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Labeling resolving sets

Madeline Dunn and Stephen Shea

Let G be a simple, connected graph, W ⊆ V (G) and L : W →
{1, 2, . . . ,m}. For v ∈ V (G), define v[i] = {d(u, v)|u ∈ L−1[i]} and
R(v|L) = (v[1], v[2], . . . , v[m]). The labeling L is m-tracked if for
any v, w ∈ V (G) where R(v|L) = R(w|L), v = w. The minimum m
such that G has an m-tracked labeling is the graph’s tracking di-
mension (Trac(G)). Tracked labelings are an extension of resolving
sets, which were defined independently by Slater (1975) and Harary
and Melter (1976). W is a resolving set if for every distinct pair
u, v ∈ V (G), there exists x ∈ W where d(x, u) �= d(x, v). Albertson
and Collins (1996) defined a labeling of the entire vertex set to
be distinguishing if no nontrivial automorphism preserves the la-
bels. The graph’s distinguishing number (Dist(G)) is the minimum
number of labels needed to have a distinguishing labeling. Tracked
labelings must also break the graph’s symmetries, and in this way,
bridge distinguishing labelings and resolving sets. We show that
Trac(G) ≥ Dist(G) − 1. For n > 5, we show Trac(Cn) achieves
the lower bound, but for complements of cycles, Trac(G)−Dist(G)
can be arbitrarily large. For complete multipartite graphs, we show
Dist(G)− 1 ≤ Trac(G) ≤ Dist(G).
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1. Introduction

Bob is going to be dropped at a random vertex in the graph in Figure 1,
and he’ll be tasked with determining his location. Before this happens, Bob
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Figure 1: Bob’s Graph.
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Figure 2: Sample Resolving Set.

can prepare by placing markers on a subset of the vertices. Then, from any
specific vertex, he can send signals to the markers, and each marker will
return its distance to Bob. Furthermore, each marker will send a unique
response, not necessarily unique in its distance to Bob, but unique in its
tone so that Bob knows from which marker the distance came.

In Figure 2, we’ve placed three markers, which are labeled 1, 2, and 3.
Next to each vertex, we’ve attached a vector with the distances to those
vertices in order. In this case, all vertices have a unique vector. In other
words, with this assignment of markers, Bob would always be able to identify
the vertex at which he’s located.

When the markers yield unique vectors, the marked subset of vertices is
called a resolving set. The minimum number of markers needed is the metric
dimension of the graph. This concept was introduced by Harary and Melter
in [12] and independently by Slater in [15]. (Slater referred to resolving sets
as locating sets and the metric dimension as the location number.)

Let’s modify Bob’s problem. Suppose Bob has the option of placing mul-
tiple markers that return the same tone. For example, Bob could place two
blue markers. These markers would collectively return a set of two distances.
Bob would know these distances came from blue markers, but would not be
able to determine which distance came from which blue marker.
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Figure 3: Sample Tracked Labeling.

Furthermore, suppose the cost of additional tones (or colors) is pro-
hibitive in comparison to adding multiple markers with the same tone. Bob
would like to know how many unique tones he needs.

In Figure 3, we’ve assigned blue and red markers. When on a given
vertex, Bob will receive a blue set of distances and a red set of distances.
In Figure 3, we’ve attached to each vertex these two sets with blue first.
Here, the assignment of just two colors is sufficient so that each vertex can
be identified by this information.

When the labeling of a subset of vertices is sufficient such that each
vertex in the graph has a unique collection of distance sets to the labeled
vertices (as in Figure 3), we say the labeling is tracked. The tracking dimen-
sion is the minimum number of colors needed for a tracked labeling. (Formal
definitions are presented in the next section.)

Tracked labelings identify all vertices through the vertices’ distances to
the labeled set, but the labeling in Figure 3 suggests a relationship between
the labeling and the graph’s automorphisms. The labeling breaks the graph’s
symmetries in the sense that there does not exist a nontrivial automorphism
of the graph that preserves the labeling. The idea of breaking symmetries
through labeling vertices was formalized by Albertson and Collins [2] when
they defined distinguishing labelings. (Note that in their definition, all ver-
tices are labeled.) The minimum number of colors needed for a distinguishing
labeling is called the distinguishing number of the graph. There are similar
ideas presented in the context of groups from around the same time [13, 14].

