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Fertility numbers∗

Colin Defant

A nonnegative integer is called a fertility number if it is equal to the
number of preimages of a permutation under West’s stack-sorting
map. We prove structural results concerning permutations, allow-
ing us to deduce information about the set of fertility numbers. In
particular, the set of fertility numbers is closed under multiplica-
tion and contains every nonnegative integer that is not congruent
to 3 modulo 4. We show that the lower asymptotic density of the
set of fertility numbers is at least 1954/2565 ≈ 0.7618. We also
exhibit some positive integers that are not fertility numbers and
conjecture that there are infinitely many such numbers.

Keywords and phrases: Permutation, stack-sorting, fertility, valid
hook configuration.

1. Introduction

Throughout this article, the word “permutation” refers to a permutation
of a finite set of positive integers. We write permutations as words in one-
line notation. Let Sn denote the set of permutations of {1, . . . , n}. We say
a permutation is normalized if it an element of Sn for some n (e.g., the
permutation 12547 is not normalized).

The study of permutation patterns, which has now developed into a vast
area of research, began with Knuth’s investigation of stack-sorting in [10].
In his 1990 Ph.D. thesis, Julian West [12] explored a deterministic variant of
Knuth’s stack-sorting algorithm, which we call the stack-sorting map. This
map, denoted s, is defined as follows.

Assume we are given an input permutation π = π1 · · ·πn. Throughout
this algorithm, if the next entry in the input permutation is smaller than the
entry at the top of the stack or if the stack is empty, the next entry in the
input permutation is placed at the top of the stack. Otherwise, the entry at
the top of the stack is annexed to the end of the growing output permutation.
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Figure 1: The stack-sorting map s sends 4162 to 1426.

This procedure stops when the output permutation has length n. We then

define s(π) to be this output permutation. Figure 1 illustrates this procedure

and shows that s(4162) = 1426.

There is an alternative recursive description of the stack-sorting map.

Specifically, if m is the largest entry appearing in the permutation π, we

can write π = LmR, where L and R are the substrings of π appearing to

the left and right of m, respectively. Then s(π) = s(L)s(R)m. For exam-

ple, s(4162) = s(41)s(2)6 = s(41)26 = s(1)426 = 1426. It is also possible

to describe the stack-sorting algorithm in terms of in-order readings and

postorder readings of decreasing binary plane trees [1, 4].

West defined the fertility of a permutation π to be |s−1(π)|, the number

of preimages of π under the stack-sorting map [12]. He proceeded to compute

the fertilities of the permutations of the forms

23 · · · k1(k + 1) · · ·n, 12 · · · (k − 2)k(k − 1)(k + 1) · · ·n,

and

k12 · · · (k − 1)(k + 1) · · ·n.

Bousquet-Mélou then defined a sorted permutation to be a permutation

that has positive fertility [3]; she provided an algorithm for determining

whether or not a given permutation is sorted. She also mentioned that it

would be interesting to find a method for computing the fertility of any given

permutation. The current author found such a method in [4]. In fact, the

results in that paper are even more general; they allow one to enumerate

certain types of decreasing plane trees that have a given permutation as

their postorder readings. The current author has since used this method to

improve the best-known upper bounds for the enumeration of so-called 3-

stack-sortable and 4-stack-sortable permutations in [5]. See [1, 2, 5, 13] for

more information about t-stack-sortable permutations.

The method developed in [4] and [5] for computing fertilities makes use

of new combinatorial objects called valid hook configurations. The authors

of [7] gave a concise description of valid hook configurations and exhibited

a bijection between these objects and certain ordered pairs of set partitions
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and acyclic orientations. They then exploited this bijection to study per-

mutations with fertility 1, showing that these permutations are counted by

an interesting sequence known as Lassalle’s sequence (which Lassalle intro-

duced in [11]). This bijection also allowed the authors to connect cumulants

arising in free probability theory with valid hook configurations and the

stack-sorting map (building upon results from [9]). For completeness, we re-

peat the short description of valid hook configurations from [7] in Section 2.

Definition 1.1. Say a nonnegative integer f is a fertility number if there ex-

ists a permutation with fertility f . Say a nonnegative integer is an infertility

number if it is not a fertility number.

For example, 0, 1, and 2 are fertility numbers because |s−1(21)| = 0,

|s−1(1)| = 1, and |s−1(12)| = 2. In Section 3, we prove the following state-

ments about fertility numbers. These are Theorems 3.1–3.5 below.

• The set of fertility numbers is closed under multiplication.

• If f is a fertility number, then there are arbitrarily long permutations

with fertility f .

• Every nonnegative integer that is not congruent to 3 modulo 4 is a

fertility number. The lower asymptotic density of the set of fertility

numbers is at least 1954/2565 ≈ 0.7618.

• The smallest fertility number that is congruent to 3 modulo 4 is 27.

