKq`1 Ď G or G2r`1,b Ď G. The former,
however, contradicts the maximality of q and the latter contradicts G being
F2r`1-free.
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Now Theorem 1.7 follows by means of a simple application of the András-
fai-Erdős-Sós theorem.

Proof of Theorem 1.7. Let H denote the simple graph on V pGq whose edges
correspond to the blue or red edges of G. The minimum degree condition
on G yields

δpHq ě
1
2δpGq ą

3r´4
3r´1n

and Lemma 3.1 tells us that H is Kr`1-free. So by Theorem 1.2 H is r-partite
and the claim follows.

4. The proof of Theorem 1.8

Again we begin by utilising Lemma 2.1.

Lemma 4.1. For r ě 3 every F2r-free coloured graph G of order n with
δpGq ą

14r´24
7r´5 n is BKr`1-free.

Proof. As in the proof of Lemma 3.1 we look at the largest integer q with
BKq Ď G and observe that G2r,1 “ BK2r´1 shows q ď 2r ´ 1. So assuming
q ě r ` 1 Lemma 2.1 would again tell us that either BKq`1 or G2r,2r´q is a
subgraph of G, both of which is absurd. Actually, this argument only requires
the lower bound δpGq ą

`

2 ´
12

6r´5
˘

n on the minimum degree of G, which is
less than what we stated.

In order to define the homomorphism demanded by Theorem 1.8 it would
be tremendously helpful to know that no induced subgraph of G with three
vertices has exactly one red edge. While not being true in general, this as-
sertion will turn out to hold in the important special case that all edges
of G that are not themselves red belong to the common red neigbourhood of
some RKr´2 (see Lemma 4.7 below). This property of G can in turn be derived
from a certain “edge-maximality” condition (see Lemma 4.3 and Lemma 4.6
below). The definition that follows facilitates talking about this plan.

Definition 4.2. Let G “ pV,wq be a coloured graph.

(a ) If G is F2r-free and every F2r-free coloured graph G1 “ pV,w1q hav-
ing G as a subgraph (i.e., satisfying w1px, yq ě wpx, yq for all x, y P V )
coincides with G, then we say that G is extremal.

(b ) A blue or green edge of G is called secure if it is contained in the common
red neighbourhood of some RKr´2.

(c ) A wicked triangle in G is a triple px, y, zq of distinct vertices, such that
xy is red and xz, yz are either blue or green. If in this situation both
xz and yz are blue, then px, y, zq is said to be a blue wicked triangle.
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We shall see later that one only needs to deal with the extremal case
when proving Theorem 1.8. As indicated above we will prove in this case
that all blue and green edges are indeed secure and that wicked triangles do
not exist. We commence with the easiest of these claims, the security of blue
edges.

Lemma 4.3. If G designates an extremal F2r-free coloured graph with n
vertices and δpGq ą

14r´24
7r´5 n, then all blue edges of G are secure.

Proof. Let xy denote an arbitrary blue edge of G. By extremality, the weighted
graph G1 arising from G by recolouring xy red contains, for some i P rrs, a
subgraph isomorphic to G2r,i. If i ‰ r this subgraph would have at least r` 1
vertices no two of which are connected by a green edge in G. Consequently, G
would contain a BKr`1, which contradicts Lemma 4.1. So G1 contains an RKr

and, as G was RKr-free, the vertices x and y must belong to this RKr. Its
remaining r ´ 2 vertices form, in G, an RKr´2 whose red neighbourhood
contains x and y.

At this moment we could already rule out the existence of blue wicked
triangles (see part (i ) of Lemma 4.7 below). However, the argument for doing
so is very similar to the proof that, provided the green edges are secure as
well, there cannot be any wicked triangles at all. For this reason we post-
pone this step and consider the green edges first. But it will be important to
remember that we may already assume the absence of blue wicked triangles
when treating the security of green edges.

As a further preparation towards this latter task we need to exclude a
configuration that is closely tied to the example given at the end of the
introduction demonstrating the optimality of the minimum degree condition
in Theorem 1.8.

Definition 4.4. By J we mean the coloured graph of order r`1 with vertex
set

A Ÿ tb1, b2, c1, c2
u ,

where |A| “ r ´ 3, c1c2 is green, and b1c1, b2c2 are blue, while all other edges
are red (see Fig. 4.1).