The labeled vertices in Figure 3 also have the property that if two auto-
morphisms of the graph agree on the subset of the vertex set that is labeled,
then those automorphisms agree on the entire vertex set. When a subset of
a vertex set has this property, it has been called a determining set by Boutin
[5] and a fixing set by Erwin and Harary [9]. The minimal cardinality of a
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determining set is the graph’s determining number [5], fixing number [9], or

rigidity index [10].

Recently, there has been a push to understand the relationship be-

tween resolving and determining sets. The efforts are detailed by Bailey
and Cameron [4], where they also provide an introduction to distinguishing

and determining numbers while connecting both to comparable or equivalent

group-theoretic terminology and results.

It has been harder to compare resolving sets to distinguishing labelings.

Tracked labelings are a bridge between these concepts.

Formal definitions and a few examples are presented in Section 2. Sec-

tion 3 explores the relationship between tracked labelings and distinguishing
labelings. We show that the tracking dimension of a graph is greater than

or equal to one less than the distinguishing number, and we present a class

of examples where the difference between the tracked and distinguishing
numbers can be arbitrarily large. In Section 4, we show that the tracking di-

mension for complete multipartite graphs is either the distinguishing number

or one less.

2. Basic definitions and examples

We will always work on simple, connected graphs.

Definition 2.1. Let G be a graph and let W = {w1, w2, . . . , wn} ⊆ V (G).
For v ∈ V (G), define r(v|W ) = (d(v, w1), d(v, w2), . . . , d(v, wn)). W is a

resolving set for G if whenever r(u|W ) = r(v|W ), u = v. The minimum
cardinality of a resolving set for G is the metric dimension of G and is

denoted dim(G).

Definition 2.2. Let G be a graph, W ⊆ V (G) and L : W → {1, 2, . . . ,m}.
For v ∈ V (G), define v[i] = {d(u, v)|u ∈ L−1[i]} (a multiset) and R(v|L) =
(v[1], v[2], . . . , v[m]). The labeling L is m-tracked (or simply, tracked) if
whenever R(u|L) = R(v|L), u = v. The minimum m such that G has an

m-tracked labeling is the tracking dimension of G and is denoted Trac(G).

Every graph has a tracked labeling since labeling each vertex a unique

color is sufficient. In fact, labeling every vertex except one with a unique

color is always sufficient. (This implies that Trac(G) ≤ |V (G)| − 1.) The
following proposition shows that Trac(G) ≤ dim(G).

Proposition 2.3. If W ⊆ V (G) and L : W → {1, 2, . . . ,m} are such that
L is m-tracked, then W is a resolving set for G.
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Proof. Let W ⊆ V (G) and L : W → {1, 2, . . . ,m} be such that L is m-
tracked. Let u, v ∈ V (G) where r(u|W ) = r(v|W ). Then, d(u,w) = d(v, w)
for all w ∈ W . This implies v[i] = u[i] for all i ∈ {1, 2, . . . ,m}, and
R(u|L) = R(v|L). Since L is m-tracked, u = v. Therefore, W is a resolving
set for G.

Definition 2.4. Let f : V (G) → {1, 2, . . . , d}. The labeling f is d-distin-
guishing if the only φ ∈ Aut(G) such that f(v) = f(φ(v)) for all v ∈ V (G)
is the identity. The minimum d such that G has a d-distinguishing labeling
is the distinguishing number of G and is denoted Dist(G).

Definition 2.5. Let W ⊆ V (G). W is a determining set for G if whenever
φ, ψ ∈ Aut(G) such that φ(v) = ψ(v) for all v ∈ W , φ(v) = ψ(v) for
all v ∈ V (G). The determining number, denoted Det(G), is the minimum
cardinality of a determining set for G.

