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On enumerators of Smirnov words by descents
and cyclic descents
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A Smirnov word is a word over the positive integers in which adja-
cent letters must be different. A symmetric function enumerating
these words by descent number arose in the work of Shareshian
and the second named author on q-Eulerian polynomials, where a
t-analog of a formula of Carlitz, Scoville, and Vaughan for enumer-
ating Smirnov words is proved. A symmetric function enumerating
a circular version of these words by cyclic descent number arose
in the work of the first named author on chromatic quasisymmet-
ric functions of directed graphs, where a t-analog of a formula of
Stanley for enumerating circular Smirnov words is proved.

In this paper we obtain new t-analogs of the Carlitz–Scoville–
Vaughan formula and the Stanley formula in which the roles of
descent number and cyclic descent number are switched. These
formulas show that the Smirnov word enumerators are polynomi-
als in t whose coefficients are e-positive symmetric functions. We
also obtain expansions in the power sum basis and the fundamen-
tal quasisymmetric function basis, complementing earlier results of
Shareshian and the authors.

Our work relies on studying refinements of the Smirnov word
enumerators that count certain restricted classes of Smirnov words
by descent number. Applications to variations of q-Eulerian poly-
nomials and to the chromatic quasisymmetric functions introduced
by Shareshian and the second named author are also presented.
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1. Introduction

We consider words w = w1w2 . . . wn over the alphabet of positive integers
P with no adjacent repeated letters; that is wi �= wi+1 for all i ∈ [n− 1] :=
{1, . . . , n − 1}. We refer to these words as Smirnov words as is often done
in the literature; see e.g. [17, 14, 22, 3, 24, 15, 25].

For n ≥ 1, let Wn be the set of Smirnov words of length n. Now define
the Smirnov word enumerator

Wn(x) :=
∑

w∈Wn

xw,

where x := x1, x2, . . . is a sequence of indeterminates and xw :=
xw1

xw2
· · ·xwn

. Clearly Wn(x) is a symmetric function. Carlitz, Scoville, and
Vaughan [7, equation (7.12)] derived the generating function formula

(1.1)
∑
n≥1

Wn(x)z
n =

∑
i≥1 i ei(x)z

i

1−
∑

i≥2(i− 1)ei(x)zi
,

where ei(x) is the elementary symmetric function of degree i. An important
consequence of this formula is that Wn(x) is e-positive, which means that
when expanded in the elementary symmetric function basis for the ring of
symmetric functions, the coefficients are nonnegative.

The symmetric function Wn(x) was also considered by Stanley [35] in
the context of chromatic symmetric functions and by Dollhopf, Goulden,
and Greene [10] in the context of pair avoiding word enumerators. Stanley
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also considered a circular version of Smirnov words, that is, Smirnov words

whose first and last letter are different. Let

W �=
n (x) :=

∑
w ∈ Wn

w1 �= wn

xw.

Stanley [35, Proposition 5.4] proved

(1.2)
∑
n≥1

W �=
n (x)zn =

∑
i≥2 i(i− 1) ei(x)z

i

1−
∑

i≥2(i− 1)ei(x)zi
.

It follows from this formula that W �=
n (x) is e-positive.

Given any word w ∈ Pn, where n ≥ 1, the descent number of w is defined

by

des(w) := |{i ∈ [n− 1] : wi > wi+1}|

and the cyclic descent number is defined by

(1.3) cdes(w) := |{i ∈ [n] : wi > wi+1}|,

where wn+1 := w1. Now define the refined Smirnov word enumerators

Wn(x, t) :=
∑

w∈Wn

tdes(w)xw

W̃n(x, t) :=
∑

w∈Wn

tcdes(w)xw

W �=
n (x, t) :=

∑
w ∈ Wn

w1 �= wn

tdes(w)xw

W̃ �=
n (x, t) :=

∑
w ∈ Wn

w1 �= wn

tcdes(w)xw.

The first and fourth of these Smirnov word enumerators have been studied

before. The main objective of this paper is to study the other two Smirnov

word enumerators. We start with a brief review of what is known forWn(x, t)

and W̃ �=
n (x, t).
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1.1. Summary of known results

The refined Smirnov word enumerator Wn(x, t) arose in the work of Sharesh-

ian and the second named author on q-Eulerian polynomials [29]. Stanley

(personal communication) observed that the r = 1 case of [29, Theorem 1.2]

is equivalent to the following t-analog of (1.1),

(1.4)
∑
n≥1

Wn(x, t)z
n =

∑
i≥1[i]t ei(x)z

i

1−
∑

i≥2 t[i− 1]t ei(x)zi
,

where

[n]t := 1 + t+ · · ·+ tn−1 =
tn − 1

t− 1
.

Indeed, this follows from [29, Equation (7.7) and Theorem 3.6]; see [33,

Section 4.1]. (For another proof of (1.4), see Remark 5.6.) It follows from

(1.4) that Wn(x, t) is e-positive, that is, Wn(x, t) is a polynomial in t whose

coefficients are e-positive symmetric functions.

Equation (1.4) can be restated as

(1.5) 1 +
∑
n≥1

Wn(x, t)z
n =

(1− t)E(z)

E(tz)− tE(z)
,

where

E(z) :=
∑
n≥0

en(x)z
n.

The expression on the right hand side of (1.5) (or its image under the invo-

lution ω that takes en(x) to the complete homogeneous symmetric function

hn(x)) has arisen in various other contexts. Stanley obtained the expres-

sion when considering the representation of the symmetric group on the

cohomology of the toric variety associated with the dual permutohedron

[34]. A conjecture of Shareshian and the second named author [31, 32, 33],

proved by Brosnan and Chow [5] and subsequently by Guay-Paquet [20],

generalizes the connection between the Smirnov word enumerator and the

toric varieties to a connection between chromatic quasisymmetric functions

and Hessenberg varieties. The expression also arose in the work of Shareshian

and the second named author on the representation of the symmetric group

on homology of Rees products of posets [30].
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By combining (1.5) with a result of Stembridge [38], one obtains an

expansion of ωWn(x, t) in the power sum symmetric functions pλ(x). The

expansion is given by

(1.6) ωWn(x, t) =
∑
λ�n

⎛
⎝A�(λ)(t)

�(λ)∏
i=1

[λi]t

⎞
⎠ pλ(x)

zλ
,

where Am(t) is the mth Eulerian polynomial, zλ is a constant associated

with the partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λ�(λ)), and �(λ) is the length of λ.

Recall that the Eulerian polynomials An(t) have two well-known combi-

natorial interpretations, which are given by

(1.7) An(t) =
∑
σ∈Sn

tdes(σ) =
∑
σ∈Sn

texc(σ),

where Sn is the symmetric group on [n], and des and exc are MacMa-

hon’s classical equidistributed permutation statistics, descent number and

excedance number, respectively.

In [28, 29] Shareshian and the second named author introduce a q-analog

of the exc interpretation of An(t) and in [32] they introduce a q-analog of

the des interpretation of An(t). These q-analogs are shown to be equal in

[32, Theorem 9.7]. They are defined by

An(q, t) :=
∑
σ∈Sn

qmaj(σ)−exc(σ)texc(σ) =
∑
σ∈Sn

qmaj≥2(σ
−1)tdes(σ),

where maj is MacMahon’s classical major index and maj≥k is a more gen-

eral permutation statistic introduced by Rawlings in [26]. These permutation

statistics are defined in Section 6. By taking the stable principal specializa-

tion of both sides of (1.5), the following q-analog of Euler’s classical formula

is established in [29] for the exc interpretation of An(q, t) and in [32] for the

des interpretation:

(1.8) 1 +
∑
n≥1

An(q, t)
zn

[n]q!
=

(1− t) expq(z)

expq(tz)− t expq(z)
,

where
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[n]q! := [n]q[n− 1]q . . . [1]q and expq(z) :=
∑
n≥0

zn

[n]q!
.

In [27], Sagan, Shareshian and the second named author use the expansion

(1.6) of ωWn(x, t) in the power sum basis to show that An(q, t) evaluated at

any nth root of unity is a polynomial in t with positive integer coefficients.

For results on cycle-type refinements of the exc interpretation of An(q, t) see

[29, 21, 27].

The Smirnov word enumerator W̃ �=
n (x, t) arose in the work [11, 12, 13] of

the first named author on chromatic quasisymmetric functions of directed

graphs. The first named author proves the t-analog of (1.2),

(1.9)
∑
n≥1

W̃ �=
n (x, t)zn =

∑
i≥2 it[i− 1]t ei(x)z

i

1−
∑

i≥2 t[i− 1]tei(x)zi

from which e-positivity of W̃ �=
n (x, t) follows. (A subsequent alternative proof

of (1.9) was given in [1].) As a consequence of a general result obtained in

[11, 12, 13] on power sum expansions of chromatic quasisymmetric functions,

the first named author also obtains the following expansion analogous to

(1.6):

(1.10) ωW̃ �=
n (x, t) =

∑
λ � n

�(λ) > 1

⎛
⎝ntA�(λ)−1(t)

�(λ)∏
i=1

[λi]t

⎞
⎠ pλ

zλ
+ nt[n− 1]t

pn
n
.

1.2. New results

In this paper we obtain results for W̃n(x, t) andW �=
n (x, t), analogous to those

described above. For instance, in Section 2 we prove the t-analog of (1.1)

given by

(1.11)
∑
n≥1

W̃n(x, t)z
n =

∑
i≥1 it

i−1ei(x)z
i

1−
∑

i≥2 t[i− 1]t ei(x)zi
,

and the t-analog of (1.2) given by
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(1.12)
∑
n≥1

W �=
n (x, t)zn =

∑
i≥2([i]t + it[i− 2]t) ei(x)z

i

1−
∑

i≥2 t[i− 1]t ei(x)zi
.

