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Let C be a family of edge-colored graphs. A t-edge colored graph
G is (C, t)-saturated if G does not contain any graph in C but the
addition of any edge in any color in [t] creates a copy of some graph
in C. Similarly to classical saturation functions, define satt(n, C) to
be the minimum number of edges in a (C, t) saturated graph. Let
Cr(H) be the family consisting of every edge-colored copy of H
which uses exactly r colors.

In this paper we consider a variety of colored saturation prob-
lems. We determine the order of magnitude for satt(n, Cr(Kk)) for
all r, showing a sharp change in behavior when r ≥

(
k−1
2

)
+2. A par-

ticular case of this theorem proves a conjecture of Barrus, Ferrara,
Vandenbussche, and Wenger. We determine satt(n, C2(K3)) exactly
and determine the extremal graphs. Additionally, we document
some interesting irregularities in the colored saturation function.
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1. Edge-colored saturation problems

Given a family of graphs F , a graph G is F-saturated if no F ∈ F is
a subgraph of G, but for any e ∈ E(G), some F ∈ F is a subgraph of
G + e. The minimum number of edges in an n-vertex F-saturated graph
is the saturation number of F and is denoted sat(n,F). If F = {F}, then
we instead say that G is F -saturated, and write sat(n, F ). The saturation
function was introduced by Erdős, Hajnal, and Moon [3] and graph and
hypergraph saturation problems have received considerable attention since
that time. We refer the interested reader to the dynamic survey of Faudree,
Faudree, and Schmitt [5], which contains a number of results and open
problems.

In this paper, we are interested in saturation problems in the setting of
edge-colored graphs, which was first introduced by Hanson and Toft [8] in
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1987. Let [t] = {1, 2, . . . , t}. A function f : E(G) → [t] is a t-edge-coloring
of a graph G. An injective function yields a rainbow edge coloring. Given
a family C of edge-colored graphs, we say that a t-edge-colored graph G is
(C, t)-saturated if G contains no member of C as a (colored) subgraph, but
for any edge e ∈ E(G) and any color i ∈ [t], the addition of e to G in color i
creates some member of C. In line with classical saturation functions, we are
interested in satt(n, C), the minimum number of edges in a (C, t)-saturated
graph of order n.

In this paper, we will primarily be interested in families of edge-colored
graphs. Given a graph H and a fixed palette of t colors, define M(H) to be
the family of monochromatic edge colorings of H, R(H) denote the family of
rainbow edge-colorings ofH, and Ck(H) denote the set of edge colorings ofH
using exactly k of the t colors. Going forward, when considering satt(n, C) for
any of these functions, we will implicitly assume that we color these families
from [t]. Hanson and Toft [8] determined satt(n,F) where F consists of
monochromatic copies of Kti in color i for 1 ≤ i ≤ t, and also introduced a
related conjecture that we will discuss briefly in the conclusion.

1.1. Rainbow subgraphs

Barrus, Ferrara, Vandenbussche and Wenger [1] introduced satt(n,R(H))
and considered several problems with a significant focus on the asymptotic
behavior of this parameter for different choices of H. As discussed in [1], it is
straightforward to show that for any graph H, satt(n,M(H)) = O(n). This
is not the case, however, for rainbow target graphs. For instance, Barrus et
al. show that satt(n,R(K1,r)) = Θ(n2) for r ≥ 2, and gave two more general
results that imply

c1
n log(n)

log log(n)
≤ satt(n,R(Kk)) ≤ c2n log(n)

for k ≥ 3. They also conjectured the following.

Conjecture 1. For k ≥ 3 and t ≥
(
k
2

)
,

satt(n,R(Kk)) = Θ(n logn).

In Section 2, we prove some broader results about satt(n, Ck(H)). As a
consequence of our result there, we prove the following.

Theorem 1. Let k ≥ 3, and t ≥ c be fixed.
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1. If c ≥
(
k−1
2

)
+ 2, then satt(n, Cc(Kk)) = Θ(n logn).