Resolving sets are determining sets [5, 9, 11]. (We’ll use this fact in the
proof of Theorem 3.4.)

In the introduction, we noted that tracked labelings are related to re-
solving sets, distinguishing labelings and determining sets. Although it’s
not the focus of this article, it’s worth noting that tracked labelings are
also related to resolving partitions as defined by Chartrand, Salehi and
Zhang in [8]. For S ⊆ V (G), let d(v, S) = min{d(v, u)|u ∈ S}. Let P =
{S1, S2, . . . , Sk} be an ordered partition of V (G). For each v ∈ V (G), de-
fine r(v|P ) = (d(v, S1), d(v, S2), . . . , d(v, Sk)). P is a resolving partition if
r(u|P ) = r(v|P ) implies u = v. The minimum k needed for a resolving
partition is the partition dimension of the graph.

If G has a resolving partition P = {S1, S2, . . . , Sk}, then the labeling
L : V (G) → {1, 2, . . . , k} where L(v) = i when v ∈ Si is a tracked labeling.
Thus, the partition dimension of a graph is an upper bound for the graph’s
tracking dimension.

We now find the tracking dimensions for cycles.

Theorem 2.6. For n > 5, Trac(Cn) = 1.

Proof. In this proof, all arithmetic will be mod n. Let V (G)={v1, v2, . . . , vn}
where vi is adjacent to vi+1.

Let W = {v1, v2, v4} and let L : W → {1}. Then R(v1|L) = {0, 1, 3},
R(v2|L) = {0, 1, 2}, R(v3|L) = {1, 1, 2}, and R(v4|L) = {0, 2, 3}.

Imagine v1, v2, . . . , vn are arranged clockwise in the plane. When n > 7,
the vertices can be split into four categories. The first is v1 through v4, the
cases detailed above. The second we’ll call the “counterclockwise” group
because the shortest paths from these vertices to all labeled vertices will
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travel counterclockwise. The third group will be the “clockwise” group be-
cause the shortest paths from these vertices to all labeled vertices will travel
clockwise. Finally, there is what we’ll call the “middle” group. For these ver-
tices, the shortest path to v1 will travel clockwise and the shortest path to v4
will travel counterclockwise. (If n ≤ 7, the clockwise and counterclockwise
categories are empty.) We now find R(vi|L) for the last three categories.

First, we consider the counterclockwise. Suppose n > 7. Let 4 < i ≤
n/2 + 1. Then i− 1 ≤ n/2. Since (i− 1) + (1− i) = n, 1− i ≥ i− 1. Then,
for 4 < i ≤ n/2 + 1, R(vi|L) = {i − 4, i − 2, i − 1} where the set is ordered
from least to greatest. Clearly, within the counterclockwise category, if i �= j,
R(vi|L) �= R(vj |L).

Next, we consider the clockwise. Suppose n > 7. Let n/2 + 4 ≤ i < n.
Then n/2 ≤ i−4. Since (4−i)+(i−4) = n, 4−i ≤ i−4. Then, for n/2+4 ≤
i < n, R(vi|L) = {1 − i, 2 − i, 4 − i} where the set is ordered from least to
greatest. Clearly, within the clockwise category, if i �= j, R(vi|L) �= R(vj |L).

For vertices in the clockwise category, R(v|L) takes the form {a, a +
1, a + 3} (where a is the smallest distance in the multiset). For vertices in
the counterclockwise category, R(v|L) takes the form {a, a+2, a+3}. Thus,
if u is in the clockwise category and v is in the counterclockwise category,
R(u|L) �= R(v|L).

Finally, we handle the middle. If n is even, there exist two i such that
n/2 + 1 < i < n/2 + 4. Those are i = n/2 + 2, n/2 + 3. If i = n/2 + 2,
we can calculate the distances to the labeled vertices as follows. 1− (n/2 +
2) = n/2 − 1, 2 − (n/2 + 2) = n/2, and (n/2 + 2) − 4 = n/2 − 2. Thus,
R(vn/2+2|L) = {n/2− 2, n/2− 1, n/2}.

