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Frieze vectors and unitary friezes

Emily Gunawan
∗
and Ralf Schiffler

†

Let Q be a quiver without loops and 2-cycles, let A(Q) be the
corresponding cluster algebra and let x be a cluster. We introduce a
new class of integer vectors which we call frieze vectors relative to x.
These frieze vectors are defined as solutions of certain Diophantine
equations given by the cluster variables in the cluster algebra. We
show that every cluster gives rise to a frieze vector and that the
frieze vector determines the cluster.

We also study friezes of type Q as homomorphisms from the
cluster algebra to an arbitrary integral domain. Moreover, we show
that every positive integral frieze of affine Dynkin type Ãp,q is
unitary, which means it is obtained by specializing each cluster
variable in one cluster to the constant 1. This completes the answer
to the question of unitarity for all positive integral friezes of Dynkin
and affine Dynkin types.
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1. Introduction

Let Q be a quiver without loops and 2-cycles and let A(Q) be the corre-
sponding cluster algebra with trivial coefficients. We define a frieze of type
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Q to be a ring homomorphism F : A(Q) → R from the cluster algebra to an

integral domain R. The frieze F is called non-zero if every cluster variable

is mapped to a non-zero element of R and F is said to be unitary if there

exists a cluster x such that F(x) is a unit in R, for all x ∈ x. Moreover F
is called integral if R = Z, and positive if R = Z and every cluster variable

is mapped to a positive integer.

Positive integral friezes of Dynkin type An are precisely the classical

Conway-Coxeter friezes, where the classical frieze pattern is given by dis-

playing the values of F on the cluster variables in the shape of the Auslander-

Reiten quiver of the cluster category.

Every non-zero frieze is determined by its values F(x) = (a1, . . . , an) on

an arbitrary cluster x = (x1, . . . , xn) in A(Q). It is therefore natural to ask

which values (a1, . . . , an) produce positive unitary integral friezes. We call

such a vector (a1, . . . , an) a unitary frieze vector relative to the cluster x.

Our first main result is the following.

Theorem 1. Let Q be a quiver without loops and 2-cycles and let x =

(x1, . . . , xn) be an arbitrary cluster of A(Q). Then there is a bijection

φ : {unordered clusters in A(Q)} −→
{

positive unitary frieze
vectors relative to x

}
x′ = {x′1, . . . , x′n} �−→ φ(x′) = (a1, . . . , an).

Thus every cluster x′ defines a unique unitary frieze vector. One can thus

think of the frieze vectors as another parametrization of the clusters in the

cluster algebra. The frieze vectors are different from other known vectors

appearing in cluster algebra theory like denominator vectors, c-vectors or

g-vectors.

Our second main result is about the unitarity of positive integral friezes.

Since Conway and Coxeter’s work in 1973, it is known that every positive

integral frieze of Dynkin type A is unitary. For Dynkin types D and E there

exist non-unitary positive integral friezes, see [FP]. We extend these results

to the affine Dynkin types as follows.

Theorem 2. Let Q be a quiver of type Ãp,q and let F : A(Q) → Z be a

positive integral frieze. Then F is unitary.

Our proof is constructive. We give an algorithm that starts from an

arbitrary positive integral frieze F and produces the unique cluster x such

that F(x) = (1, . . . , 1). In the other affine types D̃ and Ẽ, there are non-

unitary positive integral friezes.
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It is natural to ask if friezes of types A and Ã remain unitary if one
replaces the ring of integers by other integral domains. However, already
over the Gaussian integers we give an example of a non-unitary frieze of
Dynkin type A2. The classification of friezes over the Gaussian integers or
other integral domains besides Z is open even in type A. For type A1 there
are 12 non-zero friezes over the Gaussian integers, see [F].

The paper is organized as follows. In section 2, we give the formal defi-
nition of friezes and show how they are a generalization of Conway-Coxeter
friezes. We also give several examples of friezes of type A3 over different
rings. Section 3 is devoted to the definition of frieze vectors and the proof
of Theorem 1, and Theorem 2 is proved in section 4.

2. Friezes

Friezes of type An were classified by Conway and Coxeter in [CoCo] in
1973. More than 30 years later, Caldero and Chapoton discovered a relation
between friezes and cluster algebras in [CC]. Since then friezes were studied
by many authors, see for example [BM, ARS, KS, M1, MOT, FP, BFGST,
BRM, BFPT, GMV, LLMSS]. For a survey we refer the reader to [M2].