• If f is a positive fertility number, then there exist a positive integer

n ≤ f + 1 and a permutation π ∈ Sn such that f = |s−1(π)|.

The fourth bullet point above shows, in particular, that the notion of a

fertility number is not pointless because infertility numbers exist. The fifth

bullet shows that determining whether or not a given number is a fertility

number can be reduced to a finite search. This finite search can be very long,

but we will see in our proof of the fourth bullet point that we can often cut

corners to reduce the computations. In Section 4, we give suggestions for

future work, including three conjectures.

2. Valid hook configurations

In this section, we review some of the theory of valid hook configurations.

Our presentation is virtually the same as that given in [7], but we include it

here for completeness. It is important to note that the valid hook configu-

rations defined below are, strictly speaking, different from those defined in

[4] and [5]. For a lengthier discussion of this distinction, see [7].
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Figure 2: The left image is the plot of 3142567. The right images shows this
plot along with a single hook.

The construction of a valid hook configuration commences with the
choice of a permutation π = π1 · · ·πn. A descent of π is an index i such
that πi > πi+1. Let d1 < · · · < dk be the descents of π. We use the exam-
ple permutation 3142567 to illustrate the construction. The plot of π is the
graph displaying the points (i, πi) for 1 ≤ i ≤ n. The left image in Figure 2
shows the plot of our example permutation. A point (i, πi) is a descent top
if i is a descent. The descent tops in our example are (1, 3) and (3, 4).

A hook of π is drawn by starting at a point (i, πi) in the plot of π, moving
vertically upward, and then moving to the right until reaching another point
(j, πj). We must necessarily have i < j and πi < πj . The point (i, πi) is called
the southwest endpoint of the hook, while (j, πj) is called the northeast
endpoint. The right image in Figure 2 shows our example permutation with
a hook that has southwest endpoint (3, 4) and northeast endpoint (6, 6).

A valid hook configuration of π is a configuration of hooks drawn on the
plot of π subject to the following constraints:

1. The southwest endpoints of the hooks are precisely the descent tops
of the permutation.

2. A point in the plot cannot lie directly above a hook.
3. Hooks cannot intersect each other except in the case that the northeast

endpoint of one hook is the southwest endpoint of the other.

Figure 3 shows four placements of hooks that are forbidden by conditions
2 and 3. Figure 4 shows all of the valid hook configurations of 3142567. Note
that the total number of hooks in a valid hook configuration of π is exactly k,
the number of descents of π. Because the southwest endpoints of the hooks
are the points (di, πdi

), we have a natural ordering of the hooks. Namely,
the ith hook is the hook whose southwest endpoint is (di, πdi

). We can write
a valid hook configuration of π concisely as a k-tuple H = (H1, . . . , Hk),
where Hi is the ith hook.
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Figure 3: Four configurations of hooks that are forbidden in a valid hook
configuration.

Figure 4: All of the valid hook configurations of 3142567.

A valid hook configuration of π induces a coloring of the plot of π. To
begin the process of coloring the plot, draw a “sky” over the entire diagram.
As one might expect, we color the sky blue. Assign arbitrary distinct colors
other than blue to the k hooks in the valid hook configuration.

There are k northeast endpoints of hooks, and these points remain un-
colored. However, all of the other n − k points will be colored. In order to
decide how to color a point (i, πi) that is not a northeast endpoint, imagine
that this point looks directly upward. If this point sees a hook when looking
upward, it receives the same color as the hook that it sees. If the point does
not see a hook, it must see the sky, so it receives the color blue. However,
if (i, πi) is the southwest endpoint of a hook, then it must look around (on
the left side of) the vertical part of that hook. See Figure 5 for the colorings
induced by the valid hook configurations in Figure 4. Note that the leftmost
point (1, 3) is blue in each of these colorings because this point looks around
the first (red) hook and sees the sky.

To summarize, we started with a permutation π with exactly k descents.
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Figure 5: The different colorings induced by the valid hook configurations
of 3142567.

We chose a valid hook configuration of π by drawing k hooks according to the
rules 1, 2, and 3 above. This valid hook configuration then induced a coloring
of the plot of π. Specifically, n−k points were colored, and k+1 colors were
used (one for each hook and one for the sky). Let qi be the number of points
colored the same color as the ith hook, and let q0 be the number of points
colored blue (sky color). Then (q0, q1, . . . , qk) is a composition of n− k into
k+1 parts.1 We call a composition obtained in this way a valid composition
of π. Let VHC(π) be the set of valid hook configurations of π. Let V(π) be
the set of valid compositions of π.

The following theorem is the main reason why valid hook configurations
are so useful when studying the stack-sorting map. Let Cj =

1
j+1

(
2j
j

)
denote

the jth Catalan number. We will find it convenient to introduce the notation

C(q0,...,qk) =

k∏
t=0

Cqt

for any composition (q0, . . . , qk).

