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Unions of 1-factors in r-graphs and overfull graphs

Ligang Jin
∗
and Eckhard Steffen

We prove lower bounds for the fraction of edges of an r-graph
which can be covered by the union of k 1-factors. The special case
r = 3 yields some known results for cubic graphs. Furthermore,
we introduce the concept of k-overfull-free r-graphs and achieve
better bounds for these graphs.
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1. Introduction

We consider finite graphs G with vertex set V (G) and edge set E(G). Graphs
do not contain loops in this paper. For v, w ∈ V (G), the number of edges
between v and w is denoted by μ(v, w) and μ(G) = max{μ(v, w) : v, w ∈
V (G)}. μ(v, w) is called the multiplicity of vw and μ(G) the multiplicity of
G. A graph is simple if μ(v, w) ≤ 1 for any two vertices v, w. The number of
edges which are incident to vertex v is the vertex degree of v which is denoted
by dG(v). The maximum vertex degree of G is max{dG(v) : v ∈ V (G)} and
it is denoted by Δ(G). Further δ(G) denotes the minimum degree of a vertex
of G.

1.1. 1-factor covering

The following celebrated conjecture, often referred to as the Berge-Fulkerson
conjecture, is due to Fulkerson and appears first in [5]:

Conjecture 1.1 (Berge-Fulkerson conjecture [5]). Every bridgeless cubic
graph G has six 1-factors such that each edge of G is contained in precisely
two of them.

A set of such six 1-factors in the conjecture is called a Fulkerson cover
of G. It is straightforward that Berge-Fulkerson Conjecture implies the ex-
istence of five 1-factors whose union is the edge-set of the graph G. This
naturally raises a seemly weaker conjecture, attributed to Berge (unpub-
lished, see e.g. [28]).
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Conjecture 1.2 (Berge conjecture). Every bridgeless cubic graph G has
five 1-factors such that each edge of G is contained in at least one of them.

A set of the five 1-factors in Berge Conjecture is called a Berge cover of
G. Recently, Mazzuoccolo [12] proved that the previous two conjectures are
equivalent. It is unclear whether the same equivalence holds for every single
bridgeless cubic graph, in other words, does a graph having a Berge cover
always have a Fulkerson cover?

Let r be a positive integer. A graph G is r-regular, if dG(v) = r for all
v ∈ V (G). Let X ⊆ V (G) be a set of vertices. The subgraph of G induced
by X is denoted by G[X], and the set of edges with precisely one end in X
by ∂G(X). An r-regular graph G is an r-graph if |∂G(X)| ≥ r for every odd
set X ⊆ V (G).

A cubic graph is a 3-graph if and only if it is bridgeless. Moreover, it
was proved in [22] that every r-graph has a 1-factor. Hence, it is natural to
consider similar questions on perfect matching covering for r-graphs as for
bridgeless cubic graphs. In particular, aforementioned two conjectures were
generalized to r-graphs. In 1979, Seymour [22] proposed the generalized
Berge-Fulkerson conjecture:

Conjecture 1.3 (Generalized Berge-Fulkerson conjecture [22]). Every r-
graph has 2r 1-factors such that each edge is contained in precisely two of
them.

Trivially, this conjecture implies the following generalized form of Con-
jecture 1.2, first proposed by Mazzuoccolo [13].

Conjecture 1.4 (Generalized Berge conjecture [13]). Every r-graph G has
2r − 1 1-factors such that each edge is contained in at least one of them.

The value 2r− 1 in the conjecture is best possible, that is, it can not be
smaller, as shown in [13]. In the same paper, Mazzuoccolo proved the equiv-
alence between the generalized Berge-Fulkerson conjecture and the general-
ized Berge conjecture, in a similar way as he did for cubic case.

The excessive index χ′
e(G) of a graph G is the minimum number of 1-

factors needed to cover E(G). This parameter, also called the perfect match-
ing index in [4], was widely studied in the literature, e.g., [1, 2, 13, 15, 16, 19].
It is reasonable to consider the excessive index for r-graphs in the context
that it can be arbitrary large for some family of bridgeless r-regular graphs,
constructed in [16]. However, it is an open question whether there exists a
constant k such that χ′

e(G) ≤ k for all r-graphs G for any fixed r ≥ 3. The
result of Mazzuoccolo [13] shows that if such k exists then it is at least 2r−1.
The generalized Berge conjecture asserts that such k exists and k = 2r − 1.
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Partial covers of r-graphs with 1-factors are of great interest, see e.g. [8,
23]. In this paper, we consider the following relaxed form of the generalized
Berge conjecture: Over all r-graphs G for any fixed r, what is the maximum
constant c (c ≤ 1), such that G has 2r − 1 1-factors whose union contains
at least c|E(G)| edges? Note that the generalized Berge conjecture asserts
that c = 1. We will show that c ≥ 1 − e−2 ≈ 0.8647. We will also show a
second lower bound for c which depends on r, but which is always greater
than 1 − e−2. In fact, this second lower bound is an approximation to the
following more general problem.

