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Given an element in a finite-dimensional real vector space, V , that
is a nonnegative linear combination of basis vectors for some basis
B, we compute the probability that it is furthermore a nonnegative
linear combination of basis vectors for a second basis, A. We then
apply this general result to combinatorially compute the proba-
bility that a symmetric function is Schur-positive (recovering the
recent result of Bergeron–Patrias–Reiner), e-positive or h-positive.
Similarly we compute the probability that a quasisymmetric func-
tion is quasisymmetric Schur-positive or fundamental-positive. In
every case we conclude that the probability tends to zero as the
degree of the function tends to infinity.
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1. Introduction

The subject of when a symmetric function is Schur-positive, that is, a non-
negative linear combination of Schur functions, is an active area of research.
If a homogeneous symmetric function of degree n is Schur-positive, then
it is the image of some representation of the symmetric group Sn un-
der the Frobenius characteristic map. Furthermore, if it is a polynomial,
then it is the character of a polynomial representation of the general linear
group GL(n,C). Consequently, much effort has been devoted to determining
when the difference of two symmetric functions is Schur-positive, for exam-
ple [2, 8, 12, 13, 14, 16, 18, 19]. While this question is still wide open in
full generality, there exist well-known examples of Schur-positive functions.
These include the product of two Schur functions, skew Schur functions, and
the chromatic symmetric function of the incomparability graph of (3 + 1)-
free posets [9], the latter of which are further conjectured to be e-positive,
that is, a nonnegative linear combination of elementary symmetric functions
[23]. One other well-known example that is known to be Schur-positive is
the bigraded Frobenius characteristic of the space of diagonal harmonics,
which is therefore known to be fundamental-positive, namely, a nonnegative
linear combination of fundamental quasisymmetric functions. A conjectured
combinatorial formula for the latter [10] was recently proved [6]. This result
is better known as the proof of the shuffle conjecture.

Quasisymmetric functions, a natural generalization of symmetric func-
tions, are further related to positivity via representation theory since the
1-dimensional representations of the 0-Hecke algebra map to fundamental
quasisymmetric functions under the quasisymmetric characteristic map [7].
There also exist 0-Hecke modules whose quasisymmetric characteristic map
images are quasisymmetric Schur functions [24]. Additionally, if a quasisym-
metric function is both symmetric and a nonnegative linear combination of
quasisymmetric Schur functions, then it is Schur-positive [4]. While non-
negative linear combinations of quasisymmetric functions are not as exten-
sively studied, some progress has been made in this direction, for example
[1, 3, 4, 15, 17], and this area is ripe for study.

This paper is structured as follows. In Theorem 2.1, we calculate the
probability that an element of a vector space that is a nonnegative linear
combination of basis elements is also a nonnegative linear combination of
the elements of a second basis, where the bases satisfy certain conditions.
In Section 3, we then apply this theorem and compute the probability that
a symmetric function is Schur-positive or e-positive in Corollaries 3.4, 3.7,
3.11. We show that these probabilities tend to 0 as the degree of the function
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tends to infinity in Corollaries 3.6, 3.9, 3.13. We then apply Theorem 2.1
again in Section 4 to compute the probability that a quasisymmetric function
is quasisymmetric Schur-positive or fundamental-positive in Corollaries 4.4,
4.7, 4.10, and similarly show these probabilities tend to 0 in Corollaries 4.6,
4.9, 4.12.

2. The probability of vector positivity

Let V be a finite-dimensional real vector space with bases A = {A0, . . . , Ad}
and B = {B0, . . . , Bd}, and suppose further that

Aj =
∑
i≤j

a
(j)
i Bi,

where a
(j)
j = 1 and a

(j)
i ≥ 0. In particular, note that A0 = B0. We say

that f ∈ V is A-positive (respectively, B-positive) if f is a nonnegative
linear combination of {A0, . . . , Ad} (respectively, {B0, . . . , Bd}). We would
like to answer the following question: What is the probability that if f ∈ V
is B-positive, then it is furthermore A-positive? We denote this probability
by P(Ai | Bi) and note that any A-positive f ∈ V will also necessarily be
B-positive.

In order to calculate P(Ai | Bi), observe that any B-positive f ∈ V can
be written as

f =

d∑
i=0

biBi,

where each bi ≥ 0, and the set of all B-positive elements of V forms a cone

B+
cone =

{
d∑

i=0

biBi | bi ∈ R≥0

}
.