From this it follows that W̃n(x, t) and W �=
n (x, t) are symmetric in x and

e-positive. We also obtain expansions in the power sum symmetric functions
analogous to (1.6) and (1.10) in Section 4.

Equation (1.11) can be restated as

(1.13)
∑
n≥1

W̃n(x, t)z
n =

(1− t) ∂
∂tE(tz)

E(tz)− tE(z)
.

By specializing (1.13), using an expansion of W̃n(x) in the fundamental
quasisymmetric functions derived in Section 5, we obtain in Section 6, the
cyclic analog of (1.8),

∑
n≥1

( ∑
σ∈Sn

qmaj≥2(σ
−1)tcdes(σ)

)
zn

[n]q!
=

(1− t) ∂
∂t expq(tz)

expq(tz)− t expq(z)
.

Our work relies on studying certain restricted Smirnov word enumera-
tors, which are components of all the Smirnov word enumerators discussed
above. For n ≥ 1, let

W<
n (x, t) :=

∑
w ∈ Wn

w1 < wn

tdes(w)xw

W>
n (x, t) :=

∑
w ∈ Wn

w1 > wn

tdes(w)xw

W=
n (x, t) :=

∑
w ∈ Wn

w1 = wn

tdes(w)xw.

Clearly

Wn(x, t) = W<
n (x, t) +W>

n (x, t) +W=
n (x, t)(1.14)

W̃n(x, t) = tW<
n (x, t) +W>

n (x, t) +W=
n (x, t)(1.15)

W �=
n (x, t) = W<

n (x, t) +W>
n (x, t)(1.16)

W̃ �=
n (x, t) = tW<

n (x, t) +W>
n (x, t).(1.17)
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It is an exercise in [18, Exercise 2.9.11] that W<
n (x, t), W>

n (x, t), and
W=

n (x, t) are symmetric in x. In Section 2, we derive results for W<
n (x, t),

W>
n (x, t), and W=

n (x, t) analogous to those of Wn(x, t), which not only es-
tablish symmetry, but also e-positivity of W<

n (x, t) and W>(x, t). When
appropriately combined they yield the above mentioned results for W̃n(x, t)

andW �=
n (x, t). They also enable us to recover the previous results forWn(x, t)

and W̃ �=
n (x, t). However they do not provide new proofs of the previous re-

sults since their proofs rely on these results.
The Smirnov word enumerator Wn(x, t) is an example of a chromatic

quasisymmetric function. (The chromatic quasisymmetric functions are a re-
finement of Stanley’s chromatic symmetric functions, which were introduced
by Shareshian and the second named author in [31, 32]). Indeed, Wn(x, t) is
the chromatic quasisymmetric function of the naturally labeled path graph
with n nodes. In Section 3 our results for W<

n (x, t) and W>
n (x, t) are used

to obtain new results in the study of chromatic quasisymmetric functions.
For instance, we use e-positivity of W<

n (x, t) and W>
n (x, t) to establish e-

positivity of the chromatic quasisymmetric function of the naturally labeled
cycle Cn, providing an example of an e-positive chromatic quasisymmet-
ric function not covered by the refinement of the Stanley–Stembridge e-
positivity conjecture appearing in [31, 32] nor by the directed graph version
appearing in [11, 12, 13].

Smirnov words have been used in the literature to enumerate uncon-
strained words; see e.g. [14, 23, 24, 25]. In a forthcoming paper we use
results discussed in this paper to obtain analogous results for unconstrained
words.

The paper is organized as follows. In Section 2, we derive our e-positivity
results for the Smirnov word enumerators W̃n(x, t), W

�=
n (x, t), W<

n (x, t), and
W>

n (x, t). Our e-positivity results for the chromatic quasisymmetric func-
tion of the naturally labeled cycle appear in Section 3. In Section 4, we
obtain the power sum expansions of the various Smirnov word enumerators.
Section 5 deals with expansions in Gessel’s basis of fundamental quasisym-
metric functions and consequences obtained by setting xi = 1 for i ∈ [m]
and xi = 0 otherwise. Finally, in Section 6, we apply stable principal special-
ization to the results of the previous sections to obtain results on variations
of q-Eulerian polynomials.

2. Expansion in the elementary symmetric functions

In this section we derive formulas that refine (1.4) and (1.9) and then use
the refinements to prove (1.11) and (1.12).
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Theorem 2.1. Let

D(x, t, z) := 1−
∑
i≥2

t[i− 1]tei(x)z
i,(2.1)

ai(t) :=
d

dt
[i]t =

i−2∑
j=0

(j + 1)tj ,

bi(t) := ti−1ai(t
−1) =

i−1∑
j=1

(i− j)tj ,

ci(t) := it[i− 2]t,

for all i ≥ 2. Then

∑
n≥1

W<
n (x, t)zn =

1

D(x, t, z)

∑
i≥2

ai(t) ei(x)z
i(2.2)

∑
n≥1

W>
n (x, t)zn =

1

D(x, t, z)

∑
i≥2

bi(t) ei(x)z
i(2.3)

∑
n≥1

W=
n (x, t)zn =

1

D(x, t, z)
(e1(x)z −

∑
i≥2

ci(t) ei(x)z
i).(2.4)

Before proving the theorem, we observe that

ai(t) + bi(t) = 1 + (i+ 1)t+ (i+ 1)t2 + · · ·+ (i+ 1)ti−2 + ti−1

= [i]t + it[i− 2]t.

Hence,

ai(t) + bi(t)− ci(t) = [i]t,

which shows that Theorem 2.1 refines (1.4) since W<
n (x, t) + W>

n (x, t) +
W=

n (x, t) = Wn(x, t). Also

tai(t) + bi(t) = it[i− 1]t,

which shows that Theorem 2.1 also refines (1.9) since tW<
n (x, t)+W>

n (x, t) =

W̃ �=
n (x, t).
We prove (2.4) first. Then we use (2.4), (1.4), and (1.9) to derive (2.2).

Equation (2.3) follows from (2.2). Our proof of (2.4) uses the transfer-matrix
method discussed in [36, Section 4.7] and borrows ingredients from the first
named author’s proof of (1.9) in [12].
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Before presenting the proof of (2.4), we give a brief review of the transfer-
matrix method. A walk of length n on a directed graph G = ([k], E) is a
sequence of vertices v0, v1, . . . , vn such that (vi−1, vi) ∈ E for all i ∈ [n].
A walk is closed if v0 = vn. We attach weights in some commutative ring
R to the edges of G. Let wt : E → R be the weight function. Now de-
fine the weight wt(w) of a walk w := v0, v1, . . . , vn to be the product
wt(v0, v1)wt(v1, v2) . . .wt(vn−1, vn). For each i, j ∈ [k], define Wi,j,n to be
the set of walks of length n from i to j and let

Ui,j,n :=
∑

w∈Wi,j,n

wt(w).

The transfer-matrix method enables one to express the generating func-
tion

∑
n≥0 Ui,j,nz

n in terms of the adjacency matrix A for the edge-weighted
digraph G. That is, A is the k × k matrix whose (i, j)-entry is

Ai,j :=

{
wt(i, j) if (i, j) ∈ E

0 otherwise.

Theorem 4.7.2 of [36] states that for all i, j ∈ [k],

(2.5)
∑
n≥0

Ui,j,nz
n =

(−1)i+j det(I − zA : j, i)

det(I − zA)
,

where (B : i, j) is the matrix obtained from matrix B by removing row i
and column j.

Proof of (2.4). As in [35] and [12], we view a Smirnov word w1w2 . . . wn

over the alphabet [k] as a walk w1, w2, . . . , wn of length n−1 on the digraph
G = ([k], E), where

E = {(i, j) : i, j ∈ [k] and i �= j}.

We let the edge weights belong to the commutative ring Z[x1, . . . , xk, t] and
for all (i, j) ∈ E, and we set

wt(i, j) :=

{
xj if i < j

txj if i > j.

Note that if w is a Smirnov word over the alphabet [k] then

tdes(w)xw = xw1
wt(w),
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where w1 is the first letter of w. Hence

W=
n (x1, . . . , xk, t) := W=

n (x1, . . . , xk, 0, 0, . . . , t) =

k∑
i=1

xiUi,i,n−1.

It follows from this and (2.5) that

∑
n≥1

W=
n (x1, . . . , xk, t)z

n = z

k∑
i=1

xi
∑
n≥0

Ui,i,nz
n

=
z
∑k

i=1 xi det(I − zA : i, i)

det(I − zA)
,(2.6)

where

A =

⎡
⎢⎢⎢⎢⎢⎣

0 x2 x3 . . . xk
tx1 0 x3 . . . xk
tx1 tx2 0 . . . xk
...

...
...

. . .
...

tx1 tx2 tx3 . . . 0

⎤
⎥⎥⎥⎥⎥⎦ .

In [12, Proof of Theorem 6.1], [13, p. 71], the first named author proves

that1

(2.7) det(I − zA) = 1−
∑
j≥2

ej(x1, . . . , xk) t[j − 1]tz
j .

It follows that

det(I − zA : i, i) = 1−
∑
j≥2

ej(x1, . . . , x̂i, . . . , xk) t[j − 1]tz
j ,

where x̂i denotes deletion of xi. Multiplying both sides by xi and summing

over all i ∈ [k] yields,

k∑
i=1

xi det(I − zA : i, i) =

k∑
i=1

xi −
∑
j≥2

k∑
i=1

xiej(x1, . . . , x̂i, . . . , xk) t[j − 1]tz
j .

1This is obtained from the formula in [12, 13] by replacing t with t−1 and each
xi with txi.
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One can see that

k∑
i=1

xiej(x1, . . . , x̂i, . . . , xk) = (j + 1)ej+1(x1, . . . , xk),

since both sides enumerate (j+1)-subsets of [k] with a distinguished element.
Hence

k∑
i=1

xi det(I−zA : i, i) = e1(x1, . . . , xk)−
∑
j≥2

(j+1)ej+1(x1, . . . , xk)t[j−1]tz
j .

