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Lecture hall P -partitions

Petter Brändén
∗
and Madeleine Leander

We introduce and study s-lecture hall P -partitions which is a gen-
eralization of s-lecture hall partitions to labeled (weighted) posets.
We provide generating function identities for s-lecture hall P -parti-
tions that generalize identities obtained by Savage and Schuster
for s-lecture hall partitions, and by Stanley for P -partitions. We
also prove that the corresponding (P, s)-Eulerian polynomials are
real-rooted for certain pairs (P, s), and speculate on unimodality
properties of these polynomials.

1. Introduction

Let s = (s1, . . . , sn) be a sequence of positive integers. An s-lecture hall
partition is an integer sequence λ = (λ1, . . . , λn) satisfying 0 ≤ λ1/s1 ≤
· · · ≤ λn/sn. These are generalizations of lecture hall partitions, correspond-
ing to the case when s = (1, 2, . . . , n), first studied by Bousquet-Mélou and
Eriksson [3]. It has recently been made evident that s-lecture hall partitions
serve as a rich model for various combinatorial structures with interesting
generating functions, see [2, 3, 4, 13, 14, 19, 18, 20, 21] and the references
therein.

In this paper we generalize the concept of s-lecture hall partitions to
labeled posets. This constitutes a generalization of Stanley’s theory of P -
partitions, see [24, Ch. 3.15]. In Section 3 we derive multivariate generating
function identities for s-lecture hall P -partitions, and prove a reciprocity the-
orem (Theorem 3.9). When P is a naturally labeled chain or an anti-chain,
the generating function identities obtained produce results on s-lecture hall
partitions and signed permutations, respectively (see Section 6). We also in-
troduce and study a (P, s)-Eulerian polynomial. In Section 4 we prove that
this polynomial is palindromic for sign-graded labeled posets with a spe-
cific choice of s. In Section 5 we prove that the (P, s)-Eulerian polynomial is
real-rooted for certain choices of (P, s), and we also speculate on unimodality
properties satisfied by these polynomials.
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2. Lecture hall P -partitions

In this paper a labeled poset is a partially ordered set on [p] := {1, . . . , p} for
some positive integer p, i.e., P = ([p],�), where � denotes the partial order.
We will use the symbol ≤ to denote the usual total order on the integers. If
P is a labeled poset, then a P -partition1 is a map f : [p] → R such that

1. if x ≺ y, then f(x) ≤ f(y), and
2. if x ≺ y and x > y, then f(x) < f(y).

The theory of P -partitions was developed by Stanley in his thesis and has
since then been used frequently in several different combinatorial settings,
see [24, 25].

Let

O(P ) = {f ∈ R
p : f is a P -partition and 0 ≤ f(x) ≤ 1 for all x ∈ [p]}

be the order polytope associated to P . Note that if P is naturally labeled,
i.e., x ≺ y implies x < y, then O(P ) is a closed integral polytope. Otherwise
O(P ) is the intersection of a finite number of open or closed half-spaces.
Recall that the Ehrhart polynomial of an integral polytope P in Rp is defined
for nonnegative integers n as

i(P , n) = |nP ∩ Z
p|,

where nP = {nx : x ∈ P}, see [24, p. 497]. For order polytopes we have the
following relationship due to Stanley:

∑
n≥0

i(O(P ), n)tn =
AP (t)

(1− t)p+1
,

where AP (t) is the P -Eulerian polynomial, which is the generating polyno-
mial of the descent statistic over the set of all linear extensions of P , see [24,
Ch. 3.15].

The purpose of this paper is to initiate the study of a lecture hall gen-
eralization of P -partitions. Let P be a labeled poset and let s : [p] → Z+ :=
{1, 2, 3, . . .} be an arbitrary map. We define a lecture hall (P, s)-partition to
be a map f : [p] → R such that

1What we call P -partitions are called reverse (P, ω)-partitions in [24, 25]. How-
ever the theory of (P, ω)-partitions and reverse (P, ω)-partitions are clearly equiv-
alent.
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1. if x ≺ y, then f(x)/s(x) ≤ f(y)/s(y), and
2. if x ≺ y and x > y, then f(x)/s(x) < f(y)/s(y).

Let

O(P, s) = {f ∈ R
p :f is a (P, s)-partition and

0 ≤ f(x)/s(x) ≤ 1 for all x ∈ [p]}

be the lecture hall order polytope associated to (P, s). We also let

C(P, s) = {f ∈ R
p :f is a (P, s)-partition and

0 ≤ f(x)/s(x) for all x ∈ [p]}

be the lecture hall order cone associated to (P, s). The (P, s)-Eulerian poly-
nomial, A(P,s)(t), is defined by

∑
n≥0

i(O(P, s), n)tn =
A(P,s)(t)

(1− t)p+1
.

3. The main generating functions

In this section we derive formulas for the main generating functions associ-
ated to lecture hall (P, s)-partitions. The outline follows Stanley’s theory of
P -partitions [24, Ch. 3.15]. We shall see in Section 6 that the special cases
when P is naturally labeled chain or an anti-chain automatically produce
results on lecture hall polytopes and signed permutations, respectively.