2. If c ≤
(
k−1
2

)
+ 1, then satt(n, Cc(Kk)) = Θ(n).

Independent of our work here, Girão, Lewis and Popielarz [7] determined

the asymptotics of satt(n,R(H)) for every connected graphH without a pen-

dant edge, and as a consequence also resolve Conjecture 1 in the affirmative.

Furthermore, Korándi [11] recently showed that

satt(n,R(Kk)) = Θk

(
n logn

log t

)

and gave sharp asymptotics (in t and n) for satt(n,R(K3)). The techniques

utilized across all three papers are quite diverse, and provide an interesting

spectrum of possible approaches to problems of this type.

1.2. Irregularities

It has been well-documented (see, for instance [8, 5]) that the classical (un-

colored) saturation function is not monotone in n or with respect to subgraph

and family inclusion. That is, there is a graph H such that sat(n,H) ≤
sat(n + 1, H) for infinitely many n, distinct graphs H1 ⊆ H2 such that

sat(n,H2) ≤ sat(n,H1), and distinct families F1 ⊆ F2 such that sat(n,F2) ≤
sat(n,F1). Before continuing on to our main results, we give some examples

of similar irregular behaviors for satt(n, Ck(H)).

Recall that it was shown in [1] that satt(n,R(K1,k)) = Θ(n2) for all

t ≥ k ≥ 3, and further that if T is any tree with k ≥ 4 vertices that is

not a star, then satt(n,R(T )) = O(n) when t ≥
(
k−1
2

)
. This immediately

establishes that H1 ⊆ H2 does not necessarily imply that satt(n,R(H1)) ≤
satt(n,R(H2)). More interestingly, in our opinion, is the following result,

which establishes that satt(n, Ck(H)) is not monotone (increasing or de-

creasing) in k. Recall that M(H) = C1(H) and R(H) = C|E(H)|(H).

Theorem 2. For t ≥ 3 and n sufficiently large,

satt(n, C2(K1,3)) < satt(n, C1(K1,3)) < satt(n, C3(K1,3)).

First recall satt(n, C1(K1,3)) = O(n) and satt(n, C3(K1,3)) = Θ(n2) [1].

The theorem then follows from two propositions.

Proposition 3. For n ≥ 2t ≥ 6, satt(n, C1(K1,3)) ≥ tn/2.
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Proof. Suppose G is saturated for C1(K1,3). If we have a non-edge uv in
G, then adding uv to G in any color produces a monochromatic K1,3 at u
or at v. Since v can be saturated for at most �d(v)/2� colors, there are at
least t−�d(v)/2� colors in which we could add edge uv without producing a
monochromatic K1,3 at v. If d(u) < 2(t−�d(v)/2�), then there is some color
in which uv can be added that produces neither a monochromatic K1,3 at u
or at v. Thus if uv /∈ E(G), then d(u) ≥ 2(t− �d(v)/2�).

If δ(G) ≥ t, then we get that e(G) ≥ tn/2 so we may assume that
δ(G) = � < t. In this case, rather than directly compute the number of
edges in G, we consider the degree sum. We will condition on whether or
not a vertex is in the closed neighborhood of a fixed vertex of minimum
degree. To this end, let v be a vertex with d(v) = �. For u /∈ N [v], we have
d(u) ≥ 2(t− ��/2�) and, for all vertices, we have d(u) ≥ �.

∑
w∈V (G)

d(w) =
∑

w/∈N [v]

d(w) +
∑

w∈N [v]

d(w)

≥ (n− (�+ 1)) · (2t− �) + (�+ 1) · �
= n(2t− �)− 2(�+ 1)(t− �)

= nt+ (t− �)[n− 2(�+ 1)]

For � ≤ t − 1, the degree sum is at least nt + (n − 2t). Thus when n ≥ 2t,
we find e(G) ≥ nt/2.

