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Rank of incidence matrix with applications to
digraph reconstruction

Aymen Ben Amira and Jamel Dammak

The incidence matrix Wt k is defined as follow: Let V be a finite
set, with v elements. Given non-negative integers t, k, Wt k is the(
v
t

)
by

(
v
k

)
matrix of 0’s and 1’s, the rows of which are indexed

by the t-element subsets T of V , the columns are indexed by the
k-element subsets K of V , and where the entry Wt k(T,K) is 1 if
T ⊆ K and is 0 otherwise.

R.M. Wilson proved that for t ≤ min(k, v − k), the rank of Wt k

modulo a prime p is
∑t

i=0

(
v
i

)
−
(

v
i−1

)
where p does not divide the

binomial coefficient
(
k−i
t−i

)
.

In this paper, we begin by giving an analytic expression of the
rank of the matrix Wt k when t = t0 + t1p + t2p

2, with t0, t1, t2 ∈
[0, p − 1] and we characterize values of t and k such that
dim Ker(tWt k) ∈ {0, 1}. Next, using this result we generalize a
result in the (≤ 6)-reconstruction of digraphs due to G. Lopez.
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1. Introduction

We consider the matrix Wt k defined as follows: Let V be a finite set, with

v elements. Given non-negative integers t ≤ k, let Wt k be the
(
v
t

)
by

(
v
k

)
matrix of 0’s and 1’s, the rows of which are indexed by the t-element subsets

T of V , the columns are indexed by the k-element subsets K of V , and where

the entry Wt k(T,K) is 1 if T ⊆ K and is 0 otherwise. The matrix transpose

of Wt k is denoted tWt k. Theorem 1.1, due to Gottlieb [8], shows the rank

over the field Q of Wt k is
(
v
t

)
. On the other hand rankp Wt k over the field

Z/pZ, is given by Theorem 1.2 below, due to Wilson [17].

Theorem 1.1. (D.H. Gottlieb [8]) For t ≤ min(k, v − k), the rank of Wt k

over the field Q of rational numbers is
(
v
t

)
and thus Ker(tWt k) = {0}.
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Theorem 1.2. (R.M. Wilson [17]) For t ≤ min(k, v − k), the rank of Wt k

modulo a prime p is ∑(
v

i

)
−
(

v

i− 1

)

where the sum is extended over those indices i, 0 ≤ i ≤ t, such that p does
not divide the binomial coefficient

(
k−i
t−i

)
. In the statement of the theorem,(

v
−1

)
should be interpreted as zero.

Let k, p be positive integers, the decomposition of k =
∑k(p)

i=0 kip
i in the

basis p is also denoted [k0, k1, . . . , kk(p)]p where kk(p) �= 0 if and only if k �= 0
and 0 ≤ ki < p for all 0 ≤ i ≤ k(p).

First, we give an analytic expression of the rank of the matrix Wt k when
t = [t0, t1, t2]p.

Theorem 1.3. Let p be a prime, t ≤ k positive integers.

We assume that t = [t0, t1, t2]p and k = [k0, k1, . . . , kk(p)]p.

1) If k0 ≤ t0 − 1, k1 ≤ t1 and k2 ≤ t2. Then rankp(Wt k) =

t2∑
i2=k2

t1∑
i1=k1

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+i1p+k0

)
.

2) If k0 ≥ t0, k1 ≤ t1 − 1 and k2 ≤ t2. Then rankp(Wt k) =

t2∑
i2=k2

t1∑
i1=k1+1

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+(i1−1)p+k0

)
.

3) If k0 ≤ t0 − 1, k1 ≥ t1 + 1 and k2 ≤ t2 − 1. Then rankp(Wt k) =

t2−1∑
i2=k2

p−1∑
i1=k1

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+i1p+k0

)
+

t2∑
i2=k2+1

t1∑
i1=0

(
v

i2p2+i1p+t0

)
−

(
v

i2p2+i1p+k0

)
.

4) If k0 ≥ t0, k1 ≥ t1 and k2 ≤ t2 − 1. Then rankp(Wt k) =

t2−1∑
i2=k2

p−1∑
i1=k1+1

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+(i1−1)p+k0

)
+

t2∑
i2=k2+1

t1∑
i1=0

(
v

i2p2+i1p+t0

)
−

(
v

i2p2+(i1−1)p+k0

)
.

5) If k0 ≤ t0 − 1, k1 ≤ t1 and k2 ≥ t2 + 1. Then rankp(Wt k) =

t2∑
i2=0

t1∑
i1=k1

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+i1p+k0

)
.
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6) If k0 ≥ t0, k1 ≤ t1 − 1 and k2 ≥ t2 + 1. Then rankp(Wt k) =

t2∑
i2=0

t1∑
i1=k1+1

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+(i1−1)p+k0

)
.

7) If k0 ≤ t0 − 1, k1 ≥ t1 + 1 and k2 ≥ t2. Then rankp(Wt k) =

t2−1∑
i2=0

p−1∑
i1=k1

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+i1p+k0

)
+

t2∑
i2=0

t1∑
i1=0

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+i1p+k0

)
.

8) If k0 ≥ t0, k1 ≥ t1 and k2 ≥ t2. Then rankp(Wt k) =

t2−1∑
i2=0

p−1∑
i1=k1+1

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+(i1−1)p+k0

)
+

t2∑
i2=0

t1∑
i1=0

(
v

i2p2+i1p+t0

)
−

(
v

i2p2+(i1−1)p+k0

)
.

As a consequence of Theorem 1.3, we have.

Corollary 1.1. Let p be a prime number. Let v, t and k be non-negative
integers.

We assume that we have:

1) Assume t < p

a) If k0 ≥ t. Then

rankp(Wt k) =
(
v
t

)
and Kerp(

tWt k) = {0}.

b) If k0 = 0. Then

rankp(Wt k) =
(
v
t

)
− 1, dimKerp(

tWt k) = 1,
and {(1, 1, · · · , 1)} is a basis of Kerp(

tWt k).

2) Assume t = t0 + t1p

a) If k0 = t0 and k1 ≥ t1. Then

Kerp(
tWt k) = {0}.

b) If t = t1p and k0 = k1 = 0. Then

dimKerp(
tWt k) = 1 and {(1, 1, · · · , 1)} is a basis of Kerp(

tWt k).

3) Assume t = t0 + t1p+ t2p
2

a) If k0 = t0, k1 = t1 and k2 ≥ t2. Then

Kerp(
tWt k) = {0}.

b) If t = t2p
2 and k0 = k1 = k2 = 0. Then
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dimKerp(
tWt k) = 1 and {(1, 1, · · · , 1)} is a basis of Kerp(

tWt k).

A directed graph or simply digraph G consists of a finite and nonempty
set V of vertices together with a prescribed collection E of ordered pairs of
distinct vertices, called the set of the arcs of G. Such a digraph is denoted
by (V (G), E(G)) or simply (V,E). Given a digraph G = (V,E) with each
nonempty subset X of V associate the subdigraph (X,E ∩ (X × X)) of G
induced by X denoted by G�X . Given a proper subset X of V , G�V−X is
also denoted by G−X, and by G− v whenever X = {v}.

Let G = (V,E) be a digraph, for x �= y ∈ V , x −→
G

y or y ←−
G

x
means (x, y) ∈ E and (y, x) /∈ E, x

G
y means (x, y) ∈ E and (y, x) ∈ E,

x . . .
G
y means (x, y) /∈ E and (y, x) /∈ E. For X,Y ⊆ V , X −→

G
Y (or

simply X −→ Y or X < Y if there is no confusion) signifies that for every
x ∈ X and y ∈ Y , x −→

G
y. For X,Y ⊆ V , X

G
Y and X . . .