Upon multiplying both sides by z, we see that the numerator of the right
hand side of (2.6) is

e1(x1, . . . , xk)z −
∑
j≥3

j ej(x1, . . . , xk)t[j − 2]tz
j .

It therefore follows from (2.6) and (2.7) that

∑
n≥1

W=
n (x1, . . . , xk, t)z

n =
e1(x1, . . . , xk)z−

∑
j≥3 j ej(x1, . . . , xk)t[j−2]tz

j

1−
∑

j≥2 ej(x1, . . . , xk) t[j − 1]tzj
.

The desired result (2.4) follows by taking the limit as k goes to infinity.

Proof of (2.2). It follows from (1.14), (1.4), and (2.4) that

(2.8)∑
n≥1

W<
n (x, t)zn +

∑
n≥1

W>
n (x, t)zn =

∑
n≥1

Wn(x, t)−
∑
n≥1

W=
n (x, t)

=
B(x, t, z)

D(x, t, z)
,

where

B(x, t, z) =
∑
i≥1

[i]tei(x)z
i − (e1(x)z −

∑
i≥2

it[i− 2]t ei(x)z
i)

=
∑
i≥2

[i]tei(x)z
i +

∑
i≥2

it[i− 2]t ei(x)z
i

=
∑
i≥2

([i]t + it[i− 2]t)ei(x)z
i .(2.9)
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It follows from (1.17) and (1.9) that

t
∑
n≥1

W<
n (x, t)zn +

∑
n≥1

W>
n (x, t)zn =

∑
n≥1

W̃ �=
n (x, t)zn(2.10)

=
C(x, t, z)

D(x, t, z)
,

where

C(x, t, z) =
∑
i≥2

it[i− 1]t ei(x)z
i.

By subtracting (2.8) from (2.10), we obtain

(t− 1)
∑
n≥1

W<
n (x, t)zn =

C(x, t, z)−B(x, t, z)

D(x, t, z)

=

∑
i≥2(it

i−1 − [i]t)ei(x)z
i

D(x, t, z)
.

Note that

(t− 1)(1 + 2t+ 3t2 + · · ·+ (i− 1)ti−2) = (i− 1)ti−1 − [i− 1]t

= iti−1 − [i]t.(2.11)

Hence

∑
n≥1

W<
n (x, t)zn =

∑
i≥2(1 + 2t+ 3t2 + · · ·+ (i− 1)ti−2) ei(x)z

i

D(x, t, z)

as desired.

Proof of (2.3). This follows immediately from (2.2), (2.8), and (2.9). For an
alternative proof, one can use (2.2) and the fact that W>

n (x, t) =
tn−1W<

n (x, t−1), which follows from the involution on the set of Smirnov
words that reverses each word.

Since

(2.12)
1

D(x, t, z)
=

∑
m≥0

⎛
⎝∑

i≥2

t[i− 1]tei(x)z
i

⎞
⎠

m

,

we have the following consequence of Theorem 2.1.
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Corollary 2.2. For all n ≥ 1, the polynomials W<
n (x, t) and W>

n (x, t) are

e-positive.

Note that it follows from Theorem 2.1 that the coefficient of en(x) in

the e-basis expansion of W=
n (x, t) is −nt[n − 2]t if n ≥ 2. Hence W=

n (x, t)

fails to be e-positive. However, observe that the coefficient cλ(t) of eλ(x) is

in N[t] if the smallest part of λ is 1, and −cλ(t) ∈ N[t] otherwise.

We obtain equivalent formulations of (2.2) and of (2.3) by multiplying

the numerators and denominators of the right hand sides of the equations

by 1− t.

Corollary 2.3. We have

∑
n≥1

W<
n (x, t)zn =

(1− t) ∂
∂t

∑
i≥2[i]t ei(x)z

i

E(tz)− tE(z)
,(2.13)

∑
n≥1

W>
n (x, t)zn =

(1− t)
∑

i≥2(
∑i−1

j=1(i− j)tj) ei(x)z
i

E(tz)− tE(z)
,(2.14)

where E(z) :=
∑

n≥0 en(x)z
n.

We now use Theorem 2.1 to prove (1.12) and (1.11), which we restate

here.

Corollary 2.4. We have

∑
n≥1

W �=
n (x, t)zn =

∑
i≥2([i]t + it[i− 2]t)ei(x)z

i

D(x, t, z)
.

Consequently, W �=
n (x, t) is e-positive.

Proof. We use the facts that W �=
n (x, t) = W<

n (x, t) +W>
n (x, t) and ai(t) +

bi(t) = [i]t + it[i− 2]t.

Corollary 2.5. We have

∑
n≥1

W̃n(x, t)z
n =

∑
i≥1 it

i−1ei(x)z
i

D(x, t, z)
.

Consequently, W̃n(x, t) is e-positive.
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Proof. We use the fact that

(2.15) W̃n(x, t) = tW<
n (x, t) + (Wn(x, t)−W<

n (x, t))

and equations (2.2), (2.11), and (1.4).

Corollary 2.6. We have

(2.16)
∑
n≥1

W̃n(x, t)z
n =

(1− t) ∂
∂tE(tz)

E(tz)− tE(z)
.

In [29, Theorem 5.1] (see also [32, Corollary C.5]), it is observed that

(1.4) implies that the Smirnov enumerator Wn(x, t) has a stronger property

than e-positivity, namely e-unimodality, and in [11, 12] the same is observed

for W̃ �=
n (x, t) as a consequence of (1.9). Here we show that W �=

n (x, t) also has

the stronger property, while W̃n(x, t) does not.

A polynomial A(t) = a0+a1t+ · · ·+ant
n ∈ Q[t] is said to be unimodal2

if

0 ≤ a0 ≤ a1 ≤ · · · ≤ ac−1 ≤ ac ≥ ac+1 ≥ · · · ≥ an ≥ 0,

for some c. Let ΛQ denote the Q-algebra of symmetric functions over x :=

x1, x2, . . . . Given r, s ∈ ΛQ, we say that r ≤e s if s− r is e-positive. A poly-

nomial A(t) = a0 + a1t+ · · ·+ ant
n ∈ ΛQ[t] is said to be e-unimodal if

0 ≤e a0 ≤e a1 ≤e · · · ≤e ac−1 ≤e ac ≥e ac+1 ≥e · · · ≥e an ≥e 0,

for some c. We say that A(t) (over any coefficient ring) is palindromic with

center of symmetry n
2 if aj = an−j for 0 ≤ j ≤ n. (Note that the center of

symmetry is unique unless A(t) is the zero polynomial, in which case every

number of the form n
2 , where n ∈ N, satisfies the definition of center of

symmetry.) It is easy to see that A(t) ∈ ΛQ[t] is e-unimodal and palindromic

with center of symmetry c if and only if the coefficient of each eλ in the e-

expansion of A(t) is a unimodal, palindromic polynomial in Q[t] with center

of symmetry c; see [32, Proposition B.3].

Lemma 2.7. Let (gn(t))n≥2 be a sequence of polynomials in Q[t], such that

each gn(t) is unimodal and palindromic with center of symmetry n+r
2 , where

2Note that our definition is nonstandard in that positivity of the coefficients is
also required.
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r ≥ −2 is a fixed integer. If (Gn(x, t))n≥2 is a sequence of polynomials in
ΛQ[t] that satisfies

∑
n≥2

Gn(x, t)z
n =

∑
n≥2 gn(t)en(x)z

n

D(x, t, z)
,

where D(x, t, z) is defined in (2.1), then each Gn(x, t) is e-unimodal and
palindromic with center of symmetry n+r

2 .

Proof. By (2.12),

(2.17) Gn(x, t) =
∑
m≥1

∑
k1, . . . , km ≥ 2∑m

i=1 ki = n

ek1
. . . ekm

tm−1gk1
(t)

m∏
i=2

[ki − 1]t.

Since the product of nonzero palindromic, unimodal polynomials is palin-
dromic, unimodal with center of symmetry equal to the sum of the centers
of symmetry of the factors (see e.g. [32, Proposition B.1]), for each nonzero
gk1

(t), the polynomial tm−1gk1
(t)

∏m
i=2[ki − 1]t is palindromic and unimodal

with center of symmetry equal to

m− 1 +
k1 + r

2
+

m∑
i=2

ki − 2

2
=

n+ r

2
.

Since the sum of palindromic, unimodal polynomials with the same center of
symmetry is palindromic and unimodal with the same center of symmetry
as the summands (see e.g. [32, Proposition B.3]), it follows from (2.17) that
Gn(x, t) is palindromic and e-unimodal with center of symmetry n+r

2 .

Corollary 2.8 (of Corollary 2.4). For all n ≥ 2, the Smirnov word enu-

merator W �=
n (x, t) is e-unimodal and palindromic with center of symmetry

n−1
2 .

Proof. Since [i]t + it[i − 2]t is unimodal and palindromic with center of
symmetry i−1

2 , the result follows from Lemma 2.7

We note that although Wn(x, t), W �=
n (x, t), and W̃ �=(x, t) are all e-

unimodal and palindromic, this is not the case for W̃n(x, t). Indeed, it follows
from Corollary 2.5 that

W̃5(x, t) = e4,1t+ (e2,2,1 + e4,1 + 2e3,2)t
2 + (e4,1 + 5e3,2)t

3 + (5e5)t
4,
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which is neither palindromic nor e-unimodal. However, for certain partitions
λ, the coefficient of eλ is a palindromic, unimodal polynomial in t.

Corollary 2.9 (of Corollary 2.5). For λ � n, let cλ(t) be the coefficient of
eλ in the expansion of W̃n(x, t) in the elementary symmetric functions. If
λ = (λ1 ≥ · · · ≥ λk−1 ≥ 1) then

cλ(t) = tk−1
k−1∏
i=1

[λi − 1]t,

which is palindromic and unimodal. If λ = jk then

cλ(t) = jtj+k−2[j − 1]k−1
t ,

which is palindromic and unimodal.