Let Sp denote the symmetric group on [p]. If π = π1π2 · · ·πp ∈ Sp is a
permutation written in one-line notation, we let Pπ denote the labeled chain
π1 ≺ π2 ≺ · · · ≺ πp. If P = ([p],�) is a labeled poset, let L(P ) denote the
set

L(P ) := {π ∈ Sp : if πi � πj , then i ≤ j, for all i, j ∈ [p]},
of linear extensions (or the Jordan-Hölder set) of P . The following lemma
is an immediate consequence of Stanley’s decomposition of P -partitions [24,
Lemma 3.15.3].

Lemma 3.1. If P is a labeled poset and s : [p] → Z+, then

C(P, s) =
⊔

π∈L(P )

C(Pπ, s),

where
⊔

denotes disjoint union.
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Let s : [p] → Z+. An s-colored permutation is a pair τ = (π, r) where

π ∈ Sp, and r : [p] → N satisfies r(πi) ∈ {0, 1, . . . , s(πi)−1} for all 1 ≤ i ≤ p.

If P = ([p],�) is a labeled poset, let

L(P, s) = {τ : τ = (π, r) where π ∈ L(P ) and

τ is an s-colored permutation}.

For f : [p] → N, let q(f), r(f) : [p] → N be the unique functions satisfying

f(x) = q(f)(x)·s(x)+r(f)(x), where q(f)(x) ∈ N and 0 ≤ r(f)(x) < s(x),

for all x ∈ [p]. Let further

F(P,s)(x,y) =
∑

f∈N(P,s)
yr(f)xq(f),

where xr = x
r(1)
1 x

r(2)
2 · · ·xr(p)p and N(P, s) = C(P, s) ∩ Np. We say that

i ∈ [p− 1] is a descent of τ = (π, r) if

{
πi < πi+1 and r(πi)/s(πi) > r(πi+1)/s(πi+1), or,

πi > πi+1 and r(πi)/s(πi) ≥ r(πi+1)/s(πi+1),

Let

D1(τ) = {i ∈ [p− 1] : i is a descent}.

Theorem 3.2. If P is a labeled poset and s : [p] → Z+, then

F(P,s)(x,y) =
∑

τ=(π,r)∈L(P,s)
yr

∏
i∈D1(τ)

xπi+1
· · ·xπp

∏
i∈[p]

(1− xπi
· · ·xπp

)
.(3.1)

Proof. By Lemma 3.1 we may assume that P = Pπ is a labeled chain. Let

f ∈ Np, and write f(t) = q(t)s(t) + r(t), where 0 ≤ r(t) < s(t) and q(t) ∈ N

for all t ∈ [p]. What conditions on q and r guarantee f ∈ N(P, s)? Suppose

πi < πi+1. Then we need

(3.2) q(πi) +
r(πi)

s(πi)
=

f(πi)

s(πi)
≤ f(πi+1)

s(πi+1)
= q(πi+1) +

r(πi+1)

s(πi+1)
.
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If r(πi)/s(πi) ≤ r(πi+1)/s(πi+1), then (3.2) holds if and only if q(πi) ≤
q(πi+1). If r(πi)/s(πi) > r(πi+1)/s(πi+1), then (3.2) holds if and only if
q(πi) < q(πi+1).

Suppose πi > πi+1. Then we need

(3.3) q(πi) +
r(πi)

s(πi)
=

f(πi)

s(πi)
<

f(πi+1)

s(πi+1)
= q(πi+1) +

r(πi+1)

s(πi+1)
.

If r(πi)/s(πi) < r(πi+1)/s(πi+1), then (3.3) holds if and only if q(πi) ≤
q(πi+1). If r(πi)/s(πi) ≥ r(πi+1)/s(πi+1), then (3.3) holds if and only if
q(πi) < q(πi+1).

Let τ = (π, r), where r is fixed. Then f = qs + r ∈ N(P, s) with given
(fixed) r if and only if

(3.4) 0 ≤ q(π1) ≤ q(π2) ≤ · · · ≤ q(πp),

where q(πi) < q(πi+1) if i ∈ D1(τ). Hence f = qs + r ∈ N(P, s) if and only
if for each k ∈ [p]:

q(πk) = αk + |{i ∈ D1(τ) : i < k}|,

where αk ∈ N and 0 ≤ α1 ≤ · · · ≤ αp. Hence

∑
q

p∏
i=1

xq(πi)
πi

=
∑

0≤α1≤···≤αp

xα1
π1

· · ·xαp
πp

∏
i∈D1(τ)

xπi+1
· · ·xπp

=

∏
i∈D1(τ)

xπi+1
· · ·xπp

∏
i∈[p]

(1− xπi
· · ·xπp

)
,

where the first sum is over all q satisfying (3.4). The theorem follows.

Let Z+(P, s) = C(P, s) ∩ Z
p
+ and let

F+
(P,s)(x,y) =

∑
f∈Z+(P,s)

yr(f)xq(f).

Let further

D2(τ) =

{
D1(τ), if r(π1) 	= 0,

D1(τ) ∪ {0}, if r(π1) = 0.
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Theorem 3.3. If P is a labeled poset and s : [p] → Z+, then

F+
(P,s)(x,y) =

∑
τ=(π,r)∈L(P,s)

yr

∏
i∈D2(τ)

xπi+1
· · ·xπp

∏
i∈[p]

(1− xπi
· · ·xπp

)
.

