Lecture hall P-partitions

Petter Brändén* and Madeleine Leander

We introduce and study s-lecture hall P-partitions which is a generalization of s-lecture hall partitions to labeled (weighted) posets. We provide generating function identities for s-lecture hall P-partitions that generalize identities obtained by Savage and Schuster for s-lecture hall partitions, and by Stanley for P-partitions. We also prove that the corresponding (P, s)-Eulerian polynomials are real-rooted for certain pairs (P, s), and speculate on unimodality properties of these polynomials.

1. Introduction

Let $s=\left(s_{1}, \ldots, s_{n}\right)$ be a sequence of positive integers. An s-lecture hall partition is an integer sequence $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ satisfying $0 \leq \lambda_{1} / s_{1} \leq$ $\cdots \leq \lambda_{n} / s_{n}$. These are generalizations of lecture hall partitions, corresponding to the case when $s=(1,2, \ldots, n)$, first studied by Bousquet-Mélou and Eriksson [3]. It has recently been made evident that s-lecture hall partitions serve as a rich model for various combinatorial structures with interesting generating functions, see $[2,3,4,13,14,19,18,20,21]$ and the references therein.

In this paper we generalize the concept of s-lecture hall partitions to labeled posets. This constitutes a generalization of Stanley's theory of P partitions, see [24, Ch. 3.15]. In Section 3 we derive multivariate generating function identities for s-lecture hall P-partitions, and prove a reciprocity theorem (Theorem 3.9). When P is a naturally labeled chain or an anti-chain, the generating function identities obtained produce results on s-lecture hall partitions and signed permutations, respectively (see Section 6). We also introduce and study a (P, s)-Eulerian polynomial. In Section 4 we prove that this polynomial is palindromic for sign-graded labeled posets with a specific choice of s. In Section 5 we prove that the (P, s)-Eulerian polynomial is real-rooted for certain choices of (P, s), and we also speculate on unimodality properties satisfied by these polynomials.
arXiv: 1609.02790
*Petter Brändén is a Wallenberg Academy Fellow supported by the Knut and Alice Wallenberg Foundation and Vetenskapsrådet.

2. Lecture hall P-partitions

In this paper a labeled poset is a partially ordered set on $[p]:=\{1, \ldots, p\}$ for some positive integer p, i.e., $P=([p], \preceq)$, where \preceq denotes the partial order. We will use the symbol \leq to denote the usual total order on the integers. If P is a labeled poset, then a P-partition ${ }^{1}$ is a map $f:[p] \rightarrow \mathbb{R}$ such that

1. if $x \prec y$, then $f(x) \leq f(y)$, and
2. if $x \prec y$ and $x>y$, then $f(x)<f(y)$.

The theory of P-partitions was developed by Stanley in his thesis and has since then been used frequently in several different combinatorial settings, see [24, 25].

Let

$$
O(P)=\left\{f \in \mathbb{R}^{p}: f \text { is a } P \text {-partition and } 0 \leq f(x) \leq 1 \text { for all } x \in[p]\right\}
$$

be the order polytope associated to P. Note that if P is naturally labeled, i.e., $x \prec y$ implies $x<y$, then $O(P)$ is a closed integral polytope. Otherwise $O(P)$ is the intersection of a finite number of open or closed half-spaces. Recall that the Ehrhart polynomial of an integral polytope \mathcal{P} in \mathbb{R}^{p} is defined for nonnegative integers n as

$$
i(\mathcal{P}, n)=\left|n \mathcal{P} \cap \mathbb{Z}^{p}\right|
$$

where $n \mathcal{P}=\{n \mathbf{x}: \mathbf{x} \in \mathcal{P}\}$, see $[24$, p. 497]. For order polytopes we have the following relationship due to Stanley:

$$
\sum_{n \geq 0} i(O(P), n) t^{n}=\frac{A_{P}(t)}{(1-t)^{p+1}}
$$

where $A_{P}(t)$ is the P-Eulerian polynomial, which is the generating polynomial of the descent statistic over the set of all linear extensions of P, see [24, Ch. 3.15].

The purpose of this paper is to initiate the study of a lecture hall generalization of P-partitions. Let P be a labeled poset and let $s:[p] \rightarrow \mathbb{Z}_{+}:=$ $\{1,2,3, \ldots\}$ be an arbitrary map. We define a lecture hall (P, s)-partition to be a map $f:[p] \rightarrow \mathbb{R}$ such that

[^0]1. if $x \prec y$, then $f(x) / s(x) \leq f(y) / s(y)$, and
2. if $x \prec y$ and $x>y$, then $f(x) / s(x)<f(y) / s(y)$.

Let

$$
\begin{aligned}
O(P, s)=\left\{f \in \mathbb{R}^{p}:\right. & f \text { is a }(P, s) \text {-partition and } \\
& 0 \leq f(x) / s(x) \leq 1 \text { for all } x \in[p]\}
\end{aligned}
$$

be the lecture hall order polytope associated to (P, s). We also let

$$
\begin{aligned}
C(P, s)=\left\{f \in \mathbb{R}^{p}:\right. & f \text { is a }(P, s) \text {-partition and } \\
& 0 \leq f(x) / s(x) \text { for all } x \in[p]\}
\end{aligned}
$$

be the lecture hall order cone associated to (P, s). The (P, s)-Eulerian polynomial, $A_{(P, s)}(t)$, is defined by

$$
\sum_{n \geq 0} i(O(P, s), n) t^{n}=\frac{A_{(P, s)}(t)}{(1-t)^{p+1}}
$$

3. The main generating functions

In this section we derive formulas for the main generating functions associated to lecture hall (P, s)-partitions. The outline follows Stanley's theory of P-partitions [24, Ch. 3.15]. We shall see in Section 6 that the special cases when P is naturally labeled chain or an anti-chain automatically produce results on lecture hall polytopes and signed permutations, respectively.

Let \mathfrak{S}_{p} denote the symmetric group on $[p]$. If $\pi=\pi_{1} \pi_{2} \cdots \pi_{p} \in \mathfrak{S}_{p}$ is a permutation written in one-line notation, we let P_{π} denote the labeled chain $\pi_{1} \prec \pi_{2} \prec \cdots \prec \pi_{p}$. If $P=([p], \preceq)$ is a labeled poset, let $\mathcal{L}(P)$ denote the set

$$
\mathcal{L}(P):=\left\{\pi \in \mathfrak{S}_{p}: \text { if } \pi_{i} \preceq \pi_{j}, \text { then } i \leq j, \text { for all } i, j \in[p]\right\}
$$

of linear extensions (or the Jordan-Hölder set) of P. The following lemma is an immediate consequence of Stanley's decomposition of P-partitions [24, Lemma 3.15.3].

Lemma 3.1. If P is a labeled poset and $s:[p] \rightarrow \mathbb{Z}_{+}$, then

$$
C(P, s)=\bigsqcup_{\pi \in \mathcal{L}(P)} C\left(P_{\pi}, s\right)
$$

where \bigsqcup denotes disjoint union.

Let $s:[p] \rightarrow \mathbb{Z}_{+}$. An s-colored permutation is a pair $\tau=(\pi, r)$ where $\pi \in \mathfrak{S}_{p}$, and $r:[p] \rightarrow \mathbb{N}$ satisfies $r\left(\pi_{i}\right) \in\left\{0,1, \ldots, s\left(\pi_{i}\right)-1\right\}$ for all $1 \leq i \leq p$. If $P=([p], \preceq)$ is a labeled poset, let

$$
\begin{aligned}
& \mathcal{L}(P, s)=\{\tau: \tau=(\pi, r) \text { where } \pi \in \mathcal{L}(P) \text { and } \\
&\tau \text { is an } s \text {-colored permutation }\}
\end{aligned}
$$

For $f:[p] \rightarrow \mathbb{N}$, let $q(f), r(f):[p] \rightarrow \mathbb{N}$ be the unique functions satisfying $f(x)=q(f)(x) \cdot s(x)+r(f)(x), \quad$ where $q(f)(x) \in \mathbb{N}$ and $0 \leq r(f)(x)<s(x)$, for all $x \in[p]$. Let further

$$
F_{(P, s)}(\mathbf{x}, \mathbf{y})=\sum_{f \in \mathbb{N}(P, s)} \mathbf{y}^{r(f)} \mathbf{x}^{q(f)}
$$

where $\mathbf{x}^{r}=x_{1}^{r(1)} x_{2}^{r(2)} \cdots x_{p}^{r(p)}$ and $\mathbb{N}(P, s)=C(P, s) \cap \mathbb{N}^{p}$. We say that $i \in[p-1]$ is a descent of $\tau=(\pi, r)$ if

$$
\left\{\begin{array}{l}
\pi_{i}<\pi_{i+1} \text { and } r\left(\pi_{i}\right) / s\left(\pi_{i}\right)>r\left(\pi_{i+1}\right) / s\left(\pi_{i+1}\right), \text { or, } \\
\pi_{i}>\pi_{i+1} \text { and } r\left(\pi_{i}\right) / s\left(\pi_{i}\right) \geq r\left(\pi_{i+1}\right) / s\left(\pi_{i+1}\right),
\end{array}\right.
$$