Given an r-graph G, let M be the set of distinct 1-factors in G. Fix a
positive integer k. Define

m(r, k,G) = max
M1,...,Mk∈M

|
⋃k

i=1Mi|
|E(G)| ,

and

m(r, k) = inf
G

m(r, k,G),

where the infimum is taken over all r-graphs. Clearly,m(r, k) ≤ m(r, k+1) ≤
1. With this notation, the generalized Berge conjecture can be reformulated
as follows:

Conjecture 1.5. m(r, 2r − 1) = 1 for every integer r with r ≥ 3.

The parameter m(r, k) has primarily been studied in cubic case, i.e. r =
3. Berge’s conjecture states that m(3, 5) = 1. Kaiser, Král and Norine [9]
proposed a lower bound for m(3, k) as

(1) m(3, k) ≥ 1−
k∏

i=1

i+ 1

2i+ 1
,

and verified it for the case k ∈ {2, 3}. Meanwhile, Patel [17] conjectured that
m(3, 2) = 3

5 , m(3, 3) = 4
5 and m(3, 4) = 14

15 . Since the example of Petersen
graph, the result of Kaiser, Král and Norine confirms that m(3, 2) = 3

5 . But
the exact values for m(3, 3) and m(3, 4) are still unknown. A complete proof
for the lower bound in (1) was later given by Mazzuoccolo [14].

In Section 3, we obtain the following lower bound for m(r, k):

(2) m(r, k) ≥ 1−
k∏

i=1

(r2 − 3r + 1)i− (r2 − 5r + 3)

(r2 − 2r − 1)i− (r2 − 4r − 1)
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Table 1: Approximate values of the two lower bounds for m(r, k) presented
in formulations (2) and (3) and in Theorem 3.1, shown respectively in the
left and the right sides of the inequality in the table. In particular, the one
for m(r, 2r − 1) is presented in bold

r = 3 r = 4 r = 5
m(r, 2) ≥ 0.6 ≥ 0.5556 0.45 ≥ 0.4375 0.3714 ≥ 0.36
m(r, 3) ≥ 0.7714 ≥ 0.7037 0.6 ≥ 0.5781 0.5081 ≥ 0.488
m(r, 4) ≥ 0.873 ≥ 0.8025 0.7103 ≥ 0.6836 0.6157 ≥ 0.5904
m(r, 5) ≥ 0.9307 ≥ 0.8683 0.7908 ≥ 0.7627 0.7 ≥ 0.6723
m(r, 6) ≥ 0.9627 ≥ 0.9122 0.8492 ≥ 0.822 0.766 ≥ 0.7379
m(r, 7) ≥ 0.9801 ≥ 0.9415 0.8914 ≥ 0.8665 0.8176 ≥ 0.7903
m(r, 8) ≥ 0.9895 ≥ 0.961 0.9219 ≥ 0.8999 0.8578 ≥ 0.8322
m(r, 9) ≥ 0.9945 ≥ 0.974 0.9439 ≥ 0.9249 0.8892 ≥ 0.8658

for any even r ≥ 4 and any k ≥ 1, and

(3) m(r, k) ≥ 1−
k∏

i=1

(r2 − 2r − 1)i− (r2 − 4r + 1)

(r2 − r − 2)i− (r2 − 3r − 2)

for any odd r ≥ 3 and any k ≥ 1.
For instance of small r and k, the values of this lower bound are listed

in Table 1.
In particular, if we take r = 3, this lower bound coincides with the

established bound in (1); if we take k = 2r − 1, it gives a partial result to
the generalized Berge conjecture, and the approximate value of m(r, 2r− 1)
is shown in bold in Table 1.

Now we are going to show that the lower bounds in (2) and (3) is always
better than 1− e−2. Let f(x) be a function defined by

f(x) =
(r2 − 3r + 1)x− (r2 − 5r + 3)

(r2 − 2r − 1)x− (r2 − 4r − 1)
.

We can calculate that f(1) = r−1
r and the derivative

f ′(x) =
−2

[(r2 − 2r − 1)x− (r2 − 4r − 1)]2
< 0.

Hence, f(i) ≤ r−1
r for each i ≥ 1. So when we take k = 2r − 1, the lower

bound in (2) is greater than

1− (
r − 1

r
)2r−1 > 1− e−2,
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where the last inequality is given by Corollary 3.2. Similarly, when k = 2r−1,
we can deduce that the lower bound in (3) is greater than 1− e−2 as well.