1Throughout this article, a composition of b into a parts is an a-tuple of positive
integers that sum to b. For i ∈ {1, . . . , k}, the number qi is positive because the
point immediately to the right of the southwest endpoint of the ith hook is given
the same color as the ith hook. The number q0 is positive because (1, π1) is colored
blue.
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Theorem 2.1 ([4]). If π has exactly k descents, then the fertility of π is

given by the formula

|s−1(π)| =
∑

(q0,...,qk)∈V(π)
C(q0,...,qk).

Note in particular that a permutation is sorted if and only if it has

a valid hook configuration. See [4, 5, 7] for extensions and refinements of

Theorem 2.1.

Example 2.1. The permutation π = 3142567 has six valid hook configu-

rations, which are shown in Figure 4. The colorings induced by these valid

hook configurations are portrayed in Figure 5. The valid compositions of

these valid hook configurations are (reading the first row before the second

row, each from left to right)

(3, 1, 1), (2, 2, 1), (1, 3, 1), (2, 1, 2), (1, 2, 2), (1, 1, 3).

It follows from Theorem 2.1 that

|s−1(π)| = C(3,1,1) + C(2,2,1) + C(1,3,1) + C(2,1,2) + C(1,2,2) + C(1,1,3) = 27.

Consequently, 27 is a fertility number.

Throughout this paper, we implicitly make use of the following result,

which is Lemma 3.1 in [5].

Theorem 2.2 ([5]). Let π be a permutation. The map VHC(π) → V(π)
sending each valid hook configuration of π to its induced valid composition

is injective.

3. Proofs of the main theorems

We now exploit the valid hook configurations discussed in the previous sec-

tion to prove our main theorems concerning fertility numbers. Let us begin

with some useful definitions.

Let π = π1 · · ·πn be a permutation. Let H be a hook in a valid hook

configuration of π with southwest endpoint (i, πi) and northeast endpoint

(j, πj). When referring to a point “below” H, we mean a point (x, y) with

i < x < j and y < πj . In particular, the endpoints of a hook do not lie below

that hook.
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Figure 6: A stationary hook of the permutation 1 8 11 4 3 5 7 6 13 14 2 12
15 9 10 16.

Definition 3.1. Let π = π1 · · ·πn be a permutation, and let H be a hook
drawn on the plot of π. We say H is a stationary hook if it appears in every
valid hook configuration of π.

For example, suppose π ∈ Sn, πn = n and πi = n − 1, where i ≤
n− 2. Let H be the hook with southwest endpoint (i, n− 1) and northeast
endpoint (n, n). The point (i, n−1) is a descent top of π, so every valid hook
configuration of π must have a hook whose southwest endpoint is (i, n− 1).
The northeast endpoint of such a hook must be (n, n), so it follows that H
is a stationary hook of π. One can check that the hook drawn in Figure 6 is
another example of a stationary hook.

Proposition 3.1. Let π = π1 · · ·πn be a permutation with a stationary
hook H. Let (i, πi) and (j, πj) be the southwest and northeast endpoints of
H, respectively. Let σ = π1 · · ·πi+1πj · · ·πn and τ = πi+1 · · ·πj−1. We have

|s−1(π)| = |s−1(σ)||s−1(τ)|.

Proof. There is a natural bijection

VHC(σ)× VHC(τ) → VHC(π)

obtained by combining a valid hook configuration of σ and a valid hook
configuration of τ into a valid hook configuration of π. Furthermore, the
colorings of the plots of σ and τ combine into one coloring of π. Note that
the non-blue colors used to color σ must be different from those used to
color τ . The blue points in the plot of τ must change to the color of H in
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the plot of π. See Figure 7 for a depiction of this combination of valid hook
configurations and induced colorings. In that figure, H is the hook with
southwest endpoint (3, 11) and northeast endpoint (10, 14).

Let kσ = des(σ) and kτ = des(τ) be the number of descents of σ and the
number of descents of τ , respectively. Note that H is a stationary hook of σ.
If i is the rth descent of σ, then every valid composition of σ is of the form
(q0, . . . , qr−1, 1, qr+1, . . . , qkσ

). It follows from the above paragraph that the
map V(σ)× V(τ) → V(π) given by

((q0, . . . , qr−1, 1, qr+1, . . . , qkσ
), (q′0, . . . , q

′
kτ
))

�→ (q0, . . . , qr−1, q
′
0, . . . , q

′
kτ
, qr+1, . . . , qkσ

)

is a bijection. Invoking Theorem 2.1, we find that

|s−1(π)|

=
∑

(q0,...,qr−1,1,qr+1,...,qkσ )∈V(σ)

∑
(q′0,...,q

′
kτ

)∈V(τ)
C(q0,...,qr−1,q′0,...,q

′
kτ

,qr+1,...,qkσ )

=
∑

(q0,...,qr−1,1,qr+1,...,qkσ )∈V(σ)

∑
(q′0,...,q

′
kτ

)∈V(τ)
C(q0,...,qr−1,1,qr+1,...,qkσ )

C(q′0,...,q
′
kτ

)

=
∑

(q0,...,qr−1,1,qr+1,...,qkσ )∈V(σ)
C(q0,...,qr−1,1,qr+1,...,qkσ )

∑
(q′0,...,q

′
kτ

)∈V(τ)
C(q′0,...,q

′
kτ

)

= |s−1(σ)||s−1(τ)|.