Let

$$
D_{1}(\tau)=\{i \in[p-1]: i \text { is a descent }\}
$$

Theorem 3.2. If P is a labeled poset and $s:[p] \rightarrow \mathbb{Z}_{+}$, then

$$
\begin{equation*}
F_{(P, s)}(\mathbf{x}, \mathbf{y})=\sum_{\tau=(\pi, r) \in \mathcal{L}(P, s)} \mathbf{y}^{r} \frac{\prod_{i \in D_{1}(\tau)} x_{\pi_{i+1}} \cdots x_{\pi_{p}}}{\prod_{i \in[p]}\left(1-x_{\pi_{i}} \cdots x_{\pi_{p}}\right)} \tag{3.1}
\end{equation*}
$$

Proof. By Lemma 3.1 we may assume that $P=P_{\pi}$ is a labeled chain. Let $f \in \mathbb{N}^{p}$, and write $f(t)=q(t) s(t)+r(t)$, where $0 \leq r(t)<s(t)$ and $q(t) \in \mathbb{N}$ for all $t \in[p]$. What conditions on q and r guarantee $f \in \mathbb{N}(P, s)$? Suppose $\pi_{i}<\pi_{i+1}$. Then we need

$$
\begin{equation*}
q\left(\pi_{i}\right)+\frac{r\left(\pi_{i}\right)}{s\left(\pi_{i}\right)}=\frac{f\left(\pi_{i}\right)}{s\left(\pi_{i}\right)} \leq \frac{f\left(\pi_{i+1}\right)}{s\left(\pi_{i+1}\right)}=q\left(\pi_{i+1}\right)+\frac{r\left(\pi_{i+1}\right)}{s\left(\pi_{i+1}\right)} \tag{3.2}
\end{equation*}
$$

If $r\left(\pi_{i}\right) / s\left(\pi_{i}\right) \leq r\left(\pi_{i+1}\right) / s\left(\pi_{i+1}\right)$, then (3.2) holds if and only if $q\left(\pi_{i}\right) \leq$ $q\left(\pi_{i+1}\right)$. If $r\left(\pi_{i}\right) / s\left(\pi_{i}\right)>r\left(\pi_{i+1}\right) / s\left(\pi_{i+1}\right)$, then (3.2) holds if and only if $q\left(\pi_{i}\right)<q\left(\pi_{i+1}\right)$.

Suppose $\pi_{i}>\pi_{i+1}$. Then we need

$$
\begin{equation*}
q\left(\pi_{i}\right)+\frac{r\left(\pi_{i}\right)}{s\left(\pi_{i}\right)}=\frac{f\left(\pi_{i}\right)}{s\left(\pi_{i}\right)}<\frac{f\left(\pi_{i+1}\right)}{s\left(\pi_{i+1}\right)}=q\left(\pi_{i+1}\right)+\frac{r\left(\pi_{i+1}\right)}{s\left(\pi_{i+1}\right)} . \tag{3.3}
\end{equation*}
$$

If $r\left(\pi_{i}\right) / s\left(\pi_{i}\right)<r\left(\pi_{i+1}\right) / s\left(\pi_{i+1}\right)$, then (3.3) holds if and only if $q\left(\pi_{i}\right) \leq$ $q\left(\pi_{i+1}\right)$. If $r\left(\pi_{i}\right) / s\left(\pi_{i}\right) \geq r\left(\pi_{i+1}\right) / s\left(\pi_{i+1}\right)$, then (3.3) holds if and only if $q\left(\pi_{i}\right)<q\left(\pi_{i+1}\right)$.

Let $\tau=(\pi, r)$, where r is fixed. Then $f=q s+r \in \mathbb{N}(P, s)$ with given (fixed) r if and only if

$$
\begin{equation*}
0 \leq q\left(\pi_{1}\right) \leq q\left(\pi_{2}\right) \leq \cdots \leq q\left(\pi_{p}\right) \tag{3.4}
\end{equation*}
$$

where $q\left(\pi_{i}\right)<q\left(\pi_{i+1}\right)$ if $i \in D_{1}(\tau)$. Hence $f=q s+r \in \mathbb{N}(P, s)$ if and only if for each $k \in[p]$:

$$
q\left(\pi_{k}\right)=\alpha_{k}+\left|\left\{i \in D_{1}(\tau): i<k\right\}\right|
$$

where $\alpha_{k} \in \mathbb{N}$ and $0 \leq \alpha_{1} \leq \cdots \leq \alpha_{p}$. Hence

$$
\begin{aligned}
\sum_{q} \prod_{i=1}^{p} x_{\pi_{i}}^{q\left(\pi_{i}\right)} & =\sum_{0 \leq \alpha_{1} \leq \cdots \leq \alpha_{p}} x_{\pi_{1}}^{\alpha_{1}} \cdots x_{\pi_{p}}^{\alpha_{p}} \prod_{i \in D_{1}(\tau)} x_{\pi_{i+1}} \cdots x_{\pi_{p}} \\
& =\frac{\prod_{i \in D_{1}(\tau)} x_{\pi_{i+1}} \cdots x_{\pi_{p}}}{\prod_{i \in[p]}\left(1-x_{\pi_{i}} \cdots x_{\pi_{p}}\right)}
\end{aligned}
$$

where the first sum is over all q satisfying (3.4). The theorem follows.
Let $\mathbb{Z}_{+}(P, s)=C(P, s) \cap \mathbb{Z}_{+}^{p}$ and let

$$
F_{(P, s)}^{+}(\mathbf{x}, \mathbf{y})=\sum_{f \in \mathbb{Z}_{+}(P, s)} \mathbf{y}^{r(f)} \mathbf{x}^{q(f)}
$$

Let further

$$
D_{2}(\tau)= \begin{cases}D_{1}(\tau), & \text { if } r\left(\pi_{1}\right) \neq 0 \\ D_{1}(\tau) \cup\{0\}, & \text { if } r\left(\pi_{1}\right)=0\end{cases}
$$

Theorem 3.3. If P is a labeled poset and $s:[p] \rightarrow \mathbb{Z}_{+}$, then

$$
F_{(P, s)}^{+}(\mathbf{x}, \mathbf{y})=\sum_{\tau=(\pi, r) \in \mathcal{L}(P, s)} \mathbf{y}^{r} \frac{\prod_{i \in D_{2}(\tau)} x_{\pi_{i+1}} \cdots x_{\pi_{p}}}{\prod_{i \in[p]}\left(1-x_{\pi_{i}} \cdots x_{\pi_{p}}\right)}
$$

Proof. Consider $\left(P^{\prime}, s^{\prime}\right)$ where P^{\prime} is obtained from P by adjoining a least element $\hat{0}$ labeled $p+1$, and $s^{\prime}:[p+1] \rightarrow \mathbb{Z}_{+}$is such that s^{\prime} restricted to $[p]$ agrees with s. Let also $s^{\prime}(p+1)>\max \{s(t): t \in[p]\}$. Then $f \in \mathbb{N}\left(P^{\prime}, s^{\prime}\right)$ if and only if $\left.f\right|_{[p]} \in \mathbb{N}(P, s)$ and

$$
0 \leq \frac{f(p+1)}{s^{\prime}(p+1)}<\frac{f(x)}{s(x)}, \quad \text { for all } x \in[p]
$$

Thus $F_{(P, s)}^{+}(\mathbf{x}, \mathbf{y})$ is obtained from $F_{\left(P^{\prime}, s^{\prime}\right)}(\mathbf{x}, \mathbf{y})$ when we restrict to all $f \in$ $\mathbb{N}\left(P^{\prime}, s^{\prime}\right)$ with $f(p+1)=1$, i.e., $q(p+1)=0$ and $r(p+1)=1$, and then shift the indices. Hence $i=0$ is a descent in $\left((p+1) \pi_{1} \pi_{2} \cdots \pi_{p}, r\right)$ if and only if $r\left(\pi_{1}\right)=0$, and the proof follows.