1.2. Edge-colorings and overfull graphs

A graph G is k-overfull if |V (G)| is odd, Δ(G) ≤ k and |E(G)|
� 1

2
|V (G)|� > k. It

is easy to see that G is k-overfull if and only if 2|E(G)| > k(|V (G)| − 1).
Furthermore, the k-deficiency of G is k|V (G)| − 2|E(G)|, and it is denoted
by sk(G).

A k-edge-coloring of G is a mapping c : E(G) → {1, . . . , k} such that
adjacent edges are colored differently. The chromatic index χ′(G) is the
minimum number k such that G has a k-edge-coloring. Vizing [26] proved
that Δ(G) ≤ χ′(G) ≤ Δ(G) + μ(G), in particular if G is simple, then
χ′(G) ∈ {Δ(G),Δ(G) + 1}. We say that G is class 1 if χ′(G) = Δ(G), and
it is class 2 otherwise.

Clearly, Δ(G) is a lower bound for the chromatic index of G. Overfull
graphs are class 2 graphs for the trivial reason that they contain too many

edges. In general we have that χ′(G) ≥ maxH⊆G� |E(H)|
� 1

2
|V (H)|�	.

A graph G is critical with respect to χ′(G), if χ′(G − e) < χ′(G) for
every e ∈ E(G). For simple graphs we have the definition of a k-critical
graph which says that a critical graph H is k-critical, if Δ(H) = k and
χ′(H) = k + 1. Vizing [27] proved the classical result that a simple class
2 graph with maximum degree k contains a t-critical subgraph for every
t ∈ {2, . . . , k}. These results are the motivation for the result of Section 4,
which proves that a k-overfull graph contains a t-overfull subgraph for every
t ∈ {2, . . . , k}.

A graph G is k-overfull-free, if it does not contain a k-overfull subgraph.
Clearly, there are no 1-critical graphs and the 2-critical graphs are the odd
circuits which are also the connected 2-overfull graphs. Hence we have: A
graph is 2-overfull-free if and only if it is bipartite. We study k-overfull-free
graphs in Section 4. If an r-regular graph G is class 1, then surely G is an
r-graph and G is r-overfull-free. For i ∈ {1, 2} let Gi be an ri-regular graph.
We say that an r-graph G is decomposable into G1 and G2 if r = r1 + r2,
V (Gi) = V (G) and E(G) = E(G1) ∪ E(G2). We will characterize some
decomposable r-graphs in terms of excluded overfull subgraphs.

2. The perfect matching polytope

LetG be a graph and w be a vector of RE(G). The entry of w corresponding to
an edge e is denoted by w(e), and for A ⊆ E, we define w(A) =

∑
e∈Aw(e).

The vector w is a fractional 1-factor if it satisfies
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(i) 0 ≤ w(e) ≤ 1 for every e ∈ E(G), and

(ii) w(∂({v})) = 1 for every v ∈ V (G), and

(iii) w(∂(S)) ≥ 1 for every S ⊆ V (G) with odd cardinality.

Let F (G) denote the set of all fractional 1-factors of a graph G. If M is

a 1-factor, then its characteristic vector χM is contained in F (G). Further-

more, if w1, . . . , wn ∈ F (G), then any convex combination
∑n

i=1 αiwi (where

α1, . . . , αn are nonnegative real numbers summing up to 1) also belongs to

F (G). It follows that F (G) contains the convex hull of all the vectors χM

where M is a 1-factor of G. The following theorem by Edmonds asserts that

the converse inclusion also holds:

Theorem 2.1 (Perfect Matching Polytope Theorem [3]). For any graph G,

the set F (G) coincides with the convex hull of the characteristic vectors of

all 1-factors of G.

Towards the generalized Berge-Fulkerson conjecture, Seymour [22] gave

an alternative proof of the following theorem, which is a corollary of Ed-

monds’s matching polytope theorem (see [22] for the details between these

two theorems).

Theorem 2.2 ([22]). For any r-graph G, there is a positive integer p such

that G has rp 1-factors and each edge is contained in precisely p of them.

We will use this theorem to deduce our first lower bound in the next

section. Moreover, the following property on fractional 1-factors will play a

crucial role in the proof for our second lower bound.

Lemma 2.3 ([9]). Let w be a fractional 1-factor of a graph G and c ∈ R
E(G).

Then G has a 1-factor M such that c ·χM ≥ c ·w, where · denotes the scalar

product, and |M ∩ C| = 1 for each edge-cut C of odd cardinality and with

w(C) = 1.

The proof of this lemma was given in [9], where Theorem 2.1 is the main

tool for the proof.

3. Lower bounds for m(r, k)

We are going to deduce a lower bound for the parameter m(r, k) by using

Theorem 2.2 only.