Proof. Consider (P ′, s′) where P ′ is obtained from P by adjoining a least
element 0̂ labeled p+1, and s′ : [p+1] → Z+ is such that s′ restricted to [p]
agrees with s. Let also s′(p+ 1) > max{s(t) : t ∈ [p]}. Then f ∈ N(P ′, s′) if
and only if f |[p] ∈ N(P, s) and

0 ≤ f(p+ 1)

s′(p+ 1)
<

f(x)

s(x)
, for all x ∈ [p].

Thus F+
(P,s)(x,y) is obtained from F(P ′,s′)(x,y) when we restrict to all f ∈

N(P ′, s′) with f(p+1) = 1, i.e., q(p+1) = 0 and r(p+1) = 1, and then shift
the indices. Hence i = 0 is a descent in ((p + 1)π1π2 · · ·πp, r) if and only if
r(π1) = 0, and the proof follows.

For f : [p] → Z+, let q′(f), r′(f) : [p] → N be the unique functions
satisfying

f(x)= q′(f)(x)·s(x)+r′(f)(x), where q′(f)(x)∈N and 0<r′(f)(x)≤ s(x),

for all x ∈ [p]. Let further

G(P,s)(x,y) =
∑

f∈Z+(P,s)

yr′(f)xq′(f).

Let D3(τ) be the set of all i ∈ [p− 1] for which

πi < πi+1 and (r(πi) + 1)/s(πi) > (r(πi+1) + 1)/s(πi+1), or,

πi > πi+1 and (r(πi) + 1)/s(πi) ≥ (r(πi+1) + 1)/s(πi+1).

Theorem 3.4. If P is a labeled poset and s : [p] → Z+, then

G(P,s)(x,y) =
∑

τ=(π,r)∈L(P,s)
yr+1

∏
i∈D3(τ)

xπi+1
· · ·xπp

∏
i∈[p]

(1− xπi
· · ·xπp

)
,
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where 1 = (1, 1, . . . , 1) is the all ones vector.

Proof. The proof is almost identical to that of Theorem 3.2, and is therefore
omitted.

For n ∈ N, let

N≤n(P, s) = {f ∈ N(P, s) : f(x)/s(x) ≤ n for all x ∈ [p]},

and let

F(P,s)(x,y;n) =
∑

f∈N≤n(P,s)

yr(f)xq(f).

The polynomials F+
(P,s)(x,y;n) and G(P,s)(x,y;n) are defined analogously

over {f ∈ Z+(P, s) : f(x)/s(x) ≤ n for all x ∈ [p]}. Let also

N<n(P, s) = {f ∈ N(P, s) : f(x)/s(x) < n for all x ∈ [p]},

and

F ′
(P,s)(x,y;n) =

∑
f∈N<n(P,s)

yr(f)xq(f).

For τ = (π, r) ∈ L(P, s), define

D(τ) =

{
D1(τ), if r(πp) = 0,

D1(τ) ∪ {p}, if r(πp) > 0,

and

D4(τ) =

{
D2(τ), if r(πp) = 0,

D2(τ) ∪ {p}, if r(πp) > 0.

Proposition 3.5. If P is a labeled poset and s : [p] → Z+, then

∑
n≥0

F(P,s)(x,y;n)t
n =

∑
τ=(π,r)∈L(P,s)

yr

∏
i∈D(τ)

xπi+1
· · ·xπp

∏
i∈[p]

(1− xπi
· · ·xπp

t)

t|D(τ)|

1− t
,

(3.5)

∑
n≥0

F ′
(P,s)(x,y;n)t

n =
∑

τ=(π,r)∈L(P,s)
yr

∏
i∈D1(τ)

xπi+1
· · ·xπp

∏
i∈[p]

(1− xπi
· · ·xπp

t)

t|D1(τ)|+1

1− t
,

(3.6)



398 Petter Brändén and Madeleine Leander

∑
n≥0

F+
(P,s)(x,y;n)t

n =
∑

τ=(π,r)∈L(P,s)
yr

∏
i∈D4(τ)

xπi+1
· · ·xπp

∏
i∈[p]

(1− xπi
· · ·xπp

t)

t|D4(τ)|

1− t
,

(3.7)

∑
n≥0

G(P,s)(x,y;n)t
n =

∑
τ=(π,r)∈L(P,s)

yr+1

∏
i∈D3(τ)

xπi+1
· · ·xπp

∏
i∈[p]

(1− xπi
· · ·xπp

t)

t|D3(τ)|+1

1− t
.

(3.8)

Proof. For (3.5) consider (P ′, s′) where P ′ is obtained from P by adjoining

a greatest element 1̂ labeled p + 1, and s′ : [p + 1] → Z+ restricted to [p]

agrees with s, while s′(p+ 1) = 1. If we set xp+1 = t, then

∑
n≥0

F(P,s)(x,y;n)t
n = F(P ′,s′),

and

L(P ′, s′)= {(π1 · · ·πp(p+1), r′) : (π1 · · ·πp, r′|P )∈L(P, s) and r′(p+1)=0}.

The identity (3.5) follows by noting that i = p is a descent of (π1 · · ·πp(p+
1), r′) if and only if r(πp)/s(πp) > r′(p+ 1)/s′(p+ 1) = 0.