Inside the cone B+
cone is the cone of A-positive elements of V

A+
cone =

{
d∑

i=0

biBi | bi ∈ R≥0 and the expression is A-positive

}
.

We define P(Ai | Bi) to be the ratio of the volume of the slice of A+
cone

defined by

A+
slice =

{
d∑

i=0

biBi | bi ∈ R≥0, the expression is A-positive, and

d∑
i=0

bi = 1

}
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to the volume of the slice of B+
cone

B+
slice =

{
d∑

i=0

biBi | bi ∈ R≥0 and

d∑
i=0

bi = 1

}
.

We could, equivalently, replace “1” in both definitions with any positive real

number and obtain the same ratio. Note that this probability will depend on
the choice of bases {A0, . . . , Ad} and {B0, . . . , Bd}; however, each application

of the following theorem (see Corollaries 3.4, 3.7, 3.11, 4.4, 4.7, and 4.10)

comes with a natural choice of bases, and the asymptotics we explore (see
Corollaries 3.6, 3.9, 3.13, 4.6, 4.9, and 4.12) do not depend on this choice.

The existence of the general statement below was suggested by F. Berg-
eron and its proof inspired by a conversation with V. Reiner about Schur-

positivity.

Theorem 2.1. Let {A0, . . . , Ad} and {B0, . . . , Bd} be bases of a finite-
dimensional real vector space V such that

Aj =
∑
i≤j

a
(j)
i Bi,

where a
(j)
j = 1 and a

(j)
i ≥ 0, so in particular, A0 = B0. Then

P(Ai | Bi) =

d∏
j=0

(
j∑

i=0

a
(j)
i

)−1

.

Proof. Consider

B+
slice =

{
d∑

i=0

biBi | bi ∈ R≥0 and

d∑
i=0

bi = 1

}

and the corresponding slice of A+
cone

A+
slice =

{
d∑

i=0

biBi | bi ∈ R≥0, the expression is A-positive, and

d∑
i=0

bi=1

}
.

Note that B+
slice is the simplex determined by vertices B0, . . . , Bd. Define

vectors v1, . . . , vd by vi = Bi − B0 for 1 ≤ i ≤ d. Then the volume of B+
slice
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is by definition
1

d!
|det(v1, . . . , vd)|.

The simplex A+
slice is determined by vertices

{(∑
i a

(j)
i

)−1
Aj

}
0≤j≤d

. To

find its volume, we first define vectors w1, . . . , wd by

wj =
1∑
i a

(j)
i

Aj −A0.

We then see that

wj =
1∑
i a

(j)
i

Aj −A0

=
1∑
i a

(j)
i

(
Bj + a

(j)
j−1Bj−1 + · · ·+ a

(j)
0 B0

)
−B0

=
1∑
i a

(j)
i

(
Bj + a

(j)
j−1Bj−1 + · · ·+ a

(j)
0 B0

)

− 1∑
i a

(j)
i

(
B0 + a

(j)
j−1B0 + · · ·+ a

(j)
0 B0

)

=
1∑
i a

(j)
i

(
vj + a

(j)
j−1vj−1 + · · ·+ a

(j)
1 v1

)
.

Thus the volume of A+
slice, namely the simplex determined by vertices{

1∑
i a

(j)
i

Aj

}
, is

1

d!
|det(w1, . . . , wd)| =

1

d!

∣∣∣∣∣det
(

1∑
i a

(1)
i

v1,
1∑
i a

(2)
i

(v2 + a
(2)
1 v1),

. . . ,
1∑
i a

(d)
i

(vd + · · ·+ a
(d)
1 v1)

)∣∣∣∣∣
=

1

d!

∏
j

1∑
i a

(j)
i

|det(v1, . . . , vd)| .