Theorem 3.1. m(r, k) ≥ 1− ( r−1
r )k for every positive integers r and k with

r ≥ 3.
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Proof. (induction on k.) Since every r-graph has a 1-factor, which covers a

fraction 1
r of the edges, the proof is trivial for k = 1. We proceed to the

induction step. Let G be any r-graph and E = E(G). By the induction

hypothesis, G has k − 1 many 1-factors M1, . . . ,Mk−1 such that

(4)
|
⋃k−1

i=1 Mi|
|E| ≥ 1− (

r − 1

r
)k−1.

Moreover, by Theorem 2.2, there exists a positive integer p such that G has

rp 1-factors F1, . . . , Frp and each edge is contained in precisely p of them. It

follows that for every X ⊆ E, graph G has a 1-factor F among F1, . . . , Frp

such that |F∩X| ≥ |X|
r . In particular, letX = E\

⋃k−1
i=1 Mi and consequently,

take Mk = F . Thus,

(5) |Mk ∩ (E \
k−1⋃

i=1

Mi)| ≥
|E \

⋃k−1
i=1 Mi|
r

,

that is,

(6)
|
⋃k

i=1Mi| − |
⋃k−1

i=1 Mi|
|E| ≥ 1

r
(1− |

⋃k−1
i=1 Mi|
|E| ).

It follows that

(7)
|
⋃k

i=1Mi|
|E| ≥ (1− 1

r
)
|
⋃k−1

i=1 Mi|
|E| +

1

r
≥ 1− (

r − 1

r
)k

where the last inequality follows by using the inequality (4). Therefore,

m(r, k,G) ≥ 1 − ( r−1
r )k and by the choice of G, we have m(r, k) ≥ 1 −

( r−1
r )k.

In particular, if we take k = 2r − 1, we can further deduce from this

theorem a constant lower bound for m(r, 2r − 1).

Corollary 3.2. For every integer r ≥ 3, we have m(r, 2r − 1) ≥ 1− e−2 ≈
0.8647.

Proof. Let f(r) denote the function 1− ( r−1
r )2r−1. It is easy to see that f(r)

is strictly monotonic decreasing with respect to r. Moreover, lim
r→+∞

f(r) =

1− e−2. It follows with Theorem 3.1 that m(r, 2r− 1) ≥ f(r) ≥ 1− e−2.
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We now prove the following theorem, which will be used to deduce a
second lower bound for m(r, k). An i-cut of a graph G is an edge cut of
G of cardinality i. The proof of the theorem is conducted by induction. In
the induction step, we apply Lemma 2.3 to a well-chosen fractional 1-factor,
whose existence can be guaranteed by both inclusions of the induction hy-
pothesis, one on the union of 1-factors and the other on i-cuts. The resulting
1-factor with its properties described in Lemma 2.3 and the 1-factors given
by the induction hypothesis together complete the proof.

Theorem 3.3. Let G be an r-graph, and V = V (G) and E = E(G).

(a) If r is even and r ≥ 4, then for any positive integer k, graph G has k
1-factors M1, . . . ,Mk such that

|
⋃k

i=1Mi|
|E| ≥ 1−

k∏

i=1

(r2 − 3r + 1)i− (r2 − 5r + 3)

(r2 − 2r − 1)i− (r2 − 4r − 1)

and
∑k

i=1 χ
Mi(C) ≤ (r − 1)k + 2 for each (r + 1)-cut C.

(b) If r is odd and r ≥ 3, then for any positive integer k, graph G has k
1-factors M1, . . . ,Mk such that

|
⋃k

i=1Mi|
|E| ≥ 1−

k∏

i=1

(r2 − 2r − 1)i− (r2 − 4r + 1)

(r2 − r − 2)i− (r2 − 3r − 2)
,

∑k
i=1 χ

Mi(C) = k for each r-cut C and
∑k

i=1 χ
Mi(D) ≤ rk + 2 for

each (r + 2)-cut D.

Proof. (induction on k).
Statement (a). The statement holds for k = 1, since the required M1

can be an arbitrary 1-factor of G. Assume that k ≥ 2. By the induction
hypothesis, G has k − 1 many 1-factors M1, . . . ,Mk−1 such that

|
⋃k−1

i=1 Mi|
|E| ≥ 1−

k−1∏

i=1

(r2 − 3r + 1)i− (r2 − 5r + 3)

(r2 − 2r − 1)i− (r2 − 4r − 1)

and

(8)

k−1∑

i=1

χMi(C) ≤ (r − 1)(k − 1) + 2

for each (r + 1)-cut C.
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For e ∈ E, let n(e) denote the number of 1-factors among M1, . . . ,Mk−1

which contain e, and define

wk(e) =
(r − 2)k − (r − 4)− n(e)

(r2 − 2r − 1)k − (r2 − 4r − 1)
.

We claim that wk is a fractional 1-factor of G, that is, wk ∈ F (G).