The following corollary allows us to explicitly construct permutations
with certain fertilities by positioning stationary hooks appropriately. Given
π = π1 · · ·πn ∈ Sn, let π̃ = (n+1)π(n+2). If πn = n, put π∗ = π1 · · ·πn−1 ∈
Sn−1. If λ = λ1 · · ·λ� ∈ S� and μ = μ1 . . . μm ∈ Sm, then the sum of λ and
μ, denoted λ⊕μ, is obtained by placing the plot of μ above and to the right
of the plot of λ. More formally, the ith entry of λ⊕ μ is

(λ⊕ μ)i =

{
λi if 1 ≤ i ≤ �;

μi−� + �, if �+ 1 ≤ i ≤ �+m.

Corollary 3.1. Let � and m be positive integers. Let λ = λ1 · · ·λ� ∈ S� and
μ = μ1 . . . μm ∈ Sm, and assume λ� = �. Letting π = λ∗ ⊕ μ̃ ∈ S�+m+1, we
have

|s−1(π)| = |s−1(λ)||s−1(μ)|.
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Figure 7: Valid hook configurations of σ = 1 8 11 4 14 2 12 15 9 10 16
and τ = 4 3 5 7 6 13 combine to form a valid hook configuration of
π = 1 8 11 4 3 5 7 6 13 14 2 12 15 9 10 16. In Proposition 3.1, we consider a
stationary hook H of π. In this example, H is the (red) hook with southwest
endpoint (3, 11) and northeast endpoint (10, 14).

Proof. Note that π� = �+m and π�+m+1 = �+m+1. The hook with south-
west endpoint (�, �+m) and northeast endpoint (�+m+1, �+m+1) is a sta-
tionary hook of π. Following Proposition 3.1, let σ = π1 · · ·π�+1π�+m+1 and
τ = π�+1 · · ·π�+m. That proposition tells us that |s−1(π)| = |s−1(σ)||s−1(τ)|.
We have τi = μi + (� − 1) for all i ∈ {1, . . . ,m}, so τ and μ are order
isomorphic. It is immediate from the definition of the stack-sorting map
that two permutations that are order isomorphic have the same fertility.
Thus, |s−1(τ)| = |s−1(μ)|. Also, σ is order isomorphic to the permutation
λ′ = λ1 · · ·λ�−1(�+ 1)�(�+ 2). We have

V(λ′) = {(q0, . . . , qr, 1) : (q0, . . . , qr) ∈ V(λ)}.

According to Theorem 2.1,

|s−1(σ)| = |s−1(λ′)| =
∑

(q0,...,qr,1)∈V(λ′)

C(q0,...,qr,1) =
∑

(q0,...,qr)∈V(λ)
C(q0,...,qr)

= |s−1(λ)|.

The following theorem is now an immediate consequence of Corollary 3.1.

Theorem 3.1. The set of fertility numbers is closed under multiplication.
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The next theorem also follows easily from the above corollary.

Theorem 3.2. If f is a fertility number, then there are arbitrarily long
permutations with fertility f .

Proof. If f is a fertility number, then there is a permutation λ such that
|s−1(λ)| = f . We may assume that λ is normalized. That is, λ ∈ S� for some
� ≥ 1. Now let μ = 1 ∈ S1. The permutation π constructed in Corollary 3.1
has length �+2 and has fertility f . Repeating this procedure yields arbitrarily
long permutations with fertility f .

Given a set S of nonnegative integers, the quantity

lim inf
N→∞

|S ∩ {0, 1, . . . , N − 1}|
N

is called the lower asymptotic density of S. We next construct explicit
permutations with certain fertilities in order to prove the following theo-
rem.

Theorem 3.3. Every nonnegative integer that is not congruent to 3 modulo
4 is a fertility number. The lower asymptotic density of the set of fertility
numbers is at least 1954/2565 ≈ 0.7618.