If i = n/2+ 3, we can calculate the distances as follows. 1− (n/2+ 3) =
n/2 − 2, 2 − (n/2 + 3) = n/2 − 1, and (n/2 + 3) − 4 = n/2 − 1. Thus,
R(vn/2+3|L) = {n/2− 2, n/2− 1, n/2− 1}.

For these two middle vertices, R(v|L) takes the form {a, a + 1, a + 2}
and {a, a + 1, a + 1}. Both patterns are different from those in either the
clockwise or counterclockwise categories.

If n is odd, there are three i such that n/2 + 1 < i < n/2 + 4. If
i = n/2 + 3/2, we can calculate the distances as follows. (n/2 + 3/2)− 4 =
n/2− 5/2, (n/2+ 3/2)− 2 = n/2− 1/2, 1− (n/2+ 3/2) = n/2− 1/2. Thus,
R(vn/2+3/2|L) = {n/2− 5/2, n/2− 1/2, n/2− 1/2}.

If i = n/2+5/2, we can calculate the distances as follows. (n/2+5/2)−
4 = n/2−3/2, 1−(n/2+5/2) = n/2−3/2, and 2−(n/2+5/2) = n/2−1/2.
Thus, R(vn/2+5/2|L) = {n/2− 3/2, n/2− 3/2, n/2− 1/2}.

If i = n/2+7/2, we can calculate the distances as follows. (n/2+7/2)−
4 = n/2−1/2, 1−(n/2+7/2) = n/2−5/2, and 2−(n/2+7/2) = n/2−3/2.
Thus, R(vn/2+7/2|L) = {n/2− 5/2, n/2− 3/2, n/2− 1/2}.
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For these three middle vertices, R(v|L) takes the form {a, a+ 2, a+ 2},
{a, a, a+ 1} and {a, a+ 1, a+ 2}. All three patterns are distinct from each
other and from those in either the clockwise or counterclockwise categories.

Lastly, we must show that v1, v2, v3, and v4 yield distinct R(v|L). All are
distinct from each other. The labeled vertices v1, v2, and v4 will be the only
vertices with a distance of 0 to a labeled vertex. The last vertex, v3, will be
the only vertex with distance 1 to two labeled vertices. Thus,R(v|L) for these
four vertices will be distinct from those in the clockwise, counterclockwise
and middle categories.

The previous theorem shows that for n > 5, Cn has tracking dimension
1, but clearly, labeling one or two vertices in Cn with a single color would not
be sufficient. For the proof, we used a specific pattern of labeling v1, v2, and
v4. Those familiar with distinguishing labelings will recognize this pattern.
If those three vertices are labeled 1, and the other vertices are labeled 2,
we would have a distinguishing labeling of Cn. For n > 5, Dist(Cn) = 2 [2].
Since it will come up in the proof of Theorem 3.5, let us also mention that a
graph and its complement must have the same distinguishing number, and
so, for n > 5, Dist(Cn) = 2 as well.

Distinguishing labelings are somewhat surprising in that they require
more colors for Cn when n < 5. Dist(Cn) = 3 for n = 3, 4, 5. The same
phenomenon occurs for tracked labelings. For each of these graphs, it’s a
simple exercise to show that labeling two adjacent vertices with distinct
colors will be tracked, while any labeling with only one color will not be
tracked.

When working with complete graphs, we again see a link between tracked
and distinguishing labelings. It’s a simple exercise to show that Trac(Kn) =
n − 1, where one vertex is left unlabeled. Again, if the unlabeled vertex
is colored a new color, the labeling is distinguishing. Clearly, there is a
relationship between distinguishing and tracked labelings, and in the next
section, we explore that connection.

3. Relating distinguishing and tracked labelings

To relate tracked and distinguishing labelings, we will use the definition of
distinguishing on a subset of V (G) as defined by Albertson and Boutin [1].
Recall that for W ⊆ V (G), the pointwise stabilizer of W is Stab(W ) = {φ ∈
Aut(G)|φ(v) = v, ∀v ∈ W}.
Definition 3.1. Let W ⊆ V (G) and L : W → {1, 2, . . . ,m}. L is m-
distinguishing if whenever φ ∈ Aut(G) and L(v) = L(φ(v)) for all v ∈ W ,



632 Madeline Dunn and Stephen Shea

then φ ∈ Stab(W ). If there exists an m-distinguishing labeling of W , we say

W is m-distinguishable.