The other identities follows similarly. For example (3.6) follows by con-

sidering (P ′, s′) where P ′ is obtained from P by adjoining a greatest element

1̂ labeled 0 (and then relabel so that P ′ has ground set [p + 1]). For (3.8)

consider again (P ′, s′), where P ′ is obtained from P by adjoining a great-

est element 1̂ labeled p + 1, and s′ is defined as for the case of (3.5). Note

that since r′(p + 1) = 1 we have q′(p + 1) = n − 1 if f(p + 1) = n. This

explains the shift by one in the exponent on the right hand side of (3.8),

i.e., |D3(τ)|+ 1.

If q is a variable, let [0]q := 0 and [n]q := 1 + q + q2 + · · · + qn−1 for

n ≥ 1. For the special case of (3.5) when P is an anti-chain we acquire the

following corollary, which is a generalization of [1, Theorem 5.23].
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Corollary 3.6. If P is an anti-chain and s : [p] → Z+, then

∑
n≥0

p∏
i=1

(xni + [n]xi
[s(i)]yi

) tn =
∑

τ=(π,r)∈L(P,s)
yr

∏
i∈D(τ)

xπi+1
· · ·xπp

∏
i∈[p]

(1− xπi
· · ·xπp

t)

t|D(τ)|

1− t

Proof. Let P be an anti-chain and let s : [p] → Z+. Consider f ∈ N≤n(P, s).

Since P is an anti-chain, f(i) and f(j) are independent for all 1 ≤ i < j ≤ p,

and the only restriction is 0 ≤ f(i) ≤ ns(i) for all 1 ≤ i ≤ p. We write

f(i) = s(i)q(i)+ r(i), where 0 ≤ r(i) < s(i). Then f ∈ N≤n(P, s) if and only

if either q(i) = n and r(i) = 0, or 0 ≤ q(i) ≤ n− 1 and 0 ≤ r(i) ≤ s(i)− 1.

Hence

∑
f∈N≤n(P,s)

yr(f)xq(f) =

p∏
i=1

(
x0i [s(i)]yi

+ · · ·+ xn−1
i [s(i)]yi

+ xni
)

=

p∏
i=1

(xni + [n]xi
[s(i)]yi

) .

The corollary now follows from (3.5).

Note that the special case of (3.5) when P is a naturally labeled chain

gives an analogue (by an appropriate change of variables) to one of the

main results in [20], see Theorem 5 therein. From (3.5) we also get an

interpretation of the Eulerian polynomial A(P,s)(t). For τ ∈ L(P, s), let

dess(τ) = |D(τ)|.

Corollary 3.7. If P is a labeled poset and s : [p] → Z+, then

A(P,s)(t) =
∑

τ∈L(P,s)
tdess(τ).

The next corollary follows from Proposition 3.5 by setting the x- and

y-variables to 1.

Corollary 3.8. If P is a labeled poset and s : [p] → Z+, then

∑
τ∈L(P,s)

t|D4(τ)| =
∑

τ∈L(P,s)
t|D3(τ)|+1,
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and if s(x) = 1 for all minimal elements x in P , then

(3.9) A(P,s)(t) =
∑

τ∈L(P,s)
t|D(τ)| =

∑
τ∈L(P,s)

t|D3(τ)|.

Let P = ([p],�) be a labeled poset. For i ∈ [p], let i∗ = p + 1 − i, and
let (P ∗, s∗) be defined by P ∗ = ([p],�∗) with

i � j in P if and only if i∗ �∗ j∗ in P ∗, for all i, j ∈ [p],

and s∗(i∗) = s(i) for all i ∈ [p]. The poset P ∗ is called the dual of P .

Theorem 3.9 (Reciprocity theorem). If P is a labeled poset and s : [p] →
Z+, then

G(P ∗,s∗)(x
∗,y∗) = (−1)p

y
s(1)
1 · · · ys(p)p

x1 · · ·xp
F(P,s)(x

−1,y−1),

where x∗ = (xp, xp−1, . . . , x1) and x−1 = (x−1
1 , . . . , x−1

p ).

Proof. For τ = (π, r) ∈ L(P, s), let τ∗ = (π∗
1π

∗
2 · · ·π∗

p, r
∗) where r∗(i∗) =

s(i)− 1− r(i) for all i ∈ [p]. Clearly the map τ �→ τ∗ is a bijection between
L(P, s) and L(P ∗, s∗). Moreover if i ∈ [p− 1], then i ∈ D3(τ) if and only if{

πi < πi+1 and (r(πi) + 1)/s(πi) > (r(πi+1) + 1)/s(πi+1), or,

πi > πi+1 and (r(πi) + 1)/s(πi) ≥ (r(πi+1) + 1)/s(πi+1),

if and only if{
π∗
i > π∗

i+1 and r∗(π∗
i )/s

∗(π∗
i ) < r∗(π∗

i+1)/s
∗(π∗

i+1), or,

π∗
i < π∗

i+1 and r∗(π∗
i )/s

∗(π∗
i ) ≤ r∗(π∗

i+1)/s
∗(π∗

i+1)

if and only if i ∈ [p− 1] \D1(τ
∗). Thus

(3.10) D3(τ) = [p− 1] \D1(τ
∗) and D1(τ) = [p− 1] \D3(τ

∗),

for all τ ∈ L(P, s). Now

F(P,s)(x,y) =
∑

τ∈L(P,s)
yr

∏
i∈D1(τ)

xπi+1
· · ·xπp

∏
i∈[p]