Proof. We begin by showing that the permutation

ξm = m(m− 1) · · · 321(m+ 1)(m+ 2) · · · (2m)

has fertility 2m. The descent tops of this permutation are precisely the points
of the form (i,m+ 1− i) for i ∈ {1, . . . ,m − 1}. In a valid hook configura-
tion of ξm, the southwest endpoints of the hooks are precisely these descent
tops. The northeast endpoints of hooks form an (m − 1)-element subset of
{(m+1,m+1), . . . , (2m, 2m)}. Of course, this subset is determined by choos-
ing the number j ∈ {1, . . . ,m} such that (m+ j,m+ j) is not in the subset.
Once this number is chosen, the hooks themselves are determined by the fact
that hooks cannot intersect in a valid hook configuration. The valid com-
position induced from this valid hook configuration is (1, . . . , 1, 2, 1, . . . , 1),
where the 2 is in the (m + 1 − j)th position. Since C(1,1,...,1,2,1,...,1) = 2, it
follows from Theorem 2.1 that |s−1(ξm)| = 2m. Thus, every even positive
integer is a fertility number. This computation is illustrated in Figure 8 in
the case m = 4.

Suppose we have a permutation π ∈ Sn. Every valid hook configuration
of 1⊕ π is obtained by placing a valid hook configuration of π above and to
the right of the point (1, 1). In the induced coloring of the plot of 1⊕ π, the
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Figure 8: The valid hook configurations of ξ4 = 43215678 along with their
induced colorings.

point (1, 1) must be blue. Every other point is given the same color as in the

coloring of the plot of π induced from the original valid hook configuration.

It follows that

V(1⊕ π) = {(q0 + 1, q1, . . . , qr) : (q0, . . . , qr) ∈ V(π)}.

We have seen that the valid compositions of ξm are precisely the com-

positions consisting of m− 1 parts that are equal to 1 and one part that is

equal to 2. Therefore, the valid compositions of 1⊕ ξm are

(3, 1, 1, 1, . . . , 1), (2, 2, 1, 1, . . . , 1), (2, 1, 2, 1, . . . , 1), . . . , (2, 1, 1, . . . , 1, 2).

Invoking Theorem 2.1, we find that

|s−1(1⊕ ξm)| = 5 + 4(m− 1) = 4m+ 1.

It follows that every positive integer that is congruent to 1 modulo 4 is a

fertility number.

We saw in Example 2.1 that 27 is a fertility number. The valid compo-

sitions of 1243567 are (5, 1), (4, 2), and (3, 3), so

|s−1(1243567)| = C(5,1) + C(4,2) + C(3,3) = 42 + 28 + 25 = 95.

This shows that 95 is also a fertility number. If we combine Theorem 3.1

with the fact that all positive integers congruent to 1 modulo 4 are fertility

numbers, then we find that all positive integers congruent to 3 modulo 4

that are multiples of 27 or 95 are also fertility numbers. In summary, every

nonnegative integer f satisfying one of the following conditions is a fertility

number:
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• f �≡ 3 (mod 4);

• f ≡ 3 (mod 4) and 27 | f ;
• f ≡ 3 (mod 4) and 95 | f .

The natural density of the set of nonnegative integers satisfying one of these

conditions is
3

4
+

1

4 · 27 +
1

4 · 95 − 1

4 · 27 · 95 =
1954

2565
.

The constant 1954/2565 in Theorem 3.3 is not optimal. Indeed, we can

increase the constant by simply exhibiting a fertility number that is congru-

ent to 3 modulo 4 and is not already counted. Let us briefly describe one

method for doing this. Let

ζm = (m+ 1)1(m+ 2)2(m+ 3)3 · · · (2m)m(2m+ 1)(2m+ 2)(2m+ 3).

The valid compositions of ζm are precisely the compositions consisting of

either one 3 and m 1’s or two 2’s and m − 1 1’s. This is not difficult to

see, but one can also give a rigorous proof using Theorem 2.4 from [6]. For

example, ζ2 is the permutation 3142567 from Example 2.1. It follows from

Theorem 2.1 that

|s−1(ζm)| = 5(m+ 1) + 4

(
m+ 1

2

)
,

and this is congruent to 3 modulo 4 whenever m ≡ 2 (mod 4).

Proving that a given positive integer f is a fertility number amounts

to constructing a permutation with fertility f , as we did in the proof of

Theorem 3.3. Showing that a number is an infertility number is more sub-

tle and requires additional tools. Bousquet-Mélou introduced the notion of

the canonical tree of a permutation and showed that the shape of a per-

mutation’s canonical tree determines that permutation’s fertility [3]. She

then asked for an explicit method for computing the fertility of a permuta-

tion from its canonical tree. The current author reformulated the notion of

a canonical tree in the language of valid hook configurations, defining the

canonical hook configuration of a permutation [5]. He then described a the-

orem that yields an explicit method for computing a permutation’s fertility

from its canonical hook configuration. This result appears as Theorem 2.4

in the more recent article [6]. The following lemma is a consequence of this

theorem; we omit the discussion describing how to compute the numbers ej ,

μj , and αj because our present applications do not require it.
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Lemma 3.1. Let π ∈ Sn be a permutation, and let d1 < · · · < dk be the de-
scents of π. There exist integers e0, . . . , ek, μ0, . . . , μk, α1, . . . , αk+1 (depend-
ing on π) with the following property. A composition (q0, . . . , qk) of n − k
into k + 1 parts is a valid composition of π if and only if the following two
conditions hold:

(a) For every m ∈ {0, 1, . . . , k},

em−1∑
j=m

qj ≥
em−1∑
j=m

μj .