Theorem 3.2. Let W ⊆ V (G) and L : W → {1, 2, . . . ,m}. If L is m-

tracked, then W is m-distinguishable.

Proof. Let φ ∈ Aut(G) where L(φ(v)) = L(v) for all v ∈ W . Using that

φ preserves labels and that all automorphisms preserve distances, for each

v ∈ V (G) and i ∈ {1, 2, . . . ,m}, v[i] = φ(v)[i]. Thus, R(v|L) = R(φ(v)|L)
for all v ∈ W . Since φ is m-tracked, φ(v) = v for all v ∈ W . Therefore,

φ ∈ Stab(W ).

When an m-tracked labeling L is defined on a proper subset, W , of the

vertex set, we must be careful to say L distinguishes the subset W and not

that L distinguishes the whole graph G. We can only conclude that L is

distinguishing on G if W = V (G).

For our next theorem, we’ll use the following result, which is Theorem 3

in [1].

Theorem 3.3. Let W ⊆ V (G). W is an m-distinguishable determining set

if and only if there exists an (m+ 1)-distinguishing labeling of G.

We can now use the distinguishing number of G to provide a lower bound

for its tracking dimension.

Theorem 3.4. Trac(G) ≥ Dist(G)− 1.

Proof. Let Trac(G) = m. Then, for some W ⊆ V (G), there exists L : W →
{1, 2, . . . ,m} that is m-tracked. By Theorem 3.2, W is m-distinguishable.

Since L is m-tracked, W is a resolving set (Proposition 2.3). Resolving sets

are determining sets. By Theorem 3.3, there exists an (m+1)-distinguishing

labeling of G. So, Dist(G) ≤ m+ 1.

The lower bound in Theorem 3.4 for Trac(G) is achieved by Cn. In

general, there is no limit to the difference between Trac(G) and Dist(G). To

establish this result, we’ll use the complements of cycles.

We’ll use the following definition in the proof of the next theorem and

a later result. For W ⊆ V (G), S ⊆ W , and L : W → {1, 2, . . . ,m}, define
the multiset L[S] = {L(u)|u ∈ S}. If S is empty, we consider L[S] to be the

empty set.

Theorem 3.5. For each k ∈ N, there exists an n where (Trac(Cn) −
Dist(Cn)) > k.
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Proof. Fix n > 5, and let m = Trac(Cn). We’ll show that (m+2)(m+1)2 ≥
2n. Since Dist(Cn) = 2 for n > 5, this will establish the conclusions of our
theorem.

For v ∈ V (Cn), let vi be the set of vertices distance i from v. For each
v ∈ V (Cn), |v0| = 1, |v1| = n− 3, and |v2| = 2.

Let W ⊆ V (Cn) and L : W → {1, 2, . . . ,m} be such that L is m-tracked.
If for u, v ∈ V (Cn), L[u

0 ∩ W ] = L[v0 ∩ W ] and L[u2 ∩ W ] = L[v2 ∩ W ],
then L[u1 ∩W ] = L[v1 ∩W ]. In this case, R(u|L) = R(v|L). Thus, if u �= v,
either L[u0 ∩W ] �= L[v0 ∩W ] or L[u2 ∩W ] �= L[v2 ∩W ].

Including “undefined” as an option, there are m+1 ways to label v and(
m+2
2

)
ways to label v2. This means that there are (m+2)(m+1)2/2 distinct

choices for labeling v and v2 combined. Since for any pair of distinct vertices
u and v, L[u0 ∩W ] �= L[v0 ∩W ] or L[u2 ∩W ] �= L[v2 ∩W ], we can conclude
(m+ 2)(m+ 1)2 ≥ 2n.