3. Chromatic quasisymmetric function of the cycle

In this section, we discuss the connection between the Smirnov word enumer-
ators and the chromatic quasisymmetric functions introduced by Shareshian
and the second named author in [31, 32]. We use results of the previous sec-
tion to provide an example of an e-positive chromatic quasisymmetric func-
tion not covered by the refinement of the Stanley–Stembridge e-positivity
conjecture appearing in [31, 32] or its directed graph extension appearing in
[11, 12].

A map κ : [n] → P is said to be a proper coloring of a graph G = ([n], E)
if κ(i) �= κ(j) for all {i, j} ∈ E. Now define the chromatic quasisymmetric
function3 of G as

XG(x, t) :=
∑

κ∈C(G)

tdes(κ)xκ(1)xκ(2) · · ·xκ(n),

where C(G) is the set of proper colorings κ : [n] → P of G and

(3.1) des(κ) := |{{i, j} ∈ E : i < j and κ(i) > κ(j)}|.

When t = 1, XG(x, t) is Stanley’s chromatic symmetric function XG(x).
Note thatXG(x, t) is a polynomial in t whose coefficients are quasisymmetric

3In the definition given in [32] ascents are counted instead of descents, but in
the case that XG(x, t) is symmetric, it is shown in [32, Corollary 2.7] that the
definitions are equivalent.
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functions. We view G as a labeled graph and note that the definition of
XG(x, t) depends on the vertex labeling, and not just on the isomorphism
class of G, as is the case for XG(x).

Since Smirnov words of length n can be viewed as proper colorings of
the naturally labeled path

Pn := ([n], {{i, i+ 1} : i ∈ [n− 1]}),

it follows that

Wn(x, t) = XPn
(x, t).

The Smirnov word enumerator W̃ �=
n (x, t) can also be viewed as a chro-

matic quasisymmetric function, but in the more general sense considered by
the first named author in [11, 12, 13] and Awan–Bernardi in [4, Section 8],
in which labeled graphs are replaced by directed graphs and the definition
of des(κ) given in (3.1) is replaced by

des(κ) := |{(i, j) ∈ E : κ(i) > κ(j)}|.

Labeled graphs can be viewed as directed graphs by orienting each edge
from smaller vertex to larger vertex; so the digraph version of chromatic
quasisymmetric function is more general than the labeled graph version.
One can see that

W̃ �=
n (x, t) = X−→

C n
(x, t),

where
−→
C n is the directed cycle defined by

−→
C n := ([n], {(i, i+ 1) : i ∈ [n− 1]} ∪ {(n, 1)}).

The longstanding Stanley–Stembridge conjecture [35] asserts thatXG(x)
is e-positive when G is the incomparability graph of a (3 + 1)-free poset. In
[19], Guay-Paquet proves that if the Stanley-Stembridge conjecture holds for
incomparability graphs of posets that are both (3 + 1)-free and (2 + 2)-free
(known as unit interval graphs) then it holds in general.

In [32] Shareshian and the second named author show that XG(x, t)
is symmetric when G is a unit interval graph with a certain natural la-
beling; these are called natural unit interval graphs. They also conjecture
that XG(x, t) is e-positive and e-unimodal when G is a natural unit interval
graph. The path Pn is an example of a natural unit interval graph for which
the conjecture holds since XPn

(x, t) = Wn(x, t). The symmetry result and
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e-positivity conjecture of [32] are generalized in [11, 12, 13] to a class of di-
rected graphs called circular indifference digraphs in [12, 13]. With the view
that a labeled graph is an acyclic digraph, the natural unit interval graphs
form the class of acyclic circular indifference digraphs. The directed cycle−→
C n is an example of a circular indifference digraph for which the extended
conjecture holds since X−→

C n
(x, t) = W̃ �=

n (x, t).

Here we consider the labeled cycle

(3.2) Cn := ([n], {{i, i+ 1} : i ∈ [n− 1]} ∪ {{1, n}}).

If we view Cn as a directed graph (by orienting its edges from smaller vertex
to larger vertex), we get a directed graph that is identical to the directed

cycle
−→
C n except for the edge (n, 1) in

−→
C n, which is oriented as (1, n) in Cn.

For n ≥ 4, the labeled cycle Cn is not a natural unit interval graph, nor is
it a circular indifference digraph. Nevertheless, since

(3.3) XCn
(x, t) = W<

n (x, t) + tW>
n (x, t),

it follows from Corollary 2.2 that XCn
(x, t) is symmetric and e-positive.

This shows that the class of labeled graphs with e-positive chromatic qua-
sisymmetric function is strictly larger than the class of natural unit interval
graphs, and the class of digraphs with e-positive chromatic quasisymmetric
function is strictly larger than the class of indifference digraphs.

Next we address the question of e-unimodality of XCn
(x, t). From The-

orem 2.1 and equation (3.3), we obtain the next result. For n > 0, let

[−n]t :=
t−n − 1

t− 1
= −t−n[n]t.

Corollary 3.1 (of Theorem 2.1). We have

(3.4)
∑
n≥2

XCn
(x, t)zn =

∑
i≥2([2]t[i]t + it2[i− 3]t)ei(x)z

i

D(x, t, z)
,

where D(x, t, z) is defined in (2.1).

Theorem 3.2. Let n ≥ 2.

1. If n is odd, XCn
(x, t) is e-unimodal and palindromic with center of

symmetry n
2 .

2. If n is even,
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(a) XCn
(x, t) is e-positive and palindromic with center of symmetry

n
2 , but is not e-unimodal.

(b) XCn
(x, t) + t

n

2 e2n
2
(x) is e-unimodal and palindromic with center

of symmetry n
2 .

Proof. Let Un(x, t) and Vn(x, t) be defined respectively by

∑
n≥2

Un(x, t)z
n =

([2]t[2]t + 2t2[2− 3]t)e2(x)z
2

D(x, t, z)

and ∑
n≥2

Vn(x, t)z
n =

∑
i≥3([2]t[i]t + it2[i− 3]t)ei(x)z

i

D(x, t, z)
.

Then XCn
(x, t) = Un(x, t) + Vn(x, t).

We have ∑
n≥2

Un(x, t)z
n =

(1 + t2)e2(x)z
2

D(x, t, z)
.

It follows from (2.12) that

(3.5) Un(x, t) =
∑
m≥1

∑
k2, . . . , km ≥ 2∑m

i=2 ki = n − 2

e2ek2
. . . ekm

tm−1(1 + t2)

m∏
i=2

[ki − 1]t.

Note that for any k ≥ 3

(1 + t2)[k]t = 1 + t+ 2t2 + · · ·+ 2tk−1 + tk + tk+1,

and for k = 2,

(1 + t2)[k]t = 1 + t+ t2 + t3.

In either case, (1 + t2)[k]t is unimodal and palindromic with center of sym-

metry k+1
2 .

As in the proof of Lemma 2.7, we use Propositions B.1 and B.3 of [32].

Consider the term of the right side of (3.5) corresponding to the (m − 1)-

tuple (k2, . . . , km). If kj ≥ 3 for some j ≥ 2 then since (1 + t2)[kj − 1]t is

unimodal and palindromic, tm−1(1+t2)
∏m

i=2[ki−1]t is a product of nonzero
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unimodal and palindromic polynomials. Hence tm−1(1 + t2)
∏m

i=2[ki − 1]t is
unimodal and palindromic with center of symmetry

m− 1 +
kj
2

+

m∑
i=2
i �=j

ki − 2

2
=

n

2
.

It follows that if λ has a part of size at least 3 then the coefficient of eλ in
Un(x, t) is palindromic and unimodal with center of symmetry n

2 . If λ does
not have a part of size at least 3 then all the parts must be 2, which means
that n is even. Hence if n is odd then Un(x, t) is e-unimodal and palindromic
with center of symmetry n

2 .

Now if λ does not have a part of size at least 3 then λ = 2m, where
n = 2m. By (3.5), the coefficient of eλ in Un(x, t) is t

m−1(1+ t2). Hence if λ
does not have a part of size at least 3 then coefficient of eλ in Un(x, t)+tme2m

is unimodal and palindromic with center of symmetry m = n
2 . From the

argument in the previous paragraph, the same is true if λ has a part of size
at least 3. It follows that if n is even, Un(x, t) + tme2m is e-unimodal and
palindromic with center of symmetry m = n

2 .

It follows from Lemma 2.7 that Vn(x, t) is also palindromic and e-
unimodal with center of symmetry n

2 . Since XCn
(x, t) = Un(x, t) + Vn(x, t),

Parts (1) and (2b) hold. Palindromicity of XCn
(x, t) in the even case follows

from Part (2b). The assertion in Part (2a) that XCn
(x, t) is not e-unimodal

in the even case follows from the fact the coefficient of e2m(x) is tm−1(1+t2),
which is not unimodal.

4. Expansion in the power sum symmetric functions

In this section we use the e-expansion for W̃n(x, t) given in Corollary 2.6 to
derive a power sum expansion for W̃n(x, t). From this we obtain power sum
expansions for the other Smirnov word enumerators.

Let An(t) be the Eulerian polynomial defined in (1.7) for n ≥ 1 and let

A0(t) := t−1.