G
Y are

defined in the same way. Given a digraph G = (V,E), two distinct vertices
x and y of G form an oriented pair or directed pair if either x −→

G
y or

x ←−
G
y. Otherwise, {x, y} is a neutral pair ; it is full if x

G
y, and void

when x . . .
G
y. A digraph T = (V,E) is a tournament whenever x −→

T
y or

y −→
T
x, for all x �= y ∈ V . A total order or a chain is a tournament T

such that for x, y, z ∈ V (T ), if x −→
T
y and y −→

T
z then x −→

T
z. Given

a total order O = (V,E), for x, y ∈ V , x < y means x −→
O
y, then O can

be denoted by v0 < v1 · · · < vn−1 where n = |V |.
Given two digraphs G = (V,E) and G′ = (V ′, E′), a bijection σ from V

onto V ′ is an isomorphism from G onto G′ provided that for any x, y ∈ V ,
(x, y) ∈ E if and only if (σ(x), σ(y)) ∈ E′. Two digraphs are then isomorphic
if there exists an isomorphism from one onto the other which is denoted by
G 
 G′.

Let G = (V,E) be a digraph. A digraph H embeds into a digraph G
or H is embeddable in G, if H is isomorphic to a subdigraph of G. The
digraph G∗ = (V,E∗), dual of G, is defined by (x, y) ∈ E∗ if (y, x) ∈ E for
all x �= y ∈ V . A digraph is self-dual if it is isomorphic to its dual.

Two digraphs G and G′ on the same vertex set V are hereditarily iso-
morphic if for all X ⊆ V , G�X and G′

�X are isomorphic.
Let k be a non-negative integer, G and G′ are {k}-hypomorphic if for

every k-element subset K of V , the induced subdigraphs G′
�K and G�K are

isomorphic. We say that G and G′ are (≤ k)-hypomorphic if G and G′ are
{h}-hypomorphic for every integer h ≤ k. Let k ≤ |V | be an integer, the di-
graphs G and G′ are {−k}-hypomorphic if they are {|V | − k}-hypomorphic.
A digraph G is {k}-reconstructible (resp. {−k}-reconstructible) if any di-
graph {k}-hypomorphic (resp. {−k}-hypomorphic) to G is isomorphic to
it.
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A digraph G is (≤ k)-reconstructible if any digraph (≤ k)-hypomorphic
to G is isomorphic to it.

In 1977 P. K. Stockmeyer [15] showed that the tournaments are not, in
general, {−1}-reconstructible, invalidating the conjecture of Ulam [16] for
digraphs. Then, M. Pouzet [2, 3] proposed the {−k}-reconstruction problem
of digraphs. P. Ille [9], in 1988, established that a digraph with at least
11 vertices {−5}-reconstructible. G. Lopez and C. Rauzy [12, 13], in 1992,
showed that a digraph with at least 10 vertices is {−4}-reconstructible. In
1972, G. Lopez [10, 11], proved that the digraphs are (≤ 6)-reconstructible.

The incidence matrix is used in many reconstruction problems. For ex-
ample J. Dammak, G. Lopez, M. Pouzet and H. Si Kaddour, in 2009, have
used this matrix in a hypomorphy up to complementation problems [6]. As
well, A. Ben Amira, J. Dammak and H. Si Kaddour, in 2014, have used this
matrix in many construction of graphs and tournaments problems [1]. In
this paper we use the previous results of incidence matrix Theorem 1.3 to
prove Theorem 1.5 which is a generalization of Theorem 1.4.

Theorem 1.4. ([10, 11]) The digraphs are (≤ 6)-reconstructible.

Using the incidence matrix, we give a version modulo a prime of Theorem
1.4. To introduce this version we should define some digraphs of cardinality
5 which are not self-dual.
α+
5 = {{v1, v2, v3, t1, t2}, {(v1, v2), (v1, t2), (v2, t2), (t2, v3), (v3, v1), (v3, v2),

(v3, t1), (t1, t2), (t2, t1), (t1, v1), (t1, v2)}}, β+
5 = {{v1, v2, v3, t1, t2}, {(v1, v2),

(v1, t2), (v2, t2), (t2, v3), (v3, v1), (v3, v2), (v3, t1), (t1, v1), (t1, v2)}}, γ+5 ={{v1,
t1, t2, t3, t4}, {(v1, t2), (v1, t3), (t2, t3), (t3, t4), (t4, 1), (t4, t1), (t1, t3), (t3, t1),
(t1, v1)}}, α−

5 = (α+
5 )

∗, β−
5 = (β+

5 )
∗ and γ−5 = (γ+5 )

∗. Obviously, α+
5 , β

+
5

and γ+5 are not self-dual.

v3 (v1 −→ v2)

t2

t1
�
���

�
����

���

�
���

� v3 (v1 −→ v2)

t2

t1
�
���

�
����

���

�
���

�

�
�
�
�
�
�
�
�
�

t4 t2

t3

t1 v1

�
���

�
����

���

�
���

- - - - - - - - -

�

	





��
�

�
�
��

Figure 1: α+
5 , β

+
5 and γ+5 .

We set β+
6 the tournament defined in the set of vertices V =

{v0, v1, v2, v3, v4, v5} as follow, v0 < v1 < v2, v3 < v4, v5 −→ {v0, v1, v2} −→
{v3, v4} −→ v5.
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(v0 < v1 < v2)

v5 (v3 < v4)��
�
��� �

�
���

Figure 2: β+
6 .

According to these digraphs and for a digraph G = (V,E), we denote
the following sets and their cardinals, that will be used in the hypothesis of
Theorem 1.5.

A+
5 (G) := {X ⊂ V : G�X 
 α+

5 }, A−
5 (G) := {X ⊂ V : G�X 
 α−

5 },
B+

5 (G) := {X ⊂ V : G�X 
 β+
5 }, B−

5 (G) := {X ⊂ V : G�X 
 β−
5 },

C+
5 (G) := {X ⊂ V : G�X 
 γ+5 }, C−

5 (G) := {X ⊂ V : G�X 
 γ−5 },
a+5 (G) :=| A+

5 (G) |, a−5 (G) :=| A−
5 (G) |, b+5 (G) :=| B+

5 (G) |,
b−5 (G) :=| B−

5 (G) |, c+5 (G) :=| C+
5 (G) | and c−5 (G) :=| C−

5 (G) |.
A+

6 (G) := {X ⊂ V : G�X 
 β+
6 }, a+6 (G) := |A+

6 (G)|.

Theorem 1.5. Let G, G′ be two {4}-hypomorphic digraphs on the same set
V of v vertices. Let p be a prime number and k = [k0, k1, . . . ]p be an integer;
6 ≤ k ≤ v − 6.

If one of the following conditions is satisfied,

1) a+5 (G�K) = a+5 (G
′
�K), b+5 (G�K) = b+5 (G

′
�K), c+5 (G�K) = c+5 (G

′
�K) and

a+6 (G�K) = a+6 (G
′
�K), for all k-elements subset K of V .

2) a+5 (G�K) ≡ a+5 (G
′
�K) (mod p), b+5 (G�K) ≡ b+5 (G

′
�K) (mod p), c+5 (G�K) ≡

c+5 (G
′
�K) (mod p) and a+6 (G�K) ≡ a+6 (G

′
�K) (mod p), for all k-elements

subset K of V , p ≥ 7 and (k0 ≥ 6 or k0 = 0).

Then G and G′ are hereditarily isomorphic.

2. Rank of the matrix Wt k and kernel of tWt k

The notation a | b (resp. a � b) means a divides b (resp. a does not divide b).

Theorem 2.1. (Lucas’s Theorem [7]) Let p be a prime number, t, k be
positive integers, t ≤ k, t = [t0, t1, . . . , tt(p)]p and k = [k0, k1, . . . , kk(p)]p.
Then (

k

t

)
=

t(p)∏
i=0

(
ki
ti

)
(mod p), where

(
ki
ti

)
= 0 if ti > ki.