(1− xπi
· · ·xπp

)
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=
∑

τ∈L(P,s)
yr

∏
i∈[p−1]\D3(τ∗)

xπi+1
· · ·xπp

∏
i∈[p]

(1− xπi
· · ·xπp

)

=
∑

τ∈L(P,s)

ys(y∗)−(r∗+1)

x1 · · ·xp

∏
i∈D3(τ∗)

x−1
πi+1

· · ·x−1
πp

∏
i∈[p]

(1− xπi
· · ·xπp

)

∏
i∈[p]

xπi
· · ·xπp

= (−1)p
y
s(1)
1 · · · ys(p)p

x1 · · ·xp
∑

τ∈L(P,s)
(y∗)−(r∗+1)

∏
i∈D3(τ∗)

x−1
πi+1

· · ·x−1
πp

∏
i∈[p]

(1− x−1
πi

· · ·x−1
πp

)

= (−1)p
y
s(1)
1 · · · ys(p)p

x1 · · ·xp
G(P ∗,s∗)((x

∗)−1, (y∗)−1),

from which the theorem follows.

Remark 3.1. Theorem 3.9 generalizes the reciprocity theorem in [4] which
follows as the special case when P is a naturally labeled chain.

4. Sign-ranked posets

Let P = {1 ≺ 2 ≺ · · · ≺ p} be a naturally labeled chain, and let s(i) = i for
all i ∈ [p]. Savage and Schuster [20, Lemma 1] proved that A(P,s)(t) is equal
to the Eulerian polynomial

Ap(t) =
∑
π∈Sp

tdes(π),

where des(π) = |{i ∈ [p] : πi > πi+1}. Recall that a polynomial g(t) is
palindromic if tNg(1/t) = g(t) for some integer N . It is well known that
Ap(t) is palindromic (in fact tp−1Ap(1/t) = Ap(t)). The same is known to be
true for the P -Eulerian polynomial of any naturally labeled graded poset,
see [24, Corollary 3.15.18], and more generally for P -Eulerian polynomials
of so called sign-graded labeled posets [10, Corollary 2.4]. We shall here
generalize these results to (P, s)-Eulerian polynomials.

Recall that a pair of elements elements (x, y) taken from a labeled poset
P is a covering relation if x ≺ y and x ≺ z ≺ y for no z ∈ P . Let E(P )
denote the set of covering relations of P . If P is a labeled poset define a



402 Petter Brändén and Madeleine Leander

function ε : E(P ) → {−1, 1} by

ε(x, y) =

{
1, if x < y, and

−1, if x > y.

Sign-graded (labeled) posets, introduced in [10], generalize graded naturally
labeled posets. A labeled poset P is sign-graded of rank r, if

k∑
i=1

ε(xi−1, xi) = r

for each maximal chain x0 ≺ x1 ≺ · · · ≺ xk in P . A sign-graded poset is
equipped with a well-defined rank-function, ρ : P → Z, defined by

ρ(x) =

k∑
i=1

ε(xi−1, xi),

where x0 ≺ x1 ≺ · · · ≺ xk = x is any unrefinable chain, x0 is a minimal
element and xk = x. Hence a naturally labeled poset is sign-graded if and
only if it is graded. A labeled poset P is sign-ranked if for each maximal
element x ∈ P , the subposet {y ∈ P : y � x} is sign-graded. Note that
each sign-ranked poset has a well-defined rank function ρ : P → Z. Thus a
naturally labeled poset is sign-ranked if and only if it is ranked.

Theorem 4.1. Let P be a sign-ranked labeled poset and suppose its rank
function attains non-negative values only. Let s(x) = ρ(x) + 1 for each
x ∈ [p], and define u : N(P, s) → Zp by u(f)(x∗) = f(x) + ρ(x). Then
u : N≤n(P, s) → N<n+1(P

∗, s∗) is a bijection for each n ∈ N.

Proof. We first prove u : N(P, s) → N(P ∗, s∗). Note that f is a (P, s)-
partition if and only if

1. if (x, y) ∈ E(P ), then f(x)/s(x) ≤ f(y)/s(y), and
2. if (x, y) ∈ E(P ) and ε(x, y) = −1, then f(x)/s(x) < f(y)/s(y).

Hence it suffices to consider covering relations when proving that u :
N(P, s) → N(P ∗, s∗).

Let f ∈ N(P, s). Suppose y covers x and ε(x, y) = 1. Then f(x)/s(x) ≤
f(y)/s(y) and s(x) < s(y), and thus

u(f)(x∗)

s∗(x∗)
=

f(x) + s(x)− 1

s(x)
≤ f(y)

s(y)
+1− 1

s(x)
<

f(y)

s(y)
+1− 1

s(y)
=

u(f)(y∗)

s∗(y∗)
,
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as desired.
Suppose y covers x and ε(x, y) = −1. Then f(x)/s(x) < f(y)/s(y) and

s(x) = s(y) + 1 so that

u(f)(y∗)

s∗(y∗)
− u(f)(x∗)

s∗(x∗)
=

f(y)

s(y)
− f(x)

s(y) + 1
−
(

1

s(y)
− 1

s(y) + 1

)
.