Since Trac(Cn) = 1 for n > 5, Theorem 3.5 shows that the difference
between the tracking dimension of a graph and its complement can be arbi-
trarily large.

Note that for n > 3, Det(Cn) = Det(Cn) = 2 [5]. So, Theorem 3.5
shows that Trac(G)−Det(G) can be arbitrarily large. In [5], Boutin asks if
dim(G)−Det(G) can be arbitrarily large. Cáceres et al. [7] demonstrated that
it could be using a family of trees. Since dim(G) ≥ Trac(G), Theorem 3.5
provides another class of graphs where dim(G)−Det(G) can be arbitrarily
large.

4. Tracked labelings of complete multipartite graphs

A labeling of a complete multipartite graph will be distinguishing if it meets
the following two criteria. First, any two vertices within a partite set must
have different colors since there is an automorphism that swaps the two
vertices while leaving the rest of the graph fixed. Second, given two partite
sets of equal size, there must be a vertex in one that was assigned a color
that was not used in the other. If the two partite sets had exactly the same
assignment of colors, the automorphism that swaps the two partite sets and
fixes everything else would preserve the labels.

After considering tracked labelings for cycles and complete graphs, one
might suspect we can find tracked labelings for complete multipartite graphs
by finding distinguishing labelings where we treat “unlabeled” as another
color.

It is true that for a tracked labeling, a partite set of size n might only
require n− 1 colors where one vertex is left unlabeled. However, in tracked
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labelings, “unlabeled” is not just another color. Consider K4,3. We can label
the partite set of size 4 with colors {1, 2, 3} while leaving the fourth vertex
unlabeled, and we can label the partite set of size 3 with {1, 2, 3}, but we
cannot do both. If we did, R(u|L) = R(v|L) when L(u) = L(v). With this
labeling, the labeled vertices are blind to the existence of the unlabeled
vertex.

Tracked labelings must meet two criteria very similar to that of distin-
guishing labelings. First, within each partite set, each vertex must have a
unique label, where “unlabeled” is an option. Second, two partite sets cannot
have the same set of labels, where “unlabeled” is not considered an element
of the set of labels.

The above two criteria are captured in the following theorem.

Theorem 4.1. Let G be complete multipartite with partite sets {P1, P2, . . . ,
Pn}, let W ⊆ V (G), and let L : W → {1, 2, . . . ,m}. L is m-tracked if and
only if both of the following statements are true.

(i) For each i, |W ∩ Pi| ≥ |Pi| − 1, and for u, v ∈ (W ∩ Pi), L(u) �= L(v).
(ii) L[W ∩ Pi] = L[W ∩ Pj ] implies i = j.

Proof. Suppose conditions (i) and (ii) are satisfied. Suppose u and v exist
in the same partite set. If u, v ∈ W , condition (i) guarantees L(u) �= L(v),
and thus, R(u|L) �= R(v|L). Condition (i) guarantees at most one of u and
v are not in W . If, for example u �∈ W , then u is not distance 0 from any
vertex in W . Again, R(u|L) �= R(v|L).

Now, let u ∈ Pi and v ∈ Pj where i �= j. Each vertex is distance 0 or
2 from only the vertices in its partite set. Condition (ii) guarantees L[W ∩
Pi] �= L[W ∩ Pj ]. As we did in the proof of Theorem 3.5, let vd be the set
of vertices distance d from v. We have either L[u0 ∩ W ] �= L[v0 ∩ W ] or
L[u2 ∩W ] �= L[v2 ∩W ]. Thus, R(u|L) �= R(v|L).

Since for any u, v ∈ G, R(u|L) �= R(v|L), L is m-tracked.

Now suppose L is m-tracked. Let u and v be in the same partite set.
For any other vertex w, d(u,w) = d(v, w). Thus, if both u, v �∈ W , or
u, v ∈ W and L(u) = L(v), R(u|L) = R(v|L). Therefore, condition (i) must
be satisfied.