Next, we give an upper bound on satt(n, C2(K1,3)) by providing a more
general saturated graph for Cs−1(K1,s). This suffices to complete the proof
of Theorem 2.

Proposition 4. For n sufficiently large with respect to t and t ≥ s − 1,
satt(n, Cs−1(K1,s)) < tn/2.

Proof. Let n = 2k + r where r ∈ {1, 2}. Let H be a graph on 2k vertices
produced by packing t perfect matchings onto V (H), with each matching
in a distinct color. Let G be the graph that is the disjoint union of H and
Kr, where edges in the Kr are colored arbitrarily. Then G is a Cs−1(K1,s)-
saturated graph; any added edge has at least one endpoint in H and results
in an (s− 1)-colored K1,s centered at that vertex.

It would be interesting to determine if there exist other graphs exhibiting
such unusual behavior. For instance, for any pattern x1, . . . , xk−1 of “ ↑ ”
and “ ↓ ” symbols, does there exist a graph H with k edges such that
satt(n, Ci(H)) ≥ satt(n, Ci+1(H)) if and only if xi =↑?
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2. Asymptotics

In this section, we prove the following general result that implies Conjecture
1. Together with Theorem 7, this result implies Theorem 1.

Theorem 5. Let H be a family of edge-colored graphs where for each H ∈ H,
for each edge uv ∈ E(H) there is a rainbow path with 2 edges connecting u
to v in H. Then for any integer t, t ≥ 3, we have(

1

3
− o(1)

)
n log n

log t
≤ satt(n,H).

Before we proceed with the proof of this theorem, we make the following
simple observation that will be useful going forward.

Observation 1. If H is as in Theorem 5 and if G is (H, t)-saturated, then
for any nonedge uv in G there is a 2-edge path with two colors connecting
u to v in G.

We use this observation to prove Theorem 5 via a reduction to a spe-
cific covering problem. Let F be a family of complete t-partite graphs with
UF
1 , · · · , UF

t the partite sets of F ∈ F . We say that F is a t-partite cover of
a graph H if E(H) ⊆

⋃
F∈F E(F ). Define

f(H) = min
F

∑
F∈F

(
|UF

1 |+ · · ·+ |UF
t |

)
,

where the minimum is taken over all F a t-partite cover of H.

Let H be a family of t-edge-colored graphs where for each H ∈ H and
each edge uv ∈ E(H) there is a 2-edge path with two colors connecting u
to v in H. Assume G is (H, t)-saturated. We create a t-partite cover of the
complement of G. For each vertex v and 1 ≤ i ≤ t, let Γi(v) be the set of
vertices adjacent to v in G with edge color i. For each vertex v, let Gv be
the complete t-partite graph on V (G) with partite sets Γ1(v), · · · ,Γt(v). By
Observation 1, if x and y are not adjacent in G, then there is a rainbow path
of length 2 between them. If the vertex in the middle of this path is v, then
Gv contains the edge xy. Therefore,

⋃
v∈V (G)Gv is a t-partite cover of the

complement of G.

Next we note that∑
v

(|Γ1(v)|+ · · ·+ |Γt(v)|) =
∑
v

d(v) = 2e(G).
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Therefore, we have that if G is (H, t)-saturated, then

(1) f(G) ≤ 2e(G).

We need the following lemma, which we modify from a result of Katona
and Szeméredi [10].

Lemma 1.

f(Kn) ≥
n logn

log t
.

Proof. Let F = {Fj}�j=1 be a t-partite cover of Kn where Fj has partite sets

U j
1 , · · · , U

j
t . Create a matrix M with the rows indexed by V (Kn) and the

columns indexed by F as follows:

Mij =

{
k if i ∈ U j

k ,

∗ if i is not in any partite set of Fj .

For each vertex v, let dv be the number of entries which are not ∗ in the
row corresponding to v (i.e. dv is the number of t-partite graphs in F which
use v). Then in the row corresponding to v there are |F|−dv entries with ∗.
We create a new matrix M ′ where for each row v we replace it with t|F|−dv

rows putting all possible replacements of ∗ with elements from {1, . . . , t}
and leaving all other entries the same.