(b) If m, p ∈ {0, 1, . . . , k} are such that m ≤ p ≤ em − 2, then

p∑
j=m

qj ≥ dp+1 − dm −
p+1∑

j=m+1

αj .

Suppose q = (q0, . . . , qk), q
′ = (q′0, . . . , q

′
k), and q′′ = (q′′0 , . . . , q

′′
k) are

compositions of n−k into k+1 parts (where n and k are as in Lemma 3.1).
We say q interval dominates q′ and q′′ if

m2∑
j=m1

qj ≥ min

⎧⎨⎩
m2∑

j=m1

q′j ,
m2∑

j=m1

q′′j

⎫⎬⎭ whenever 0 ≤ m1 ≤ m2 ≤ k.

If q′, q′′ ∈ V(π) and q interval dominates q′ and q′′, then it follows immedi-
ately from Lemma 3.1 that q ∈ V(π). In fact, this is the only reason why we
need Lemma 3.1.

Theorem 3.4. The smallest fertility number that is congruent to 3 modulo
4 is 27.

Proof. We saw in Example 2.1 that 27 is a fertility number. Assume by way
of contradiction that there exists a fertility number f ∈ {3, 7, 11, 15, 19, 23}.
Let n be the smallest positive integer such that there exists a permutation
in Sn with fertility f . Let π ∈ Sn be one such permutation, and let k be
the number of descents of π. We say a composition c has type λ if λ is the
partition formed by rearranging the parts of c into nonincreasing order. For
example, (1, 2, 1, 2) has type (2, 2, 1, 1).

Because |s−1(π)| = f is odd, Theorem 2.1 tells us that π must have a
valid composition q such that Cq is odd. If any of the parts in q were greater
than 4, the sum representing |s−1(π)| in Theorem 2.1 would be at least 42,
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which is larger than f . If any of the parts were 2 or 4, Cq would be even.
This shows that all of the parts of q are equal to 1 or 3. Furthermore, there
is at most one part equal to 3 (otherwise, the sum in Theorem 2.1 would be
at least 25).

We know from Section 2 that every valid composition of π is a composi-
tion of n−k into k+1 parts. If q = (1, 1, . . . , 1), then n = 2k+1. In this case,
(1, 1, . . . , 1) is the only valid composition of π (it is the only composition of
n−k into k+1 parts), so it follows from Theorem 2.1 that |s−1(π)| = 1. This
is a contradiction, so q must have type (3, 1, . . . , 1). Since q is a composition
of n − k, we must have n = 2k + 3. This implies that every composition of
n− k into k+ 1 parts is of type (3, 1, . . . , 1) or of type (2, 2, 1, . . . , 1). Thus,
every valid composition of π is of one of these types.

Let Q1, . . . , Qa be the valid compositions of π of type (3, 1, . . . , 1), and
let b be the number of valid compositions of π of type (2, 2, 1, . . . , 1). By
Theorem 2.1, 5a+4b = f . Reading this equation modulo 4 shows that a ≡ 3
(mod 4). Since f ≤ 23, we must have a = 3. For 1 ≤ u < v ≤ 3, let Qu,v be
the composition whose ith part is the arithmetic mean of the ith part of Qu

and the ith part of Qv. It is straightforward to see that Qu,v is a composition
of n − k into k + 1 parts that has type (2, 2, 1, . . . , 1) and that interval
dominates Qu and Qv. According to the discussion preceding this theorem,
Q1,2, Q1,3, and Q2,3 are valid compositions of π. Consequently, b ≥ 3. It
follows that f = 5a+ 4b ≥ 27, which is our desired contradiction.

Among the bulleted statements in the introduction, only the last one
remains to be proven. The proof requires us to use Proposition 3.2, which
is stated below. The proof of this proposition relies on the following lemma,
which is interesting in its own right.

Lemma 3.2. Let π be a sorted permutation with descents d1 < · · · < dk.
Suppose there is an index i ∈ {1, . . . , k} such that qi = 1 for all (q0, . . . , qk) ∈
V(π). If H is a hook in a valid hook configuration of π with southwest end-
point (di, πdi

), then H is a stationary hook of π.

Proof. Recall from the previous section that we write valid hook configura-
tions as tuples of hooks. Let H = (H1, . . . , Hk) be a valid hook configuration
containing the hook H. Necessarily, we have H = Hi (this is simply due
to the conventions we chose in Section 2 concerning how to order hooks).
Suppose by way of contradiction that there is a valid hook configuration
H′ = (H ′

1, . . . , H
′
k) with H ′

i �= H. The southwest endpoint of H ′
i must be

(di, πdi
). Let (j, πj) and (j′, πj′) be the northeast endpoints of Hi and H ′

i,
respectively. Without loss of generality, we may assume j < j′.
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There exists r ∈ {i, . . . , k} such that (di+1, πdi+1
), . . . , (dr, πdr

) are the
descent tops of π lying below H. Let

H′′ = (H ′
1, . . . , H

′
i, Hi+1, . . . , Hr, H

′
r+1, . . . , H

′
k).