Since k ≥ 2, r ≥ 4 and 0 ≤ n(e) ≤ k − 1, we can deduce that 1
r+3 <

wk(e) < 1. Moreover, note that for every X ⊆ E, the equality
∑

e∈X n(e) =∑k−1
i=1 χMi(X) always holds and so

(9) wk(X) =
∑

e∈X
wk(e) =

[(r − 2)k − (r − 4)]|X| −
∑k−1

i=1 χMi(X)

(r2 − 2r − 1)k − (r2 − 4r − 1)
.

Thus for v ∈ V , since
∑k−1

i=1 χMi(∂({v})) = k − 1, we have wk(∂({v})) =
[(r−2)k−(r−4)]r−(k−1)
(r2−2r−1)k−(r2−4r−1) = 1. Finally, let S ⊆ V with odd cardinality. Since G

is an r-graph, we have |∂(S)| ≥ r. On the other hand, by recalling that

wk(e) > 1
r+3 for each edge e, we have wk(∂(S)) > 1 provided by |∂(S)| ≥

r + 3. Hence, we may next assume that |∂(S)| = r + 1 by parity. Since

in this case S is a (r + 1)-cut, the formula (8) implies
∑k−1

i=1 χMi(∂(S)) ≤
(r − 1)(k − 1) + 2, and thus with the help of the formula (9), we deduce

wk(∂(S)) ≥ [(r−2)k−(r−4)](r+1)−[(r−1)(k−1)+2]
(r2−2r−1)k−(r2−4r−1) = 1. This completes the proof

of the claim.

By Lemma 2.3, the graph G has a 1-factor Mk such that

(1− χ
⋃k−1

i=1 Mi) · χMk ≥ (1− χ
⋃k−1

i=1 Mi) · wk.

Since the left side is just |
⋃k

i=1Mi|− |
⋃k−1

i=1 Mi| and the right side equals to
(r−2)k−(r−4)

(r2−2r−1)k−(r2−4r−1)(|E| − |
⋃k−1

i=1 Mi|), it follows that

|
k⋃

i=1

Mi| ≥
(r2 − 3r + 1)k − (r2 − 5r + 3)

(r2 − 2r − 1)k − (r2 − 4r − 1)
|
k−1⋃

i=1

Mi|

+
(r − 2)k − (r − 4)

(r2 − 2r − 1)k − (r2 − 4r − 1)
|E|,

which leads to
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|
⋃k

i=1Mi|
|E| ≥ 1−

k∏

i=1

(r2 − 3r + 1)i− (r2 − 5r + 3)

(r2 − 2r − 1)i− (r2 − 4r − 1)
,

as desired.
Moreover, let C be an edge cut with cardinality r+1. Clearly, χMk(C) ≤

r+1. Thus, if
∑k−1

i=1 χMi(C) ≤ (r−1)(k−1) then
∑k

i=1 χ
Mi(C) ≤ (r−1)k+2,

as desired. By the formula (8) and by parity, we may next assume that∑k−1
i=1 χMi(C) = (r − 1)(k − 1) + 2. In this case, we calculate from the

formula (9) that wk(C) = 1. Thus χMk(C) = 1 by Lemma 2.3, which yields∑k
i=1 χ

Mi(C) = (r − 1)k − r + 4 < (r − 1)k + 2, as desired. This completes
the proof of Statement (a).

Statement (b). We follow a similar way to prove this statement as we
did for Statement (a). Let w1 be a vector of RE defined by w1(e) = 1

r for
e ∈ E. Clearly, w1 ∈ F (G). By Lemma 2.3, G has a 1-factor M1 such that
χM1(C) = 1 for each edge cut C with odd cardinality and with w1(C) = 1,
that is, for each r-cut C. Therefore, the statement is true for k = 1.

Assume k ≥ 2. By the induction hypothesis, G has k− 1 many 1-factors
M1, . . . ,Mk−1 such that

|
⋃k−1

i=1 Mi|
|E| ≥ 1−

k−1∏

i=1

(r2 − 2r − 1)i− (r2 − 4r + 1)

(r2 − r − 2)i− (r2 − 3r − 2)
,

and for each r-cut C

(10)

k−1∑

i=1

χMi(C) = k − 1,

and for each (r + 2)-cut D

(11)

k−1∑

i=1

χMi(D) ≤ r(k − 1) + 2.

For e ∈ E, let n(e) denote the number of 1-factors among M1, . . . ,Mk−1

that contains e, and define

wk(e) =
(r − 1)k − (r − 3)− 2n(e)

(r2 − r − 2)k − (r2 − 3r − 2)
.

We claim that wk ∈ F (G). Since k ≥ 2, r ≥ 3 and 0 ≤ n(e) ≤ k − 1,
we can deduce that 0 < 1

r+4 < wk(e) < 1. Moreover, note that for every
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X ⊆ E, the equality
∑

e∈X n(e) =
∑k−1

i=1 χMi(X) always holds and so

(12) wk(X) =
[(r − 1)k − (r − 3)]|X| − 2

∑k−1
i=1 χMi(X)

(r2 − r − 2)k − (r2 − 3r − 2)
.