We want to prove that the quantity on either side of the equality above is
nonnegative. By assumption

f(y)

s(y)
− f(x)

s(y) + 1
=

(s(y) + 1)f(y)− s(y)f(x)

s(y)(s(y) + 1)
> 0.

Hence (s(y) + 1)f(y)− s(y)f(x) is a positive integer, so that

f(y)

s(y)
− f(x)

s(y) + 1
≥ 1

s(y)(s(y) + 1)
,

as desired. Note that u(f) is nonnegative since it is increasing and u(f)(x∗) =
f(x) when x∗ is a minimal element in P ∗. Hence u(f) ∈ N(P ∗, s∗).

Let η : N(P ∗, s∗) → ZP be defined by η(g)(x) = g(x∗)− ρ(x) = g(x∗) +
ρ∗(x∗), where ρ∗ is the rank function of P ∗. Clearly η : N(P ∗, s∗) → N(P, s)
by the exact same arguments as above. Thus u−1 = η and u : N(P, s) →
N(P ∗, s∗) is a bijection.

Now u(f)(x∗)/s∗(x∗) = f(x)/s(x) + (s(x) − 1)/s(x) < n + 1 if f ∈
N≤n(P, s) and x ∈ P , so that u : N≤n(P, s) → N<n+1(P

∗, s∗) for each
n ∈ N.

On the other hand if g ∈ N<n+1(P
∗, s∗), then g(x∗) = q(x∗)(ρ(x) + 1)+

r(x∗) where 0 ≤ q(x∗) ≤ n and 0 ≤ r(x∗) ≤ ρ(x). Hence

η(g)(x)

s(x)
=

g(x∗)

ρ(x) + 1
− ρ(x)

ρ(x) + 1
≤ n+

r(x∗)

ρ(x) + 1
− ρ(x)

ρ(x) + 1
≤ n.

Thus η : N<n+1(P
∗, s∗) → N≤n(P, s) which proves the theorem.

Theorem 4.2. If P is a sign-ranked labeled poset with nonnegative rank
function ρ and s = ρ+ 1, then

A(P,s)(t) = tp−1A(P,s)(t
−1)

and

(−1)pi(O(P, s),−t) = i(O(P, s), t− 2).
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Proof. By (3.5), (3.6) and Theorem 4.1

A(P,s)(t) =
∑

τ∈L(P,s)
t|D(τ)| =

∑
τ∗∈L(P ∗,s∗)

t|D1(τ∗)|.

The first part of the theorem now follows from (3.9) and (3.10). The second
part follows from e.g., [24, Lemma 3.15.11].

5. Real-rootedness and unimodality

The Neggers-Stanley conjecture asserted that for each labeled poset P , the
Eulerian polynomial AP (t) is real-rooted. Although the conjecture is refuted
in its full generality [9, 26], it is known to hold for certain classes of posets
[6, 27]. Moreover, when P is sign-graded, then the coefficients of AP (t) form
a unimodal sequence [10, 16]. It is natural to ask for which pairs (P, s)

(a) is A(P,s)(t) real-rooted?
(b) do the coefficients of A(P,s)(t) form a unimodal sequence?

We first address (a). Suppose P = ([p],�P ), Q = ([q],�Q) and R = ([p +
q],�R) are labeled posets such that [p + q] is the disjoint union of the two
sets {u1 < u2 < · · · < up} and {v1 < v2 < · · · < vq}, and x �R y if and only
if either

• x = ui and y = uj for some i, j ∈ [p] with i �P j, or
• x = vi and y = vj for some i, j ∈ [q] with i �Q j.

We say that R is a disjoint union of P and Q and write R = P �Q. Moreover
if sP : [p] → Z+ and sQ : [q] → Z+, then we define sP�Q : [p + q] → Z+ as
the unique function satisfying sP�Q(ui) = sP (i) and sP�Q(vj) = sQ(j).

Proposition 5.1. If the polynomials A(P,sP )(t) and A(Q,sQ)(t) are real-
rooted, then so is the polynomial A(P�Q,sP�sQ)(t).

Proof. Clearly

i((P �Q, sP � sQ), t) = i(O(P, sP ), t) · i(O(Q, sQ), t),

so the proposition follows from [28, Theorem 0.1].

It was proved in [22] that if P = {1 ≺ 2 ≺ · · · ≺ p} and s : [p] → Z+ is
arbitrary, then A(P,s)(t) is real-rooted. In Theorem 5.2 below we generalize
this result to ordinal sums of anti-chains. If P = (X,�P ) and Q = (Y,�Q)
are posets on disjoint ground sets, then the ordinal sum, P⊕Q = (X∪Y,�),
is the poset with relations
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1. x1 ≺ x2, for all x1, x2 ∈ X with x1 ≺P x2,
2. y1 ≺ y2, for all y1, y2 ∈ X with y1 ≺Q y2, and
3. x ≺ y for all x ∈ X and y ∈ Y .