For $f:[p] \rightarrow \mathbb{Z}_{+}$, let $q^{\prime}(f), r^{\prime}(f):[p] \rightarrow \mathbb{N}$ be the unique functions satisfying
$f(x)=q^{\prime}(f)(x) \cdot s(x)+r^{\prime}(f)(x), \quad$ where $q^{\prime}(f)(x) \in \mathbb{N}$ and $0<r^{\prime}(f)(x) \leq s(x)$, for all $x \in[p]$. Let further

$$
G_{(P, s)}(\mathbf{x}, \mathbf{y})=\sum_{f \in \mathbb{Z}_{+}(P, s)} \mathbf{y}^{r^{\prime}(f)} \mathbf{x}^{q^{\prime}(f)}
$$

Let $D_{3}(\tau)$ be the set of all $i \in[p-1]$ for which

$$
\begin{aligned}
& \pi_{i}<\pi_{i+1} \text { and }\left(r\left(\pi_{i}\right)+1\right) / s\left(\pi_{i}\right)>\left(r\left(\pi_{i+1}\right)+1\right) / s\left(\pi_{i+1}\right), \text { or, } \\
& \pi_{i}>\pi_{i+1} \text { and }\left(r\left(\pi_{i}\right)+1\right) / s\left(\pi_{i}\right) \geq\left(r\left(\pi_{i+1}\right)+1\right) / s\left(\pi_{i+1}\right)
\end{aligned}
$$

Theorem 3.4. If P is a labeled poset and $s:[p] \rightarrow \mathbb{Z}_{+}$, then

$$
G_{(P, s)}(\mathbf{x}, \mathbf{y})=\sum_{\tau=(\pi, r) \in \mathcal{L}(P, s)} \mathbf{y}^{r+\mathbf{1}} \frac{\prod_{i \in D_{3}(\tau)} x_{\pi_{i+1}} \cdots x_{\pi_{p}}}{\prod_{i \in[p]}\left(1-x_{\pi_{i}} \cdots x_{\pi_{p}}\right)}
$$

where $\mathbf{1}=(1,1, \ldots, 1)$ is the all ones vector.
Proof. The proof is almost identical to that of Theorem 3.2, and is therefore omitted.

For $n \in \mathbb{N}$, let

$$
\mathbb{N}_{\leq n}(P, s)=\{f \in \mathbb{N}(P, s): f(x) / s(x) \leq n \text { for all } x \in[p]\}
$$

and let

$$
F_{(P, s)}(\mathbf{x}, \mathbf{y} ; n)=\sum_{f \in \mathbb{N}_{\leq n}(P, s)} \mathbf{y}^{r(f)} \mathbf{x}^{q(f)} .
$$

The polynomials $F_{(P, s)}^{+}(\mathbf{x}, \mathbf{y} ; n)$ and $G_{(P, s)}(\mathbf{x}, \mathbf{y} ; n)$ are defined analogously over $\left\{f \in \mathbb{Z}_{+}(P, s): f(x) / s(x) \leq n\right.$ for all $\left.x \in[p]\right\}$. Let also

$$
\mathbb{N}_{<n}(P, s)=\{f \in \mathbb{N}(P, s): f(x) / s(x)<n \text { for all } x \in[p]\}
$$

and

$$
F_{(P, s)}^{\prime}(\mathbf{x}, \mathbf{y} ; n)=\sum_{f \in \mathbb{N}_{<n}(P, s)} \mathbf{y}^{r(f)} \mathbf{x}^{q(f)}
$$

For $\tau=(\pi, r) \in \mathcal{L}(P, s)$, define

$$
D(\tau)= \begin{cases}D_{1}(\tau), & \text { if } r\left(\pi_{p}\right)=0 \\ D_{1}(\tau) \cup\{p\}, & \text { if } r\left(\pi_{p}\right)>0\end{cases}
$$

and

$$
D_{4}(\tau)= \begin{cases}D_{2}(\tau), & \text { if } r\left(\pi_{p}\right)=0 \\ D_{2}(\tau) \cup\{p\}, & \text { if } r\left(\pi_{p}\right)>0\end{cases}
$$

Proposition 3.5. If P is a labeled poset and $s:[p] \rightarrow \mathbb{Z}_{+}$, then

$$
\begin{equation*}
\sum_{n \geq 0} F_{(P, s)}(\mathbf{x}, \mathbf{y} ; n) t^{n}=\sum_{\tau=(\pi, r) \in \mathcal{L}(P, s)} \mathbf{y}^{r} \frac{\prod_{i \in D(\tau)} x_{\pi_{i+1}} \cdots x_{\pi_{p}}}{\prod_{i \in[p]}\left(1-x_{\pi_{i}} \cdots x_{\pi_{p}} t\right)} \frac{t^{|D(\tau)|}}{1-t} \tag{3.5}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n \geq 0} F_{(P, s)}^{\prime}(\mathbf{x}, \mathbf{y} ; n) t^{n}=\sum_{\tau=(\pi, r) \in \mathcal{L}(P, s)} \mathbf{y}^{r} \frac{\prod_{i \in D_{1}(\tau)} x_{\pi_{i+1}} \cdots x_{\pi_{p}}}{\prod_{i \in[p]}\left(1-x_{\pi_{i}} \cdots x_{\pi_{p}} t\right)} \frac{t^{\left|D_{1}(\tau)\right|+1}}{1-t} \tag{3.6}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n \geq 0} F_{(P, s)}^{+}(\mathbf{x}, \mathbf{y} ; n) t^{n}=\sum_{\tau=(\pi, r) \in \mathcal{L}(P, s)} \mathbf{y}^{r} \frac{\prod_{i \in D_{4}(\tau)} x_{\pi_{i+1}} \cdots x_{\pi_{p}}}{\prod_{i \in[p]}\left(1-x_{\pi_{i}} \cdots x_{\pi_{p}} t\right)} \frac{t^{\left|D_{4}(\tau)\right|}}{1-t} \tag{3.7}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n \geq 0} G_{(P, s)}(\mathbf{x}, \mathbf{y} ; n) t^{n}=\sum_{\tau=(\pi, r) \in \mathcal{L}(P, s)} \mathbf{y}^{r+\mathbf{1}} \frac{\prod_{i \in D_{3}(\tau)} x_{\pi_{i+1}} \cdots x_{\pi_{p}}}{\prod_{i \in[p]}\left(1-x_{\pi_{i}} \cdots x_{\pi_{p}} t\right)} \frac{t^{\left|D_{3}(\tau)\right|+1}}{1-t} \tag{3.8}
\end{equation*}
$$

Proof. For (3.5) consider $\left(P^{\prime}, s^{\prime}\right)$ where P^{\prime} is obtained from P by adjoining a greatest element $\hat{1}$ labeled $p+1$, and $s^{\prime}:[p+1] \rightarrow \mathbb{Z}_{+}$restricted to $[p]$ agrees with s, while $s^{\prime}(p+1)=1$. If we set $x_{p+1}=t$, then

$$
\sum_{n \geq 0} F_{(P, s)}(\mathbf{x}, \mathbf{y} ; n) t^{n}=F_{\left(P^{\prime}, s^{\prime}\right)}
$$

and
$\mathcal{L}\left(P^{\prime}, s^{\prime}\right)=\left\{\left(\pi_{1} \cdots \pi_{p}(p+1), r^{\prime}\right):\left(\pi_{1} \cdots \pi_{p},\left.r^{\prime}\right|_{P}\right) \in \mathcal{L}(P, s)\right.$ and $\left.r^{\prime}(p+1)=0\right\}$.
The identity (3.5) follows by noting that $i=p$ is a descent of $\left(\pi_{1} \cdots \pi_{p}(p+\right.$ $1), r^{\prime}$) if and only if $r\left(\pi_{p}\right) / s\left(\pi_{p}\right)>r^{\prime}(p+1) / s^{\prime}(p+1)=0$.

The other identities follows similarly. For example (3.6) follows by considering $\left(P^{\prime}, s^{\prime}\right)$ where P^{\prime} is obtained from P by adjoining a greatest element $\hat{1}$ labeled 0 (and then relabel so that P^{\prime} has ground set $[p+1]$). For (3.8) consider again $\left(P^{\prime}, s^{\prime}\right)$, where P^{\prime} is obtained from P by adjoining a greatest element $\hat{1}$ labeled $p+1$, and s^{\prime} is defined as for the case of (3.5). Note that since $r^{\prime}(p+1)=1$ we have $q^{\prime}(p+1)=n-1$ if $f(p+1)=n$. This explains the shift by one in the exponent on the right hand side of (3.8), i.e., $\left|D_{3}(\tau)\right|+1$.