Usually classical friezes are defined as certain planar arrays of positive
integers that satisfy a diamond relation. In this paper however, we take a
different point of view and we define a frieze to be a homomorphism from an
arbitrary cluster algebra to an arbitrary integral domain R. The usual planar
array is obtained from the Auslander-Reiten quiver of the corresponding
cluster category by replacing the indecomposable objects (i.e. the vertices
of the Auslander-Reiten quiver) by the values of the homomorphism on the
corresponding cluster algebra elements. Friezes as homomorphisms to the
integers were also considered in [F, FP] and in [BFGST2, Appendix B], and
friezes with values in subsets of the complex numbers in [CH].

2.1. Definition

Let Q be a quiver without loops and 2-cycles and let A(Q) be the corre-
sponding cluster algebra with trivial coefficients, see [FZ]. We could just as
well include coefficients in our definition, but since we are not using them
in this paper we impose trivial coefficients for simplicity.

Definition 2.1. (1) A frieze of type Q is a ring homomorphism

F : A(Q) −→ R
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from the cluster algebra to an integral domain R. The frieze is called integral
if R = Z.

(2) A frieze F : A(Q) −→ R is said to be unitary if there exists a cluster
x in A(Q) such that every cluster variable x ∈ x is mapped by F to a unit
in R.

(3) A frieze is said to be non-zero if every cluster variable in A(Q) is
mapped by F to a non-zero element of R.

(4) An integral frieze is said to be positive if every cluster variable in
A(Q) is mapped by F to a positive integer.

Remark 2.2. Our definition of unitary friezes agrees with that of [M1, FP]
for positive integral friezes. Note however that if the integral frieze is not
positive, we also allow specialization at −1.

2.2. Cluster category and Auslander-Reiten quiver

Let Q be a quiver without loops and 2-cycles. If the quiver Q is muta-
tion equivalent to an acyclic quiver Q′, we let C be the cluster category
CQ = Db(mod kQ′)/τ−1[1] introduced in [BMRRT] and in [CCS] for type
A. More generally, if Q comes with a non-degenerate potential, we let C be
the generalized cluster category introduced in [A]. We denote by Γ(C) the
Auslander-Reiten quiver of C. Its vertices are the isoclasses of indecompos-
able objects in C and its arrows are given by irreducible morphisms in C. If
Q is mutation equivalent to an acyclic quiver Q′, then Γ(C) has a special
connected component, called the transjective component, that contains both
the preprojective component and the preinjective component of mod kQ′. In
finite type, this transjective component is all of Γ(C).

The cluster category is a triangulated category equipped with a Serre
functor (if it is Hom-finite) given by the Auslander-Reiten translation τ .
Moreover C has Auslander-Reiten triangles and it is 2-Calabi-Yau, meaning
that Ext1C(X,Y ) ∼= DExt1C(Y,X), where D = Hom(−, k) denotes the stan-
dard duality, see [K, A]. An object X ∈ C is called rigid if Ext1C(X,X) = 0,
and an indecomposable rigid object in C is called reachable if it can be
reached under mutation from the initial cluster-tilting object. If Q is mu-
tation equivalent to an acyclic quiver all rigid indecomposable objects are
reachable and all indecomposables in the transjective component are rigid.

The cluster character is a map X? : C → FracA(Q) from the cluster cat-
egory to the field of fractions of the cluster algebra that maps (isoclasses of
reachable) indecomposable rigid objects in C bijectively to cluster variables
in A(Q), see [CC, CK, CK2, P, CKLP, FK]. The key for the relation to
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classical friezes lies in the image of Auslander-Reiten triangles under the
cluster character. This is expressed in the following proposition, which is a
special case of [DG, Proposition 2.3(a)]. For convenience of the reader, we
include a proof here.

Proposition 2.3. Let Q be an acyclic quiver. If τN → ⊕i∈IMi → N →
τN [1] is an Auslander-Reiten triangle in the transjective component of CQ
with τN,Mi, N indecomposable rigid objects then we have the following iden-
tity in the cluster algebra.

XτN XN =
∏
i∈I

XMi
+ 1.

Proof. SinceN is rigid transjective, we have dimExt1(N, τN) = 1 and there-
fore N and τN form an exchange pair [BMRRT, Theorem 7.5]. This implies
that there are unique (up to isomorphism) triangles

τN → ⊕i∈IMi → N → τN [1] and N → ⊕i∈I′M ′
i → τN → N [1]

such that XτN XN =
∏

i∈I XMi
+

∏
i∈I′ XM ′

i
. Now, in the cluster category,

we have τ = [1], and thus the second triangle is isomorphic to N → 0 →
N [1]

1→ N [1]. This completes the proof.