We claim that each row in M ′ is distinct. To see this, if a pair of rows
are in the t|F|−dv rows which correspond to the same vertex v, then the
replacements of ∗ with {1, . . . , t} will be different in at least one position. If
a pair of rows in M ′ correspond to distinct vertices u and v, then because F
is a t-partite cover of Kn, there is an F ∈ F where u and v are in different
partite sets of F and therefore there is a column in M ′ that distinguishes
the two rows.

Since the total number of distinct rows is at most t|F|, we have∑
v

t|F|−dv ≤ t|F|

and therefore ∑
v

1

tdv
≤ 1.

Now the AM-GM inequality implies

n

√∏
v

1

tdv
≤ 1

n

∑
v

1

tdv
≤ 1

n
.
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Rearranging gives
∑

v dv ≥ n logt n. Noting that
∑

v dv =
∑�

j=1 |U
j
1 | +

· · · |U j
t | finishes the proof.

Next we need to show that covering Kn with t-partite graphs is not

much different from covering the complement of a sparse graph with t-partite

graphs.

Lemma 2. Let H be a graph on n vertices. Then

f(H) ≥ f(Kn)− (e(H) + n).

Proof. Let F be an t-partite covering of H with weight f(H). We will

construct a family of t-partite graphs that covers H with weight at most

e(H) + n, which will certify that

f(Kn) ≤ f(H) + (e(H) + n).

Order the vertices of H arbitrarily as v1, · · · , vn. For 1 ≤ i ≤ n define a

t-partite graph Hi with partite sets U i
1, · · · , U i

t where

U i
1 = {vi},

U i
2 = {vj : vi ∼ vj , j > i},

U i
k = ∅ (for 3 ≤ k ≤ t).

Then {Hi}ni=1 partitions the edge set of H into stars, and

∑
i

(
|U i

1|+ · · ·+ |U i
t |
)
= e(H) + n.

We are now ready to complete the proof of Theorem 5

Proof of Theorem 5. Let G be (H, t)-saturated and assume for a contradic-

tion that e(G) < n logn
3 log t − n/2. Then

⋃
v∈V (G)Gv is a t-partite cover of G,

implying that f(G) ≤ 2e(G) < 2n logn
3 log t − n. This, together with Lemma 2

implies f(Kn) <
n logn
log t , which contradicts Lemma 1.

The following corollary to Theorem 4 implies Conjecture 1, and resolves

Conjecture 2 in [7]. This conjecture was also affirmed in [11], where the focus

was strictly the rainbow setting.
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Corollary 6. If c ≥
(
k−1
2

)
+ 2 and t ≥ c, then

satt(n, Cc(Kk)) ≥
(
1

3
− o(1)

)
n logn

log t
.

Proof. Let c ≥
(
k−1
2

)
+ 2 and consider an edge uv in G, an edge-colored

Kk with exactly c colors. There are at most
(
k−2
2

)
colors on the edges in

G − {u, v}, and at most one additional color on uv. This leaves at least

c −
(
k−2
2

)
≥ k − 1 colors on the edges with one endpoint in {u, v} and one

endpoint in V (G) − {u, v}, implying that there is some vertex x such that

the edges of uxv receive distinct colors. We can therefore apply Theorem 5

to satt(n, Cc(Kk)).

As we demonstrate next, the bound of c ≥
(
k−1
2

)
+ 2 is sharp.

Theorem 7. If c ≤
(
k−1
2

)
+ 1 and t ≥ c are fixed, then satt(n, Cc(Kk)) =

O(n).

Proof. For fixed c ≤
(
k−1
2

)
+ 1 and t ≥ c, we construct a Cc(Kk)-saturated

graph with O(n) edges. As we are not interested in determining the relevant

saturation number exactly, we make no effort to optimize the number of

edges in our construction.