Recall that ω is the standard involution on ΛQ taking the elementary sym-
metric function en to the complete homogeneous symmetric function hn,
and let

H(z) :=
∑
n≥0

hn(x)z
n,
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where hn(x) is the complete homogenous symmetric function of degree n.
Stembridge [38, Proposition 3.3] proves that

(4.1) 1 +
∑
n≥1

∑
λ�n

⎛
⎝A�(λ)(t)

�(λ)∏
i=1

[λi]t

⎞
⎠ pλ(x)

zλ
zn =

(1− t)H(z)

H(tz)− tH(z)

where λ = (λ1 ≥ λ2 ≥ · · · ≥ λ�(λ)) and

zλ :=
∏
i≥1

imimi!

if λ has mi parts of size i for each i. By combining this with (1.5) one obtains
the expansion of ωWn(x, t) in the power sum symmetric functions given in
(1.6).

We will use the e-expansion for W̃n(x, t) obtained in Section 2 to obtain

the following analog of (1.6), which expresses the coefficients of pλ(x)
zλ

in

the power sum expansion of ωW̃n(x, t) as a polynomial in t with positive
integer coefficients. (A combinatorial proof that does not make use of the
e-expansion is given in [13, Section 6.5].)

Theorem 4.1. For all n ≥ 1,

(4.2) ωW̃n(x, t) =
∑
λ�n

⎛
⎝A�(λ)−1(t)

�(λ)∑
i=1

λit
λi

∏
j∈[�(λ)]\{i}

[λj ]t

⎞
⎠ pλ(x)

zλ
,

where λ = (λ1 ≥ λ2 ≥ · · · ≥ λ�(λ)).

We will need the following Lemma, which is implicit in the proof of (4.1)
in [38]. We include the proof for the sake of completeness.

Lemma 4.2. For all k ≥ 1,

(4.3)

(
H(z)

H(tz)

)k

= 1 +
∑
n≥1

∑
λ�n

⎛
⎝k�(λ)

�(λ)∏
i=1

(1− tλi)

⎞
⎠ pλ(x)

zλ
zn.

Proof. For each k ≥ 1, let ϕk : ΛQ[z] → ΛQ[t, z] be the algebra homomor-
phism determined by

ϕk(pr(x)) = k(1− tr)pr(x)
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for all r ≥ 1. Since H(z) = 1 +
∑

n≥1

∑
λ�n

pλ

zλ
zn,

ϕk(H(z)) = 1 +
∑
n≥1

∑
λ�n

⎛
⎝k�(λ)

�(λ)∏
i=1

(1− tλi)

⎞
⎠ pλ

zλ
zn.

To complete the proof we show that ϕk(H(z)) is equal to the left hand
side of (4.3). We use the fact that

(4.4) H(z) = exp

⎛
⎝∑

r≥1

pr(x)

r
zr

⎞
⎠

to obtain

ϕk(H(z)) = exp

⎛
⎝∑

r≥1

ϕk(pr)

r
zr

⎞
⎠

= exp

⎛
⎝∑

r≥1

k(1− tr)pr
r

zr

⎞
⎠

=

⎛
⎝ exp

(∑
r≥1

pr

r z
r
)

exp
(∑

r≥1 t
r pr

r z
r
)
⎞
⎠

k

=

(
H(z)

H(tz)

)k

.

Proof of Theorem 4.1. For each λ � n, set

cλ(t) := A�(λ)−1(t)

�(λ)∑
i=1

λit
λi

∏
j∈[�(λ)]\{i}

[λj ]t.

We will prove that

(4.5)
∑
n≥1

∑
λ�n

cλ(t)
pλ(x)

zλ
zn =

(1− t) ∂
∂tH(tz)

H(tz)− tH(z)
,

which by Corollary 2.6 is equivalent to (4.2).
We have

cλ(t) = (t− 1)
A�(λ)−1(t)

(t− 1)�(λ)

�(λ)∑
i=1

λit
λi

∏
j∈[�(λ)]\{i}

(tλj − 1)
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= (t− 1)(−1)�(λ)
A�(λ)−1(t)

(1− t)�(λ)
t
d

dt

⎛
⎝�(λ)∏

j=1

(tλj − 1)

⎞
⎠

= (t− 1)
tA�(λ)−1(t)

(1− t)�(λ)
d

dt

⎛
⎝�(λ)∏

j=1

(1− tλj )

⎞
⎠ .

For the case �(λ) = 1, we have

c(n)(t) = ntn−1.

For the case �(λ) > 1, we use the classical identity4 (see [36, Proposition

1.4.4 and equation (1.36)]),

(4.6)
tAm−1(t)

(1− t)m
=

∑
k≥1

km−1tk,

for all m > 1. This yields

cλ(t) = (t− 1)
∑
k≥1

k�(λ)−1tk
d

dt

⎛
⎝�(λ)∏

j=1

(1− tλj )

⎞
⎠

= (t− 1)
∑
k≥1

tk

k

d

dt

⎛
⎝k�(λ)

�(λ)∏
j=1

(1− tλj )

⎞
⎠ .

It follows that

(4.7)
∑
n≥1

∑
λ�n

cλ(t)
pλ(x)

zλ
zn =

∑
n≥1

ntn−1 pn(x)

n
zn+(t−1)

∑
k≥1

tk

k

∂

∂t
Uk(x, t, z)

where

Uk(x, t, z) :=
∑
n≥1

∑
λ � n

�(λ) > 1

k�(λ)
�(λ)∏
j=1

(1− tλj )
pλ(x)

zλ
zn.

Note that the first summation on the right hand side of (4.7) can be

4This is Euler’s original definition of what we now call Eulerian polynomials.
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expressed as

∑
n≥1

ntn−1 pn
n
zn =

∂

∂t

∑
n≥1

tn
pn
n
zn

=
∂

∂t
lnH(tz)

=
∂
dt(H(tz))

H(tz)
(4.8)

with the second equality following from (4.4).

To evaluate the second summation on the right hand side of (4.7), we

use Lemma 4.2 to obtain

Uk(x, t, z) =
∑
n≥1

∑
λ�n

k�(λ)
�(λ)∏
j=1

(1− tλj )
pλ(x)

zλ
zn −

∑
n≥1

k(1− tn)
pn(x)

n
zn

=

(
H(z)

H(tz)

)k

− 1− k
∑
n≥1

(1− tn)
pn(x)

n
zn.

By (4.8),

∂

∂t
Uk(x, t, z) = k

(
H(z)

H(tz)

)k−1 ∂

∂t

(
H(z)

H(tz)

)
+ k

∑
n≥1

tn−1pn(x)z
n

= −k

((
H(z)

H(tz)

)k ∂
∂t(H(tz))

H(tz)
−

∂
∂t(H(tz))

H(tz)

)

= −k

((
H(z)

H(tz)

)k

− 1

)
∂
∂t(H(tz))

H(tz)
.

Hence the second summation is

−
∂
∂t(H(tz))

H(tz)

∑
k≥1

tk

((
H(z)

H(tz)

)k

− 1

)
.

Plugging this and (4.8) into (4.7) yields

∑
n≥1

∑
λ�n

cλ(t)
pλ(x)

zλ
zn
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=
∂
∂t(H(tz))

H(tz)

+ (1− t)
∂
∂t(H(tz))

H(tz)

∑
k≥1

tk

((
H(z)

H(tz)

)k

− 1

)

=
∂
∂t(H(tz))

H(tz)

⎛
⎝1 + (1− t)

∑
k≥1

tk

((
H(z)

H(tz)

)k

− 1

)⎞
⎠

=
∂
dt(H(tz))

H(tz)

⎛
⎝1− (1− t)

∑
k≥0

tk + (1− t)
∑
k≥0

tk
(

H(z)

H(tz)

)k
⎞
⎠

=
∂
∂t(H(tz))

H(tz)
(1− t)

1

1− t H(z)
H(tz)

=
(1− t) ∂

∂tH(tz)

H(tz)− tH(z)
,

which establishes (4.5).

The following result expresses the coefficients of pλ(x)
zλ

in the power sum
expansion of ωW<

n (x, t) as a polynomial in t with positive integer coefficients.

Theorem 4.3. For all n ≥ 1,

ωW<
n (x, t) =

∑
λ�n

d

dt

⎛
⎝tA�(λ)−1(t)

�(λ)∏
i=1

[λi]t

⎞
⎠ pλ(x)

zλ
.

Proof. Let c<λ (t) be the coefficient of (zλ)
−1pλ(x) in ωW<

n (x, t). By (1.14)

and (1.15), ωW<
n (x, t) = (t−1)−1(ωW̃n(x, t)−ωWn(x, t)). Hence from (4.2)

and (1.6), we obtain,

c<λ (t) = (t− 1)−1

⎛
⎝A�(λ)−1(t)

�(λ)∑
i=1

λit
λi

∏
j∈[λ(l)]\{i}

[λj ]t −A�(λ)(t)

�(λ)∏
i=1

[λi]t

⎞
⎠

=
A�(λ)−1(t)

(t− 1)�(λ)

�(λ)∑
i=1

λit
λi

∏
j∈[λ(l)]\{i}

(tλj − 1)−
A�(λ)(t)

(t− 1)�(λ)+1

�(λ)∏
i=1

(tλi − 1)

=
tA�(λ)−1(t)

(t− 1)�(λ)
d

dt

⎛
⎝�(λ)∏

i=1

(tλi − 1)

⎞
⎠−

A�(λ)(t)

(t− 1)�(λ)+1

�(λ)∏
i=1

(tλi − 1).
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From (4.6), one can see that

d

dt

(
tA�(λ)−1(t)

(1− t)�(λ)

)
=

A�(λ)(t)

(1− t)�(λ)+1
.

Hence,

c<λ (t) =
tA�(λ)−1(t)

(t− 1)�(λ)
d

dt

⎛
⎝�(λ)∏

i=1

(tλi − 1)

⎞
⎠+

d

dt

(
tA�(λ)−1(t)

(t− 1)�(λ)

) �(λ)∏
i=1

(tλi − 1)

=
d

dt

⎛
⎝ tA�(λ)−1(t)

(t− 1)�(λ)

�(λ)∏
i=1

(tλi − 1)

⎞
⎠

=
d

dt

⎛
⎝tA�(λ)−1(t)

�(λ)∏
i=1

[λi]t

⎞
⎠ .