Lemma 4.5. A tRKr, BKr`1u-free coloured graph G of order n satisfying
δpGq ą

14r´24
7r´5 n cannot contain J as subgraph.

Proof. Otherwise let Q “ A Ÿ tb1, b2, c1, c2u Ď V pGq be the vertex set of a
copy of J in G, the notation being as in Definition 4.4. We assign weights to
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b2b1

ar´3a1

c1 c2

Figure 4.1: The coloured graph J with A “ ta1, . . . , ar´3u.

the members of Q according to the formula

γq “

$

’

&

’

%

7 if q P A,

6 if q P tb1, b2u,

2 if q P tc1, c2u.

So the total weight of all vertices is 7pr ´ 3q ` 6 ¨ 2 ` 2 ¨ 2 “ 7r ´ 5 and the
standard argument leads to a vertex x P V pGq with

ÿ

qPQ

γq rwpx, qq ď 13 .(4.1)

This inequality allows us to analyse the set T “ tq P Q : rwpx, qq “ 2u.
As as immediate consequence of (4.1) we have T Ď tb1, b2, c1, c2u. Moreover,
the assumption b1 P T would imply that Q � tb1u is contained in the red
neighbourhood of x, but then A Y tb2, c1, xu would induce an RKr in G,
which is absurd. By symmetry the same consideration applies to b2 as well
and thus we have T Ď tc1, c2u.

Now it follows from A Y tb1, b2, c1, xu not spanning a BKr`1 in G that
c1 P T and, similarly, we get c2 P T as well. By plugging T “ tc1, c2u into (4.1)
we learn

6
ÿ

qPAYtb1,b2u

rwpx, qq ď 5 ,

and for this reason AY tb1, b2u is part of the red neighbourhood of x. But this
means that A Y tb1, b2, xu forms an RKr in G, which is absurd.
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Now we proceed with the security of green edges. The argument starts
in a similar way as the proof of Lemma 4.3, but there will be more cases to
investigate.
Lemma 4.6. Suppose that G is an extremal F2r-free coloured graph with
δpGq ą

14r´24
7r´5 n. If G contains no blue wicked triangle, then all green edges

of G are secure.
Proof. Recall that G has to be tBKr`1, Ju-free by Lemma 4.1 and Lemma 4.5.
Now consider any green edge xy of G and denote the coloured graph that one
obtains from G when one recolours xy to become blue by G1. Due to the
extremality of G we know that G1 cannot be F2r-free. Exploiting that G is
BKr`1-free it is easily seen that G1 must contain a G2r,r´1 with x and y
among its vertices. This G2r,r´1 is, of course, only known to be a subgraph
of G1 that does not need to be induced. In fact, the absence of blue wicked
triangles in G entails that “many” edges of this subgraph that “in general”
would only be known to be either blue or red must actually be red. To get
an overview over the possible cases, we observe that due to the symmetry
between x and y one may assume that for the “distinguished” blue edge of
the G2r,r´1 one of the following three cases occurs.

(a ) It is xy.
(b ) It is of the form xb and genuinely blue, where b is in the RKr´1.
(c ) It is of the form xc and red, where c is in the RKr´1.

In case (a ) there may be at most one blue edge xax from x into the RKr´1,
since otherwise G would contain a blue wicked triangle. For the same reason,
there can be at most one blue edge yay from y into the RKr´1. If both blue
edges exist, then J Ę G implies ax “ ay and we get the configuration shown
in Figure 4.2a. Similarly, the above cases (b ) and (c ) lead to one of the
situations in Figure 4.2. Observe that it might still be the case that some of
the edges drawn blue in these pictures are actually red in G.

From now on we treat these three cases separately. If the configuration
depicted in Figure 4.2a occurs the edge xy is secure due to the RKr´2 shown
there.

Suppose next that we are in the case shown in Figure 4.2b and let Q be
the vertex set of the RKr´3. Assign

‚ the weight 1 to a, b, x, y,
‚ and the weight 2 to the members of Q.

So the total weight is 2pr ´ 1q and thus there is a vertex v with
ÿ

zPta,b,x,yu

rwpv, zq ` 2
ÿ

qPQ

rwpv, qq ď 3 .
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RKr´2 a

x y

(a) First case

RKr´3

a b

xy

(b) Second case

RKr´4

a b

xy

c

(c) Third case

Figure 4.2: Possibilities for the edge xy.