Assume that n is sufficiently large, and consider an edge-coloring of

H ′ = Kk−1 using exactly c−1 colors. Create an edge-colored copy of Kk−e

by choosing some vertex v in H ′, adding a new vertex v′, and connecting

v′ to V (H ′) − {v} such that vx and v′x have the same colors for each x ∈
V (H ′)− {v}. Repeat the duplication of v to create HS,p = Kk−2 ∨ I, where

I is an independent set of size p and S is the set of colors appearing on

E(HS,p). Note that HS,p contains no copy of Kk, but the addition of any

edge to HS,p in a color from [t] − S creates a copy of Kk with exactly c

colors.

We create the edge-colored graph G′ by taking the union of the graphs

HS,p with p = n−
(

t
c−1

)
(k− 2) for each of the

(
t

c−1

)
choices of S, under the

assumption that I is common to each such graph. Note that for any u and

v in I and any color c0 ∈ [t], adding uv in color c0 to G′ creates a copy of

Kk with exactly c colors within HS,p for any S that does not contain c0. To

create the desired saturated graph G, iteratively add edges to G′ − I in any

permissible color until either G − I is complete, or no colored edge can be

added to G− I without creating an element of Cc(Kk). In either case, G is

Cc(Kk)-saturated and has at most
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(
t

c− 1

)
(k − 2)

(
n−

(
t

c− 1

)
(k − 2)

)
+

(( t
c−1

)
(k − 2)

2

)

edges, which is O(n) edges as desired.

Theorem 1 now follows as a consequence of Corollary 6 and Theorem 7.

3. 2-colored triangles

In this section, we prove the following exact result.

Theorem 8. If t = 2 and n ≥ 11 or if t ≥ 3 and n ≥ 9, then

satt(n, C2(K3)) = 2n− 4.

Furthermore, if t ≥ 3, then K2,(n−2) is the unique saturated graph.

Before we proceed, we require a simple technical lemma.

Lemma 3. Let x1, x2, . . . , xt be integers with x1 ≥ x2 ≥ · · · ≥ xt ≥ 2. For
1 ≤ p < q ≤ t and let x′i := xi for i �∈ {p, q}, x′p := xp + 1 and x′q = xq − 1,
then

t∑
i=1

(
xi
2

)
<

t∑
i=1

(
x′i
2

)
.

Proof. We must show that(
xp + 1

2

)
+

(
xq − 1

2

)
>

(
xp
2

)
+

(
xq
2

)
,

but this is equivalent to showing xp > xq−1, which holds by assumption.

Proposition 9. For all n ≥ 11,

sat2(n, C2(K3)) = 2n− 4.

Proof. Consider the edge-colored graph K2,(n−2) where x and y are the ver-
tices in the partite class of size 2 and all edges incident with x are red while
all edges incident with y are blue. This shows that sat2(n, C2(K3)) ≤ 2n− 4
(other constructions exist). We will show sat2(n, C2(K3)) ≥ 2n− 4.

Suppose G is an n-vertex (C2(K3), 2)-saturated graph. We will consider
cases based on the minimum degree of G.

Case 1: δ(G) = 1.
Let u ∈ V (G) be of degree 1 with neighbor v. Say that the color of uv
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is blue. Then, v must be adjacent to every other vertex w in G by a red
edge for otherwise we could add the blue edge uw. There is no blue edge
in G− {u, v} for this would yield a C2(K3). Thus, G− {u, v} is a complete
graph consisting of only red edges. Thus e(G) ≥ 2n− 3.

Case 2: δ(G) = 2.
Let u be a vertex with degree 2 and suppose v1 and v2 are the neighbors of
u. If there is a vertex y which is not adjacent to u, v1, or v2, then the graph
would not be saturated since we could add the edge uy in either color and
not obtain a triangle. So every vertex is adjacent to u, v1, or v2.