As a consequence of Theorem 2.1, we have.
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Corollary 2.1. Let p be a prime number, t, k be positive integers, t ≤ k,
t = [t0, t1, . . . , tt(p)]p and k = [k0, k1, . . . , kk(p)]p. Then

p|
(
k
t

)
if and only if there is i ∈ [0, t(p)] such that ti > ki.

Proof. We assume that ti ≤ ki < p, for all i ∈ [0, t(p)], we will prove that
p �

(
k
t

)
.

We have ti!(ki− ti)!
(
ki

ti

)
= ki! and p � ki!, then p �

(
ki

ti

)
for all i ∈ [0, t(p)].

From Theorem 2.1,
(
k
t

)
=

t(p)∏
i=0

(
ki

ti

)
(mod p), then p �

(
k
t

)
. Inversely, we

assume that there exist i ∈ [0, t(p)], such that ti > ki, so from Theorem 2.1
(
ki

ti

)
= 0 and

(
k
t

)
=

t(p)∏
i=0

(
ki

ti

)
(mod p), then p|

(
k
t

)
.

Lemma 2.1. Let p be a prime number, t, k be positive integers, t ≤ k,
t = [t0, t1, . . . , tt(p)]p and k = [k0, k1, . . . , kk(p)]p.

We have p �
(
ki

ti

)
ti ≤ ki ≤ p and

(
ki

ti

)
= 0 if ti > ki.

Proof. The proof follow immediately from Corollary 2.1.

To prove Theorem 1.3, we use the following lemma:

Lemma 2.2. Let p be a prime, t, k and i be positive integers, i ≤ t ≤ k,
t = [t0, t1, . . . , tt(p)]p, k = [k0, k1, . . . , kk(p)]p and i = [i0, i1, . . . , ii(p)]p.

p �
((k−i)0
(t−i)0

)
if and only if

1. k0 < t0 and i0 ∈ [k0 + 1, t0].
2. k0 ≥ t0 and i0 �∈ [t0 + 1, k0].

Proof.

1. k0 < t0

(a) If i0 ∈ [0, k0] then (t − i)0 = t0 − i0 > k0 − i0 = (k − i)0. From

Lemma 2.1, we have p |
((k−i)0
(t−i)0

)
then p |

(
k−i
t−i

)
.

(b) If i0 ∈ [k0 + 1, t0] then (k − i)0 = p+ k0 − i0 ≥ t0 − i0 = (t− i)0.

From Lemma 2.1, we have p �
((k−i)0
(t−i)0

)
.

(c) If i0 ∈ [t0+1, p−1] then (t−i)0 = p+t0−i0 > p+k0−i0 = (k−i)0.

From Lemma 2.1, we have p |
((k−i)0
(t−i)0

)
then p |

(
k−i
t−i

)
.

2. k0 ≥ t0

(a) If i0 ∈ [0, t0] then (k − i)0 = k0 − i0 ≥ t0 − i0 = (t − i)0. From

Lemma 2.1, we have p �
((k−i)0
(t−i)0

)
.
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(b) If i0 ∈ [t0 + 1, k0] then (t− i)0 = p+ t0 − i0 > k0 − i0 = (k − i)0.

From Lemma 2.1, we have p |
((k−i)0
(t−i)0

)
then p |

(
k−i
t−i

)
.

(c) If i0 ∈ [k0+1, p−1] then (k−i)0 = p+k0−i0 ≥ p+t0−i0 = (t−i)0.

From Lemma 2.1, we have p �
((k−i)0
(t−i)0

)
.

Lemma 2.3. Let p be a prime, t, k and i be positive integers, i ≤ t ≤ k,
t = [t0, t1, . . . , tt(p)]p, k = [k0, k1, . . . , kk(p)]p and i = [i0, i1, . . . , ii(p)]p.

p �
((k−i)0
(t−i)0

)
and p �

((k−i)1
(t−i)1

)
if and only if

1) k0 < t0 and i0 ∈ [k0 + 1, t0].

a) k1 − 1 < t1 and i1 ∈ [k1, t1].

b) k1 − 1 ≥ t1 and (i1 ∈ [0, t1] or i1 ∈ [k1, p− 1]).

2) k0 ≥ t0 and i0 ∈ [0, t0].

a) k1 < t1 and i1 ∈ [k1 + 1, t1].

b) k1 ≥ t1 and (i1 ∈ [0, t1] or i1 ∈ [k1 + 1, p− 1]).

3) k0 ≥ t0 and i0 ∈ [k0 + 1, p− 1].

a) k1 − 1 < t1 − 1 and i1 ∈ [k1, t1 − 1].

b) k1 − 1 ≥ t1 − 1 and (i1 ∈ [0, t1 − 1] or i1 ∈ [k1, p− 1]).

Proof.

1) As k0 < i0 ≤ t0, we have k−i = [k0−i0+p, . . . ]p and t−i = [t0−i0, . . . ]p.
In Lemma 2.2, we replace k0 by k1 − 1 and t0 by t1 we have

a) Assume k1 − 1 < t1.

i) If i1 ∈ [0, k1 − 1] then (t− i)1 = t1 − i1 > k1 − i1 − 1 = (k − i)1.

From Lemma 2.1, we have p |
((k−i)1
(t−i)1

)
.

ii) If i1 ∈ [k1, t1] then (k − i)1 = p+ k1 − i1 − 1 ≥ t1 − i1 = (t− i)1.

From Lemma 2.1, we have p �
((k−i)1
(t−i)1

)
.

iii) If i1 ∈ [t1+1, p− 1] then (t− i)1 = p+ t1− i1 > p+ k1− i1− 1 =

(k − i)1. From Lemma 2.1, we have p |
((k−i)1
(t−i)1

)
.

b) Assume k1 − 1 ≥ t1.

i) If i1 ∈ [0, t1] then (k− i)1 = k1− i1− 1 ≥ t1− i1 = (t− i)1. From

Lemma 2.1, we have p �
((k−i)1
(t−i)1

)
.

ii) If i1 ∈ [t1+1, k1−1] then (t−i)1 = p+t1−i1 > k1−i1−1 = (k−i)1.

From Lemma 2.1, we have p |
((k−i)1
(t−i)1

)
.
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iii) If i1 ∈ [k1, p−1] then (k−i)1 = p+k1−i1−1 ≥ p+t1−i1 = (t−i)1.

From Lemma 2.1, we have p �
((k−i)1
(t−i)1

)
.

2) As i0 ≤ t0 ≤ k0, we have k − i = [k0 − i0, . . . ]p and t− i = [t0 − i0, . . . ]p.
In Lemma 2.2, we replace k0 by k1 and t0 by t1 we have the result.

3) As t0 ≤ k0 < i0, we have k − i = [k0 − i0 + p, . . . ]p and t− i = [t0 − i0 +
p, . . . ]p. In Lemma 2.2, we replace k0 by k1 − 1 and t0 by t1 − 1 we the
result.

Lemma 2.4. Let p be a prime, t, k and i be positive integers, i ≤ t ≤ k,
t = [t0, t1, t2]p, k = [k0, k1, . . . , kk(p)]p and i = [i0, i1, i2]p.

p �
((k−i)
(t−i)

)
if and only if

1) k0 < t0, k1 − 1 < t1, i0 ∈ [k0 + 1, t0] and i1 ∈ [k1, t1].

a) k2 ≤ t2 and i2 ∈ [k2, t2].

b) k2 ≥ t2 + 1 and i2 ∈ [0, t2].