Let f and g be two real-rooted polynomials in R[t] with positive leading
coefficients. Let further α1 ≥ α2 ≥ · · · ≥ αn and β1 ≥ β2 ≥ · · · ≥ βm be the
zeros of f and g, respectively. If

· · · ≤ α2 ≤ β2 ≤ α1 ≤ β1

we say that f is an interleaver of g and we write f � g. We also let f � 0
and 0 � f . We call a sequence Fn = (fi)

n
i=1 of real-rooted polynomials

interlacing if fi � fj for all 1 ≤ i < j ≤ n. We denote by Fn the family of
all interlacing sequences (fi)

n
i=1 of polynomials and we let F+

n be the family
of (fi)

n
i=1 ∈ Fn such that fi has nonnegative coefficients for all 1 ≤ i ≤ n.

To avoid unnecessary technicalities we here redefine a labeled poset to
be a poset P = (S,�), where S is any set of positive integers. Thus L(P ) is
now the set of rearrangements of S that are also linear extensions of P .

Equip X(P, s) := {(k, x) : x ∈ P and 0 ≤ k < s(x)} with a total order
defined by (k, x) < (�, y) if k/s(x) < �/s(y), or k/s(x) = �/s(y) and x < y.
For γ ∈ X(P, s), let

Aγ
(P,s)(t) =

∑
τ=(π,r)∈L(P,s)
(r(π1),π1)=γ

tdess(τ).

Theorem 5.2. Suppose P = Ap1
⊕ · · · ⊕ Apm

is an ordinal sum of anti-
chains, and let s : P → Z+ be a function which is constant on Api

for
1 ≤ i ≤ m. Then {Aγ

(P,s)(t)}γ∈X , where X = X(P, s), is an interlacing

sequence of polynomials.
In particular A(P,s)(t) and Aγ

(P,s)(t) are real-rooted for all γ ∈ X.

Proof. The proof is by induction over m. Suppose m = 1, p1 = n, An is
the anti-chain on [n], and s(An) = {s}. We prove the case m = 1 by induc-
tion over n. If n = 1 we get the sequence 1, t, t, . . . , t which is interlacing.
Otherwise if γ = (k, π1), then

Aγ
(An,s)

(t) =
∑
κ<γ

tAκ
(An−1,s′)

(t) +
∑
κ≥γ

Aκ
(An−1,s′)

(t),

where s′ is s restricted to An−1. This recursion preserves the interlacing
property, see [22, Theorem 2.3] and [11], which proves the case m = 1 by
induction.
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Suppose m > 1. The proof for m is again by induction over p1 = n. If
p1 = 1, then

Aγ
(P,s)(t) =

∑
κ<γ

tAκ
(P ′,s′)(t) +

∑
κ>γ

Aκ
(P ′,s′)(t),

Where P ′ = A2⊕· · ·⊕Am, and where s′ is the restrictions to P ′. Hence the
case p1 = 1 follows by induction (over m) since this recursion preserves the
interlacing property, see [22, Theorem 2.3].

The case m > 1 and p1 > 1 follows by induction over p1 just as for the
case m = 1, n > 1.

Hence {Aγ
(P,s)(t)}γ is an interlacing sequence, and thus

A(P,s)(t) =
∑
γ

Aγ
(P,s)(t),

is real-rooted by e.g., [22, Theorem 2.3].

Next we address (b). A palindromic polynomial g(t) = a0+a1t+· · ·+ant
n

may be written uniquely as

g(t) =

�d/2	∑
k=0

γk(g)t
k(1 + t)d−2k,

where {γk(g)}�d/2	k=0 are real numbers. If γk(g) ≥ 0 for all k, then we say that
g(t) is γ-positive, see [11]. Note that if g(t) is γ-positive, then {ai}ni=0 is a
unimodal sequence, i.e., there is an index m such that a0 ≤ · · · ≤ am ≥
am+1 ≥ · · · ≥ an.

Conjecture 5.3. Suppose P is a sign-ranked labeled poset with nonnegative
rank function ρ and s = ρ+ 1, then A(P,s)(t) is γ-positive.

Remark 5.1. Let P be a sign-ranked labeled poset with a rank function
ρ with values only in {0, 1}, and let s = ρ + 1. Following the proof of [10,
Theorem 4.2], with the use of Theorem 5.2, it follows that Conjecture 5.3
holds for (P, s). We omit the technical details in recalling the proof here.

If P is a naturally labeled ranked poset and s = ρ + 1, then O(P, s)
is a closed integral polytope and A(P,s)(t) is the so called h∗-polynomial of
O(P, s). If the following conjecture is true, then the coefficients of A(P,s)(t)
form a unimodal sequence by a powerful theorem of Bruns and Römer [8,
Theorem 1].



Lecture hall P -partitions 407

Conjecture 5.4. Suppose P is a naturally labeled ranked poset, and let
s = ρ + 1. Then O(P, s) (or some related polytope with the same Ehrhart
polynomial) has a regular and unimodular triangulation.

Remark 5.2. Evidence for Conjectures 5.3 and 5.4 is provided by [23]
where it is proved that the coefficients of A(P,s)(t) form unimodal sequence
whenever P is a naturally labeled ranked poset with a least element, and
s = ρ+ 1.