Corollary 4.4. For λ � n, let c<λ (t) be the coefficient of z−1
λ pλ(x) in the

power sum expansion of ωW<
n (x, t) and c>λ (t) be the coefficient of z−1

λ pλ(x)

in the power sum expansion of ωW>
n (x, t). If (a0, a1, . . . , an−1) satisfies

(4.9) tA�(λ)−1(t)

�(λ)∏
i=1

[λi]t =

n−1∑
i=0

ait
i

then

c<λ (t) =

n−2∑
i=0

(i+ 1)ai+1t
i and c>λ (t) =

n−1∑
i=1

(n− i)an−it
i.

Consequently for λ = (n),

(4.10) c<(n)(t) =

n−2∑
i=0

(i+ 1)ti and c>(n)(t) =

n−1∑
i=1

(n− i)ti.

Proof. We use the fact that W>
n (x, t) = tn−1W<

n (x, t−1).

One can use Corollary 4.4 to expand the other Smirnov word enumer-

ators in the power sum basis. For instance, one can recover the expansion

given in (1.10), which we restate now.
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Corollary 4.5 (Ellzey [12]). For λ � n, let c̃�=λ (t) be the coefficient of

z−1
λ pλ(x) in the power sum expansion of ωW̃ �=

n (x, t). Then

c̃ �=λ (t) =

{
ntA�(λ)−1(t)

∏�(λ)
i=1 [λi]t if �(λ) > 1

nt[n− 1]t if �(λ) = 1.

Proof. We have

c̃ �=λ (t) = tc<λ (t) + c>λ (t)

=

n−1∑
i=1

iait
i +

n−1∑
i=1

(n− i)an−it
i,

where the ai are as in (4.9).
Now let �(λ) > 1. We claim that ai = an−i for all i ∈ [n− 1]. Indeed, it

is well known that the Eulerian polynomials are palindromic and unimodal.
Clearly the same is true for each [λi]t. Hence

∑n−1
i=0 ait

i is the product of
palindromic, unimodal polynomials, which implies by [32, Proposition B.1]
that it is palindromic (and unimodal). Note that a0 = 0 when �(λ) > 1 and
a1, an−1 �= 0. Hence the claim holds. It follows that

c̃ �=λ (t) =

n−1∑
i=1

iait
i +

n−1∑
i=1

(n− i)ait
i

=

n−1∑
i=1

nait
i

= ntA�(λ)−1(t)

�(λ)∏
i=1

[λi]t.

The case �(λ) = 1 follows immediately from (4.10).

For the Smirnov word enumeratorW �=
n (x, t) and the chromatic quasisym-

metric function XCn
(x, t), the formulas for the expansion coefficients in the

power sum basis that follow from Corollary 4.4 do not seem to reduce to
simple formulas except when λ = (n). We have the following result in this
case.

Corollary 4.6. The coefficient of n−1pn(x) in the power sum expansion of

ωW �=
n (x, t) is [n]t+nt[n−2]t and in the power sum expansion of ωXCn

(x, t)
is [2]t[n]t + nt2[n− 3]t.
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Remark 4.7. Corollary 4.6 also follows from Corollaries 2.4 and 3.1 since
the coefficient of hn in the h-expansion of a symmetric function equals the
coefficient of n−1pn in the power sum expansion.

5. Expansion in the fundamental quasisymmetric functions

In [32], Shareshian and the second named author derive, for all labeled
incomparability graphs, an expansion of the chromatic quasisymmetic func-
tion in Gessel’s basis of fundamental quasisymmetric functions, and the first
named author does the same for all directed graphs in [12]. The expansion
formula in [32, Theorem 3.1] applied to ωXPn

(x, t) = ωWn(x, t) is given in
(5.2) below. (A different expansion formula is obtained by applying the for-
mula in [12].) Here we give analogous expansions for ωW<

n (x, t), ωW>
n (x, t),

and ωW̃n(x, t). These expansions immediately yield expansion formulas for
the chromatic quasisymmetric functions X−→

C n
(x, t) and XCn

(x, t), which are

different from the ones obtained by applying the formula in [12].
For n ≥ 1 and S ⊆ [n−1], let D(S) be the set of all functions f : [n] → P

such that

• f(i) ≥ f(i+ 1) for all i ∈ [n− 1], and
• f(i) > f(i+ 1) for all i ∈ S.

The fundamental quasisymmetric function associated with S ⊆ [n] is defined
as5

Fn,S(x) :=
∑

f∈D(S)

xf ,

where xf := xf(1)xf(2) · · ·xf(n). In fact, the set {Fn,S : S ⊆ [n−1]} is a basis
for the vector space of homogeneous quasisymmetric functions of degree n;
see [37, Proposition 7.19.1].

Let ω be the linear involution on the ring of quasisymmetric functions
defined on the basis of fundamental quasisymmetric functions by

(5.1) ωFn,S := Fn,[n−1]\S .

It can be shown that ω is a ring automorphism; see [37, Exercise 7.94 a].
Since ω takes hn = Fn,∅ to en = Fn,[n−1], the involution ω restricts to the
usual involution ω on the ring of symmetric functions.

5This is nonstandard notation for Gessel’s fundamental quasisymmetric function.
Our Fn,S is equal to Lα(S) in [37], where α(S) is the reverse of the composition
associated with S.
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For σ ∈ Sn and k ∈ [n], define

DES(σ) := {i ∈ [n− 1] : σ(i) > σ(i+ 1)},
DES≥k(σ) := {i ∈ [n− 1] : σ(i)− σ(i+ 1) ≥ k},
ASC≥k(σ) := {i ∈ [n− 1] : σ(i+ 1)− σ(i) ≥ k}.

Note that DES(σ) = DES≥1(σ) and des(σ) = |DES(σ)|.
The expansion formula in [32, Theorem 3.1] applied to XPn

(x, t) =
Wn(x, t) yields

(5.2) ωWn(x, t) =
∑
σ∈Sn

tdes(σ)Fn,DES≥2(σ−1)(x).

Now we give analogous expansions.

Theorem 5.1. For all n ≥ 1,

ωW<
n (x, t) =

∑
σ∈Sn

σ(1)<σ(n)

tdes(σ)Fn,DES≥2(σ−1)(x)(5.3)

ωW>
n (x, t) =

∑
σ∈Sn

σ(1)>σ(n)

tdes(σ)Fn,ASC≥2(σ−1)(x).(5.4)

Proof of (5.3). The first part of the proof is similar to that of [32, Theorem
3.1], which is based on the t = 1 case in [8, Corollary 2], and to that of [12,
Theorem 3.1]. The second part diverges somewhat from these proofs.

Part 1 An acyclic orientation of a graph G = (V,E) is an assignment
of a direction to each e ∈ E that produces no directed cycles. An acyclic
orientation yields an acyclic directed graph on V whose edges are of the
form (u, v) where {u, v} ∈ E. Clearly, to avoid cycles, only one of (u, v) and
(v, u) can be an edge of the directed graph.

Given an acyclic orientation ā of the labeled path Pn, let E(ā) be the set
of directed edges of Pn under the orientation ā. Let AO>

n be the set of all
acyclic orientations ā of Pn except for the one for which E(ā) = {(i, i+ 1) :
i ∈ [n− 1]}.

For each ā ∈ AO>
n , let Wā be the set of Smirnov words w = w1w2 · · ·wn

such that the following hold:

• w1 > wn,
• wi < wi+1 if (i, i+ 1) ∈ E(ā) and i ∈ [n− 1],
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• wi > wi+1 if (i+ 1, i) ∈ E(ā) and i ∈ [n− 1].

For ā ∈ AO>
n , let asc(ā) be the number of directed edges in E(ā) of the

form (i, i+1) where i ∈ [n−1]. For w ∈ Wn, let asc(w) := |{i ∈ [n−1] : wi <
wi+1}|. Clearly if w ∈ Wā then asc(w) = asc(ā). Also each w ∈ Wn for which
w1 > wn belongs to a unique Wā, where ā ∈ AO>

n . Thus by the involution
on Wn that reverses Smirnov words, i.e. sends w1w2 · · ·wn to wnwn−1 · · ·w1,
we can see that

(5.5) W<
n (x, t) =

∑
w∈Wn
w1>wn

xwt
asc(w) =

∑
ā∈AO>

n

tasc(ā)
∑

w∈Wā

xw.

Now for each acyclic orientation ā ∈ AO>
n , define a poset Pā on [n] by

letting i <Pā
j if (i, j) ∈ E(ā) ∪ {(n, 1)} and taking the transitive closure of

this antisymmetric relation. Let us define a labeling of Pā to be a bijection
from Pā to [n], so a labeling is just a permutation in Sn. A labeling ρ is
said to be decreasing if ρ(i) > ρ(j) for all i <Pā

j. A linear extension of Pā

under a labeling ρ is a listing of its labeled elements ρ(p1), ρ(p2), . . . , ρ(pn)
such that if pi <Pā

pj then i < j. We view this list as a permutation in Sn

written in one line notation. Let L(Pā, ρ) be the set of linear extensions of
Pā under the labeling ρ.

Now fix a decreasing labeling ρā of Pā for each ā ∈ AO>
n . For any subset

S ⊆ [n−1], define n−S = {i | n−i ∈ S}. Then by the theory of P -partitions
[37, Corollary 7.19.5], we have that

(5.6)
∑

w∈Wā

xw =
∑

σ∈L(Pā,ρā)

Fn,n−DES(σ),

where DES(σ) is the usual descent set of a permutation, i.e. DES(σ) = {i ∈
[n− 1] : σ(i) > σ(i+ 1)}.