Thus for v ∈ V , since
∑k−1

i=1 χMi(∂({v})) = k − 1, we have wk(∂({v})) =
[(r−1)k−(r−3)]r−2(k−1)
(r2−r−2)k−(r2−3r−2) = 1. Finally, let S ⊆ V with odd cardinality. Since G

is an r-graph, |∂(S)| ≥ r. On the other hand, by recalling that wk(e) >
1

r+4
for each edge e, we have wk(∂(S)) > 1 provided by |∂(S)| ≥ r+4. Hence, we
may next assume that either |∂(S)| = r or |∂(S)| = r + 2 by parity. In the
former case, the formula (10) implies

∑k−1
i=1 χMi(∂(S)) = k− 1, and thus we

can calculate from the formula (12) that wk(∂(S)) = 1. In the latter case,
the formula (11) implies

∑k−1
i=1 χMi(∂(S)) ≤ r(k − 1) + 2 and similarly, we

get wk(∂(S)) ≥ [(r−1)k−(r−3)](r+2)−2[r(k−1)+2]
(r2−r−2)k−(r2−3r−2) = 1. This proves the claim.

By Lemma 2.3, the graph G has a 1-factor Mk such that

(1− χ
⋃k−1

i=1 Mi) · χMk ≥ (1− χ
⋃k−1

i=1 Mi) · wk.

Since the left side is just |
⋃k

i=1Mi|− |
⋃k−1

i=1 Mi| and the right side equals to
(r−1)k−(r−3)

(r2−r−2)k−(r2−3r−2)(|E| − |
⋃k−1

i=1 Mi|), it follows that

|
k⋃

i=1

Mi| ≥
(r − 1)k − (r − 3)

(r2 − r − 2)k − (r2 − 3r − 2)
|E|

+
(r2 − 2r − 1)k − (r2 − 4r + 1)

(r2 − r − 2)k − (r2 − 3r − 2)
|
k−1⋃

i=1

Mi|,

which leads to

|
⋃k

i=1Mi|
|E| ≥ 1−

k∏

i=1

(r2 − 2r − 1)i− (r2 − 4r + 1)

(r2 − r − 2)i− (r2 − 3r − 2)
,

as desired.
Moreover, let C be an edge cut of cardinality r. The formula (10) implies∑k−1

i=1 χMi(C) = k−1. On the other hand, We can calculate from the formula
(12) that wk(C) = 1, and thus χMk(C) = 1 by Lemma 2.3. Therefore,∑k

i=1 χ
Mi(C) = k, as desired.

We next letD be an edge cut of cardinality r+2. Clearly, χMk(D) ≤ r+2.
Thus if

∑k−1
i=1 χMi(D) ≤ r(k−1), then

∑k
i=1 χ

Mi(D) ≤ rk+2, as desired. By
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the formula (11) and by parity, we may next assume that
∑k−1

i=1 χMi(D) =
r(k − 1) + 2. By calculation we can get wk(D) = 1, and thus χMk(D) = 1
by Lemma 2.3, which also yields

∑k
i=1 χ

Mi(D) ≤ rk+2. This completes the
proof of this theorem.

The following corollary is a direct consequence of this theorem.

Corollary 3.4. Let r and k be two positive integers with r ≥ 3. If r is even
then

m(r, k) ≥ 1−
k∏

i=1

(r2 − 3r + 1)i− (r2 − 5r + 3)

(r2 − 2r − 1)i− (r2 − 4r − 1)
,

and if r is odd then

m(r, k) ≥ 1−
k∏

i=1

(r2 − 2r − 1)i− (r2 − 4r + 1)

(r2 − r − 2)i− (r2 − 3r − 2)
.

4. Overfull graphs

We start with the following observations.

Observation 4.1. Let r ≥ 2 be an integer. Every r-overfull-free r-regular
graph is an r-graph.

Observation 4.2. A graph G is 2-overfull-free if and only if G is bipartite.

If G is a graph, then o(G) denotes the number of odd components of G.
We will use the following theorem of Tutte.

Theorem 4.3 ([25]). A graph G has a 1-factor if and only of o(G−S) ≤ |S|
for all S ⊆ V (G).

Proposition 4.4. Let k ≥ 2. If G is a k-overfull graph, then 0 ≤ sk(G) ≤
k − 2 and k < |V (G)|

|V (G)|−1Δ(G).