If q is a variable, let $[0]_{q}:=0$ and $[n]_{q}:=1+q+q^{2}+\cdots+q^{n-1}$ for $n \geq 1$. For the special case of (3.5) when P is an anti-chain we acquire the following corollary, which is a generalization of [1, Theorem 5.23].

Corollary 3.6. If P is an anti-chain and $s:[p] \rightarrow \mathbb{Z}_{+}$, then
$\sum_{n \geq 0} \prod_{i=1}^{p}\left(x_{i}^{n}+[n]_{x_{i}}[s(i)]_{y_{i}}\right) t^{n}=\sum_{\tau=(\pi, r) \in \mathcal{L}(P, s)} \mathbf{y}^{r} \frac{\prod_{i \in D(\tau)} x_{\pi_{i+1}} \cdots x_{\pi_{p}}}{\prod_{i \in[p]}\left(1-x_{\pi_{i}} \cdots x_{\pi_{p}} t\right)} \frac{t^{|D(\tau)|}}{1-t}$
Proof. Let P be an anti-chain and let $s:[p] \rightarrow \mathbb{Z}_{+}$. Consider $f \in \mathbb{N}_{\leq n}(P, s)$. Since P is an anti-chain, $f(i)$ and $f(j)$ are independent for all $1 \leq i<j \leq p$, and the only restriction is $0 \leq f(i) \leq n s(i)$ for all $1 \leq i \leq p$. We write $f(i)=s(i) q(i)+r(i)$, where $0 \leq r(i)<s(i)$. Then $f \in \mathbb{N}_{\leq n}(P, s)$ if and only if either $q(i)=n$ and $r(i)=0$, or $0 \leq q(i) \leq n-1$ and $0 \leq r(i) \leq s(i)-1$. Hence

$$
\begin{aligned}
\sum_{f \in \mathbb{N}_{\leq n}(P, s)} \mathbf{y}^{r(f)} \mathbf{x}^{q(f)} & =\prod_{i=1}^{p}\left(x_{i}^{0}[s(i)]_{y_{i}}+\cdots+x_{i}^{n-1}[s(i)]_{y_{i}}+x_{i}^{n}\right) \\
& =\prod_{i=1}^{p}\left(x_{i}^{n}+[n]_{x_{i}}[s(i)]_{y_{i}}\right)
\end{aligned}
$$

The corollary now follows from (3.5).
Note that the special case of (3.5) when P is a naturally labeled chain gives an analogue (by an appropriate change of variables) to one of the main results in [20], see Theorem 5 therein. From (3.5) we also get an interpretation of the Eulerian polynomial $A_{(P, s)}(t)$. For $\tau \in \mathcal{L}(P, s)$, let $\operatorname{des}_{s}(\tau)=|D(\tau)|$.

Corollary 3.7. If P is a labeled poset and $s:[p] \rightarrow \mathbb{Z}_{+}$, then

$$
A_{(P, s)}(t)=\sum_{\tau \in \mathcal{L}(P, s)} t^{\mathrm{des}_{s}(\tau)}
$$

The next corollary follows from Proposition 3.5 by setting the x - and y-variables to 1 .

Corollary 3.8. If P is a labeled poset and $s:[p] \rightarrow \mathbb{Z}_{+}$, then

$$
\sum_{\tau \in \mathcal{L}(P, s)} t^{\left|D_{4}(\tau)\right|}=\sum_{\tau \in \mathcal{L}(P, s)} t^{\left|D_{3}(\tau)\right|+1}
$$

and if $s(x)=1$ for all minimal elements x in P, then

$$
\begin{equation*}
A_{(P, s)}(t)=\sum_{\tau \in \mathcal{L}(P, s)} t^{|D(\tau)|}=\sum_{\tau \in \mathcal{L}(P, s)} t^{\left|D_{3}(\tau)\right|} \tag{3.9}
\end{equation*}
$$

Let $P=([p], \preceq)$ be a labeled poset. For $i \in[p]$, let $i^{*}=p+1-i$, and let $\left(P^{*}, s^{*}\right)$ be defined by $P^{*}=\left([p], \preceq^{*}\right)$ with
$i \preceq j$ in $P \quad$ if and only if $\quad i^{*} \preceq^{*} j^{*}$ in P^{*}, \quad for all $i, j \in[p]$,
and $s^{*}\left(i^{*}\right)=s(i)$ for all $i \in[p]$. The poset P^{*} is called the dual of P.
Theorem 3.9 (Reciprocity theorem). If P is a labeled poset and $s:[p] \rightarrow$ \mathbb{Z}_{+}, then

$$
G_{\left(P^{*}, s^{*}\right)}\left(\mathbf{x}^{*}, \mathbf{y}^{*}\right)=(-1)^{p} \frac{y_{1}^{s(1)} \cdots y_{p}^{s(p)}}{x_{1} \cdots x_{p}} F_{(P, s)}\left(\mathbf{x}^{-1}, \mathbf{y}^{-1}\right)
$$

where $\mathbf{x}^{*}=\left(x_{p}, x_{p-1}, \ldots, x_{1}\right)$ and $\mathbf{x}^{-1}=\left(x_{1}^{-1}, \ldots, x_{p}^{-1}\right)$.
Proof. For $\tau=(\pi, r) \in \mathcal{L}(P, s)$, let $\tau^{*}=\left(\pi_{1}^{*} \pi_{2}^{*} \cdots \pi_{p}^{*}, r^{*}\right)$ where $r^{*}\left(i^{*}\right)=$ $s(i)-1-r(i)$ for all $i \in[p]$. Clearly the map $\tau \mapsto \tau^{*}$ is a bijection between $\mathcal{L}(P, s)$ and $\mathcal{L}\left(P^{*}, s^{*}\right)$. Moreover if $i \in[p-1]$, then $i \in D_{3}(\tau)$ if and only if

$$
\left\{\begin{array}{l}
\pi_{i}<\pi_{i+1} \text { and }\left(r\left(\pi_{i}\right)+1\right) / s\left(\pi_{i}\right)>\left(r\left(\pi_{i+1}\right)+1\right) / s\left(\pi_{i+1}\right), \text { or, } \\
\pi_{i}>\pi_{i+1} \text { and }\left(r\left(\pi_{i}\right)+1\right) / s\left(\pi_{i}\right) \geq\left(r\left(\pi_{i+1}\right)+1\right) / s\left(\pi_{i+1}\right)
\end{array}\right.
$$

if and only if

$$
\left\{\begin{array}{l}
\pi_{i}^{*}>\pi_{i+1}^{*} \text { and } r^{*}\left(\pi_{i}^{*}\right) / s^{*}\left(\pi_{i}^{*}\right)<r^{*}\left(\pi_{i+1}^{*}\right) / s^{*}\left(\pi_{i+1}^{*}\right), \text { or, } \\
\pi_{i}^{*}<\pi_{i+1}^{*} \text { and } r^{*}\left(\pi_{i}^{*}\right) / s^{*}\left(\pi_{i}^{*}\right) \leq r^{*}\left(\pi_{i+1}^{*}\right) / s^{*}\left(\pi_{i+1}^{*}\right)
\end{array}\right.
$$

if and only if $i \in[p-1] \backslash D_{1}\left(\tau^{*}\right)$. Thus

$$
\begin{equation*}
D_{3}(\tau)=[p-1] \backslash D_{1}\left(\tau^{*}\right) \quad \text { and } \quad D_{1}(\tau)=[p-1] \backslash D_{3}\left(\tau^{*}\right) \tag{3.10}
\end{equation*}
$$

for all $\tau \in \mathcal{L}(P, s)$. Now

$$
F_{(P, s)}(\mathbf{x}, \mathbf{y})=\sum_{\tau \in \mathcal{L}(P, s)} \mathbf{y}^{r} \frac{\prod_{i \in D_{1}(\tau)} x_{\pi_{i+1}} \cdots x_{\pi_{p}}}{\prod_{i \in[p]}\left(1-x_{\pi_{i}} \cdots x_{\pi_{p}}\right)}
$$