Let e : Pā → [n] be the identity labeling of Pā. Hence L(Pā, e) is the set
of linear extensions of Pā with its original labeling. Note that σ ∈ L(Pā, e)
if and only if ρāσ ∈ L(Pā, ρā), where ρāσ denotes the product of ρā and σ
in Sn. Hence from (5.6), we have

(5.7)
∑

w∈Wā

xw =
∑

σ∈L(Pā,e)

Fn,n−DES(ρāσ).

Note that if ā ∈ AO>
n and σ ∈ L(Pā, e) then σ−1(1) > σ−1(n). Con-

versely, every permutation σ ∈ Sn with σ−1(1) > σ−1(n) is a linear exten-
sion in L(Pā, e) for a unique ā ∈ AO>

n . Let ā(σ) denote this unique element



444 Brittney Ellzey and Michelle L. Wachs

of AO>
n associated with σ. Now combining (5.7) with (5.5) yields

W<
n (x, t) =

∑
ā∈AO>

n

tasc(ā)
∑

σ∈L(Pā,e)

Fn,n−DES(ρāσ)

=
∑
σ∈Sn

σ−1(1)>σ−1(n)

tasc(ā(σ))Fn,n−DES(ρā(σ)σ),

where recall ρā(σ) is a decreasing labeling of Pā(σ). Note that asc(ā(σ)) =

des((σR)−1), where σR is the reverse of σ. Hence

(5.8) W<
n (x, t) =

∑
σ∈Sn

σ−1(1)>σ−1(n)

tdes((σ
R)−1)Fn,n−DES(ρā(σ)σ).

Part 2 As in the proof of [32, Theorem 3.1], our next step is to construct
a particular decreasing labeling ρ̃ā of Pā for each ā ∈ AO>

n . However the
construction in the proof of [32, Theorem 3.1] does not work in this case
because E(ā) ∪ {(n, 1)} is not the edge set of an acyclic orientation of an
incomparability graph. The construction used here is also quite different
from that of [12, Theorem 3.1].

Let P be the poset whose covering relations are those of Pā minus the
relation n <Pā

1. One can see that the covering relations of P are given by
one of the following:

1. 1 >P 2 >P · · · >P n
2. 1 >P 2 >P · · · >P i1 <P i1 + 1 <P · · · <P i2 >P i2 + 1 >P · · ·
3. 1 <P 2 <P · · · <P i1 >P i1 + 1 >P · · · >P i2 <P i2 + 1 <P · · ·

where 1 < i1 < i2 < · · · < ik < n and k ≥ 1. In the first case let

ρ̃ā(1) = 1, ρ̃ā(2) = 2, . . . , ρ̃ā(n) = n.

In the second case let

ρ̃ā(1) = 1, ρ̃ā(2) = 2, . . . , ρ̃ā(i1 − 1) = i1 − 1,

ρ̃ā(i2) = i1, ρ̃ā(i2 − 1) = i1 + 1 . . . , ρ̃ā(i1) = i2,

ρ̃ā(i2 + 1) = i2 + 1, ρ̃ā(i2 + 2) = i2 + 2, . . . , ρ̃ā(i3 − 1) = i3 − 1,

· · · .

In the third case let

ρ̃ā(i1) = 1, ρ̃ā(i1 − 1) = 2, . . . , ρ̃ā(1) = i1,
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ρ̃ā(i1 + 1) = i1 + 1, ρ̃ā(i1 + 2) = i1 + 2, . . . , ρ̃ā(i2 − 1) = i2 − 1,

ρ̃ā(i3) = i2, ρ̃ā(i3 − 1) = i2 + 1, . . . , ρ̃ā(i2) = i3,

· · · .

One can see that in all three cases ρ̃ā is a decreasing labeling of Pā. Also

it is easy to see that in all three cases the following claim holds.

Claim. For each ā ∈ AO>
n , if x and y are incomparable in Pā and

x < y then ρ̃ā(x) < ρ̃ā(y).

We use the claim to show that

(5.9) DES(ρ̃ā(σ)σ) = [n− 1] \ASC≥2(σ),

for all σ ∈ Sn. If i ∈ DES(ρ̃ā(σ)σ) then ρ̃ā(σ)σ(i) > ρ̃ā(σ)σ(i + 1). It thus

follows from the claim that if σ(i) and σ(i + 1) are incomparable in Pā(σ)

then σ(i) > σ(i + 1), which implies i /∈ ASC≥2(σ). On the other hand if

σ(i) and σ(i + 1) are comparable in Pā(σ) then σ(i + 1) covers σ(i) since

σ ∈ L(Pā(σ), e). This implies that one of the following holds

• σ(i+ 1) = σ(i) + 1,

• σ(i+ 1) = σ(i)− 1,

• σ(i+ 1) = 1 and σ(i) = n.

In all cases, i /∈ ASC≥2(σ). Thus

DES(ρ̃ā(σ)σ) ⊆ [n− 1] \ASC≥2(σ).

Conversely, if i /∈ DES(ρ̃ā(σ)σ) then ρ̃ā(σ)σ(i) < ρ̃ā(σ)σ(i + 1). It thus

follows from the claim that if σ(i) and σ(i + 1) are incomparable in Pā(σ)

then σ(i) < σ(i + 1). Since j and j + 1 are comparable in Pā(σ) for all

j ∈ [n− 1], we have σ(i+ 1)− σ(i) ≥ 2. Thus i ∈ ASC≥2(σ). On the other

hand, if σ(i) and σ(i+ 1) are comparable in Pā(σ) then σ(i) <Pā(σ)
σ(i+ 1)

since σ ∈ L(Pā(σ), e). But since ρ̃ā(σ) is a decreasing labeling, ρ̃ā(σ)σ(i) >

ρ̃ā(σ)σ(i+1), which contradicts our assumption that i /∈ DES(ρ̃ā(σ)σ). Hence

this case is impossible. We have shown

DES(ρ̃ā(σ)σ) ⊇ [n− 1] \ASC≥2(σ),

which completes the proof of (5.9).
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Hence by (5.1) and (5.9), equation (5.8) becomes

ωW<
n (x, t) =

∑
σ∈Sn

σ−1(1)>σ−1(n)

tdes((σ
R)−1)Fn,n−ASC≥2(σ)

=
∑
σ∈Sn

σ−1(1)<σ−1(n)

tdes(σ
−1)Fn,DES≥2(σ).

Remark 5.2. There is an alternative proof of Theorem 5.1 involving stan-

dardization, which will be given in a forthcoming paper.

Proof of (5.4). A similar proof can be given here. One can also use (5.3) to

prove this. Indeed, by the involution on Wn that reverses Smirnov words,

we obtain

W>
n (x, t) = tn−1W<

n (x, t−1).

By the involution on Sn that reverses permutations,

∑
σ∈Sn

σ(1)>σ(n)

tdes(σ)Fn,ASC≥2(σ−1) =
∑
σ∈Sn

σ(1)<σ(n)

tn−1−des(σ)Fn,DES≥2(σ−1).

The result now follows from (5.3).

By combining (5.2), (5.3), and (5.4), one gets fundamental quasisymmet-

ric function expansions of the other Smirnov word enumerators W=
n (x, t),

W �=
n (x, t), W̃n(x, t), W̃

�=
n (x, t) and of the chromatic quasisymmetric function

XCn
(x, t). The resulting expansion for W̃n(x, t) has a particularly nice form.

Corollary 5.3. For all n ≥ 1,

(5.10) ωW̃n(x, t) =
∑
σ∈Sn

tcdes(σ)Fn,DES≥2(σ−1)(x).

Proof. We use the fact that W̃n(x, t) = tW<
n (x, t) + (Wn(x, t)−W<

n (x, t)).

By (5.2) and (5.3),

ωWn(x, t)− ωW<
n (x, t) =

∑
σ∈Sn

σ(1)>σ(n)

tdes(σ)Fn,DES≥2(σ−1).



Smirnov word enumerator 447

It follows from this and (5.3) that

ωW̃n(x, t) =
∑
σ∈Sn

σ(1)<σ(n)

tdes(σ)+1Fn,DES≥2(σ−1)+
∑
σ∈Sn

σ(1)>σ(n)

tdes(σ)Fn,DES≥2(σ−1)

=
∑
σ∈Sn

tcdes(σ)Fn,DES≥2(σ−1).

There are various ways to specialize expansions in the fundamental qua-
sisymmetric functions to obtain enumerative results. One way is by setting
xi = 1 if i ∈ [m] and xi = 0 otherwise, in a formal power series f(x). We
denote this specialization by f(1m). (Another way is discussed in the next
section.) It is not difficult to show that (see [37, Section 7.19]),

Fn,S(1
m) =

(
m+ n− 1− |S|

n

)
,

for all S ⊆ [n− 1]. It is clear that

Wn(1
m, t) =

∑
w∈Wn∩[m]n

tdes(w).

Hence by (5.2) and the fact that ωFn,S = Fn,[n−1]\S ,

(5.11)
∑

w∈Wn∩[m]n

tdes(w) =
∑
σ∈Sn

tdes(σ)
(
m+ |DES≥2(σ

−1)|
n

)
,

for all m,n ∈ P. Analogous formulas can be obtained by applying the same
specialization to the expansions (5.3), (5.4), and (5.10). The expansions (5.3)
and (5.10) yield the following result.

Corollary 5.4. For all m,n ≥ 1,

(5.12)
∑

w∈Wn∩[m]n

w1<wn

tdes(w) =
∑
σ∈Sn

σ(1)<σ(n)

tdes(σ)
(
m+ |DES≥2(σ

−1)|
n

)

and

(5.13)
∑

w∈Wn∩[m]n

tcdes(w) =
∑
σ∈Sn

tcdes(σ)
(
m+ |DES≥2(σ

−1)|
n

)
.
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Remark 5.5. In [23, 24], LoBue Tiefenbruck and Remmel study the distri-

bution of a pair of interesting statistics on Smirnov words in [m]n different

from des and cdes. They use the fact that their statistics are preserved by

a contraction map from unconstrained words to Smirnov words to transfer

their results from Smirnov words to unconstrained words. Since des and cdes

are also preserved by the contraction map, we can also transfer our results

to unconstrained words.

