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Enumerating cliques in direct product graphs

Colin Defant

The unitary Cayley graph of Z/nZ, denoted GZ/nZ, is the graph
with vertices 0, 1, . . . , n − 1 in which two vertices are adjacent if
and only if their difference is relatively prime to n. These graphs
are central to the study of graph representations modulo integers,
which were originally introduced by Erdős and Evans. We give a
brief account of some results concerning these beautiful graphs and
provide a short proof of a simple formula for the number of cliques
of any order m in the unitary Cayley graph GZ/nZ. This formula
involves an exciting class of arithmetic functions known as Schem-
mel totient functions, which we also briefly discuss. More generally,
the proof yields a formula for the number of cliques of order m in
a direct product of balanced complete multipartite graphs.

AMS 2000 subject classifications: Primary 05C30; secondary 05C69.
Keywords and phrases: Unitary Cayley graph, clique, Schemmel to-
tient function, direct product graph, complete multipartite graph.

1. Unitary Cayley graphs and Schemmel totient functions

Let R be a commutative ring with unity. The unitary Cayley graph of R,
denoted GR, is the graph whose vertices are the elements of R in which two
vertices are adjacent if and only if their difference is a unit in R. In symbols,
GR has vertex set V (GR) = R and edge set E(GR) = {{x, y} : x− y ∈ R×}.
Unitary Cayley graphs have featured prominently in the literature of the
past two decades [2, 6–8, 12, 14, 13, 18, 20–23, 25–29, 34], most commonly
in the special case R = Z/nZ for some integer n ≥ 2.

One can view the unitary Cayley graph GZ/nZ as the graph with vertices
0, 1, . . . , n−1 in which two vertices are adjacent if and only if their difference
is relatively prime to n. This number-theoretic definition leads to several
interesting number-theoretic properties of these graphs. For example, the
number of edges in GZ/nZ is given by

(1) |E(GZ/nZ)| =
1

2
nϕ(n),
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Figure 1: The unitary Cayley graphs of Z/nZ for 2 ≤ n ≤ 10.

where ϕ is Euler’s totient function. The clique number ofGZ/nZ, defined to be

the largest integer k such that GZ/nZ has a clique of order k, turns out to be

the smallest prime factor of n. This, in turn, is also the chromatic number of

GZ/nZ [23]. Klotz and Sander have also shown that the eigenvalues of GZ/nZ

(that is, the eigenvalues of an adjacency matrix of GZ/nZ) are integers that

divide ϕ(n) (in fact, they are given by Ramanujan sums) [23]. Figure 1

depicts the graphs GZ/nZ for 2 ≤ n ≤ 10.

One motivation for studying the unitary Cayley graphs GZ/nZ, other

than their inherent beauty and interesting properties, arises from the theory

of graph representations modulo integers. Erdős and Evans [15] defined a

graph G to be representable modulo n if there exists a labeling of the vertices

of G with distinct elements of {1, 2, . . . , n} such that two vertices are adja-

cent if and only if the difference between their labels is relatively prime to n.

In other words, G is representable modulo n if it is isomorphic to an induced

subgraph of GZ/nZ. These authors then proved that every finite simple graph

is representable modulo some positive integer. The representation number

of a graph G is the smallest integer n such that G is representable modulo n.

This definition has garnered a huge amount of interest as researchers have in-

vestigated the representation numbers of various graphs [2–4, 16, 17, 33]. See

Gallian’s “Dynamic Survey of Graph Labeling” for more information about

the representation numbers of graphs and for additional references [19]. The

topic of graph representations modulo integers, which revolves around in-
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duced subgraphs of the graphs GZ/nZ, certainly motivates the study of such
graphs.

When Dejter and Giudici introduced unitary Cayley graphs in 1995,
they showed that

(2) T (GZ/nZ) =
1

6
nϕ(n)S2(n),

where T (G) denotes the number of triangles in the graph G and S2 is the
2nd Schemmel totient function [14]. For each nonnegative integer r, the rth

Schemmel totient function Sr is the multiplicative arithmetic function that
satisfies

(3) Sr(p
α) =

{
pα−1(p− r), if p ≥ r;

0, if p < r

for all primes p and positive integers α (here, “multiplicative” means that
Sr(ab) = Sr(a)Sr(b) whenever gcd(a, b) = 1). Note that S0(n) = n.

As their name suggests, the Schemmel totient functions are generaliza-
tions of Euler’s totient function that were originally introduced by Schemmel
[35]. Indeed, S1 = ϕ. The standard combinatorial interpretation of the Euler
totient function is that ϕ(n) is the number of integers less than or equal to
n that are positive and relatively prime to n. Note that S0(n) = n has a
similar combinatorial interpretation: it is the number of integers less than or
equal to n that are positive! More generally, Sr(n) is the number of positive
integers k ≤ n such that gcd(k+i, n) = 1 for all i ∈ {0, 1, . . . , r−1} [35]. The
Schemmel totient functions seldom appear in the wild, which is unfortunate
because they have a certain attractive mystique. It is worth noting, however,
that Lehmer found the Schemmel totient functions emerge in the solutions
of certain enumerative problems concerning magic squares [24]. Moreover,
the number-theoretic properties of the Schemmel totient functions have been
studied in their own right [9–11, 30, 32, 36, 37].

In 2007, Klotz and Sander [23] gave an alternative proof of (2). Madhavi
and Maheswari [27] then (apparently independently) rediscovered this result
in 2010. These two papers and the original paper of Dejter and Giudici are
certainly interesting, but they all fail to phrase the formula in (2) in the
“correct” way. These papers all prove that the number of triangles in GZ/nZ

is
1

6
nϕ(n)S2(n). The “correct” way to phrase this theorem is as follows:

The number of cliques of order 3 in GZ/nZ is
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S0(n)

1
· S1(n)

2
· S2(n)

3
.