In combination with neither Q Y ta, b, v, xu nor Q Y ta, b, v, yu forming
a BKr`1 this implies that either rwpa, vq “ 2 or rwpb, vq “ 2. By symmetry we
may suppose that the latter holds, thus getting

ÿ

zPta,x,yu

rwpv, zq ` 2
ÿ

qPQ

rwpv, qq ď 1 .

It follows that all vertices in Q and at least two of a, x, and y are red
neighbours of v. Moreover, v R ta, x, yu and none of the edges va, vx, and vy
is green. Now if va and vy are red, then Q Y ta, v, yu forms an RKr in G,
which is absurd. Furthermore, if va and vx are red, then QYta, v, x, yu forms
a copy of J in G, which is not possible either. So the only remaining case is
that vx and vy are red and then Q Y tvu forms an RKr´2 exemplifying the
security of xy.

It remains to discuss the configuration shown in Figure 4.2c, which can
only arise if r ě 4. This time we let Q denote the vertex set of the RKr´4.
Assigning

‚ the weight 4 to x, y,
‚ the weight 5 to a, b, c,
‚ and the weight 7 to the members of Q

we have distributed a total weight of 7r ´ 5 and in the usual manner we find
a vertex v with

4
ÿ

zPtx,yu

rwpv, zq ` 5
ÿ

zPta,b,cu

rwpv, zq ` 7
ÿ

qPQ

rwpv, qq ď 13 .

Exploiting that neither QYta, b, c, xu nor QYta, b, c, yu induces a BKr`1
we infer that rwpv, 
q “ 2 holds for some 
 P ta, b, cu. Together with the above
inequality this shows that all vertices in QY ta, b, c, x, yu except for 
 are red
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neighbours of v. Due to the symmetry between a and c we may suppose that

 ‰ a. Now QYta, vu is the desired RKr´2 with xy in its neighbourhood.

Finally, we deal with the alleged absence of wicked triangles.

Lemma 4.7. Let G denote a tRKr, BKr`1u-free coloured graph of order n

such that δpGq ą
14r´24
7r´5 n.

(i ) If all blue edges of G are secure, then every wicked triangle of G pos-
sesses a green edge.

(ii ) If moreover the green edges of G are secure as well, then G contains no
wicked triangles.

Proof. Let V and w be the vertex set and weight function of G. Arguing
indirectly we let px, y, zq be a wicked triangle contradicting either of these
two statements and such that subject to this wpx, zq ` wpy, zq is as large
as possible. Set α “ wpx, zq and β “ wpy, zq. Notice that α, β P t0, 1u and
xz, yz are secure. Consequently, there are two pr´2q-sets A,B Ď V inducing
red cliques such that x, z belong to the common red neighbourhood of A

while y, z belong to the common red neighbourhood of B. Let us select these
sets A and B in such a way that k “ |AXB| is maximal. Since pAXBqYtx, yu

is a red clique and G is RKr-free, we have

k ď r ´ 3 .(4.2)

x y

z

RKk

RKr´k´2 RKr´k´2AzB BzA

A X B

Figure 4.3: The sets A and B. The black pairs are either blue or green.



322 Clara Marie Lüders and Christian Reiher

Notice that x, y, z R AYB. Set Q “ pAYBqYtx, y, zu, and assign weights
to the vertices in Q by defining

γq “

$

’

’

’

’

&

’

’

’

’

%

3 ` α ´ β if q P A� B or q “ x,

3 ` β ´ α if q P B � A or q “ y,

7 if q P A X B,

r ´ k ` 1 if q “ z

for q P Q. So the total weight of the vertices in Q is

6pr ´ k ´ 1q ` 7k ` pr ´ k ` 1q “ 7r ´ 5

and by our standard argument there exists a vertex v P V with
ÿ

qPQ

γq rwpv, qq ď 13 .(4.3)

It follows that

v R pA X Bq and there is no green edge from v to A X B .(4.4)

Put
a “

ÿ

qPAYtxu

rwpv, qq and b “
ÿ

qPBYtyu

rwpv, qq

and notice that (4.3) yields

p3 ` α ´ βqa ` p3 ` β ´ αqb ` 4 rwpv, zq ď 13 ,(4.5)

because (4.2) implies γz ě 4.
Since A Y tx, vu is not an RKr, we have a ě 1 and, similarly, b ě 1.