2) k0 < t0, k1 − 1 ≥ t1, i0 ∈ [k0 + 1, t0] and i1 ∈ [0, t1].

a) k2 ≤ t2 − 1 and i2 ∈ [k2 + 1, t2].

b) k2 ≥ t2 and i2 ∈ [0, t2].

3) k0 < t0, k1 − 1 ≥ t1, i0 ∈ [k0 + 1, t0] and i1 ∈ [k1, p− 1].

a) k2 ≤ t2 − 1 and i2 ∈ [k2, t2 − 1].

b) k2 ≥ t2 and i2 ∈ [0, t2 − 1].

4) k0 ≥ t0, k1 < t1, i0 ∈ [0, t0] and i1 ∈ [k1 + 1, t1].

a) k2 ≤ t2 and i2 ∈ [k2, t2].

b) k2 ≥ t2 + 1 and i2 ∈ [0, t2].

5) k0 ≥ t0, k1 ≥ t1, i0 ∈ [0, t0] and i1 ∈ [0, t1].

a) k2 ≤ t2 − 1 and i2 ∈ [k2 + 1, t2].

b) k2 ≥ t2 and i2 ∈ [0, t2].

6) k0 ≥ t0, k1 ≥ t1, i0 ∈ [0, t0] and i1 ∈ [k1 + 1, p− 1].

a) k2 ≤ t2 − 1 and i2 ∈ [k2, t2 − 1].

b) k2 ≥ t2 and i2 ∈ [0, t2 − 1].

7) k0 ≥ t0, k1 − 1 < t1 − 1, i0 ∈ [k0 + 1, p− 1] and i1 ∈ [k1, t1 − 1].

a) k2 ≤ t2 and i2 ∈ [k2, t2].

b) k2 ≥ t2 + 1 and i2 ∈ [0, t2].
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8) k0 ≥ t0, k1 − 1 ≥ t1 − 1, i0 ∈ [k0 + 1, p− 1] and i1 ∈ [0, t1 − 1].

a) k2 ≤ t2 − 1 and i2 ∈ [k2 + 1, t2].

b) k2 ≥ t2 and i2 ∈ [0, t2].

9) k0 ≥ t0, k1 − 1 ≥ t1 − 1, i0 ∈ [k0 + 1, p− 1] and i1 ∈ [k1, p− 1].

a) k2 ≤ t2 − 1 and i2 ∈ [k2, t2 − 1].

b) k2 ≥ t2 and i2 ∈ [0, t2 − 1].

Proof. As i ≤ t, we have i2 ≤ t2.

1) As k0 < i0 ≤ t0 and k1 − 1 < i1 ≤ t1, we have k − i = [k0 − i0 + p, k1 −
i1 + p . . . ]p and t− i = [t0 − i0, t1 − i1 . . . ]p. In Lemma 2.2, we replace k0
by k2 − 1 and t0 by t2 we have

a) Assume k2 ≤ t2.

i) If i2 ∈ [0, k2 − 1] then (t− i)2 = t2 − i2 > k2 − i2 − 1 = (k − i)2.

From Lemma 2.1, we have p |
((k−i)2
(t−i)2

)
, then p |

((k−i)
(t−i)

)
.

ii) If i2 ∈ [k2, t2] then (k − i)2 = p+ k2 − i2 − 1 ≥ t2 − i2 = (t− i)2.

From Lemma 2.1, we have p �
((k−i)2
(t−i)2

)
, then p �

((k−i)
(t−i)

)
.

b) Assume k2 ≥ t2 + 1.

i) If i2 ∈ [0, t2] then (k− i)2 = k2− i2− 1 ≥ t2− i2 = (t− i)2. From

Lemma 2.1, we have p �
((k−i)2
(t−i)2

)
, then p �

((k−i)
(t−i)

)
.

2) As k0 < i0 ≤ t0, i1 ≤ t1 ≤ k1−1, we have k− i = [k0− i0+p, k1− i1 . . . ]p
and t− i = [t0 − i0, t1 − i1 . . . ]p. In Lemma 2.2, we replace k0 by k2 and
t0 by t2 we have the result.

3) As k0 < i0 ≤ t0, t1 ≤ k1−1 ≤ i1, we have k−i = [k0−i0+p, k1−i1+p . . . ]p
and t− i = [t0− i0, t1− i1+p . . . ]p. In Lemma 2.2, we replace k0 by k2−1
and t0 by t2 − 1 we have the result.

4) As i0 ≤ t0 ≤ k0, k1 < i1 ≤ t1, we have k − i = [k0 − i0, k1 − i1 + p . . . ]p
and t− i = [t0 − i0, t1 − i1 . . . ]p. In Lemma 2.2, we replace k0 by k2 − 1
and t0 by t2 we have the result.

5) As i0 ≤ t0 ≤ k0, i1 ≤ t1 ≤ k1, we have k − i = [k0 − i0, k1 − i1 . . . ]p and
t− i = [t0 − i0, t1 − i1 . . . ]p. In Lemma 2.2, we replace k0 by k2 and t0 by
t2 we have the result.

6) As i0 ≤ t0 ≤ k0, t1 ≤ k1 < i1, we have k − i = [k0 − i0, k1 − i1 + p . . . ]p
and t− i = [t0− i0, t1− i1+p . . . ]p. In Lemma 2.2, we replace k0 by k2−1
and t0 by t2 − 1 we have the result.

7) As t0 ≤ k0 < i0, k1 − 1 < i1 ≤ t1 − 1, we have k − i = [k0 − i0 + p, k1 −
i1+ p . . . ]p and t− i = [t0− i0+ p, t1− i1 . . . ]p. In Lemma 2.2, we replace
k0 by k2 − 1 and t0 by t2 we have the result.
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8) As t0 ≤ k0 < i0, i1 ≤ t1−1 ≤ k1−1, we have k−i = [k0−i0+p, k1−i1 . . . ]p
and t− i = [t0 − i0 + p, t1 − i1 . . . ]p. In Lemma 2.2, we replace k0 by k2
and t0 by t2 we have the result.

9) As t0 ≤ k0 < i0, t1−1 ≤ k1−1 < i1, i0 ∈ [k0+1, p−1], i1 ∈ [k1, p−1], we

have k−i = [k0−i0+p, k1−i1+p . . . ]p and t−i = [t0−i0+p, t1−i1+p . . . ]p.

In Lemma 2.2, we replace k0 by k2 − 1 and t0 by t2 − 1 we have the

result.

Proof of Theorem 1.3. Let p be a prime number, t, k be positive integers,

t ≤ min(k, v − k), t = [t0, t1, t2]p and k = [k0, k1, . . . , kk(p)]p.

Obviously, we have
β∑

i=α

(
v
i

)
−
(

v
i−1

)
=

(
v
β

)
−
(

v
α−1

)

1. We have k0 ≤ t0 − 1, k1 ≤ t1 and k2 ≤ t2, then from 1)a) of Lemma

2.4, p �
(
k−i
t−i

)
if and only if i2 ∈ [k2, t2], i1 ∈ [k1, t1] and i0 ∈ [k0+1, t0].

From Theorem 1.2, rank(Wt k)

=
t2∑

i2=k2

t1∑
i1=k1

t0∑
i0=k0+1

(
v

i2p2+i1p+i0

)
−
(

v
i2p2+i1p+i0−1

)

=
t2∑

i2=k2

t1∑
i1=k1

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+i1p+k0

)
.