Remark 5.6. We now describe a proof of (1.4) that is different from the proof

in [29] discussed in the introduction. Theorem 3.1 of [32] gives a fundamental

quasisymmetric function expansion of the chromatic quasisymmetric func-

tion XG(x, t) when G is an incomparability graph. (This reduces to (5.2)

when G is the path Pn.) In [2], Athanasiadis proves that the fundamental

quasisymmetric function expansion implies the conjectured formula (7.14)

of [32], which gives a power sum symmetric function expansion of XG(x, t)

when G is a natural unit interval graph. It is shown in [32, Proof of Propo-

sition 7.9] that when G = Pn, the power sum symmetric function expansion

reduces to (7.15) of [32], which is

ωXPn
(x, t) =

∑
λ�n

⎛
⎝A�(λ)(t)

�(λ)∏
i=1

[λi]t

⎞
⎠ pλ(x)

zλ
.

Hence since Wn(x, t) = XPn
(x, t), Stembridge’s formula (4.1) implies (1.5),

which is equivalent to (1.4).

6. Variations of q-Eulerian polynomials

Recall that the Eulerian polynomials An(t) have two well-known combina-

torial interpretations, which are given by

An(t) :=
∑
σ∈Sn

tdes(σ) =
∑
σ∈Sn

texc(σ),

where des(σ) = |{i ∈ [n− 1] : σ(i) > σ(i+ 1)}| and exc(σ) = |{i ∈ [n− 1] :

σ(i) > i}|. Also recall that Euler’s exponential generating function for the

Eulerian polynomials is given by

1 +
∑
n≥1

An(t)
zn

n!
=

(1− t)ez

etz − tez
.
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In [29] and [32], Shareshian and the second named author obtained com-
binatorial interpretations of the q-Eulerian polynomials An(q, t) that satisfy
the q-exponential generating function formula

1 +
∑
n≥1

An(q, t)
zn

[n]q!
=

(1− t) expq(z)

expq(tz)− t expq(z)
(6.1)

= 1 +
(1− t)

∑
i≥2[i]t

zi

[i]q!

expq(tz)− t expq(z)
,

where

[n]q! := [n]q[n− 1]q . . . [1]q and expq(z) :=
∑
n≥0

zn

[n]q!
.

The interpretation in [29] is given by

(6.2) An(q, t) =
∑
σ∈Sn

qmaj(σ)−exc(σ)texc(σ)

and the interpretation in [32] is given by

(6.3) An(q, t) =
∑
σ∈Sn

qmaj≥2(σ
−1)tdes(σ)

where

maj(σ) =
∑

i∈[n−1]
σ(i+1)>σ(i)

i and maj≥k(σ) :=
∑

i∈[n−1]
σ(i+1)−σ(i)≥k

i,

for all k ≥ 1. (The permutation statistic maj≥k + inv<k, where inv<k(σ) =
|{(i, j) : i < j, 0 < σ(i) − σ(j) < k}|, was introduced by Rawlings in [26]
who showed it was equidistributed with maj.) Both q-analogs of An(t) were
obtained by expanding ωWn(x, t) in the fundamental quasisymmetric func-
tions and then taking the stable principal specialization. A formulation of
the expansion obtained in [29] yields (6.2), while the formulation (5.2) ob-
tained in [32] yields (6.3); see [32, Proof of Theorem 9.7]. From this it follows
that the two q-analogs are equal. (A subsequent bijective proof was obtained
by Bigeni in [6].)

In this section, we use results of the previous sections to obtain analogs
of (6.1) for variations of the interpretation of An(q, t) given by (6.3). The
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variations are defined by

A<
n (q, t) :=

∑
σ∈Sn

σ(1)<σ(n)

qmaj≥2(σ
−1)tdes(σ)

and

Ãn(q, t) :=
∑
σ∈Sn

qmaj≥2(σ
−1)tcdes(σ).

We also obtain nice formulas for A<
n (q, t) and Ãn(q, t) evaluated at nth roots

of unity.
The stable principal specialization ps(G(x)) of a quasisymmetric function

G(x) is obtained from G(x) by substituting qi−1 for xi for all i ≥ 1. By [16,
Lemma 5.2],

ps(Fn,S(x)) =

∑
i∈S qi

(1− q)(1− q2) · · · (1− qn)

for all S ⊆ [n− 1]. Hence by (5.2), (5.3), and (5.10), respectively,

ps(ωWn(x, t)) =
An(q, t)

(1− q)(1− q2) · · · (1− qn)
(6.4)

ps(ωW<
n (x, t)) =

A<
n (q, t)

(1− q)(1− q2) · · · (1− qn)
(6.5)

ps(ωW̃n(x, t)) =
Ãn(q, t)

(1− q)(1− q2) · · · (1− qn)
.(6.6)

In [29, 32], first ω is applied to both sides of (1.5), then the stable
principal specialization is taken using (6.4), and finally z is replaced by
(1 − q)z resulting in (6.1). By doing the same to (2.13) and (2.16), using
(6.5) and (6.6), respectively, we obtain the following result.

Theorem 6.1. We have

∑
n≥1

A<
n (q, t)

zn

[n]q!
=

(1− t) ∂
∂t

∑
i≥2[i]t

zi

[i]q!

expq(tz)− t expq(z)

∑
n≥1

Ãn(q, t)
zn

[n]q!
=

(1− t) ∂
∂t expq(tz)

expq(tz)− t expq(z)
.

In [27, Corollary 6.2], Sagan, Shareshian and the second named author
show that for every nth root of unity ξ, the coefficients of the polynomial
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An(ξ, t) are positive integers. More precisely, they show that if k|n and ξk
is any primitive kth root of unity then

(6.7) An(ξk, t) = An

k
(t) [k]

n

k

t .

Consequently, An(ξk, t) is a palindromic, unimodal polynomial in N[t]. Here
we prove analogous results for other Smirnov word enumerators.

A key tool in the proof of (6.7) is the following result, which is implicit
in [9] and stated explicitly in [27].

Lemma 6.2 (see [27, Proposition 3.1]). Let R be a commutative ring. Sup-
pose u(q) ∈ R[q] and there exists a homogeneous symmetric function U(x)
of degree n with coefficients in R such that

u(q) = (1− q)(1− q2) . . . (1− qn) ps(U(x)).

If k|n then u(ξk) is the coefficient of z−1

(k
n
k )
p(k n

k ) in the expansion of U(x) in

the power sum basis.

In [27], (6.7) is proved by setting R = Q[t] and U(x) = ωWn(x, t) in
Lemma 6.2. By (6.4), u(q) = An(q, t). Hence it follows from Lemma 6.2 that
An(ξk, t) equals the coefficient of z−1

(k
n
k )
p(k n

k ) in the expansion of ωWn(x, t)

in the power sum basis, which by (1.6) equals An

k
(t) [k]

n

k

t . We use a similar
argument to obtain the following result. Indeed, to prove (6.8) below, we set
U(x) = ωW<

n (x, t) and use (6.5) and Theorem 4.3. To prove (6.9) below, we
set U(x) = ωW̃n(x, t) and use (6.6) and Theorem 4.1.

Theorem 6.3. Let n ≥ 2 and k|n. If ξk is any primitive kth root of unity
then

(6.8) A<
n (ξk, t) =

d

dt
(tAn

k
−1(t) [k]

n

k

t )

and

(6.9) Ãn(ξk, t) = ntkAn

k
−1(t) [k]

n

k
−1

t .

Consequently, A<
n (ξk, t), Ãn(ξk, t) ∈ N[t] and Ãn(ξk, t) is palindromic and

unimodal.

Remark 6.4. Equation (6.7) arises in connection with the cyclic sieving phe-
nominon in [27]. It would be interesting to find cyclic sieving interpretations
of (6.8) and (6.9).



452 Brittney Ellzey and Michelle L. Wachs

Corollary 6.5. For all n ≥ 2,

(6.10) A<
n (1, t) =

d

dt
(tAn−1(t))

and

(6.11) Ãn(1, t) = ntAn−1(t).

Equations (6.10) and (6.11) have elementary bijective proofs. Indeed, for
each σ ∈ Sn, such that σ(n) = n, let Cσ be the set of circular rearrangements
of σ. Clearly, |Cσ| = n and for each τ ∈ Cσ, we have cdes(τ) = des(σ) + 1.
Hence,

Ãn(1, t) =
∑
σ∈Sn

σ(n)=n

∑
τ∈Cσ

tcdes(τ)

=
∑
σ∈Sn

σ(n)=n

ntdes(σ)+1

= n
∑

σ∈Sn−1

tdes(σ)+1

= ntAn−1(t).

Now for each σ ∈ Sn, such that σ(n) = n, let

C<
σ := {τ ∈ Cσ : τ(1) < τ(n)}.

Clearly, |C<
σ | = des(σ) + 1 and for each τ ∈ C<

σ , we have des(τ) = des(σ).
Hence

A<
n (1, t) =

∑
σ∈Sn

σ(n)=n

∑
τ∈C<

σ

tdes(τ)

=
∑
σ∈Sn

σ(n)=n

(des(σ) + 1)tdes(σ)

=
∑

σ∈Sn−1

(des(σ) + 1)tdes(σ)

=
d

dt
(tAn−1(t)).
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By combining (6.7) with (6.8) and with (6.9), we obtain the following

generalization of the previous corollary.

Corollary 6.6. Let n ≥ 2 and k|n. If ξk is any primitive kth root of unity

then

A<
n (ξk, t) =

d

dt
(t[k]tAn−k(ξk, t))

and

Ãn(ξk, t) = ntkAn−k(ξk, t).
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