The result now follows, since by definition we have that

P(Ai | Bi) =
volume of A+

slice

volume of B+
slice

.
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3. Probabilities of symmetric function positivity

Before we define the various symmetric functions that will be of interest

to us, we need to recall some combinatorial concepts. A partition λ =

(λ1, . . . , λk) of n, denoted by λ � n, is a list of positive integers whose
parts λi satisfy λ1 ≥ · · · ≥ λk and

∑k
i=1 λi = n. If there exists λm+1 =

· · · = λm+j = i, then we often abbreviate this to ij . There exist two total

orders on partitions of n, which will be useful to us. The first of these is

lexicographic order, which states that given partitions λ = (λ1, . . . , λk) and

μ = (μ1, . . . , μ�) we say that μ is lexicographically smaller than λ, denoted

by μ <lex λ, if μ �= λ and the first i for which μi �= λi satisfies μi < λi. The

second is the closely related reverse lexicographic order, where we say that

μ is reverse lexicographically smaller than λ, denoted by μ <revlex λ if and

only if μ >lex λ.

Example 3.1. The partitions of 4 in lexicographic order are

(14) <lex (2, 12) <lex (22) <lex (3, 1) <lex (4).

Given a partition λ = (λ1, . . . , λk) and commuting variables {x1, x2, . . .},
we define the monomial symmetric function mλ to be

mλ =
∑

xλ1

i1
· · ·xλk

ik

where the sum is over all k-tuples (i1, . . . , ik) of distinct indices that yield

distinct monomials.

Example 3.2. We see that m(2,1) = x21x2 + x22x1 + x21x3 + x23x1 + · · · .

The set of all monomial symmetric functions forms a basis for the graded

algebra of symmetric functions

Sym =
⊕
n≥0

Symn ⊆ R[[x1, x2, . . .]]

where Sym0 = span{1} and Symn = span{mλ | λ � n} for n ≥ 1. Hence

each graded piece Symn for n ≥ 1 is a finite-dimensional real vector space

with basis {mλ | λ � n}.
For our second required basis we need Young diagrams and Young

tableaux. Given a partition λ = (λ1, . . . , λk) � n, we call the array of n

left-justified boxes with λi boxes in row i from the top, for 1 ≤ i ≤ k, the
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Young diagram of λ, also denoted by λ. Given a Young diagram we say that
T is a semistandard Young tableau (SSYT) of shape λ if the boxes of λ are
filled with positive integers such that

1. the entries in each row weakly increase when read from left to right,
2. the entries in each column strictly increase when read from top to

bottom.

Two SSYTs of shape (2, 1) can be seen below in Example 3.3. Given an
SSYT T we define the content of T , denoted by content(T ), to be the list
of nonnegative integers

content(T ) = (c1, . . . , cmax )

where ci is the number of times that i appears in T and max is the largest
integer appearing in T . We say that an SSYT is of partition content if
c1 ≥ · · · ≥ cmax > 0. With this in mind, if λ and μ are partitions, then we
define the Schur function sλ to be

(3.1) sλ = mλ +
∑

μ<lexλ

Kλμmμ

where Kλμ is the number of SSYTs, T , of shape λ and content(T ) = μ.

Example 3.3. We see s(2,1) = m(2,1) + 2m(1,1,1) from the following two
SSYTs arising from the nonleading term.

1 2

3

1 3

2

We now define the i-th complete homogeneous symmetric function to be

hi = s(i)

and if λ = (λ1, . . . , λk) is a partition then we define the complete homoge-
neous symmetric function hλ to be

hλ = hλ1
· · ·hλk

= s(λ1) · · · s(λk).

Similarly, we define the i-th elementary symmetric function to be

ei = s(1i)
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and if λ = (λ1, . . . , λk) is a partition then we define the elementary symmet-
ric function eλ to be

eλ = eλ1
· · · eλk

= s(1λ1) · · · s(1λk ).

We have that {mλ | λ � n}, {sλ | λ � n}, {hλ | λ � n} and {eλ | λ � n}
are all bases of Symn for n ≥ 1. Additionally, if f ∈ Sym is a nonnega-
tive linear combination of elements in these bases, then using the vernacular
we say that f is, respectively, monomial-, Schur-, h- or e-positive. Also,
in the following results, we use the notation Pn(· | ·) to denote that the
probability is being calculated in Symn for n ≥ 1. Considering its impor-
tance, our first result shows the rarity that a monomial-positive symmetric
function is furthermore Schur-positive. This statement was previously de-
termined by Bergeron–Patrias–Reiner using a proof method similar to that
of Theorem 2.1. The statement without proof is given in [20].

Corollary 3.4. [20] Let Kλ denote the number of SSYTs of shape λ and
partition content. Then

Pn(sλ | mλ) =
∏
λ�n

(Kλ)
−1.