Suppose first that v1v2 is an edge in G. Then, v1, v2 and u form a triangle
and so all 3 edges are the same color, say blue. The only common neighbor
of v1 and v2 is u since any further neighbor w would be connected to v1 and
v2 by blue edges. But then the graph would not be saturated since we could
add the edge uw in blue. Now X := V (G) − {u, v1, v2} is the set of vertex
which are neighbors of v1 or v2. Note that every edge from {v1, v2} to a
vertex x ∈ X is red, for otherwise we could add the blue edge xu. The graph
induced on the vertex set X is connected since two connected components
could be connected by a red edge without forming a C2(K3). Thus, we have
at least 3+ |X|+ |X| − 1 = 2n− 4 edges. From now on we may assume that
v1v2 is not an edge.

First, suppose that both uv1 and uv2 are blue. Let X denote the set
of vertices in V (G) − {u, v1, v2} which are connected to exactly one of v1
and v2, and let Y denote the set of vertices in V (G)− {u, v1, v2} which are
connected to both v1 and v2. So X ∪ Y = V (G) − {u, v1, v2}. All edges
from X to {v1, v2} are red, and at least one edge from every vertex of Y to
{v1, v2} is red. If X = ∅ we are done, so suppose there is at least one vertex
in X. The graph induced on the set X must be connected for otherwise
we could add a red edge connecting two components. Thus, there are at
least |X| − 1 edges in this induced subgraph, yielding a total of at least
2 + 2 |Y |+ |X|+ |X| − 1 = 2n− 5 edges. We now suppose that these 2n− 5
edges are the only edges in G and argue to a contradiction.

Let N1 and N2 denote the neighborhoods of v1 and v2 in X respectively.
Since there are no edges with one endpoint in X and the other in Y , there
must be a blue edge in the induced subgraph on X for otherwise we could
add a red edge from a vertex in X to either v1 or v2, the one it is not
connected to. This blue edge has one vertex in N1 and one vertex in N2, say
w1 and w2, respectively. Observe that Y must be nonempty for otherwise
we could add the blue edge v1v2. Let z ∈ Y and assume v1z is red. Then
we could add the edge w1z with color red. Thus, the graph G could not be
saturated with 2n− 5 edges and so contains at least 2n− 4.
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Second suppose uv1 is blue and uv2 is red. Define X and Y as in the
previous subcase. Again assume X is nonempty for otherwise we have 2n−4
edges. But now Y may be empty. Edges from v1 toX are red, and edges from
v2 to X are blue. Again, the graph induced on X is connected. Thus, again
we have at least 2n− 5 edges. Now suppose that there are no other edges in
G and we will argue to a contradiction. If N2 was empty, then for w ∈ N1,
we could add the edge wv2 and not create a triangle. Since N1, N2 �= ∅ and
the graph induced on X is connected, there is an edge w1w2 with w1 ∈ N1

and w2 ∈ N2. Suppose w1w2 is red (the blue case is similar), then we can
add the edge v1w2 with color red. Thus 2n − 5 edges do not suffice for G.
Thus G must have at least 2n− 4 edges.

Case 3: δ(G) = 3.
We need to show that

∑
v d(v) ≥ 4n − 8. Suppose by way of contradiction

that
∑

v d(v) ≤ 4n− 10. For every edge which is not in G, there must exist
a path of length 2 between its endpoints. It follows that
(2)∑
v∈V (G)

(
d(v)

2

)
≥

(
n

2

)
− 1

2

∑
v∈V (G)

d(v) ≥
(
n

2

)
− 1

2
(4n− 10) =

n2

2
− 5n

2
+ 5.

On the other hand, by Lemma 3 we have

(3)
∑

v∈V (G)

(
d(v)

2

)
≤

(
n− 7

2

)
+ (n− 1)

(
3

2

)
=

n2

2
− 9n

2
+ 25.

It follows from (2) and (3) that n ≤ 10, a contradiction.