Proof. Since G is k-overfull, 2|E(G)| > k(|V (G)|−1) and |V (G)| is odd. No-
tice that the two sides of this inequality has the same parity. So, 2|E(G)| ≥
k(|V (G)|−1)+2, that is, sk(G) ≤ k−2. Moreover, by Handshaking Lemma,
2|E(G)| =

∑
v∈V (G) dG(v) ≤ Δ(G)|V (G)|. Combining it with the fact that

2|E(G)| > k(|V (G)| − 1), we deduce that k < |V (G)|
|V (G)|−1Δ(G).

Theorem 4.5. Let k ≥ 3 be an integer. Every k-overfull graph contains a
(k − 1)-overfull subgraph.



Union of 1-factors 469

Proof. Suppose to the contrary that the statement is not true. Then there is
a k-overfull graph G which does not contain a (k−1)-overfull subgraph. We
may assume that |V (G)| is minimum and according to this property |E(G)|
is minimum as well.

It holds Δ(G) = k, since for otherwise G is (k − 1)-overfull as well, a
contradiction.

Claim 4.5.1. Let H be a proper subgraph of G. If H is of odd order, then
sk(H) ≥ k.

By the minimality of G, the subgraph H is not k-overfull. Note that H

is of odd order and has maximum degree at most k. Thus, 2|E(H)|
|V (H)|−1 ≤ k and

therefore, sk(H) = k|V (H)| − 2|E(H)| ≥ k|V (H)| − k|V (H)|+ k = k.

Claim 4.5.2. sk(G) = k − 2, that is, 2|E(G)| = k(|V (G)| − 1) + 2.

Choose any edge e of G. By Claim 4.5.1, sk(G− e) ≥ k. It follows that
sk(G) = sk(G − e) − 2 ≥ k − 2. On the other hand, sk(G) ≤ k − 2 by
Proposition 4.4. Therefore, sk(G) = k − 2.

Claim 4.5.3. For every z ∈ V (G), the graph G− z has a 1-factor.

Let G′ = G− z. Then sk(G
′) = sk(G) + dG(z)− (k − dG(z)) = k − 2 +

2dG(z)− k = 2dG(z)− 2 ≤ 2k − 2.
Suppose to the contrary that G′ does not have a 1-factor. By Theorem

4.3, there is S ⊆ V (G′) such that o(G′ − S) > |S|. Let O1, . . . , On be the
odd components of G′ − S. Since G− z has even order, n and |S| have the
same parity. Thus, n ≥ |S|+ 2.

With Claim 4.5.1 it follows that sk(Oi) ≥ k. Hence, |∂G(S)| ≥∑n
i=1 sk(Oi) − sk(G

′) ≥ nk − 2k + 2 = k(n − 2) + 2 ≥ k|S| + 2, a con-
tradiction.

We now deduce the statement. If G is regular, then sk(G) = 0 = k − 2.
So k = 2, a contradiction. Hence, there is z ∈ V (G) such that dG(z) < k. By
Claim 4.5.3, G− z has a 1-factor F . Let G′ = G− F . Then Δ(G′) = k − 1,

|E(G′)| = |E(G)|− 1
2(|V (G)|− 1), and |V (G′)| = |V (G)|. Hence, 2|E(G′)|

|V (G′)|−1 =
2|E(G)|−(|V (G)|−1)

|V (G)|−1 = 2|E(G)|
|V (G)|−1 − 1 > k − 1. This contradicts our assumption

that G does not contain a (k − 1)-overfull subgraph and the statement is
proved.

The following corollaries are immediate consequences of Theorem 4.5.
The first one has the same flavor as a result of Vizing [27] that a class 2
graph with chromatic index k contains critical subgraphs with chromatic
index t for every t ∈ {2, . . . , k}.
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Corollary 4.6. Let k ≥ 2 be an integer and G be a graph. If G is k-overfull,

then G contains a t-overfull subgraph for every t ∈ {2, . . . , k}.

Corollary 4.7. Let k ≥ 2 be an integer and G be a graph. If G is k-overfull-

free, then G is t-overfull-free for every t ≥ k.

Corollary 4.8. Let 2 ≤ k ≤ r be integers and G be an r-regular graph. If

G is k-overfull-free, then G is an r-graph and G can be decomposed into a

(r − k)-graph that is class 1 and a k-graph.

Proof. By Corollary 4.7, G is r-overfull-free and further, by Observation 4.1,

G is an r-graph. Let F1 be a 1-factor of G. Consider G− F1. If k = r, then

we are done. Hence, we may assume k ≤ r − 1. Similarly, we can deduce

that G − F1 is an (r − 1)-graph having a 1-factor F2. Continue as above

till G′ = G −
⋃r−k

i=1 Fi. Then G′ and G′′ = (V (G),
⋃r−k

i=1 Fi) is the desired

decomposition.