One can check that H′′ is a valid hook configuration of π. In the coloring of
the plot of π induced by H′′, both (di + 1, πdi+1) and (j, πj) are given the
same color as the hook H ′

i. Letting (q′′0 , . . . , q
′′
k) denote the valid composition

of π induced by H′′, we have q′′i ≥ 2. This contradicts our hypothesis.

Proposition 3.2. Assume n ≥ 3. Let π = π1 · · ·πn be a sorted permutation
with descents d1 < · · · < dk. Suppose there is an index i ∈ {1, . . . , k} such
that qi = 1 for all (q0, . . . , qk) ∈ V(π). Let X = {(q0, . . . , qi−1, qi+1, . . . , qk) :
(q0, . . . , qk) ∈ V(π)}. There exists a permutation ζ ∈ Sn−2 such that
V(ζ) = X .

Proof. According to Lemma 3.2, π has a stationary hook H with southwest
endpoint (di, πdi

). Let λI, λII, λIII, λIV, μ be the parts of the plot of π as
indicated in Figure 9. Let us slide all of the points of λI∪λII∪μ up by some
integral distance so that the lowest point of λI ∪ λII ∪ μ is now higher than
the highest point of λIII∪λIV. We can then slide the points in λI∪λII up by
another integral distance so that the lowest point in λI ∪ λII is now higher
than the highest point in μ. These two operations, illustrated in Figure 9,
produce a new permutation π′.

Given a valid hook configuration of π, we obtain a valid hook configu-
ration of π′ by keeping the hooks attached to their endpoints throughout
these two sliding operations. Every valid hook configuration of π′ is obtained
in this way because we can easily undo these sliding operations. Each valid
hook configuration of π induces a valid composition of π, and the corre-
sponding valid hook configuration of π′ induces a valid composition of π′.
These two valid compositions are identical because no points or hooks were
ever moved horizontally and no hooks could have moved through each other
during the sliding. Therefore, V(π) = V(π′). To ease notation, let us replace
π with this new permutation π′. In other words, we have shown that, with-
out loss of generality, we may assume the plot of π has the shape depicted
in the rightmost part of Figure 9.

Let us now remove the hook H and its endpoints from the plot of π.
After shifting the remaining points in μ to the left by 1 and shifting the
points in λI ∪λIV left by 2, we obtain the plot of a permutation ξ. We claim
that V(ξ) = X . Indeed, there is a natural bijection ϕ : VHC(π) → VHC(ξ).
To apply ϕ to a valid hook configuration of π, we first leave unchanged every
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Figure 9: The two sliding operations described in the proof of Proposi-
tion 3.2.

hook whose endpoints were not deleted (i.e., those hooks whose endpoints
were not also endpoints of H). If there was a hook whose southwest endpoint
was the northeast endpoint of H, replace its southwest endpoint with the
rightmost remaining point from μ. This is allowed because the rightmost
remaining point in μ is a descent top of π (λIV lies below μ). If there was a
hook whose northeast endpoint was the southwest endpoint of H, replace its
northeast endpoint with the leftmost remaining point from μ. See Figure 10
for two examples of applications of ϕ.

If H ∈ VHC(π) induces a valid composition (q0, . . . , qk) ∈ V(π), then
ϕ(H) induces the valid composition (q0, . . . , qi−1, qi+1, . . . , qk) ∈ V(ξ). It
follows that V(ξ) = X , as desired. Finally, we can normalize the permutation
ξ to obtain a permutation ζ ∈ Sn−2 with V(ζ) = X .

The following corollary is now an immediate consequence of Theorem 2.1.

Corollary 3.2. In the notation of Proposition 3.2, the permutation ζ ∈
Sn−2 has the same fertility as π.

We can finally prove the last of our main theorems. As mentioned in the
introduction, this theorem reduces the problem of determining whether a
given positive integer is a fertility number to a finite problem.

Theorem 3.5. If f is a positive fertility number, then there exist a positive
integer n ≤ f + 1 and a permutation π ∈ Sn such that f = |s−1(π)|.
Proof. We know that there exist a positive integer n and a permutation
π ∈ Sn such that f = |s−1(π)|. Let us choose n minimally. We will show



544 Colin Defant

Figure 10: Two example applications of the map ϕ from the proof of Propo-
sition 3.2.

that n ≤ f + 1. The theorem is easy when f ∈ {1, 2}, so we may assume
f ≥ 3. This forces n ≥ 3.