$$
\begin{aligned}
& =\sum_{\tau \in \mathcal{L}(P, s)} \mathbf{y}^{r} \frac{\prod_{i \in[p-1] \backslash D_{3}\left(\tau^{*}\right)} x_{\pi_{i+1}} \cdots x_{\pi_{p}}}{\prod_{i \in[p]}\left(1-x_{\pi_{i}} \cdots x_{\pi_{p}}\right)} \\
& =\sum_{\tau \in \mathcal{L}(P, s)} \frac{\mathbf{y}^{s}\left(\mathbf{y}^{*}\right)^{-\left(r^{*}+\mathbf{1}\right)}}{x_{1} \cdots x_{p}} \frac{\prod_{i \in D_{3}\left(\tau^{*}\right)} x_{\pi_{i+1}}^{-1} \cdots x_{\pi_{p}}^{-1}}{\prod_{i \in[p]}\left(1-x_{\pi_{i}} \cdots x_{\left.\pi_{p}\right)} \prod_{i \in[p]} x_{\pi_{i}} \cdots x_{\pi_{p}}\right.} \\
& =(-1)^{p} \frac{y_{1}^{s(1)} \cdots y_{p}^{s(p)}}{x_{1} \cdots x_{p}} \sum_{\tau \in \mathcal{L}(P, s)}\left(\mathbf{y}^{*}\right)^{-\left(r^{*}+\mathbf{1}\right)} \frac{\prod_{i \in D_{3}\left(\tau^{*}\right)}\left(1-x_{\pi_{i}}^{-1} \cdots x_{\pi_{p}}^{-1}\right)}{\prod_{\pi_{i+1}}^{-1} \cdots x_{\pi_{p}}^{-1}} \\
& =(-1)^{p} \frac{y_{1}^{s(1)} \cdots y_{p}^{s(p)}}{x_{1} \cdots x_{p}} G_{\left(P^{*}, s^{*}\right)}\left(\left(\mathbf{x}^{*}\right)^{-1},\left(\mathbf{y}^{*}\right)^{-1}\right)
\end{aligned}
$$

from which the theorem follows.
Remark 3.1. Theorem 3.9 generalizes the reciprocity theorem in [4] which follows as the special case when P is a naturally labeled chain.

4. Sign-ranked posets

Let $P=\{1 \prec 2 \prec \cdots \prec p\}$ be a naturally labeled chain, and let $s(i)=i$ for all $i \in[p]$. Savage and Schuster [20, Lemma 1] proved that $A_{(P, s)}(t)$ is equal to the Eulerian polynomial

$$
A_{p}(t)=\sum_{\pi \in \mathfrak{S}_{p}} t^{\operatorname{des}(\pi)}
$$

where $\operatorname{des}(\pi)=\mid\left\{i \in[p]: \pi_{i}>\pi_{i+1}\right\}$. Recall that a polynomial $g(t)$ is palindromic if $t^{N} g(1 / t)=g(t)$ for some integer N. It is well known that $A_{p}(t)$ is palindromic (in fact $t^{p-1} A_{p}(1 / t)=A_{p}(t)$). The same is known to be true for the P-Eulerian polynomial of any naturally labeled graded poset, see [24, Corollary 3.15.18], and more generally for P-Eulerian polynomials of so called sign-graded labeled posets [10, Corollary 2.4]. We shall here generalize these results to (P, s)-Eulerian polynomials.

Recall that a pair of elements elements (x, y) taken from a labeled poset P is a covering relation if $x \prec y$ and $x \prec z \prec y$ for no $z \in P$. Let $\mathcal{E}(P)$ denote the set of covering relations of P. If P is a labeled poset define a
function $\epsilon: \mathcal{E}(P) \rightarrow\{-1,1\}$ by

$$
\epsilon(x, y)= \begin{cases}1, & \text { if } x<y, \text { and } \\ -1, & \text { if } x>y\end{cases}
$$

Sign-graded (labeled) posets, introduced in [10], generalize graded naturally labeled posets. A labeled poset P is sign-graded of rank r, if

$$
\sum_{i=1}^{k} \epsilon\left(x_{i-1}, x_{i}\right)=r
$$

for each maximal chain $x_{0} \prec x_{1} \prec \cdots \prec x_{k}$ in P. A sign-graded poset is equipped with a well-defined rank-function, $\rho: P \rightarrow \mathbb{Z}$, defined by

$$
\rho(x)=\sum_{i=1}^{k} \epsilon\left(x_{i-1}, x_{i}\right)
$$

where $x_{0} \prec x_{1} \prec \cdots \prec x_{k}=x$ is any unrefinable chain, x_{0} is a minimal element and $x_{k}=x$. Hence a naturally labeled poset is sign-graded if and only if it is graded. A labeled poset P is sign-ranked if for each maximal element $x \in P$, the subposet $\{y \in P: y \preceq x\}$ is sign-graded. Note that each sign-ranked poset has a well-defined rank function $\rho: P \rightarrow \mathbb{Z}$. Thus a naturally labeled poset is sign-ranked if and only if it is ranked.

Theorem 4.1. Let P be a sign-ranked labeled poset and suppose its rank function attains non-negative values only. Let $s(x)=\rho(x)+1$ for each $x \in[p]$, and define $u: \mathbb{N}(P, s) \rightarrow \mathbb{Z}^{p}$ by $u(f)\left(x^{*}\right)=f(x)+\rho(x)$. Then $u: \mathbb{N}_{\leq n}(P, s) \rightarrow \mathbb{N}_{<n+1}\left(P^{*}, s^{*}\right)$ is a bijection for each $n \in \mathbb{N}$.
Proof. We first prove $u: \mathbb{N}(P, s) \rightarrow \mathbb{N}\left(P^{*}, s^{*}\right)$. Note that f is a (P, s) partition if and only if

1. if $(x, y) \in \mathcal{E}(P)$, then $f(x) / s(x) \leq f(y) / s(y)$, and
2. if $(x, y) \in \mathcal{E}(P)$ and $\epsilon(x, y)=-1$, then $f(x) / s(x)<f(y) / s(y)$.

Hence it suffices to consider covering relations when proving that u : $\mathbb{N}(P, s) \rightarrow \mathbb{N}\left(P^{*}, s^{*}\right)$.

Let $f \in \mathbb{N}(P, s)$. Suppose y covers x and $\epsilon(x, y)=1$. Then $f(x) / s(x) \leq$ $f(y) / s(y)$ and $s(x)<s(y)$, and thus

$$
\frac{u(f)\left(x^{*}\right)}{s^{*}\left(x^{*}\right)}=\frac{f(x)+s(x)-1}{s(x)} \leq \frac{f(y)}{s(y)}+1-\frac{1}{s(x)}<\frac{f(y)}{s(y)}+1-\frac{1}{s(y)}=\frac{u(f)\left(y^{*}\right)}{s^{*}\left(y^{*}\right)}
$$

as desired.
Suppose y covers x and $\epsilon(x, y)=-1$. Then $f(x) / s(x)<f(y) / s(y)$ and $s(x)=s(y)+1$ so that

$$
\frac{u(f)\left(y^{*}\right)}{s^{*}\left(y^{*}\right)}-\frac{u(f)\left(x^{*}\right)}{s^{*}\left(x^{*}\right)}=\frac{f(y)}{s(y)}-\frac{f(x)}{s(y)+1}-\left(\frac{1}{s(y)}-\frac{1}{s(y)+1}\right)
$$

We want to prove that the quantity on either side of the equality above is nonnegative. By assumption

$$
\frac{f(y)}{s(y)}-\frac{f(x)}{s(y)+1}=\frac{(s(y)+1) f(y)-s(y) f(x)}{s(y)(s(y)+1)}>0 .
$$

Hence $(s(y)+1) f(y)-s(y) f(x)$ is a positive integer, so that

$$
\frac{f(y)}{s(y)}-\frac{f(x)}{s(y)+1} \geq \frac{1}{s(y)(s(y)+1)}
$$

as desired. Note that $u(f)$ is nonnegative since it is increasing and $u(f)\left(x^{*}\right)=$ $f(x)$ when x^{*} is a minimal element in P^{*}. Hence $u(f) \in \mathbb{N}\left(P^{*}, s^{*}\right)$.

Let $\eta: \mathbb{N}\left(P^{*}, s^{*}\right) \rightarrow \mathbb{Z}^{P}$ be defined by $\eta(g)(x)=g\left(x^{*}\right)-\rho(x)=g\left(x^{*}\right)+$ $\rho^{*}\left(x^{*}\right)$, where ρ^{*} is the rank function of P^{*}. Clearly $\eta: \mathbb{N}\left(P^{*}, s^{*}\right) \rightarrow \mathbb{N}(P, s)$ by the exact same arguments as above. Thus $u^{-1}=\eta$ and $u: \mathbb{N}(P, s) \rightarrow$ $\mathbb{N}\left(P^{*}, s^{*}\right)$ is a bijection.

Now $u(f)\left(x^{*}\right) / s^{*}\left(x^{*}\right)=f(x) / s(x)+(s(x)-1) / s(x)<n+1$ if $f \in$ $\mathbb{N}_{\leq n}(P, s)$ and $x \in P$, so that $u: \mathbb{N}_{\leq n}(P, s) \rightarrow \mathbb{N}_{<n+1}\left(P^{*}, s^{*}\right)$ for each $n \in \mathbb{N}$.