Proof. The result follows from Theorem 2.1 by first setting A0 = s(1n) =
m(1n) = B0, and ordering the basis elements in increasing order by taking
their indices in lexicographic order. Then use Equation (3.1) along with
Kλμ = 0 if λ <lex μ and Kλλ = 1 [22, Proposition 7.10.5].

Example 3.5. For n = 3 we have that K(3) = 3, K(2,1) = 3 and K(1,1,1) = 1
from the following SSYTs.

1 1 1 1 1 2 1 2 3 1 1

2

1 2

3

1 3

2

1

2

3

Hence,

P3(sλ | mλ) =

(
1

3

)(
1

3

)(
1

1

)
=

1

9
.

Corollary 3.6. We have that

lim
n→∞

Pn(sλ | mλ) = 0.
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Proof. Let λ = (λ1, . . . , λk) be a partition of n, and consider the following
two fillings of λ. For the first, fill the boxes in the top row with 1, . . . , λ1 from
left to right, the second row with λ1 + 1, . . . , λ1 + λ2, etc. For the second,
fill the boxes in row i from the top with i for 1 ≤ i ≤ k. For λ �= (1n), these
fillings are distinct, and thus Kλ ≥ 2. It follows that

0 ≤
∏
λ�n

(Kλ)
−1 ≤ 1

2p(n)−1
,

where p(n) denotes the number of partitions of n, and hence

0 ≤ lim
n→∞

∏
λ�n

(Kλ)
−1 ≤ lim

n→∞
1

2p(n)−1
= 0.

Corollary 3.7. Let Eλ be the number of SSYTs with content λ. Then

Pn(eλ | sλ) = Pn(hλ | sλ) =
∏
λ�n

(Eλ)−1.

Proof. By [22, Proposition 7.10.5 and Corollary 7.12.4] we have that

(3.2) hλ = sλ +
∑

μ>lexλ

Kμλsμ.

The result for Pn(hλ | sλ) now follows from Equation (3.2) and Theorem 2.1,
along with Kμλ = 0 if μ <lex λ and Kλλ = 1 [22, Proposition 7.10.5], by
setting A0 = hn = s(n) = B0 and by ordering the basis elements in increasing
order by taking their indices in reverse lexicographic order. The result for
Pn(eλ | sλ) now follows from applying the involution ω to that acts as a
bijection from Schur-positive functions that are h-positive to Schur-positive
functions that are e-positive. It satisfies

ω(hλ) = eλ and ω(sλ) = sλ′

where λ′ is the transpose of λ, that is, the partition whose parts are obtained
from λ with maximum part max (λ) by letting λ′

i = the number of parts of
λ ≥ i, for 1 ≤ i ≤ max (λ).

Example 3.8. For n = 3 we have that E(3) = 1, E(2,1) = 2 and E(1,1,1) = 4
from the following SSYTs.

1 1 1 1 1 2 1 1

2
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1 2 3 1 2

3

1 3

2

1

2

3

Hence,

P3(eλ | sλ) = P3(hλ | sλ) =
(
1

1

)(
1

2

)(
1

4

)
=

1

8
.

Corollary 3.9. We have that

lim
n→∞

Pn(eλ | sλ) = lim
n→∞

Pn(hλ | sλ) = 0.

Proof. As in the proof of Corollary 3.6, the result will follow from showing
that Eλ ≥ 2 for all λ �= (n). Indeed, first consider the tableau T of shape
λ = (λ1, . . . , λk) with the boxes in row i from the top filled with i for
1 ≤ i ≤ k. Second, consider the tableau of shape (λ1+1, λ2, . . . , λk−1, λk−1)
obtained from T by moving the rightmost box filled with k from row k to
row 1. These are distinct for all λ �= (n), hence Eλ ≥ 2 for all λ �= (n).

Remark 3.10. One can form a square matrix with the Kλμ (known as the
Kostka numbers), where λ and μ vary over all partitions of n, and rows
and columns are ordered in lexicographic order. Then Kλ and Eλ may be
interpreted as a row sum and as a column sum of this matrix, respectively.

Since elementary symmetric functions are Schur-positive, which in turn
are monomial-positive, it is natural to compute the following.