Let (q10, . . . , q1k), . . . , (qm0, . . . , qmk) be the valid compositions of π.
Form them×(k+1) matrixM = (qi(j−1)) so that the rows ofM are precisely
the valid compositions of π. If there is a column of M whose entries are all
1’s, then we can use Corollary 3.2 to see that there is a permutation in Sn−2

with fertility f , contradicting the minimality of n. Hence, every column of
M contains at least one number that is not 1.

Given an a× b matrix D = (dij) with positive integer entries, define

ND = b− 1 +
1

a

a∑
i=1

b∑
j=1

dij

and

FD =

a∑
i=1

C(di1,...,dib).

From the fact that every valid composition of π is a composition of n − k
into k + 1 parts, we find that NM = n. We know from Theorem 2.1 that
FM = f . Consequently, it suffices to prove the following claim.
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Claim: If D is a matrix with positive integer entries and every column of
D contains at least one number that is not 1, then ND ≤ FD + 1.

To prove this claim, we first describe a useful reduction. We can choose
an entry dij ≥ 2 of D and replace it with dij−1 to produce a new matrix D′.
Note that FD′ ≤ FD − 1 and ND′ = ND − 1/a ≥ ND − 1. We can repeat
this operation repeatedly until we are left with a matrix D∗ such that every
entry of D∗ is either a 1 or a 2 and such that every column of D∗ contains
exactly one 2. If we performed the above operation � times to obtain D∗

from D, then FD∗ ≤ FD − � and ND∗ = ND − �/a ≥ ND − �. It suffices to
show that ND∗ ≤ FD∗ + 1.

Let ui be the number of 2’s in the ith row ofD∗. Note that u1+· · ·+ua = b
because every column of D∗ has exactly one 2. We have

ND∗ = b− 1 +
1

a
(ab+ u1 + · · ·+ ua) =

(
2 +

1

a

)
(u1 + · · ·+ ua)− 1

and

FD∗ + 1 = 2u1 + · · ·+ 2ua + 1.

We will show that

(1)

(
2 +

1

a

)
(u1 + · · ·+ ua)− 1 ≤ 2u1 + · · ·+ 2ua + 1

for every choice of nonnegative integers u1, . . . , ua.
If one of the integers ui is at least 3, we can replace it by ui−1. This has

the effect of decreasing the expression on the left-hand side of (1) by 2+1/a
and decreasing the expression on the right-hand side by at least 4. Therefore,
it suffices to prove the inequality in (1) after decreasing ui by 1. We can
repeatedly decrease the integers that are at least 3 until every integer in the
list u1, . . . , ua is at most 2. In other words, it suffices to prove the inequality
in (1) under the assumption that ui ∈ {0, 1, 2} for all i ∈ {1, . . . , a}. In this
case, let Xj = |{i ∈ {1, . . . , a} : ui = j}|. With this notation, (1) becomes(

2 +
1

X0 +X1 +X2

)
(X1 + 2X2)− 1 ≤ X0 + 2X1 + 4X2 + 1.

This simplifies to

−X0 +X2

X0 +X1 +X2
≤ X0 + 1,

which obviously holds.
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4. Future directions

The primary objective of this article has been to gain an understanding of
fertility numbers. Of course, the ultimate goal here is to obtain a complete
description of all fertility numbers. This appears to be difficult, but there
are less formidable problems whose solutions would still interest us greatly.
For example, Theorem 3.3 leads us to ask the following question.

Question 4.1. Does the set of fertility numbers have a natural density? If
so, what is this natural density?

We also have some conjectures spawning from our main theorems.

Conjecture 4.1. There are infinitely many infertility numbers.

The proof of Theorem 3.3 made use of the fact that 27 and 95 are
fertility numbers. We saw in Theorem 3.4 that 27 is the smallest fertility
number that is congruent to 3 modulo 4, so we are led to make the following
conjecture.

Conjecture 4.2. The smallest fertility number that is congruent to 3 mod-
ulo 4 and is greater than 27 is 95.

It is desirable to have more efficient methods for determining whether
or not a given positive integer is a fertility number. It is possible that
such a method could arise by extending the techniques used in the proof
of Theorem 3.4. Such methods could certainly be useful for answering the
above conjectures. This also leads to the problem of improving Theorem 3.5.
Given a fertility number f , let N (f) denote the smallest positive integer n
such that there exists a permutation in Sn with fertility f . Theorem 3.5
states that N (f) ≤ f + 1 for every fertility number f . We would like to
have better estimates for N (f). In particular, we have the following conjec-
ture.

Conjecture 4.3. We have

lim
f→∞

N (f)/f = 0,

where the limit is taken along the sequence of positive fertility numbers.

Finally, recall that Theorem 3.1 tells us that the product of two fer-
tility numbers is again a fertility number. We would like to have addi-
tional methods for combining fertility numbers in order to produce new
ones.
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