On the other hand if $g \in \mathbb{N}_{<n+1}\left(P^{*}, s^{*}\right)$, then $g\left(x^{*}\right)=q\left(x^{*}\right)(\rho(x)+1)+$ $r\left(x^{*}\right)$ where $0 \leq q\left(x^{*}\right) \leq n$ and $0 \leq r\left(x^{*}\right) \leq \rho(x)$. Hence

$$
\frac{\eta(g)(x)}{s(x)}=\frac{g\left(x^{*}\right)}{\rho(x)+1}-\frac{\rho(x)}{\rho(x)+1} \leq n+\frac{r\left(x^{*}\right)}{\rho(x)+1}-\frac{\rho(x)}{\rho(x)+1} \leq n
$$

Thus $\eta: \mathbb{N}_{<n+1}\left(P^{*}, s^{*}\right) \rightarrow \mathbb{N}_{\leq n}(P, s)$ which proves the theorem.
Theorem 4.2. If P is a sign-ranked labeled poset with nonnegative rank function ρ and $s=\rho+1$, then

$$
A_{(P, s)}(t)=t^{p-1} A_{(P, s)}\left(t^{-1}\right)
$$

and

$$
(-1)^{p} i(O(P, s),-t)=i(O(P, s), t-2)
$$

Proof. By (3.5), (3.6) and Theorem 4.1

$$
A_{(P, s)}(t)=\sum_{\tau \in \mathcal{L}(P, s)} t^{|D(\tau)|}=\sum_{\tau^{*} \in \mathcal{L}\left(P^{*}, s^{*}\right)} t^{\left|D_{1}\left(\tau^{*}\right)\right|} .
$$

The first part of the theorem now follows from (3.9) and (3.10). The second part follows from e.g., [24, Lemma 3.15.11].

5. Real-rootedness and unimodality

The Neggers-Stanley conjecture asserted that for each labeled poset P, the Eulerian polynomial $A_{P}(t)$ is real-rooted. Although the conjecture is refuted in its full generality [9, 26], it is known to hold for certain classes of posets [6, 27]. Moreover, when P is sign-graded, then the coefficients of $A_{P}(t)$ form a unimodal sequence $[10,16]$. It is natural to ask for which pairs (P, s)
(a) is $A_{(P, s)}(t)$ real-rooted?
(b) do the coefficients of $A_{(P, s)}(t)$ form a unimodal sequence?

We first address (a). Suppose $P=\left([p], \preceq_{P}\right), Q=\left([q], \preceq_{Q}\right)$ and $R=([p+$ $\left.q], \preceq_{R}\right)$ are labeled posets such that $[p+q]$ is the disjoint union of the two sets $\left\{u_{1}<u_{2}<\cdots<u_{p}\right\}$ and $\left\{v_{1}<v_{2}<\cdots<v_{q}\right\}$, and $x \preceq_{R} y$ if and only if either

- $x=u_{i}$ and $y=u_{j}$ for some $i, j \in[p]$ with $i \preceq_{P} j$, or
- $x=v_{i}$ and $y=v_{j}$ for some $i, j \in[q]$ with $i \preceq_{Q} j$.

We say that R is a disjoint union of P and Q and write $R=P \sqcup Q$. Moreover if $s_{P}:[p] \rightarrow \mathbb{Z}_{+}$and $s_{Q}:[q] \rightarrow \mathbb{Z}_{+}$, then we define $s_{P \sqcup Q}:[p+q] \rightarrow \mathbb{Z}_{+}$as the unique function satisfying $s_{P \sqcup Q}\left(u_{i}\right)=s_{P}(i)$ and $s_{P \sqcup Q}\left(v_{j}\right)=s_{Q}(j)$.
Proposition 5.1. If the polynomials $A_{\left(P, s_{P}\right)}(t)$ and $A_{\left(Q, s_{Q}\right)}(t)$ are realrooted, then so is the polynomial $A_{\left(P \sqcup Q, s_{P} \sqcup s_{Q}\right)}(t)$.
Proof. Clearly

$$
i\left(\left(P \sqcup Q, s_{P} \sqcup s_{Q}\right), t\right)=i\left(O\left(P, s_{P}\right), t\right) \cdot i\left(O\left(Q, s_{Q}\right), t\right),
$$

so the proposition follows from [28, Theorem 0.1].
It was proved in [22] that if $P=\{1 \prec 2 \prec \cdots \prec p\}$ and $s:[p] \rightarrow \mathbb{Z}_{+}$is arbitrary, then $A_{(P, s)}(t)$ is real-rooted. In Theorem 5.2 below we generalize this result to ordinal sums of anti-chains. If $P=\left(X, \preceq_{P}\right)$ and $Q=\left(Y, \preceq_{Q}\right)$ are posets on disjoint ground sets, then the ordinal sum, $P \oplus Q=(X \cup Y, \preceq)$, is the poset with relations

1. $x_{1} \prec x_{2}$, for all $x_{1}, x_{2} \in X$ with $x_{1} \prec_{P} x_{2}$,
2. $y_{1} \prec y_{2}$, for all $y_{1}, y_{2} \in X$ with $y_{1} \prec_{Q} y_{2}$, and
3. $x \prec y$ for all $x \in X$ and $y \in Y$.

Let f and g be two real-rooted polynomials in $\mathbb{R}[t]$ with positive leading coefficients. Let further $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{n}$ and $\beta_{1} \geq \beta_{2} \geq \cdots \geq \beta_{m}$ be the zeros of f and g, respectively. If

$$
\cdots \leq \alpha_{2} \leq \beta_{2} \leq \alpha_{1} \leq \beta_{1}
$$

we say that f is an interleaver of g and we write $f \ll g$. We also let $f \ll 0$ and $0 \ll f$. We call a sequence $F_{n}=\left(f_{i}\right)_{i=1}^{n}$ of real-rooted polynomials interlacing if $f_{i} \ll f_{j}$ for all $1 \leq i<j \leq n$. We denote by \mathcal{F}_{n} the family of all interlacing sequences $\left(f_{i}\right)_{i=1}^{n}$ of polynomials and we let \mathcal{F}_{n}^{+}be the family of $\left(f_{i}\right)_{i=1}^{n} \in \mathcal{F}_{n}$ such that f_{i} has nonnegative coefficients for all $1 \leq i \leq n$.

To avoid unnecessary technicalities we here redefine a labeled poset to be a poset $P=(S, \preceq)$, where S is any set of positive integers. Thus $\mathcal{L}(P)$ is now the set of rearrangements of S that are also linear extensions of P.

Equip $X(P, s):=\{(k, x): x \in P$ and $0 \leq k<s(x)\}$ with a total order defined by $(k, x)<(\ell, y)$ if $k / s(x)<\ell / s(y)$, or $k / s(x)=\ell / s(y)$ and $x<y$. For $\gamma \in X(P, s)$, let

$$
A_{(P, s)}^{\gamma}(t)=\sum_{\substack{\tau=(\pi, r) \in \mathcal{L}(P, s) \\\left(r\left(\pi_{1}\right), \pi_{1}\right)=\gamma}} t^{\operatorname{des}_{s}(\tau)}
$$

Theorem 5.2. Suppose $P=A_{p_{1}} \oplus \cdots \oplus A_{p_{m}}$ is an ordinal sum of antichains, and let $s: P \rightarrow \mathbb{Z}_{+}$be a function which is constant on $A_{p_{i}}$ for $1 \leq i \leq m$. Then $\left\{A_{(P, s)}^{\gamma}(t)\right\}_{\gamma \in X}$, where $X=X(P, s)$, is an interlacing sequence of polynomials.

In particular $A_{(P, s)}(t)$ and $A_{(P, s)}^{\gamma}(t)$ are real-rooted for all $\gamma \in X$.
Proof. The proof is by induction over m. Suppose $m=1, p_{1}=n, A_{n}$ is the anti-chain on $[n]$, and $s\left(A_{n}\right)=\{s\}$. We prove the case $m=1$ by induction over n. If $n=1$ we get the sequence $1, t, t, \ldots, t$ which is interlacing. Otherwise if $\gamma=\left(k, \pi_{1}\right)$, then

$$
A_{\left(A_{n}, s\right)}^{\gamma}(t)=\sum_{\kappa<\gamma} t A_{\left(A_{n-1}, s^{\prime}\right)}^{\kappa}(t)+\sum_{\kappa \geq \gamma} A_{\left(A_{n-1}, s^{\prime}\right)}^{\kappa}(t)
$$

where s^{\prime} is s restricted to A_{n-1}. This recursion preserves the interlacing property, see [22, Theorem 2.3] and [11], which proves the case $m=1$ by induction.