Finally, we’ll show that condition (ii) must be satisfied. Suppose i �= j
and L[W ∩ Pi] = L[W ∩ Pj ]. Then, there exist u ∈ Pi and v ∈ Pj where
L[u0∩W ] = L[v0∩W ]. Since L[u0∩W ] = L[v0∩W ] and L[W ∩Pi] = L[W ∩
Pj ], L[u

2∩W ] = L[v2∩W ]. L[u1∩W ] = L[W ]−L[W ∩Pi] and L[v1∩W ] =
L[W ] − L[W ∩ Pj ]. Since L[W ∩ Pi] = L[W ∩ Pj ], L[u

1 ∩W ] = L[v1 ∩W ].
This implies R(u|L) = R(v|L) and the labeling is not m-tracked.
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SupposeG,W , and L are defined as in Theorem 4.1 and that L is tracked.
Suppose max{|Pi||i = 1, 2, . . . n} = K and let |k| denote the number of
partite sets of size k. If all of the partite sets in G are of size 1, condition
(ii) yields that G is (n− 1)-tracked (where n is the number of partite sets).

Suppose K ≥ 2. Condition (i) allows for a partite set of size K to be
labeled with K or K−1 vertices. Since partite sets of size less than K cannot
use K labels, it is best to exhaust those options first. There are

(
m
K

)
ways to

label a partite set of size K with m labels. If |K| >
(
m
K

)
, we’ll say the partite

sets of size K borrow |K| −
(
m
K

)
labelings with K − 1 colors. When K ≥ 2,

condition (ii) requires m to be large enough so that
(

m
K−1

)
≥ (|K| −

(
m
K

)
).

For 2 ≤ k ≤ K, we let B(k) = max{0, |k| −
(
m
k

)
}. In other words, B(k)

is the number of k − 1 labelings borrowed to label partite sets of size k.
Condition (ii) forbids the use of any labelings with k − 1 colors on partite
sets of size k−1 that were borrowed to label partite sets of size k. This leads
to the following corollary.

Corollary 4.2. Let G be a complete multipartite graph where the maximum
cardinality of its partite sets is K ≥ 2. Let |k| denote the number of partite
sets of size k. There exists an m-tracked labeling of G if and only if

|k| ≤

⎧⎨
⎩

(
m
k

)
+B(k), if k = K(

m
k

)
+B(k)−B(k + 1), if 1 < k < K(

m
k

)
−B(k + 1) + 1, if k = 1

where for 2 ≤ k ≤ K, B(k) = max{0, |k| −
(
m
k

)
}.

G has an m-distinguishing labeling if for each k ∈ {1, 2, . . . ,K}, |k| ≤(
m
k

)
. So, if L is an m-distinguishing labeling of G, the conditions on |k|

in Corollary 4.2 are satisfied with no borrowing necessary. L must also be
m-tracked. Together with Theorem 3.4, when G is a complete multipartite
graph, Dist(G)−1 ≤ Trac(G) ≤ Dist(G). It’s a simple exercise to show that
the left bound is realized when G = K2,2 and the right bound is satisfied
when G = K3,2,2,2.

5. Future directions

The available literature on distinguishing labelings and resolving sets pro-
vides a roadmap for investigations into tracked labelings. One obvious ex-
ample is to find formulas or bounds for the tracking dimension of special
classes of graphs, such as the Kneser graphs. (See [1] and [3] for relevant
results on distinguishing labelings and resolving sets, respectively.)
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In addition, it would be interesting to know when graph properties in-

fluence the potential differences between the tracking dimension and the

determining number, distinguishing number or metric dimension.

When assigning tracked labelings, what are the possible sizes of the label

classes? In particular, when a graph has tracking dimension m, how small

can the label classes be when defining an m-tracked labeling?

Finally, what would be the influence of allowing multiple markers on

the same vertex? For example, for a given graph with tracking dimension 3,

if we allowed up to two markers per vertex, can we reduce the number of

colors needed to distinguish all vertices to 2. Note that when red and blue

markers have been placed on vertices, no more than one per vertex, adding

a red and blue marker to an unlabeled vertex is not the same as giving that

vertex a new color.
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