Remark 2.4. (1) This proposition gives the so-called diamond relation in
the friezes.

(2) If we were considering cluster algebras with non-trivial coefficients
the constant 1 on the right hand side of the equation in Proposition 2.3 would
be replaced by a coefficient monomial. Friezes of that type were studied in
[BRM].

2.3. Examples

(1) The identity homomorphism A(Q) → A(Q) is a non-zero frieze of type
Q. For example, if Q is the type A3 quiver 1 → 2 ← 3, we can visualize
this frieze in the Auslander-Reiten quiver of CQ as follows. First let us write
down the Auslander-Reiten quiver.

3
2 [1] 3

2 1 1
2 [1]

2 [1] 2 1 3
2 2 [1]

1
2 [1] 1

2 3 3
2 [1]
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Here we use a standard notation for the representations of the quiver Q,
see for example [S], and [1] denotes the shift. Vertices with the same label
are identified, so the quiver lies on a Moebius strip. The Auslander-Reiten
translation τ is the horizontal translation to the left. For example τ 3 = 1

2 .
The Auslander-Reiten triangles are given by the meshes in the Auslander-
Reiten quiver, for example

→ 1
2 [1] → 2 → 1

2 → and → 2 → 1
2 ⊕ 3

2 → 1 3
2 →

are Auslander-Reiten triangles.
The identity homomorphism A(Q) → A(Q) gives the following frieze.

x3
x1x3+1+x2

x2x3

x2+1
x1

x1

x2
x1x3+1

x2

x2
2+2x2+1+x1x3

x1x2x3
x2

x1
x1x3+1+x2

x1x2

x2+1
x3

x3

This is an example of a non-zero frieze of type A3. Notice that the
Auslander-Reiten triangles give the usual diamond rules, for example

x1
x1x3 + 1 + x2

x1x2
=

x1x3 + 1

x2
+ 1 and

x1x3 + 1

x2

x22 + 2x2 + 1 + x1x3
x1x2x3

=
x1x3 + 1 + x2

x1x2

x1x3 + 1 + x2
x2x3

+ 1

(2) Specializations. We compute several specializations of the example above.
(i) Specializing x1 = x2 = x3 = 1, we obtain the following unitary

positive integral frieze.

1 3 2 1

1 2 5 1

1 3 2 1

Here the previous examples of the diamond rules become simply

1 · 3 = 2 + 1 and 2 · 5 = 3 · 3 + 1.

This is an example of a classical Conway-Coxeter frieze; let us point out
that one can extend this frieze pattern by a row of 1’s above and below
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the current pattern, which is how the Conway-Coxeter friezes are usually
represented. We will not include these rows of 1’s in this article.

(ii) Specializing x1 = x2 = 1 and x3 = −1, we obtain the following
unitary integral frieze which is non-positive, not even non-zero.

−1 −1 2 1

1 0 −3 1

1 1 −2 −1

Our example diamond relations become here 1 · 1 = 0 + 1 and 0 · (−3) =
(−1) · 1 + 1.

(iii) Specializing x1 = 1, x2 = i, and x3 = i, we obtain the following
unitary non-zero frieze in the Gaussian integers Z[i].

i −1− 2i 1 + i 1

i 1− i −3i i

1 2− i 1− i i

Here our example diamond relations become 1 · (2 − i) = (1 − i) + 1 and
(1− i) · (−3i) = (−1− 2i) · (2− i) + 1.

(iv) Specializing x1 = 1, x2 = 1+
√
−3

2 , x3 = 1, we obtain the following
unitary non-zero frieze in the quadratic integer ring Z[

√
−3]. Recall that the

units in this ring are {±1, ±1±
√
−3

2 }.

1 2−
√
−3

3+
√
−3

2 1

1+
√
−3

2 1−
√
−3

7−
√
−3

2
1+

√
−3

2

1 2−
√
−3

3+
√
−3

2 1

In this case, the examples of the diamond relations become 1 · (2−
√
−3) =

1−
√
−3 and (1−

√
−3)(7−

√
−3

2 ) = (2−
√
−3)2 + 1.
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2.4. Positive unitary integral friezes

In this subsection we show that for a positive unitary integral frieze, the

cluster that carries the unitarity property is unique.

Proposition 2.5. Let F : A(Q) → Z be a positive unitary integral frieze and

let x be a cluster such that F(x) = (1, . . . , 1). Then for all cluster variables

u /∈ x we have F(u) > 1. In particular x is the unique cluster such that

F(x) = (1, . . . , 1).