Suppose $m>1$. The proof for m is again by induction over $p_{1}=n$. If $p_{1}=1$, then

$$
A_{(P, s)}^{\gamma}(t)=\sum_{\kappa<\gamma} t A_{\left(P^{\prime}, s^{\prime}\right)}^{\kappa}(t)+\sum_{\kappa>\gamma} A_{\left(P^{\prime}, s^{\prime}\right)}^{\kappa}(t),
$$

Where $P^{\prime}=A_{2} \oplus \cdots \oplus A_{m}$, and where s^{\prime} is the restrictions to P^{\prime}. Hence the case $p_{1}=1$ follows by induction (over m) since this recursion preserves the interlacing property, see [22, Theorem 2.3].

The case $m>1$ and $p_{1}>1$ follows by induction over p_{1} just as for the case $m=1, n>1$.

Hence $\left\{A_{(P, s)}^{\gamma}(t)\right\}_{\gamma}$ is an interlacing sequence, and thus

$$
A_{(P, s)}(t)=\sum_{\gamma} A_{(P, s)}^{\gamma}(t),
$$

is real-rooted by e.g., [22, Theorem 2.3].
Next we address (b). A palindromic polynomial $g(t)=a_{0}+a_{1} t+\cdots+a_{n} t^{n}$ may be written uniquely as

$$
g(t)=\sum_{k=0}^{\lfloor d / 2\rfloor} \gamma_{k}(g) t^{k}(1+t)^{d-2 k}
$$

where $\left\{\gamma_{k}(g)\right\}_{k=0}^{\lfloor d / 2\rfloor}$ are real numbers. If $\gamma_{k}(g) \geq 0$ for all k, then we say that $g(t)$ is γ-positive, see [11]. Note that if $g(t)$ is γ-positive, then $\left\{a_{i}\right\}_{i=0}^{n}$ is a unimodal sequence, i.e., there is an index m such that $a_{0} \leq \cdots \leq a_{m} \geq$ $a_{m+1} \geq \cdots \geq a_{n}$.

Conjecture 5.3. Suppose P is a sign-ranked labeled poset with nonnegative rank function ρ and $s=\rho+1$, then $A_{(P, s)}(t)$ is γ-positive.
Remark 5.1. Let P be a sign-ranked labeled poset with a rank function ρ with values only in $\{0,1\}$, and let $s=\rho+1$. Following the proof of [10, Theorem 4.2], with the use of Theorem 5.2, it follows that Conjecture 5.3 holds for (P, s). We omit the technical details in recalling the proof here.

If P is a naturally labeled ranked poset and $s=\rho+1$, then $O(P, s)$ is a closed integral polytope and $A_{(P, s)}(t)$ is the so called h^{*}-polynomial of $O(P, s)$. If the following conjecture is true, then the coefficients of $A_{(P, s)}(t)$ form a unimodal sequence by a powerful theorem of Bruns and Römer [8, Theorem 1].

Conjecture 5.4. Suppose P is a naturally labeled ranked poset, and let $s=\rho+1$. Then $O(P, s)$ (or some related polytope with the same Ehrhart polynomial) has a regular and unimodular triangulation.

Remark 5.2. Evidence for Conjectures 5.3 and 5.4 is provided by [23] where it is proved that the coefficients of $A_{(P, s)}(t)$ form unimodal sequence whenever P is a naturally labeled ranked poset with a least element, and $s=\rho+1$.

6. Applications

In this section we derive some applications of the generating function identities obtained in Section 3. If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{p}\right)$ is a sequence, let $|\alpha|=$ $\alpha_{1}+\cdots+\alpha_{p}$. For $\tau=(\pi, r) \in \mathcal{L}(P, s)$, let

$$
\begin{aligned}
\operatorname{comaj}(\tau) & =\sum_{i \in D(\tau)} p-i, \text { and } \\
\operatorname{lhp}(\tau) & =|r|+\sum_{i \in D(\tau)} s\left(\pi_{i+1}\right)+\cdots+s\left(\pi_{p}\right)
\end{aligned}
$$

Theorem 6.1. If P is a labeled poset and $s:[p] \rightarrow \mathbb{Z}_{+}$, then

$$
\begin{equation*}
\sum_{n \geq 0}\left(\sum_{f \in \mathbb{N}_{\leq n}(P, s)} q^{|r(f)|} u^{|q(f)|}\right) t^{n}=\frac{\sum_{\tau \in \mathcal{L}(P, s)} q^{|r|} u^{\operatorname{comaj}(\tau)} t^{\operatorname{des}_{s}(\tau)}}{\prod_{i=0}^{p}\left(1-u^{i} t\right)} \tag{6.1}
\end{equation*}
$$

Proof. Set $x_{i}=u$ and $y_{i}=q$ for all $1 \leq i \leq p$ in (3.5). Then

$$
\begin{aligned}
\sum_{\tau \in \mathcal{L}(P, s)} \mathbf{y}^{r} \frac{\prod_{i \in D(\tau)} x_{\pi_{i+1}} \cdots x_{\pi_{p}}}{\prod_{i \in[p]}\left(1-x_{\pi_{i}} \cdots x_{\pi_{p}} t\right)} \frac{t^{|D(\tau)|}}{1-t} & =\sum_{\tau \in \mathcal{L}(P, s)} \frac{q^{|r|} u^{\operatorname{comaj}(\tau)} t^{\operatorname{des}_{s}(\tau)}}{\prod_{i \in[p]}\left(1-t u^{p+1-i}\right)(1-t)} \\
& =\frac{\sum_{\tau \in \mathcal{L}(P, s)} q^{|r|} u^{\operatorname{comaj}(\tau)} t^{\operatorname{des}_{s}(\tau)}}{\prod_{i \in[p]}\left(1-t u^{i}\right)(1-t)}
\end{aligned}
$$

The theorem follows.

Theorem 6.2. If P is a labeled poset and $s:[p] \rightarrow \mathbb{Z}_{+}$, then
(6.2) $\sum_{n \geq 0}\left(\sum_{f \in \mathbb{N}_{\leq n}(P, s)} q^{|f|}\right) t^{n}=\sum_{\tau \in \mathcal{L}(P, s)} \frac{q^{\operatorname{lhp}(\tau)} t^{\operatorname{des}_{s}(\tau)}}{\prod_{i \in[p]}\left(1-t q^{\sum_{j=i}^{p} s\left(\pi_{j}\right)}\right)(1-t)}$.

Proof. Set $x_{i}=q^{s(i)}$ and $y_{i}=q$ for all $1 \leq i \leq p$ in (3.5).
Corollary 6.3. If P is an anti-chain and $s:[p] \rightarrow \mathbb{Z}_{+}$, then

$$
\begin{equation*}
\sum_{n \geq 0} \prod_{i=1}^{p}\left(u^{n}+[n]_{u}[s(i)]_{q}\right) t^{n}=\frac{\sum_{\tau \in \mathcal{L}(P, s)} q^{|r|} u^{\operatorname{comaj}(\tau)} t^{\operatorname{des}_{s}(\tau)}}{\prod_{i=0}^{p}\left(1-u^{i} t\right)} \tag{6.3}
\end{equation*}
$$

Proof. The corollary follows from Theorem 6.1 and Corollary 3.6.
The wreath product of \mathfrak{S}_{p} with a cyclic group of order k has elements

$$
\mathbb{Z}_{k} \imath \mathfrak{S}_{p}=\left\{(\pi, r): \pi \in \mathfrak{S}_{p} \text { and } r:[p] \rightarrow \mathbb{Z}_{k}\right\}
$$

The elements of $\mathbb{Z}_{k} \imath \mathfrak{S}_{p}$ are often thought of as r-colored permutations. We may identify $\mathbb{Z}_{k} \imath \mathfrak{S}_{p}$ with $\mathcal{L}(P, s)$ where P is an anti-chain on $[p]$ and $s(i)=k$ for all $k \in[p]$. For $\tau=(\pi, r) \in \mathbb{Z}_{k} \prec \mathfrak{S}_{p}$ define

$$
\operatorname{fmaj}(\tau)=|r|+k \cdot \operatorname{comaj}(\tau)
$$

Note that $\operatorname{lhp}(\tau)$ agrees with $\operatorname{fmaj}(\tau)$ when $s=(k, k, \ldots, k)$.
Below we derive a Carlitz formula for $\mathbb{Z}_{k} \swarrow \mathfrak{S}_{p}$ first proved by Chow and Mansour in [12].