2. We have k0 ≥ t0, k1 ≤ t1−1 and k2 ≤ t2, then from 4)a) of Lemma 2.4,

p �
(
k−i
t−i

)
if and only if i2 ∈ [k2, t2], i1 ∈ [k1+1, t1] and i0 ∈ [0, t0], from

7)a) of Lemma 2.4, p �
(
k−i
t−i

)
if and only if i2 ∈ [k2, t2], i1 ∈ [k1, t1 − 1]

and i0 ∈ [k0 + 1, p− 1]. From Theorem 1.2, rank(Wt k)

=
t2∑

i2=k2

t1∑
i1=k1+1

t0∑
i0=0

(
v

i2p2+i1p+i0

)
−
(

v
i2p2+i1p+i0−1

)
+

t2∑
i2=k2

t1−1∑
i1=k1

p−1∑
i0=k0+1

(
v

i2p2+i1p+i0

)
−
(

v
i2p2+i1p+i0−1

)

=
t2∑

i2=k2

t1∑
i1=k1+1

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+i1p−1

)
+

t2∑
i2=k2

t1−1∑
i1=k1

(
v

i2p2+i1p+p−1

)
−
(

v
i2p2+i1p+k0

)

=
t2∑

i2=k2

t1∑
i1=k1+1

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+(i1−1)p+p−1

)
+

t2∑
i2=k2

t1∑
i1=k1+1

(
v

i2p2+(i1−1)p+p−1

)
−
(

v
i2p2+(i1−1)p+k0

)

=
t2∑

i2=k2

t1∑
i1=k1+1

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+(i1−1)p+k0

)
.
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3. We have k0 ≤ t0 − 1, k1 ≥ t1 + 1 and k2 ≤ t2 − 1, then from 2)a) of

Lemma 2.4, p �
(
k−i
t−i

)
if and only if i2 ∈ [k2 + 1, t2], i1 ∈ [0, t1] and

i0 ∈ [k0 + 1, t0] and from 3)a) of Lemma 2.4, p �
(
k−i
t−i

)
if and only if

i2 ∈ [k2, t2− 1], i1 ∈ [k1, p− 1] and i0 ∈ [k0+1, t0]. From Theorem 1.2,

rank(Wt k)

=
t2∑

i2=k2+1

t1∑
i1=0

t0∑
i0=k0+1

(
v

i2p2+i1p+i0

)
−
(

v
i2p2+i1p+i0−1

)
+

t2−1∑
i2=k2

p−1∑
i1=k1

t0∑
i0=k0+1

(
v

i2p2+i1p+i0

)
−
(

v
i2p2+i1p+i0−1

)

=
t2∑

i2=k2+1

t1∑
i1=0

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+i1p+k0

)
+

t2−1∑
i2=k2

p−1∑
i1=k1

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+i1p+k0

)
.

4. We have k0 ≥ t0, k1 ≥ t1 and k2 ≤ t2 − 1, then from 5)a) of Lemma

2.4, p �
(
k−i
t−i

)
if and only if i2 ∈ [k2 + 1, t2], i1 ∈ [0, t1] and i0 ∈ [0, t0],

from 6)a) of Lemma 2.4, p �
(
k−i
t−i

)
if and only if i2 ∈ [k2, t2 − 1],

i1 ∈ [k1 + 1, p − 1] and i0 ∈ [0, t0], from 8)a) of Lemma 2.4, p �
(
k−i
t−i

)
if and only if i2 ∈ [k2 + 1, t2], i1 ∈ [0, t1 − 1] and i0 ∈ [k0 + 1, p − 1]

and from 9)a) of Lemma 2.4, p �
(
k−i
t−i

)
if and only if i2 ∈ [k2, t2 − 1],

i1 ∈ [k1, p− 1] and i0 ∈ [k0 + 1, p− 1]. From Theorem 1.2, rank(Wt k)

=
t2∑

i2=k2+1

t1∑
i1=0

t0∑
i0=0

(
v

i2p2+i1p+i0

)
−
(

v
i2p2+i1p+i0−1

)
+

t2−1∑
i2=k2

p−1∑
i1=k1+1

t0∑
i0=0

(
v

i2p2+i1p+i0

)
−
(

v
i2p2+i1p+i0−1

)

+
t2∑

i2=k2+1

t1−1∑
i1=0

p−1∑
i0=k0+1

(
v

i2p2+i1p+i0

)
−
(

v
i2p2+i1p+i0−1

)
+

t2−1∑
i2=k2

p−1∑
i1=k1

p−1∑
i0=k0+1

(
v

i2p2+i1p+i0

)
−
(

v
i2p2+i1p+i0−1

)

=
t2∑

i2=k2+1

t1∑
i1=0

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+i1p−1

)
+

t2−1∑
i2=k2

p−1∑
i1=k1+1

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+i1p−1

)

+
t2∑

i2=k2+1

t1−1∑
i1=0

(
v

i2p2+i1p+p−1

)
−
(

v
i2p2+i1p+k0

)
+

t2−1∑
i2=k2

p−1∑
i1=k1

(
v

i2p2+i1p+p−1

)
−
(

v
i2p2+i1p+k0

)
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=
t2∑

i2=k2+1

t1∑
i1=0

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+i1p−1

)
+

t2∑
i2=k2+1

t1−1∑
i1=0

(
v

i2p2+i1p+p−1

)
−
(

v
i2p2+i1p+k0

)

+
t2−1∑
i2=k2

p−1∑
i1=k1+1

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+i1p−1

)
+

t2−1∑
i2=k2

p−1∑
i1=k1

(
v

i2p2+i1p+p−1

)
−
(

v
i2p2+i1p+k0

)

=
t2−1∑
i2=k2

p−1∑
i1=k1+1

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+(i1−1)p+k0

)
+

t2∑
i2=k2+1

t1∑
i1=0

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+(i1−1)p+k0

)
.

5. We have k0 ≤ t0−1, k1 ≤ t1 and k2 ≥ t2+1, then from 1)b) of Lemma
2.4, p �

(
k−i
t−i

)
if and only if i2 ∈ [0, t2], i1 ∈ [k1, t1] and i0 ∈ [k0 + 1, t0].

From Theorem 1.2, rank(Wt k)

=
t2∑

i2=0

t1∑
i1=k1

t0∑
i0=k0+1

(
v

i2p2+i1p+i0

)
−
(

v
i2p2+i1p+i0−1

)
=

t2∑
i2=0

t1∑
i1=k1

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+i1p+k0

)
.

6. We have k0 ≥ t0, k1 ≤ t1 − 1 and k2 ≥ t2 + 1, then from 4)b) of
Lemma 2.4, p �

(
k−i
t−i

)
if and only if i2 ∈ [0, t2], i1 ∈ [k1 + 1, t1] and

i0 ∈ [0, t0], from 7)b) of Lemma 2.4, p �
(
k−i
t−i

)
if and only if i2 ∈ [0, t2],

i1 ∈ [k1, t1− 1] and i0 ∈ [k0+1, p− 1]. From Theorem 1.2, rank(Wt k)

=
t2∑

i2=0

t1∑
i1=k1+1

t0∑
i0=0

(
v

i2p2+i1p+i0

)
−
(

v
i2p2+i1p+i0−1

)
+

t2∑
i2=0

t1−1∑
i1=k1

p−1∑
i0=k0+1

(
v

i2p2+i1p+i0

)
−
(

v
i2p2+i1p+i0−1

)

=
t2∑

i2=0

t1∑
i1=k1+1

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+i1p−1

)
+

t2∑
i2=0

t1−1∑
i1=k1

(
v

i2p2+i1p+p−1

)
−
(

v
i2p2+i1p+k0

)

=
t2∑

i2=0

t1∑
i1=k1+1

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+(i1−1)p+p−1

)
+

t2∑
i2=0

t1∑
i1=k1+1

(
v

i2p2+(i1−1)p+p−1

)
−
(

v
i2p2+(i1−1)p+k0

)

=
t2∑

i2=0

t1∑
i1=k1+1

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+(i1−1)p+k0

)
.
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7. We have k0 ≤ t0−1, k1 ≥ t1+1 and k2 ≥ t2, then from 2)b) of Lemma

2.4, p �
(
k−i
t−i

)
if and only if i2 ∈ [0, t2], i1 ∈ [0, t1] and i0 ∈ [k0 + 1, t0]

and from 3)b) of Lemma 2.4, p �
(
k−i
t−i

)
if and only if i2 ∈ [0, t2 − 1],

i1 ∈ [k1, p− 1] and i0 ∈ [k0 + 1, t0]. From Theorem 1.2, rank(Wt k)

=
t2∑

i2=0

t1∑
i1=0

t0∑
i0=k0+1

(
v

i2p2+i1p+i0

)
−
(

v
i2p2+i1p+i0−1

)
+

t2−1∑
i2=0

p−1∑
i1=k1

t0∑
i0=k0+1

(
v

i2p2+i1p+i0

)
−
(

v
i2p2+i1p+i0−1

)

=
t2∑

i2=0

t1∑
i1=0

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+i1p+k0

)
+

t2−1∑
i2=0

p−1∑
i1=k1

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+i1p+k0

)
.