So (4.5) yields that

vz is either blue or red.(4.6)

If α “ 1, i.e., if xz is blue, then the fact that AY tv, x, zu is not a BKr`1
entails a ě 2. Performing the same argument for b we infer

a ě 1 ` α and b ě 1 ` β .(4.7)

Since α2 “ α and β2 “ β, we have

13 ă 14`p1´αqp1´βq`αβ “ p3`α´βqp4´α´β`αβq`p3`β´αqp1`βq
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and by (4.5) and (4.7) this leads to

(4.8) a ď 3 ´ α ´ β ` αβ .

Now assume there would exist two distinct vertices in A Y txu, say s

and t, that fail to be red neighbours of v. Then v R AYtxu and, in particular,
v R ts, tu. So the maximality of α` β gives wpv, sq `wpv, tq ď α` β, whence

a ě rwpv, sq ` rwpw, tq ě 4 ´ α ´ β .

In view of (4.8) this is only possible if α “ β “ 1 and the foregoing estimate
on a holds with equality. But then A Y tv, x, zu is a BKr`1 in G, which
is a contradiction. Therefore all but at most one vertex in A Y txu are red
neighbours of v.

On the other hand, A Y tv, xu is not an RKr in G, so altogether we
can conclude that there is a unique a˚ P A Y txu such that va˚ is not red.
Similarly, there is a unique b˚ P B such that vb˚ is not red.

Next we suppose that vz would be blue. Then, in particular, v R pAYBq

and the combination of (4.5) and (4.7) yields

13 ě 4 ` p1 `αqp3 `α´ βq ` p1 ` βqp3 ` β ´αq “ 10 ` 3pα` βq ` pα´ βq
2 ,

i.e., α “ β “ 0. So there is no wicked triangle with a blue edge and conse-
quently there are only red edges from v to A Y B. Thus a˚ “ x and b˚ “ y,
for which reason px, y, vq is a wicked triangle. By the maximality of α ` β

it follows that vx and vy are green, i.e., that a, b ě 2. But now we get a
contradiction to (4.5), which together with (4.6) proves that

vz is red.(4.9)

Since A Y tv, zu cannot be an RKr, it follows that a˚ P A and, similarly,
we have b˚ P B. Owing to the uniqueness of a˚ and b˚ there are only two
possibilities, namely a˚ P A� B and b˚ P B � A, or a˚ “ b˚ P A X B. If the
former alternative would hold, then the sets AYtvu�ta˚u and BYtvu�tb˚u

would contradict the maximality of k. So the only remaining case is that
there is a member u “ a˚ “ b˚ of A X B such that Q � tuu is in the red
neighbourhood of v. By (4.4) the edge uv is blue. Since neither AYtv, x, zu nor
B Y tv, y, zu forms a BKr`1, the edges xz and yz are green, i.e., α “ β “ 0.
Let us recall that this means that there is no wicked triangle with a blue edge.
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x y

z

u v

RKk´1RKr´k´2 RKr´k´2

Figure 4.4: Current situation.

At this moment the weights γq have done for us whatever they could do,
and we proceed by assigning new weights to the vertices in Q and to v. To
this end, we define

ηq “

$

’

&

’

%

1 if q P pA�Bq Y tx, y, zu,

2 if q P tu, vu,

3 if q P pA X Bq � tuu

for q P QY tvu. By (4.2) the total weight 2r ` k is at most 3pr ´ 1q and thus
there is a vertex t with

ÿ

qPQYtvu

ηq rwpt, qq ď 5 .(4.10)

We will now analyse the set T “
�

q P Q Y tvu : rwpq, tq “ 2
(

. By (4.10)
it needs to be disjoint to A X B � tuu. Suppose now that v P T . Since the
triangle pu, t, vq cannot be wicked, it is not the case that ut is a red edge,
which in turn yields rwpu, tq` rwpv, tq ě 3, contrary to (4.10). This proves that
v R T and by symmetry u R T holds as well.