Corollary 3.11. Let Mλ be the number of (0,1)-matrices with row sum λ
and column sum a partition. Then

Pn(eλ | mλ) =
∏
λ�n

(Mλ)
−1.

Proof. Let A0 = en = m(1n) = B0. Order the basis elements of A in increas-
ing order by taking their indices in reverse lexicographic order. Order the
basis elements of B in increasing order by taking the transpose, as in the
proof of Corollary 3.7, of their indices in reverse lexicographic order. By [22,
Proposition 7.4.1 and Theorem 7.4.4] we have that

eλ = mλ′ +
∑

μ′<revlexλ

Mλμmμ,

where μ′ is the transpose of μ as in the proof of Corollary 3.7, and Mλμ is
the number of (0,1)-matrices whose row sums give the parts of λ and whose
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column sums give the parts of μ. The result now follows from Theorem 2.1
along with Mλμ = 0 if λ <lex μ′ and Mλλ′ = 1 [22, Theorem 7.4.4].

Example 3.12. For n = 3 we have that M(3) = 1, M(2,1) = 4 and

M(1,1,1) = 10 from the six 3× 3 permutation matrices, the matrix

(
1 1
1 0

)
and the following four matrices and their transposes.

(
1 1 1

) (
1 1 0
0 0 1

) (
1 0 1
0 1 0

) (
0 1 1
1 0 0

)

Hence,

P3(eλ | mλ) =

(
1

1

)(
1

4

)(
1

10

)
=

1

40
.

Corollary 3.13. We have that

lim
n→∞

Pn(eλ | mλ) = 0.

Proof. As before, in the proof of Corollary 3.6, the result will follow if we
show that Mλ ≥ 2 for all λ = (λ1, . . . , λk) �= (n). Consider the matrix where
the first λ1 columns have a 1 in row 1 and 0’s everywhere else, the next λ2

columns have a 1 in row 2 and 0’s everywhere else, the next λ3 columns
have a 1 in row 3 and 0’s everywhere else, etc. We obtain a second valid
(0,1)-matrix by swapping column λ1 with column λ1 + 1.

4. Probabilities of quasisymmetric function positivity

We now turn our attention to quasisymmetric functions, and again begin by
recalling pertinent combinatorial concepts. A composition α = (α1, . . . , αk)
of n, denoted by α � n, is a list of positive integers whose parts αi sum
to n. Observe that every composition α determines a partition λ(α), which
is obtained by reordering the parts of α into weakly decreasing order. Also
recall the bijection between compositions of n and subsets of [n − 1] =
{1, . . . , n − 1}. Namely, given α = (α1, . . . , αk) � n, its corresponding set
is set(α) = {α1, α1 + α2, . . . , α1 + · · · + αk−1} ⊆ [n − 1]. Conversely, given
S = {s1, . . . , sk−1} ⊆ [n − 1] its corresponding composition is comp(S) =
(s1, s2 − s1, . . . , n− sk−1) � n. Lastly, the empty set is in bijection with (n).
We again use the abbreviation ij to mean j consecutive parts equal to i,
and extend the definition of lexicographic order from the previous section
for partitions to encompass compositions. We then use this extension to
define a total order on compositions of n. Given compositions α, β we say
β � α if λ(β) <lex λ(α) or λ(β) = λ(α) and β <lex α.
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Example 4.1. The compositions of 4 in � order are

(14) � (12, 2) � (1, 2, 1) � (2, 12) � (22) � (1, 3) � (3, 1) � (4).

There is also a partial order on compositions of n, which will be useful
later. Given compositions α, β we say that α is a proper coarsening of β
(or β is a proper refinement of α) denoted by β ≺ α if we can obtain α
by nontrivially adding together adjacent parts of β. For example, (1, 2, 1) ≺
(1, 3). Observe that β ≺ α if and only if set(α) ⊂ set(β).

Now, similar to the previous section, given a composition α=(α1, . . . , αk)
and commuting variables {x1, x2, . . .} we define the monomial quasisymmet-
ric function Mα to be

Mα =
∑

i1<···<ik

xα1

i1
· · ·xαk

ik

and the fundamental quasisymmetric function Fα to be

Fα = Mα +
∑
β≺α

Mβ.

Example 4.2. We compute M(2,1) = x21x2+x21x3+· · · and F(2,1) = M(2,1)+
M(1,1,1).