Proposition 10. For all t ≥ 3 and n ≥ 9,

satt(n, C2(K3)) = 2n− 4.

Moreover, every (C2(K3), t)-saturated graph is a coloring of K2,n−2.

Proof of Proposition 10. A construction is given by the following. Take two
vertices u and v and a collection of vertices u1, u2, . . . , un−2. Take red edges
from u to u1, . . . , un−2 and blue edges from v to u1, . . . , un−3 and a red edge
from v to un−2. Therefore satt(n, C2(K3)) ≤ 2n− 4.

Now we will establish the lower bound. Let G be an n-vertex (C2(K3), t)-
saturated graph with t ≥ 3 with e(G) as small as possible. First, we show
that the minimum degree of G is at least 2. Suppose u ∈ V (G) is a vertex
of degree 1 with neighbor v and let w be any other vertex. If vw is not an
edge, then we can add uw without creating a triangle. If vw is an edge with
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the same color as uv, then we may add uw with the same color. If vw is an

edge with a different color than uv, then we may add vw with an arbitrary

distinct third color (since t ≥ 3).

We need to show that
∑

v∈V (G) d(v) ≥ 4n − 8. Observe that if G is

(C2(K3), t)-saturated, then for every edge e = {x, y} ∈ E(G) there must be

at least two paths of length 2 between x and y. Since the number of paths

of length 2 in G is
∑

v∈V (G)

(
d(v)
2

)
, it follows that

(4)
∑

v∈V (G)

(
d(v)

2

)
≥ 2

((
n

2

)
− e(G)

)
= n2 − n−

∑
v∈V (G)

d(v).

Under the assumption that
∑

v∈V (G) d(v) ≤ 4n− 10, the right hand side

of (4) is at least n2−5n+10. By Lemma 3, if
∑

v∈V (G) d(v) ≤ 4n−10, then

∑
v∈V (G)

(
d(v)

2

)
≤

(
n− 1

2

)
+

(
n− 5

2

)
+ (n− 2)

(
2

2

)
= n2 − 6n+ 14.

This is a contradiction for n ≥ 5.

Since
∑

v∈V (G) d(v) cannot be odd, it remains to show that if G is

(C2(K3), t)-saturated with
∑

v∈V (G) d(v) = 4n − 8, then G is a coloring of

K2,n−2. In this case the right hand side of (4) is n2 − 5n+ 8.

First, we observe that it is not possible for the maximum degree to be

at most n− 3, for then (by Lemma 3) we would have

∑
v∈V (G)

(
d(v)

2

)
≤

(
n− 3

2

)
+

(
n− 3

2

)
+

(
4

2

)
+ (n− 3) = n2 − 6n+ 15,

which is too small for n ≥ 8.

Suppose the maximum degree of G is n − 2. We see that the second

largest degree is at least n− 3 for otherwise we have

∑
v∈V (G)

(
d(v)

2

)
≤

(
n− 2

2

)
+

(
n− 4

2

)
+

(
4

2

)
+ (n− 3) = n2 − 6n+ 16,

which is too small for n ≥ 9. Thus, the remaining possible degree sequences

starting with n− 2 are (n− 2, n− 2, 2, . . . , 2) and (n− 2, n− 3, 3, 2, . . . , 2).

Note that (n− 2, n− 2, 2, . . . , 2) yields a colored K2,n−2.
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Suppose the maximum degree is n− 1. If the second largest degree is at
most n− 5, then we have

∑
v∈V (G)

(
d(v)

2

)
≤

(
n− 1

2

)
+

(
n− 5

2

)
+

(
4

2

)
+ (n− 3) = n2 − 6n+ 19,

which is too small n ≥ 9. The remaining possible degree sequences are
(n − 1, n − 4, 3, 2, . . . , 2) and (n − 1, n − 3, 2, . . . , 2). To finish the proof we
have to check the 3 degree sequences which satisfied (4). We do this in
Claim 1 below.