Now it follows from G being BKr`1-free that each of the four sets

pA�Bq Y txu, pA�Bq Y tzu, pB � Aq Y tyu, and pB � Aq Y tzu

contains a member of T . On the other hand (4.10) yields |T | ď 2. For these
reasons, we have T “ ta˚, b˚u for two vertices a˚ P A� B and b˚ P B � A.
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Next we contend that S “ pQ Y tvuq � T contains only red neighbours
of t. To see this, consider an arbitrary s P S. In view of s R T the edge st is
either red or blue. Moreover, at least one of a˚ or b˚ is a red neighbour of s,
so suppose that sa˚ is red. Since ps, a˚, tq cannot be a wicked triangle with a
blue edge, it follows that st is indeed red.

Now the sets AY ttu� ta˚u and B Y ttu� tb˚u contradict the maximality
of k.

We conclude this section by giving the proof of our second main result.

Proof of Theorem 1.8. Let G1 “ pV,w1q be an F2r-free coloured graph with
the property that w1px, yq ě wpx, yq holds for all x, y P V and such that
subject to this condition epG1q is maximal. Then G1 is extremal and satisfies
δpG1q ě δpGq ą

14r´24
7r´5 n. Since every homomorphism from G1 to RK´

r is also
a homomorphism from G to RK´

r , we may suppose for notational simplicity
that G1 “ G, i.e., that G itself is extremal.

Now by Lemma 4.3 the blue edges of G are secure and Lemma 4.7(i )
informs us that G contains no blue wicked triangle. This in turn implies in
view of Lemma 4.6 that the green edges of G are secure as well and, hence,
Lemma 4.7(ii ) is applicable, showing that G contains no wicked triangles at
all. This fact can be reformulated by saying that the reflexive and symmet-
ric relation “wpx, yq P t0, 1u” is also transitive, i.e., an equivalence relation.
Denote its (nonempty) equivalence classes by A1, . . . , Am. We will suppose
moreover that this indexing has been arranged in such a way that for some
integer s P r0,ms each of the sets A1, . . . , As spans at least one blue edge
in G, whilst each of As`1, . . . , Am forms a green clique.

For every i P rms we denote the minimum degree of the blue graph G
induces on Ai by αi. Notice that

14r´24
7r´5 n ă δpGq ď 2pn ´ |Ai|q ` αi

holds for every i P rms, whence

(4.11) 2|Ai| ´ αi ă
14

7r´5n .

For i P rs ` 1,ms we have αi “ 0 and the previous inequality simplifies to
|Ai| ă

7
7r´5n. If, however, i P rss, then the trivial bound αi ă |Ai| leads to

|Ai| ă
14

7r´5n. By adding these estimates up we obtain

n “

m
ÿ

i“1
|Ai| ă

14s ` 7pm ´ sq

7r ´ 5 n ă
m ` s

r ´ 1 n ,
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wherefore m` s ě r. On the other hand, by taking arbitrary blue edges from
each of A1, . . . , As as well as arbitrary vertices from each of As`1, . . . , Am

we can construct a BKm`s in G. So in view of Lemma 4.1 we must have
m ` s “ r. Similar arguments shows that the blue graphs induced by G on
A1, . . . , As are triangle-free. Moreover, one has s ě 1, for otherwise G would
contain an RKr.

Now for each i P rss we find

n “ |Ai| `
ÿ

j‰i

|Aj | ă |Ai| `
14ps ´ 1q ` 7pm ´ sq

7r ´ 5 n

“ |Ai| `
7pm ` s ´ 2q

7r ´ 5 n “ |Ai| `
7r ´ 14
7r ´ 5 n

and, consequently, |Ai| ą
9

7r´5n. In combination with (4.11) this leads to
2|Ai| ´ αi ă

14
9 |Ai|, i.e., αi ą

4
9 |Ai|. Since the blue graph G induces on Ai is

triangle-free and 4
9 ą

2
5 , the case r “ 2 of Theorem 1.2 entails that this blue

graph is bipartite.
Thus for each i P rss there is a partition Ai “ Bi ŸCi such that Bi and Ci

are green cliques in G. The structure we have thereby found in G may be
regarded as a homomorphism from G to a coloured graph of order m` s “ r
having a blue matching of size s and otherwise red edges only. Due to s ě 1
this proves Theorem 1.8.
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[19] E. Szemerédi, Regular partitions of graphs, Problèmes combinatoires et
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