The set of monomial quasisymmetric functions or the set of fundamental
quasisymmetric functions forms a basis for the graded algebra of quasisym-
metric functions

QSym =
⊕
n≥0

QSymn ⊆ R[[x1, x2, . . .]]

where QSym0 = span{1} and QSymn = span{Mα | α � n} = span{Fα | α �
n} for n ≥ 1. Hence each graded piece QSymn for n ≥ 1 is a finite-
dimensional real vector space with basis {Mα | α � n} or {Fα | α � n}.

In order to define our third and final basis of QSym we need composition
diagrams and composition tableaux. Given a composition α = (α1, . . . , αk) �
n, we call the array of n left-justified boxes with αi boxes in row i from the
top, for 1 ≤ i ≤ k, the composition diagram of α, also denoted by α. Given a
composition diagram α � n, we say τ is a semistandard composition tableau
(SSCT) of shape α if the boxes of α are filled with positive integers such that

1. the entries in each row weakly decrease when read from left to right,
2. the entries in the leftmost column strictly increase when read from top

to bottom,
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3. if we denote the box in τ that is in the i-th row from the top and j-th
column from the left by τ(i, j), then if i < j and τ(j,m) ≤ τ(i,m− 1)
then τ(i,m) exists and τ(j,m) < τ(i,m).

Furthermore, if each of the numbers 1, . . . , n appears exactly once, then we
say that τ is a standard composition tableau (SCT). Intuitively we can think
of the third condition as saying that if a ≤ b then a < c in the following
array of boxes.

b c

a

Given an SSCT τ we define the content of τ , denoted by content(τ), to be
the list of nonnegative integers

content(τ) = (c1, . . . , cmax )

where ci is the number of times that i appears in τ and max is the largest
integer appearing in τ . We say that an SSCT is of composition content if
ci �= 0 for all 1 ≤ i ≤ max . Given an SCT τ of shape α � n, we define its
descent set to be

Des(τ) = {i | i+ 1 is weakly right of i} ⊆ [n− 1]

and define its descent composition to be

comp(τ) = comp(Des(τ)) � n.

We can now define our final basis both in terms of monomial and fundamen-
tal quasisymmetric functions, respectively. The first formula is [11, Theorem
6.1] with [11, Proposition 6.7] applied to it, and the second is [11, Theorem
6.2] with [11, Proposition 6.8] applied to it.

If α and β are compositions, then we define the quasisymmetric Schur
function Sα to be

(4.1) Sα = Mα +
∑
β�α

Kc
αβMβ

where Kc
αβ is the number of SSCTs, τ , of shape α and content(τ) = β. It is

also given by

(4.2) Sα = Fα +
∑
β�α

dαβFβ
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where dαβ is the number of SCTs, τ , of shape α and comp(τ) = β.

Example 4.3. S(1,2) = M(1,2) +M(1,1,1) = F(1,2) from the following SSCT,
which is also an SCT, arising from the nonleading term in the first equality.

1

3 2

We have that, in addition to {Mα | α � n} and {Fα | α � n}, {Sα | α �
n} is a basis of QSymn for n ≥ 1, and if f ∈ QSym is a nonnegative
linear combination of such basis elements, then we refer to f respectively as
being monomial quasisymmetric-, fundamental- or quasisymmetric Schur-
positive. We also use the notation Pn(· | ·) to denote that the probability
is being calculated in QSymn for n ≥ 1. Our first result is reminiscent of
the probability that a monomial-positive symmetric function is furthermore
Schur-positive in Corollary 3.4.

Corollary 4.4. Let Kc
α be the number of SSCTs of shape α and composition

content. Then

Pn(Sα | Mα) =
∏
α�n

(Kc
α)

−1.

Proof. The result follows from Theorem 2.1 by first setting A0 = S(1n) =
M(1n) = B0, and ordering the basis elements in increasing order by taking
their indices in � order. Then use Equation (4.1) along with Kc

αβ = 0 if
α � β and Kc

αα = 1 [11, Proposition 6.7].

Example 4.5. For n = 3 we have that Kc
(3) = 4, Kc

(2,1) = 2, Kc
(1,2) = 2 and

Kc
(1,1,1) = 1 from the following SSCTs.

1 1 1 2 1 1 2 2 1 3 2 1

1 1

2

2 1

3

1

2 2

1

3 2

1

2

3

Hence,

P3(Sα | Mα) =

(
1

4

)(
1

2

)(
1

2

)(
1

1

)
=

1

16
.