8. We have k0 ≥ t0, k1 ≥ t1 and k2 ≥ t2, then from 5)b) of Lemma 2.4,

p �
(
k−i
t−i

)
if and only if i2 ∈ [0, t2], i1 ∈ [0, t1] and i0 ∈ [0, t0], from 6)b)

of Lemma 2.4, p �
(
k−i
t−i

)
if and only if i2 ∈ [0, t2− 1], i1 ∈ [k1+1, p− 1]

and i0 ∈ [0, t0], from 8)b) of Lemma 2.4, p �
(
k−i
t−i

)
if and only if

i2 ∈ [0, t2], i1 ∈ [0, t1 − 1] and i0 ∈ [k0 + 1, p − 1] and from 9)b) of

Lemma 2.4, p �
(
k−i
t−i

)
if and only if i2 ∈ [0, t2 − 1], i1 ∈ [k1, p− 1] and

i0 ∈ [k0 + 1, p− 1]. From Theorem 1.2, rank(Wt k)

=
t2∑

i2=0

t1∑
i1=0

t0∑
i0=0

(
v

i2p2+i1p+i0

)
−
(

v
i2p2+i1p+i0−1

)
+

t2−1∑
i2=0

p−1∑
i1=k1+1

t0∑
i0=0

(
v

i2p2+i1p+i0

)
−
(

v
i2p2+i1p+i0−1

)

+
t2∑

i2=0

t1−1∑
i1=0

p−1∑
i0=k0+1

(
v

i2p2+i1p+i0

)
−
(

v
i2p2+i1p+i0−1

)
+

t2−1∑
i2=0

p−1∑
i1=k1

p−1∑
i0=k0+1

(
v

i2p2+i1p+i0

)
−
(

v
i2p2+i1p+i0−1

)

=
t2∑

i2=0

t1∑
i1=0

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+i1p−1

)
+

t2−1∑
i2=0

p−1∑
i1=k1+1

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+i1p−1

)

+
t2∑

i2=0

t1−1∑
i1=0

(
v

i2p2+i1p+p−1

)
−
(

v
i2p2+i1p+k0

)
+

t2−1∑
i2=0

p−1∑
i1=k1

(
v

i2p2+i1p+p−1

)
−
(

v
i2p2+i1p+k0

)
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=
t2∑

i2=0

t1∑
i1=0

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+i1p−1

)
+

t2∑
i2=0

t1−1∑
i1=0

(
v

i2p2+i1p+p−1

)
−
(

v
i2p2+i1p+k0

)

+
t2−1∑
i2=0

p−1∑
i1=k1+1

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+i1p−1

)
+

t2−1∑
i2=0

p−1∑
i1=k1

(
v

i2p2+i1p+p−1

)
−
(

v
i2p2+i1p+k0

)

=
t2−1∑
i2=0

p−1∑
i1=k1+1

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+(i1−1)p+k0

)
+

t2∑
i2=0

t1∑
i1=0

(
v

i2p2+i1p+t0

)
−
(

v
i2p2+(i1−1)p+k0

)

3. Proof of Theorem 1.5

Let k ≥ 1 be an integer and G be a digraph. G is {k}-monomorphic if
G�X 
 G�Y for all k-element subsets X and Y of V .

Lemma 3.1. ([14]) Let v, t, k be three integers, t ≤ min(k, v − k) and G
and G′ be two graphs on the same set V of v vertices. If G and G′ are
{k}-hypomorphic (resp. G is {k}-monomorphic) then G and G′ are {t}-
hypomorphic (resp. G is {t}-monomorphic).

Let G = (V,E) and G′ = (V,E′) be two digraph. G and G′ are {2}-
hypomorphic if and only if, for all x, y ∈ V , if x

G
y (resp. x . . .

G
y), then

x
G′y (resp. x . . .

G′ y) and if {x, y} is an oriented pair in G then {x, y} is
oriented in G′.

From Lemma 3.1, follow immediately this result.

Corollary 3.1. If G = (V,E) and G′ = (V,E′) are {4}-hypomorphic di-
graphs and |V | ≥ 7, then G and G′ are (≤ 4)-hypomorphic.

A 3-cycle is a tournament isomorphic to C3 = ({v0, v1, v2}, {(v0, v1),
(v1, v2), (v2, v0)}).

Lemma 3.2.

1) Every digraph G with at least 7 vertices contains a restriction of cardi-
nality 5 not isomorphic to α+

5 , nor β+
5 , nor γ+5 .

2) Every digraph G with at least 9 vertices contains a restriction of cardi-
nality 6 not isomorphic to β+

6 .
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Proof.

1) By contradiction, we assume that G�X 
 α+
5 (resp. G�X 
 β+

5 or G�X 

γ+5 ) for all 5-element subsets X, so G is {5}-monomorphic. From Lemma
3.1, we deduce G is (≤ 2)-monomorphic, then G is a tournament, or G
is the full graph, or G is the empty graph. A contradiction.

2) By contradiction, we assume that G�X 
 β+
6 for all 6-element subsets

X, so G is {6}-monomorphic. From Lemma 3.1, we deduce G is (≤ 3)-
monomorphic. As β+

6 embeds at least a 3-cycle and a 3-chain. A contra-
diction.

A flag is a digraph isomorphic to ({v0, v1, v2}, {(v1, v0), (v0, v2), (v2, v0)})
or to its dual.

A full peak is a digraph isomorphic to ({v0, v1, v2}, {(v1, v0), (v2, v0),
(v1, v2), (v2, v1)}) or to its dual.

A void peak is a digraph isomorphic to ({v0, v1, v2}, {(v1, v0), (v2, v0)})
or to its dual.

A 3-consecutivity is a digraph isomorphic to ({v0, v1, v2}, {(v0, v1),
(v1, v2)}) or to ({v0, v1, v2}, {(v0, v1), (v1, v2), (v2, v0), (v0, v2)}).

v0

v1 v2�
��

�
�

------
Flag

v0

v1 v2�
��

�
��

v0

v1 v2�
��

�
��

------
Full peak V oid peak

v0 v2

v1

�
���

��- - - - - - v0 v2

v1

�
���

��

3-consecutivity

Figure 3: Flag, Full peak, Void peak, 3-consecutivity.

Let G = (V,E) and G′ = (V,E′) be two (≤ 2)-hypomorphic digraphs.
Denote DG,G′ the binary relation on V such that: for x ∈ V , xDG,G′x; and
for x �= y ∈ V , xDG,G′y if there exists a sequence x0 = x, ..., xn = y of
elements of V satisfying (xi, xi+1) ∈ E if and only if (xi, xi+1) /∈ E′, for all
i, 0 ≤ i ≤ n − 1. The relation DG,G′ is an equivalence relation called the
difference relation, its classes are called difference classes. Let DG,G′ denote
the set of difference classes. The x = x0, x1, . . . , xn = y as above, are referred
to as DG,G′-paths.