6. Applications

In this section we derive some applications of the generating function iden-
tities obtained in Section 3. If α = (α1, . . . , αp) is a sequence, let |α| =
α1 + · · ·+ αp. For τ = (π, r) ∈ L(P, s), let

comaj(τ) =
∑

i∈D(τ)

p− i, and

lhp(τ) = |r|+
∑

i∈D(τ)

s(πi+1) + · · ·+ s(πp)

Theorem 6.1. If P is a labeled poset and s : [p] → Z+, then

∑
n≥0

⎛
⎝ ∑

f∈N≤n(P,s)

q|r(f)|u|q(f)|

⎞
⎠ tn =

∑
τ∈L(P,s)

q|r|ucomaj(τ)tdess(τ)

p∏
i=0

(1− uit)

.(6.1)

Proof. Set xi = u and yi = q for all 1 ≤ i ≤ p in (3.5). Then

∑
τ∈L(P,s)

yr

∏
i∈D(τ)

xπi+1
· · ·xπp

∏
i∈[p]

(1− xπi
· · ·xπp

t)

t|D(τ)|

1− t
=

∑
τ∈L(P,s)

q|r|ucomaj(τ)tdess(τ)∏
i∈[p]

(1− tup+1−i)(1− t)

=

∑
τ∈L(P,s)

q|r|ucomaj(τ)tdess(τ)

∏
i∈[p]

(1− tui)(1− t)
.

The theorem follows.
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Theorem 6.2. If P is a labeled poset and s : [p] → Z+, then

∑
n≥0

⎛
⎝ ∑

f∈N≤n(P,s)

q|f |

⎞
⎠ tn =

∑
τ∈L(P,s)

qlhp(τ)tdess(τ)∏
i∈[p]

(
1− tq

∑p
j=i s(πj)

)
(1− t)

.(6.2)

Proof. Set xi = qs(i) and yi = q for all 1 ≤ i ≤ p in (3.5).

Corollary 6.3. If P is an anti-chain and s : [p] → Z+, then

∑
n≥0

p∏
i=1

(un + [n]u[s(i)]q) t
n =

∑
τ∈L(P,s)

q|r|ucomaj(τ)tdess(τ)

p∏
i=0

(1− uit)

.(6.3)

Proof. The corollary follows from Theorem 6.1 and Corollary 3.6.

The wreath product of Sp with a cyclic group of order k has elements

Zk �Sp = {(π, r) : π ∈ Sp and r : [p] → Zk}.

The elements of Zk �Sp are often thought of as r-colored permutations. We

may identify Zk �Sp with L(P, s) where P is an anti-chain on [p] and s(i) = k

for all k ∈ [p]. For τ = (π, r) ∈ Zk �Sp define

fmaj(τ) = |r|+ k · comaj(τ).

Note that lhp(τ) agrees with fmaj(τ) when s = (k, k, . . . , k).

Below we derive a Carlitz formula for Zk �Sp first proved by Chow and

Mansour in [12].

Corollary 6.4. For positive integers p and k,

∑
n≥0

[kn+ 1]pqt
n =

∑
τ∈Zk
Sp

tdess(τ)qfmaj(τ)

p∏
i=0

(
1− tqki

) .(6.4)
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Proof. Let s = (k, k, . . . , k) and set u = qk in (6.3). Then

p∏
i=1

(un + [n]u[s(i)]q) =
(
qnk + [n]qk [k]q

)p

=

(
qnk +

qkn − 1

qk − 1

qk − 1

q − 1

)p

= [nk + 1]pq .

The right hand side follows since s(i) = k for all 1 ≤ i ≤ p, and thus we sum

over all τ ∈ Zk �Sp.

Remark 6.1. The definition of fmaj above differs from the definition of

the flag major index fmajr in [12]. By the change in variables q → q−1 and

t → tqkp and by noting that [kn + 1]pqtn is invariant under this change of

variables we find that the two flag major indices have the same distribution.

Corollary 6.5. For positive integers p and k,

∑
n≥0

p∏
i=1

(1 + n[k]qi)t
n =

∑
τ∈Zk
Sp

qr11 qr22 · · · qrpp tdess(τ)

(1− t)p+1
.

Proof. Let s = (k, k, . . . , k) and set xi = 1 for all 1 ≤ i ≤ p in the equation

displayed in Corollary 3.6.

Remark 6.2. Note that when qi ≥ 0 for all 1 ≤ i ≤ p, the polynomial

n �→
p∏

i=1

(1 + n[k]qi)

has all its zeros in the interval [−1, 0]. By an application of [28, Theorem

0.1] it follows that the polynomial

∑
τ∈Zk
Sp

qr11 qr22 · · · qrpp tdess(τ)

is real-rooted in t. This generalizes [7, Theorem 6.4], where the case k = 2

was obtained.
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Department of Mathematics

KTH Royal Institute of Technology

SE-100 44 Stockholm

Sweden

E-mail address: pbranden@kth.se

Madeleine Leander

Department of Mathematics

Stockholm University

SE-106 91 Stockholm

Sweden

E-mail address: madde@math.su.se

Received February 21, 2019

mailto:pbranden@kth.se
mailto:madde@math.su.se

	Introduction
	Lecture hall P-partitions
	The main generating functions
	Sign-ranked posets
	Real-rootedness and unimodality
	Applications
	References