Corollary 4.6. We have that

lim
n→∞

Pn(Sα | Mα) = 0.
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Proof. Let α = (α1, . . . , αk) be a composition of n and consider the following
two fillings of α. For the first, fill the boxes of α such that the boxes in the
bottom row contain n, n− 1, . . . , n+ 1− αk from left to right, the next row
up n−αk, n−αk−1, . . . , n+1−αk−αk−1 etc. For the second, fill the boxes
in row i from the top with i, for 1 ≤ i ≤ k. For α �= (1n) these fillings are
distinct, and thus Kc

α ≥ 2. Since the number of compositions of n is 2n−1 it
follows that

0 ≤ lim
n→∞

∏
α�n

(Kc
α)

−1 ≤ lim
n→∞

1

22n−1−1
= 0.

Corollary 4.7. Let Dα be the number of SCTs of shape α. Then

Pn(Sα | Fα) =
∏
α�n

(Dα)
−1.

Proof. The result follows from Theorem 2.1 by first setting A0 = S(1n) =
F(1n) = B0 and ordering the basis elements in increasing order by taking
their indices in � order. Then use Equation (4.2) along with dαβ = 0 if
α � β and dαα = 1 [11, Proposition 6.8].

Example 4.8. For n = 3 we have that D(3) = 1, D(2,1) = 1, D(1,2) = 1 and
D(1,1,1) = 1 from the following SSCTs.

3 2 1 2 1

3

1

3 2

1

2

3

Hence,

P3(Sα | Fα) = 1.

Corollary 4.9. We have that

lim
n→∞

Pn(Sα | Fα) = 0.

Proof. By [5, Theorem 4.4], we know that Sα = Fα if and only if α =
(m, 1ε1 , 2, 1ε2 , . . . , 2, 1εk), where m ∈ N0= {0, 1, 2, . . .} (m = 0 is understood
to mean it does not appear in the composition), k ∈ N0, εi ∈ N= {1, 2, . . .}
for i ∈ [k − 1], and εk ∈ N0.

Let An be the set of compositions of n not in the set of composi-
tions described above. Note that if α ∈ An then Dα ≥ 2. Also note that
if α = (α1, . . . , αk) ∈ An, then (α1, . . . , αk + 1), (α1, . . . , αk, 1) ∈ An+1.
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Hence 2|An| ≤ |An+1|. Using this repeatedly, along with |A4| = 2 since
A4 = {(1, 3), (2, 2)}, yields that for n ≥ 5

2n−3 ≤ |An|.

Hence it follows that

0 ≤ lim
n→∞

∏
α�n

(Dα)
−1 ≤ lim

n→∞
1

2|An| ≤ lim
n→∞

1

22n−3 = 0.

We end with the most succinct of our formulas, namely the probability
that a quasisymmetric monomial-positive function is furthermore fundamen-
tal-positive.

Corollary 4.10.

Pn(Fα | Mα) =
1

(n− 1)2n−2

Proof. Recall that

Fα = Mα +
∑
β≺α

Mβ,

and that β ≺ α if and only if set(α) ⊂ set(β). Letting A0 = F(1n) = M(1n) =
B0 and ordering the basis elements in increasing order by taking their indices
in � order, Theorem 2.1 gives that

Pn(Fα | Mα) =
∏
α�n

⎛
⎝∑

β
α

1

⎞
⎠

−1

.

Now

∏
α�n

⎛
⎝∑

β
α

1

⎞
⎠ =

∏
S⊆[n−1]

⎛
⎝∑

T⊇S

1

⎞
⎠ =

∏
S⊆[n−1]

(
2n−1−|S|

)
= 2

∑
S⊆[n−1](n−1−|S|),

and

∑
S⊆[n−1]

(n− 1− |S|) =
∑

T⊆[n−1]

|T | =
n−1∑
k=0

k

(
n− 1

k

)
= (n− 1)2n−2,

where the last equality is [21, Chapter 1 Exercise 2(b)].
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Example 4.11. For n = 3 we have that P3(Fα | Mα) =
1
4 .

The following corollary follows from Corollary 4.10.

Corollary 4.12. We have that

lim
n→∞

Pn(Fα | Mα) = 0.
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