Claim 1. For t ≥ 3, there is no (C2(K3), t)-saturated graph with any of the
following degree sequences:

• (n− 2, n− 3, 3, 2, . . . , 2),
• (n− 1, n− 3, 2, . . . , 2),
• (n− 1, n− 4, 3, 2, . . . , 2).

Proof. First, it is important to note that if G is (C2(K3), t)-saturated, then
for any uv �∈ E(G), there must be at least two paths of length 2 from u to
v because t ≥ 3.

Consider the degree sequence (n − 2, n − 3, 3, 2, . . . , 2) and let x and y
be the vertices of degree n − 2 and n − 3, respectively. If x and y are not
adjacent let z be the other vertex y is not adjacent to. Then z has degree at
least 2 so it is adjacent to some other vertex. This defines a unique graph
up to isomorphism and it is clear that for the nonedge yz there is only one
path of length 2 from y to z.

Now, assume x and y are adjacent. If there exists a common vertex z
such that xz and yz are both nonedges, then the remainder of the graph is
forced. Namely, there is an edge from z to the other non-neighbor of y and
an edge from z to one of the common neighbors of x and y. For the nonedge
yz there are not two paths of length 2 between y and z. Finally, assume x
and y are adjacent and the set of non-neighbors of x and the set of non-
neighbors of y are disjoint. In this case there are multiple non-isomorphic
graphs but a nonedge from one of the non-neighbor sets to a vertex in the
set of common neighbors of degree 2 will not have two paths of length 2
between its endpoints. (Indeed, any such path of length 2 would involve x
or y but one of the vertices in the nonedge is a non-neighbor of x or y.)

Consider the degree sequence (n − 1, n − 3, 2, . . . , 2). Let x and y be
the degree n − 1 and n − 3 vertex, respectively. It is easy to see the two
non-neighbors of y must be adjacent and this defines a unique graph. Then
a nonedge from y does not have two paths between its endpoints.
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Consider, finally, the degree sequence (n−1, n−4, 3, 2, . . . , 2). Let x and
y be the degree n− 1 and n− 4 vertex, respectively. Let u, v and w be the
three non-neighbors of y. Either these three vertices form a path of length
2, or we may assume u and v are adjacent and w is adjacent to a common
neighbor of x and y. In either case the nonedge yu does not have two paths
of length 2 between its vertices.

4. Conclusion

In this paper, we consider several existing and new problems in the realm
of edge-colored saturation problems. There remain a number of potential
directions of inquiry. Even given the excellent results in [7] and [11], the
general problem of determining satt(n,R(H)) is open in a number of cases.
Of particular interest would be to determine the asymptotic behavior for
general trees, or to consider the behavior of the function for disconnected
graphs. For instance, it is not difficult to show that if p is even, n ≥ 5p,
and t is large, then satt(n,R((p + 1)K2)) ≤ 5p. The extremal graph is a
rainbow copy of p

2K5 together with n − 5p
2 isolated vertices. However, it

seems surprisingly difficult to show that equality holds.
We also point out that the families considered here, M(H),R(H) and

Ck(H) are invariant up to the permutation of the palette of t colors. What
if this was not the case? Suppose, for instance, that we wished to determine
sat3(n,F), where F consisted of two graphs: a triangle with two edges col-
ored 1 and one edge colored 2, and a monochromatic triangle with all edges
colored 3. In this case, not all colored edges are created equal, opening the
door to a number of (delightfully) aberrant possibilities.

Finally, in [8], Hanson and Toft also introduced the related problem of
determining the saturation number of the family of graphs that are Ramsey-
minimal for some (H1, . . . , Ht). This is equivalent to determining the mini-
mum number of edges in a graph of order n that has a t-edge-coloring with
no copy of Hi in color i, such that the addition of any missing edge creates
a graph wherein every t-edge-coloring contains some Hi in color i. While
not our focus here, we want to highlight this general problem, which has
only been considered for a limited collection of target graphs [2, 6, 10] and
remains open.
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