Proof. Suppose F(u) = 1. Since u is a Laurent polynomial in x with positive

coefficients due to [LS], this implies that u is a Laurent monomial in x. By

[CKLP, Lemma 3.7], it follows that u is in x.

3. Frieze vectors

In this section, we introduce a class of positive integer vectors and show that

they are in bijection with the clusters of the cluster algebra.

3.1. Definition

We start with a general result on non-zero friezes.

Proposition 3.1. Every non-zero frieze F : A(Q) → R is completely deter-

mined by its values on an arbitrary cluster in A(Q).

Proof. Let x = (x1, · · · , xn) be a cluster in A(Q) and let u be an arbitrary

cluster variable in A(Q) that does not lie in x. By the Laurent phenomenon

[FZ], we can write u as a Laurent polynomial in x1, . . . , xn, thus

u =
f(x1, . . . , xn)

xd1

1 · · ·xdn
n

with f ∈ Z[x1, . . . , xn], di ≥ 0.

Thus

F(u) =
f(F(x1), . . . ,F(xn))

F(x1)d1 · · · F(xn)dn

in the field of fractions of R. Note that this expression is well-defined since

the frieze is non-zero. Therefore F(u) is determined by the values F(xi).

Since the cluster algebra is generated by its cluster variables, this completes

the proof.
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Proposition 3.1 implies that given an arbitrary cluster x = (x1, . . . , xn)

we can obtain every non-zero frieze by specializing the cluster variables xi of

the cluster to certain ring elements F(xi) = ai ∈ R. It is important to note

that by far not every choice of elements ai ∈ R will produce a frieze with

values in R, because in general the values will be in the field of fractions

of R. It is natural to ask which choices ai ∈ R do. This leads us to the

following definition.

Definition 3.2. Let x = (x1, . . . , xn) be a cluster of A(Q).

(1) A vector (a1, . . . , an) ∈ Rn
�=0 is called a frieze vector relative to x if

the frieze F defined by F(xi) = ai has values in R. If the frieze F is unitary

we say that the frieze vector (a1, . . . , an) is unitary.

(2) A vector (a1, . . . , an) ∈ Z
n
>0 is called a positive frieze vector relative

to x if the frieze F defined by F(xi) = ai is positive integral.

Proposition 3.3. (1) Let (a1, . . . , an) ∈ Rn such that every ai is a unit

in R. Then (a1, . . . , an) is a (unitary) frieze vector relative to every cluster

x = (x1, . . . , xn) in A(Q).

(2) The vector (1, . . . , 1) ∈ Z
n
>0 is a positive (unitary) frieze vector rel-

ative to every cluster x = (x1, . . . , xn) in A(Q).

Proof. (1) By the Laurent phenomenon, every cluster variable is a Laurent

polynomial in x. Since each xi is specialized to a unit in R, the denominator

of this Laurent polynomial also specializes to a unit in R. Therefore the

image of every cluster variable lies in R, and hence F(A(Q)) ⊂ R.

(2) The frieze is integral by part (1) and positivity follows from the

positivity theorem for cluster variables [LS].

3.2. Acyclic type

In the case where the quiver Q is mutation equivalent to an acyclic quiver,

we have the following characterization of frieze vectors.

Proposition 3.4. Let (x = (x1, . . . , xn), Q) be an acyclic seed of the cluster

algebra. Then a vector (a1, . . . , an) ∈ Rn is a frieze vector relative to x if

and only if ai is a divisor of
∏

i→j aj +
∏

i←j aj in R, for all i = 1, . . . , n.

Proof. Let x′i denote the cluster variable obtained from (x, Q) by mutating

in direction i. Then

(3.1) x′i =

∏
i→j xj +

∏
i←j xj

xi
.
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By [BFZ, Corollary 1.21], the cluster algebra is generated by the 2n variables
x1, . . . , xn, x

′
1, . . . , x

′
n. Let F be the homomorphism defined by F(xi) = ai.

Then
F(A(Q)) ⊂ R

⇔ F(x′i) ∈ R for each i
⇔ ai divides

∏
i→j aj +

∏
i←j aj in R for all i.

The following is a special case of Proposition 3.4.

Example 3.5 ([CoCo, Problem 24]). Suppose Q is the linearly-oriented
type A quiver 1 → 2 → · · · → n. Then the vector (a1, . . . , an) ∈ Z

n
>0 is a

(unitary, integral) frieze vector relative to a seed with quiver Q if and only
if the entry a1 divides 1 + a2, the entry an divides an−1 + 1, and the entry
ai divides ai−1 + ai+1 for all 1 < i < n.