The families Sn and E(Sn) Let n ≥ 1 be an integer. The integers below
are considered modulo 2n. An element of the family E(Sn) is a digraph, not
a tournament that embeds neither peaks nor diamonds nor adjacent neutral
pairs. The morphology of such a family is described by G. Lopez and C.
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Rauzy [12]. First we introduce a sub family Sn of the family E(Sn). For
n = 1, an element of the family S1 is a digraph on 2 vertices with a neutral
pair. For n ≥ 2, an element of the family Sn is a digraph isomorphic to
gn = ({t1, . . . , t2n}, En), where gn is defined by, {ti, tj} is a neutral pair of
gn if and only if j = i+n and ti −→gn tj if there exists k ∈ {1, . . . , n−1} such
that j = i+ k. The two neutral pairs {ti, ti+n} and {ti+1, ti+n+1} are called
successive for every i ∈ {1, 2, . . . , n − 1}. An element of the family E(Sn)
is a digraph isomorphic to the digraph Gn, where Gn is obtained from gn
by adding mutually disjoint sets s1, s2, . . . , s2n (the set si is called a sector
and it could be empty) to the vertex set {t1, t2, . . . , t2n} of gn satisfying the
following conditions:

(i) Gn[{t1, t2, . . . , t2n}] = gn and for all i ∈ {1, 2, . . . , 2n}, the subdigraph
Gn[si∪{ti, ti+1}] is a finite chain such that ti →Gn

si and si →Gn
ti+1.

(ii) For i ∈ {1, 2, . . . , 2n}, {ti, ti+n} are the only neutral pairs of Gn.
(iii) For i, j ∈ {1, 2, . . . , 2n}, si →Gn

tj if there exists k ∈ {1, . . . , n} such
that j = i+ k.

(iv) For i, j ∈ {1, 2, . . . , 2n}, si →Gn
sj if there exists k ∈ {1, 2 . . . , n −

2, n− 1} such that j = i+ k.

A diamond is a tournament isomorphic to δ+ = ({v0, v1, v2, v3}, {(v0, v1),
(v1, v2), (v2, v0), (v0, v3), (v1, v3), (v2, v3)}), called a positive diamond, or to
its dual δ− = (δ+)∗, called negative diamond. A tournament T is called a
diamond-free tournament if none of its subtournaments is a diamond.

Lemma 3.3.

1. Two (≤ 6)-hypomorphic digraphs are hereditarily isomorphic.
2. Let G and G′ be two digraphs. If for all C ∈ DG,G′ C is an interval of

G and G′, and G′
�C , G�C are hereditarily isomorphic, then G and G′

are hereditarily isomorphic.

Proof. Let C ∈ DG,G′ .

1. Let G and G′ be two (≤ 6)-hypomorphic digraphs. For all K ⊆ V , G�K
and G′

�K are (≤ 6)-hypomorphic. So, from Theorem 1.4, G�K and G′
�K

are isomorphic.

2. Let K ⊆ V . As K =
⋃

C∈DG,G′

K ∩ C and G′
�C , G�C are hereditarily

isomorphic, then G′
�K∩C 
 G�K∩C and K ∩ C is an interval of G�K

and G′
�K . So, G�K and G′

�K are isomorphic.

Lemma 3.4. [12] Let G and G′ be two (≤ 4)-hypomorphic digraphs and
C ∈ DG,G′.
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1. If G�C is a tournament, then G�C is a diamond-free tournament.
2. If G�C has no 3-cycles, then G�C is either a chain or a near-chain or

a consecutivity or a cycle.
3. If G�C has a 3-cycle and G�C is not a tournament, then there exists

an integer n ≥ 1 such that G�C is an element of E(Sn).
4. C is an interval of G and G′. Hence, if G′

�C′ and G�C′ are isomorphic
for each C ′ ∈ DG,G′, then G and G′ are isomorphic.

5. Neither peaks nor flags and no diamonds are embeddable in the subdi-
graphs G�C and G′

�C .
6. Every 3-consecutivity (resp. 3-cycle) in G�C is reversed in G′

�C .

As a consequence from Lemma 3.4, we have:

Corollary 3.2. Let G and G′ be two (≤ 4)-hypomorphic digraphs, and C ∈
DG,G′.

1. If G�C is neither a diamond-free tournament nor an element of E(Sn),
then G′

�C and G�C are hereditarily isomorphic.
2. If G�C is either a diamond-free tournament or an element of E(Sn),

then G′
�C and G∗

�C are hereditarily isomorphic.

Lemma 3.5. ([5]) Let T and T ′ be two (≤ 4)-hypomorphic tournaments on
at least 5 vertices. Then, T and T ′ are (≤ 5)-hypomorphic.

Lemma 3.6. ([4]) Let T and T ′ be two (≤ 5)-hypomorphic tournaments
defined on a vertex set V such that for all X ⊆ V ; if T�X is isomorphic
to β+

6 or to β−
6 , then T ′

�X is isomorphic to T�X . Thus T and T ′ are (≤ 6)-
hypomorphic.

Lemma 3.7. Let G and G′ be two (≤ 4)-hypomorphic digraphs defined on
a vertex set V . Let C ∈ DG,G′ such that G�C is an element of E(Sn) and
for all X ⊆ C; if G�X is isomorphic to α+

5 or to α−
5 or to β+

5 or to β−
5 or

to γ+5 or to γ−5 , then G′
�X is isomorphic to G�X . Thus G�C and G′

�C are
(≤ 6)-hypomorphic.

Proof.

Fact 3.1. We have G�C does not embeds α+
5 , α−

5 , β+
5 , β−

5 , γ+5 and γ−5 .
Indeed, if there exist X ⊂ C, such that G�X is isomorphic to α+

5 or to
α−
5 or to β+

5 or to β−
5 or to γ+5 or to γ−5 , then from Lemma 3.4, every 3-

consecutivity and 3-cycle of G�C are reversed in G′
�C , then G′

�X} 
 G∗
�X ,

thus α+
5 or α−

5 or β+
5 or β−

5 or γ+5 or γ−5 is self dual, that is impossible.

We have n ≤ 3. Indeed, if n ≥ 4 then G�{t1,t1+n,t2,t3,t4+n} 
 α+
5 or β+

5 ,
that contradict Fact 3.1.
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1) If n = 3, then G�C ∈ S3 and it’s neutral pairs have the same type.

Indeed if {t1, t4}, {t2, t5}, {t3, t6} are 3 neutral pairs of G�C . With-

out loss of generality, we assume that there is x in the sector s1, then

G�{t1,t4,x,t2,t6} 
 α+
5 or β+

5 that contradict Fact 3.1. Thus G�C ∈ S3 and

from the fact that neither γ+5 nor γ−5 are embeddable in the subdigraph

G�C , the neutral pairs are all of the same type.

2) If n = 2, then G�C ∈ S2 or G�C ∈ E(S2) and its two neutral pairs have

the same type and its sectors are empty except one of cardinality 1.

Indeed if {t1, t3}, {t2, t4} are 2 neutral pairs of G�C .
Case 1. If a1, b1 in the sector s1, then G�{t1,a1,b1,t3,t4} 
 α+

5 or β+
5 .

Case 2. If a1 ∈ s1 and a2 ∈ s2 then G�{a1,t2,a2,t3,t4} 
 α+
5 or β+

5 .

Case 3. If a1 ∈ s1, a3 ∈ s3 and a1 −→G a3, then G�{a1,t2,t3,a3,t4} 
 α+
5

or β+
5 .

All this cases contradict the Fact 3.1.