Corollary 6.4. For positive integers p and k,

$$
\begin{equation*}
\sum_{n \geq 0}[k n+1]_{q}^{p} t^{n}=\frac{\sum_{\tau \in \mathbb{Z}_{k} \backslash \mathfrak{S}_{p}} t^{\operatorname{des}_{s}(\tau)} q^{\mathrm{fmaj}(\tau)}}{\prod_{i=0}^{p}\left(1-t q^{k i}\right)} \tag{6.4}
\end{equation*}
$$

Proof. Let $s=(k, k, \ldots, k)$ and set $u=q^{k}$ in (6.3). Then

$$
\begin{aligned}
\prod_{i=1}^{p}\left(u^{n}+[n]_{u}[s(i)]_{q}\right) & =\left(q^{n k}+[n]_{q^{k}}[k]_{q}\right)^{p} \\
& =\left(q^{n k}+\frac{q^{k n}-1}{q^{k}-1} \frac{q^{k}-1}{q-1}\right)^{p} \\
& =[n k+1]_{q}^{p}
\end{aligned}
$$

The right hand side follows since $s(i)=k$ for all $1 \leq i \leq p$, and thus we sum over all $\tau \in \mathbb{Z}_{k} \prec \mathfrak{S}_{p}$.

Remark 6.1. The definition of fmaj above differs from the definition of the flag major index fmaj_{r} in [12]. By the change in variables $q \rightarrow q^{-1}$ and $t \rightarrow t q^{k p}$ and by noting that $[k n+1]_{q}^{p} t^{n}$ is invariant under this change of variables we find that the two flag major indices have the same distribution.

Corollary 6.5. For positive integers p and k,

$$
\sum_{n \geq 0} \prod_{i=1}^{p}\left(1+n[k]_{q_{i}}\right) t^{n}=\frac{\sum_{\tau \in \mathbb{Z}_{k} l \mathfrak{S}_{p}} q_{1}^{r_{1}} q_{2}^{r_{2}} \cdots q_{p}^{r_{p}} t^{\operatorname{des}_{s}(\tau)}}{(1-t)^{p+1}}
$$

Proof. Let $s=(k, k, \ldots, k)$ and set $x_{i}=1$ for all $1 \leq i \leq p$ in the equation displayed in Corollary 3.6.

Remark 6.2. Note that when $q_{i} \geq 0$ for all $1 \leq i \leq p$, the polynomial

$$
n \mapsto \prod_{i=1}^{p}\left(1+n[k]_{q_{i}}\right)
$$

has all its zeros in the interval $[-1,0]$. By an application of $[28$, Theorem 0.1] it follows that the polynomial

$$
\sum_{\tau \in \mathbb{Z}_{k} \backslash \mathfrak{S}_{p}} q_{1}^{r_{1}} q_{2}^{r_{2}} \cdots q_{p}^{r_{p}} t^{\operatorname{des}_{s}(\tau)}
$$

is real-rooted in t. This generalizes [7, Theorem 6.4], where the case $k=2$ was obtained.

References

[1] M. Beck, B. Braun, Euler-Mahonian statistics via polyhedral geometry, Adv. in Math. 244 (2013), 925-954. MR3077893
[2] M. Beck, B. Braun, M. Koeppe, C. Savage, Z. Zafeirakopoulos, s-Lecture hall partitions, self-reciprocal polynomials, and Gorenstein cones, Ramanujan J. 36(1) (2015), 123-147. MR3296715
[3] M. Bousquet-Melou, K. Eriksson, Lecture hall partitions, Ramanujan J. 1(1) (1997), 101-111. MR1607531
[4] M. Bousquet-Melou, K. Eriksson, Lecture hall partitions, 2, Ramanujan J. 1(2) (1997), 165-185. MR1606188
[5] M. Bousquet-Melou, K. Eriksson, A Refinement of the Lecture Hall Theorem, Journal of Combinatorial Theory, Series A 86 (1999), 63-84. MR1682963
[6] F. Brenti, Unimodal, log-concave and Pólya frequency sequences in combinatorics, Mem. Amer. Math. Soc. 81 (1989). MR0963833
[7] P. Brändén, On linear transformations preserving the Polya frequency property, Transactions of the American Mathematical Society 358, no. 8 (2006), 3697-3716. MR2218995
[8] W. Bruns, T. Römer, h-vectors of Gorenstein polytopes, J. Combin. Theory Ser. A 114(1) (2007), 65-76. MR2275581
[9] P. Brändén, Counterexamples to the Neggers-Stanley conjecture, Electron. Res. Announc. Amer. Math. Soc. 10 (2004), 155-158. MR2119757
[10] P. Brändén, Sign-graded posets, unimodality of W-polynomials and the Charney-Davis conjecture, Electron. J. Combin. 11(2) (2004), Stanley Festschrift, R9. MR2120105
[11] P. Brändén, Unimodality, log-concavity, real-rootedness and beyond, Handbook of Enumerative Combinatorics, 437-483, Discrete Math. Appl., CRC Press, Boca Raton, FL (2015). MR3409348
[12] C-O. Chow, T. Mansour, A Carlitz identity for the wreath product $\mathbb{C}_{r} 2$ \mathfrak{S}_{n}, Advances in Applied Mathematics 47, Issue 2 (2011), 199-215. MR2803799
[13] S. Corteel, S. Lee, C. D. Savage, Enumeration of sequences constrained by the ratio of consecutive parts, Sém. Lothar. Combin., 54A:Art. B54Aa, 12 pp. (electronic) (2005/07). MR2180869
[14] T. Hibi, M. Olsen, A. Tsuchiya, Gorenstein properties and integer decomposition properties of lecture hall polytopes, preprint, arXiv:1608.03934.
[15] M. Hyatt, Quasisymmetric functions and permutation statistics for Coxeter groups and wreath product groups, Ph.D. Thesis, University of Miami (2011). MR2926797
[16] V. Reiner, V. Welker, On the Charney-Davis and Neggers-Stanley conjectures, J. Combin. Theory Ser. A 109(2) (2005), 247-280. MR2121026
[17] T. Pensyl, C. D. Savage, Lecture hall partitions and the wreath products $\mathbb{Z}_{k} 2 S_{n}$, Integers 12B, \#A10 (2012/13). MR3055684
[18] T. Pensyl, C. D. Savage, Rational lecture hall polytopes and inflated Eulerian polynomials, Ramanujan J. 31 (2013), 97-114. MR3048657
[19] C. D. Savage, The mathematics of lecture hall partitions, Journal of Combinatorial Theory, Series A 144 (2016), 443-475. MR3534075
[20] C. D. Savage, M. J. Schuster, Ehrhart series of lecture hall polytopes and Eulerian polynomials for inversion sequences, Journal of Combinatorial Theory, Series A 119 (2012), 850-870. MR2881231
[21] C. D. Savage, G. Viswanathan, The ($1 / k$)-Eulerian Polynomials, Electr. J. Comb. 19(1): P9 (2012). MR2880640
[22] C. D. Savage, M. Visontai, The s-Eulerian polynomials have only real roots, Trans. Amer. Math. Soc., $\mathbf{3 6 7}(2)$ (2015), 1441-1466. MR3280050
[23] N. Gustafsson, L. Solus, Derangements, Ehrhart theory, and local hpolynomials, arXiv:1807.05246.
[24] R. Stanley, Enumerative combinatorics, vol. I, Second edition, Cambridge University Press, 2012. MR1676282
[25] R. Stanley, Enumerative combinatorics, vol. II, Cambridge University Press, 1999. MR2868112
[26] J. R. Stembridge, Counterexamples to the poset conjectures of Neggers, Stanley, and Stembridge, Trans. Amer. Math. Soc. 359 (2007), 11151128. MR2262844
[27] D. G. Wagner, Enumeration of functions from posets to chains, European J. Combin. 13 (1992), 313-324. MR1179527
[28] D. G. Wagner, Total positivity of Hadamard products, J. Math. Anal. Appl. 163 (1992), no. 2, 459-483. MR1145841

Petter Brändén
Department of Mathematics
KTH Royal Institute of Technology
SE-100 44 Stockholm
SWEDEN
E-mail address: pbranden@kth.se
Madeleine Leander
Department of Mathematics
Stockholm University
SE-106 91 Stockholm
SWEDEN
E-mail address: madde@math.su.se
Received February 21, 2019

[^0]: ${ }^{1}$ What we call P-partitions are called reverse (P, ω)-partitions in [24, 25]. However the theory of (P, ω)-partitions and reverse (P, ω)-partitions are clearly equivalent.