The number of cliques of order 1 (i.e., the number of vertices) in GZ/nZ

is simply n, which we can write as
S0(n)

1
. According to (1), the number of

cliques of order 2 (which is simply the number of edges) in GZ/nZ is
1

2
nϕ(n),

which we may rewrite as
S0(n)

1
· S1(n)

2
. This naturally leads us to speculate

that the number of cliques of order m in GZ/nZ is

(4)

m∏
k=1

Sk−1(n)

k
.

This assertion does indeed hold, as the author proved in slightly greater
generality in [12]. We mentioned before that the clique number of GZ/nZ is
equal to the smallest prime factor of n; note that this follows as an easy
corollary to the above formula (4).

The primary purpose of this article is to give a simplified proof of the
formula (4) in a much more natural and general framework. Namely, we will
prove a formula for the number of cliques of order m in a direct product of
balanced complete multipartite graphs.

2. Direct products of balanced complete multipartite graphs

Let G be a graph with vertex set V (G). We say G is a complete b-partite
graph if there is a partition of V (G) into a parts B1, . . . , Bb, called the partite
sets, such that two vertices are adjacent if and only if they do not belong to
the same partite set. A complete multipartite graph is called balanced if the
partite sets all have the same cardinality. Let K[a, b] denote the balanced
complete b-partite graph in which every partite set contains a vertices. For
any prime p and positive integer α, GZ/pαZ

∼= K[pα−1, p]. Indeed, viewing
the vertices of GZ/pαZ as 0, 1, . . . , pα − 1, the partite sets are simply the
different residue classes modulo p.

The direct product (also called the tensor product, Kronecker product,
weak product, or conjunction) of graphs H1, . . . , Hr with vertex sets V (H1),
. . . , V (Hr), denoted

∏r
i=1Hi, is a graph whose vertex set is the cartesian

product V (H1) × · · · × V (Hr). Two vertices (y1, . . . , yr) and (z1, . . . , zr) of
the direct product are adjacent if and only if yi is adjacent to zi in Hi for
all 1 ≤ i ≤ r. It follows immediately from the Chinese remainder theorem
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and the preceding paragraph that GZ/nZ is isomorphic to a direct product of
balanced complete multipartite graphs. More specifically, if pα1

1 · · · pαr
r is the

prime factorization of n, then GZ/nZ
∼=

∏r
i=1GZ/p

αi
i Z

∼=
∏r

i=1K[pαi−1
i , pi].

In fact, if R is any finite commutative ring with unity, then the authors of
[5] have shown that the unitary Cayley graph GR is isomorphic to a direct
product of balanced complete multipartite graphs. Their argument boils
down to observing that every finite ring is a direct product (as a ring) of
finite local rings and then showing that the unitary Cayley graph of a finite
local ring is isomorphic to a balanced complete multipartite graph. This
suggests that it is natural to study direct products of balanced complete
multipartite graphs as generalizations of (finite) unitary Cayley graphs.

For any positive integers x, y,m, put Sm(x, y) = max{x(y − m), 0}. If
p is a prime and α is a positive integer, then Sm(pα) = Sm(pα−1, p), where
Sm denotes the mth Schemmel totient function. We are now in a position to
state and prove our generalization of the formula in (4).

Theorem 2.1. Let a1, . . . , ar, b1, . . . , br,m be positive integers. Let K[ai, bi]
be the balanced complete bi-partite graph in which each partite set contains ai
vertices. Let X =

∏r
i=1K[ai, bi] be the direct product of the graphs K[ai, bi].

The number of cliques of order m in X is

1

m!

m∏
k=1

r∏
i=1

Sk−1(ai, bi).

Proof. Whenm = 1, the theorem states thatX has
∏r

i=1 aibi vertices, which
is certainly true. We proceed by induction on m. Let CL(t) denote the set
of cliques of order t in X. We simply need to show that

(5) |CL(m+ 1)| = |CL(m)|
m+ 1

r∏
i=1

Sm(ai, bi).

This is obvious if CL(m) = ∅, so assume CL(m) is nonempty. Of course,
(m+1)|CL(m+1)| is the number of pairs (w,C), where C ∈ CL(m+1) and
w ∈ C. This is also the number of pairs (w,D), where D ∈ CL(m) and w is
a vertex of X that is adjacent to every element of D (if w is such a vertex,
then w �∈ D since no vertex is adjacent to itself). Thus, it suffices to show
that for every D ∈ CL(m), there are precisely

∏r
i=1 Sm(ai, bi) vertices that

are adjacent to every element of D.

Choose D = {x1, . . . , xm} ∈ CL(m). Recall that each vertex xj is a
vertex in a direct product graph. Thus, we may write xj = (y1j , . . . , yrj),
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where each yij is a vertex in K[ai, bi]. The vertices of X adjacent to every
vertex in D are precisely the tuples (z1, . . . , zr) such that zi is adjacent to
yij for all i ∈ {1, 2, . . . , r} and j ∈ {1, 2, . . . ,m}. It follows from the fact
that D is a clique that for each i ∈ {1, 2, . . . , r}, the vertices yi1, . . . , yim are
in distinct partite sets in K[ai, bi]. This implies that there are ai(bi −m) =
Sm(ai, bi) choices for zi. Hence, the total number of vertices (z1, . . . , zr) that
are adjacent to all vertices in D is

∏r
i=1 Sm(ai, bi).
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