Since neither γ+5 nor γ−5 are embeddable in the subdigraph G�C and from

the 3 cases, G�C ∈ S2 or G�C ∈ E(S2) and its two neutral pairs have the

same type and its sectors are empty except one of cardinality 1.

3) If n = 1, then G�C is either a near-chain, or an element of E(S1) on 5

vertices with sectors s1 = {b1, c1} and s2 = {b2} such that G{b1,b2,c1} is a

3-cycle, or an element of E(S1) on 4 vertices.

Clearly, in all of this cases, G′
�C and G�C are (≤ 6)-hypomorphic.

In the rest of this paper G = (V,E), G′ = (V,E′) are supposed to be

(≤ 4)-hypomorphic digraph. Under the same hypothesis of Theorem 1.5, we

have the following results.

Lemma 3.8. 1) A+
5 (G) = A+

5 (G
′), B+

5 (G) = B+
5 (G

′), C+
5 (G) = C+

5 (G′).
2) A+

6 (G) = A+
6 (G

′).

Proof. Let t∈{5, 6}. Let T1, T2, . . . , T(vt)
be an enumeration of the t-elements

subsets of V . Let K1,K2, . . . ,K(vk)
be an enumeration of the k-elements

subsets of V .

1) Let wa
G be the row matrix (ga1 , g

a
2 , . . . , g

a
(vt)

) where gai = 1 if G�Ti

 α+

5 , 0

otherwise.

Let wb
G be the row matrix (gb1, g

b
2, . . . , g

b
(vt)

) where gbi = 1 if G�Ti

 β+

5 , 0

otherwise.

Let wc
G be the row matrix (gc1, g

c
2, . . . , g

c
(vt)

) where gci = 1 if G�Ti

 γ+5 , 0

otherwise.
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We have wa
GW5 k = (a+5 (G�K1

), a+5 (G�K2
), . . . , a+5 (G�K(vk)

)), wb
GW5 k =

(b+5 (G�K1
), b+5 (G�K2

), . . . , b+5 (G�K(vk)
)) and wc

GW5 k = (c+5 (G�K1
),

c+5 (G�K2
), . . . , c+5 (G�K(vk)

)). And we do the same for G′.

(a) Since a+5 (G�Ki
) = a+5 (G

′
�Ki

), b+5 (G�Ki
) = b+5 (G

′
�Ki

) and c+5 (G�Ki
) =

c+5 (G
′
�Ki

) for all i ∈ [1,
(
v
k

)
], then wa

G − wa
G′ ∈ KerQ(

tW5 k), w
b
G −

wb
G′ ∈ KerQ(

tW5 k) and wc
G − wc

G′ ∈ KerQ(
tW5 k). From Theorem

1.1, KerQ(
tW5 k) = {0}, then wa

G = wa
G′ , wb

G = wb
G′ and wc

G = wc
G′ .

Thus A+
5 (G) = A+

5 (G
′), B+

5 (G) = B+
5 (G

′) and C+
5 (G) = C+

5 (G′).

(b) Since a+5 (G�Ki
) ≡ a+5 (G

′
�Ki

) (mod p), b+5 (G�Ki
) ≡ b+5 (G

′
�Ki

) (mod p)

and c+5 (G�Ki
) ≡ c+5 (G

′
�Ki

) (mod p) for all i ∈ [1,
(
v
k

)
], wa

G − wa
G′ ∈

Ker(tW5 k), w
b
G−wb

G′ ∈ Kerp(
tW5 k) and wc

G−wc
G′ ∈ Kerp(

tW5 k).

Case 1. p ≥ 7, t = 5 = [5]p, k = [k0, . . . ]p and t0 = 5 ≤ k0,
then from 1.a) of Corollary 1.1, Kerp(

tW5 k) = {0} (mod p). Thus
A+

5 (G) = A+
5 (G

′), B+
5 (G) = B+

5 (G
′) and C+

5 (G) = C+
5 (G′).

Case 2. p ≥ 7, t = 5 = [5]p and k0 = 0, then from 1.b) of
Corollary 1.1 there is λ1, λ2, λ3 ∈ {0, 1,−1} such that wa

G − wa
G′ =

λ1(1, 1 . . . , 1), wb
G − w′ b

G = λ2(1, 1 . . . , 1), and wc
G − wc

G′ =
λ3(1, 1 . . . , 1). From 1) of Lemma 3.2 there exist X1, X2 and X3

of cardinality 5 such that G�X1
�
 α+

5 , G�X2
�
 β+

5 and G�X3
�
 γ+5 ,

then λ1 = λ2 = λ3 = 0. Thus A+
5 (G) = A+

5 (G
′), B+

5 (G) = B+
5 (G

′)
and C+

5 (G) = C+
5 (G′).

2) Let wa
G be the row matrix (ga1 , g

a
2 , . . . , g

a
(vt)

) where gai = 1 if G�Ti

 β+

6 , 0

otherwise.
We have wa

GW6 k = (a+6 (G�K1
), a+6 (G�K2

), . . . , a+6 (G�K(vk)
)). And we do

the same for G′.

(a) Since a+6 (G�Ki
) = a+6 (G

′
�Ki

) for all i ∈ [1,
(
v
k

)
], then wa

G − wa
G′ ∈

Ker(tW6 k). From Theorem 1.1, Ker(tW6 k) = {0}, then wa
G = wa

G′ .
Thus A+

6 (G) = A+
6 (G

′).

(b) Since a+6 (G�Ki
) ≡ a+6 (G

′
�Ki

) (mod p) for all i ∈ [1,
(
v
k

)
], then wa

G −
wa
G′ ∈ Ker(tW6 k).

Case 1. p ≥ 7, t = 6 = [6]p, k = [k0, . . . ]p and t0 = 6 ≤ k0, from 1.a)
of Corollary 1.1 Ker(tW6 k) = {0} (mod p). Thus A+

6 (G) = A+
6 (G

′).

Case 2. p ≥ 7, t = 6 = [6]p and k0 = 0, from 1.b) of Corollary 1.1
there is λ ∈ {0, 1,−1} such that wa

G − wa
G′ = λ(1, 1 . . . , 1). From 2)

of Lemma 3.2, there exist X of cardinality 6 such that G�X �
 β+
6

then λ = 0. Thus A+
6 (G) = A+

6 (G
′).
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Lemma 3.9. Let C ∈ DG,G′. G�C and G′
�C do not embeds α+

5 , α
−
5 , β

+
5 , β

−
5 ,

γ+5 , γ
−
5 , β

+
6 , and β−

6 .

Proof. By contradiction, we assume that there is S such that G�S is iso-
morphic to an element of the set {α+

5 , α
−
5 , β

+
5 , β

−
5 , γ

+
5 , γ

−
5 , β

+
6 , β

−
6 }. From

Lemma 3.4, every 3-consecutivity and 3-cycle in G�C are reversed in G′
�C ,

then G′
�C 
 G∗

�C . From Lemma 3.8, G′
�S 
 G�S , so G�S 
 G∗

�S , a contradic-
tion.

Proof of Theorem 1.5. Let C ∈ DG,G′ . From Corollary 3.2, we can assume
that G�C is a diamond free tournament or an element E(Sn).

Case 1. G�C is a diamond free tournament. From Lemma 3.9, G�C and
G′

�C do not embed β+
6 and β−

6 . From Lemma 3.5, G�C and G′
�C are (≤ 5)-

hypomorphic, so by Lemma 3.6, G�C and G′
�C are (≤ 6)-hypomorphic.

Case 2. G�C is an element E(Sn). From Lemma 3.9, G�C and G′
�C do

not embed α+
5 , α

−
5 , β

+
5 , β

−
5 , γ

+
5 and γ−5 , so by Lemma 3.7, G�C and G′

�C
are (≤ 6)-hypomorphic, then, from Lemma 3.3, G and G′ are hereditarily
isomorphic.
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