Corollary 4.8 gives a sufficient condition for an r-graph decomposable

into a r1-graph and a r2-graph for some r1 and r2. It also shows that for any

t-overfull-free r-graph with 2 ≤ t ≤ r, we can obtain a better lower bound

of m(r, k,G) than the one of m(r, k). More precisely, for k ≤ r − t, take k

pairwise disjoint 1-factors of the class 1 graph from the decomposition by

Corollary 4.8, which gives m(r, k,G) = k
r . For k > r − t, applying Theorem

3.3 to the t-graph from the decomposition by Corollary 4.8 gives k 1-factors,

which together with any r− t many pairwise disjoint 1-factors of the class 1

graph from the decomposition leads to a better lower bound for (m, k,G).

Moreover, Corollary 4.8 confirms the following classical result of König

[11].

Theorem 4.9. Let k ≥ 0 be an integer. Every k-regular bipartite graph is

class 1.

Proof. For k ∈ {0, 1}, the proof is trivial. For k ≥ 2, let G be a k-regular

bipartite graph. By Observation 4.2, G is 2-overfull-free. By Corollary 4.8, G

is decomposable into a class 1 subgraph and a 1-factor. Thus,G is class 1.
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Basel, 73–84. MR2279168

[2] Cariolaro, D. and Rizzi, R. (2016). On the complexity of comput-

ing the excessive [B]-index of a graph. J. Graph Theory 82(1) 65–74.

MR3477033

[3] Edmonds, J. (1965). Maximum matching and a polyhedron with (0,1)-

vertices. J. Res. Nat. Bur. Standards Sect. B 69 125–130. MR0183532

[4] Fouquet, J. L. and Vanherpe, J. M. (2009). On the perfect match-

ing index of bridgeless cubic graphs. arXiv:0904.1296. MR2574471

[5] Fulkerson, D. R. (1971). Blocking and anti-blocking pairs of poly-

hedra. J. Combin. Theory Ser. B 1 168–194. MR0294149

[6] Jakobsen, I. T. (1975). On critical graphs with respect to edge-

colouring, in: A. Hajnal, R. Rado, V. T. Sós (eds.) Infinite and Finite

Sets. North Holland, Amsterdam, 927–934. MR0389643

[7] Jensen, T. R. and Toft, B. (1995). Graph Coloring Problems. John

Wiley & Sons, Inc. MR1304254

[8] Jin, L. and Steffen, E. (2017). Petersen cores and the oddness of

cubic graphs. J. Graph Theory 84 109–120. MR3601120

[9] Kaiser, T. and Král, D. and Norine, S. (2006). Unions of perfect

matching in cubic graphs, Topics in Discrete Mathematics, in: Algo-

rithms Combin. 26. Springer, Berlin, 225–230. MR2249273

[10] Kierstead, H. A. (1984). On the chromatic index of multigraphs with-

out large triangles. J. Combin. Theory Ser. B 36 156–160. MR0746546

[11] König, D. (1931). Graphs and matrices. Mat. Fiz. Lapok. 38 116–119.

[12] Mazzuoccolo, G. (2011). The equivalence of two conjectures of Berge

and Fulkerson. J. Graph Theory 68 125–128. MR2833954

[13] Mazzuoccolo, G. (2013). An upper bound for the excessive index of

an r-graph. J. Graph Theory 73 377–385. MR3065110

[14] Mazzuoccolo, G. (2013). Covering a cubic graph with perfect match-

ings. Discrete Math. 313 2292–2296. MR3084274

http://www.ams.org/mathscinet-getitem?mr=2279168
http://www.ams.org/mathscinet-getitem?mr=3477033
http://www.ams.org/mathscinet-getitem?mr=0183532
http://www.ams.org/mathscinet-getitem?mr=2574471
http://www.ams.org/mathscinet-getitem?mr=0294149
http://www.ams.org/mathscinet-getitem?mr=0389643
http://www.ams.org/mathscinet-getitem?mr=1304254
http://www.ams.org/mathscinet-getitem?mr=3601120
http://www.ams.org/mathscinet-getitem?mr=2249273
http://www.ams.org/mathscinet-getitem?mr=0746546
http://www.ams.org/mathscinet-getitem?mr=2833954
http://www.ams.org/mathscinet-getitem?mr=3065110
http://www.ams.org/mathscinet-getitem?mr=3084274


472 Ligang Jin and Eckhard Steffen

[15] Mazzuoccolo, G. (2014). On the excessive [m]-index of a tree. Dis-

crete Applied Math. 162 264–270. MR3128529

[16] Mazzuoccolo, G. and Young, M. (2011). Graphs of arbitrary ex-

cessive class. Discrete Math. 311 32–37. MR2737965

[17] Patel V. (2006). Unions of perfect matchings in cubic graphs and im-

plications of the Berge-Fulkerson conjecture. CDAM Research Report,

LSE-CDAM-2006-06.

[18] Petersen, J. (1891). Die Theorie der regulären Graphs. Acta Math.
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