Remark 3.6. In the special case of the linearly oriented type A quiver,
the proposition shows that the frieze vectors are related to arithmetical
structures on the path graph [BC+].

3.3. Main result on frieze vectors

We are now ready to state and prove our first main result.

Theorem 3.7. Let Q be a quiver without loops and 2-cycles and let x =
(x1, . . . , xn) be an arbitrary cluster of A(Q). Then there is a bijection

φ : {unordered clusters in A(Q)} −→
{

positive unitary frieze
vectors relative to x

}
x′ = {x′1, . . . , x′n} �−→ φ(x′) = (a1, . . . , an).

Remark 3.8. (1) The theorem implies that every cluster x′ defines a unique
positive unitary frieze vector in Z

n
>0. This vector is different from the g-vector

and the c-vector of the seed.
(2) We stress that, while the order of the cluster variables x′1, . . . , x

′
n is

irrelevant, the order of the entries of the frieze vector φ(x′) = (a1, . . . , an) is
important. In other words, if σ is a permutation then φ(σx′) = φ(x′), but
σφ(x′) �= φ(x′) in general.

Proof. Each cluster variable x1, . . . , xn in the fixed cluster x can be ex-
pressed as a Laurent polynomial in the cluster x′, say xi = Li(x

′
1, . . . , x

′
n).

We define the map φ by φ(x′) = (a1, . . . , an), with ai = Li(1, . . . , 1). In other
words, φ(x′) is equal to the vector F(x) = (a1, . . . , an), where F is the frieze
defined by specializing the cluster variables in x′ to 1. By Proposition 3.3,
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the frieze F is unitary, integral and positive. Thus (a1, . . . , an) is a positive
unitary frieze vector relative to x. Furthermore, since every variable in x′ is
specialized to 1, we clearly have φ(σx′) = φ(x′), for every permutation σ.
Thus the map φ is well-defined.

To show that φ is surjective, let (a1, . . . , an) ∈ Z
n
>0 be any positive uni-

tary frieze vector relative to x. By definition, the corresponding frieze defined
by F(xi) = ai is positive and unitary, which means that there exists a clus-
ter x′ = (x′1, . . . , x

′
n) such that F(x′i) = 1, for i = 1, . . . , n. By construction

of φ, we have φ(x′) = (a1, . . . , an), so φ is surjective.
To show injectivity, let x′,x′′ be two clusters in A(Q) such that φ(x′) =

φ(x′′). Let F ′ and F ′′ be the unitary friezes defined by F ′(x′i) = 1 and
F ′′(x′′i ) = 1, respectively. Since φ(x′) = φ(x′′), both friezes have the same
values on x, thus F ′(x) = F ′′(x) = (a1, . . . , an). Now Proposition 3.1 implies
that F ′ = F ′′, and Proposition 2.5 yields x′ = x′′.

Remark 3.9. The inverse of the bijection φ is given as follows. Given a
positive unitary frieze vector (a1, . . . , an), we compute the corresponding
unitary frieze F by specializing (x1, . . . , xn) = (a1, . . . , an). By Proposition
2.5, this frieze has a unique cluster x′ such that F(x′) = (1, . . . , 1). Then
φ−1(a1, . . . , an) = x′.

3.4. Example

Thanks to Proposition 3.4, the positive integral frieze vectors (a1, a2, a3)
relative to the seed (x1, x2, x3), 1 → 2 ← 3 are characterized by the condition
that the following three expressions are integers

a2 + 1

a1
,
a1a3 + 1

a2
,
a2 + 1

a3
.

The 14 frieze vectors (a1, a2, a3) are the following.

(1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 2, 3) (1, 3, 2) (2, 1, 1) (2, 1, 2) (2, 3, 1)
(2, 3, 4) (2, 5, 2) (3, 2, 1) (3, 2, 3) (3, 5, 3) (4, 3, 2)

Equivalently, we can think of the conditions as Diophantine equations in
two sets of integers as follows.

a1b1 = a2 + 1, a2b2 = a1a3 + 1, a3b3 = a2 + 1.

Note that bi is the number of terms in the cluster variable x′i obtained from
the initial cluster by mutation in direction i, see Equation (3.1). The vectors
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(b1, b2, b3), in the same order as the frieze vectors above, are the following.

(2, 2, 2) (2, 3, 1) (3, 1, 3) (3, 2, 1) (4, 1, 2) (1, 3, 2) (1, 5, 1) (2, 1, 4)
(2, 3, 1) (3, 1, 3) (1, 2, 3) (1, 5, 1) (2, 2, 2) (1, 3, 2)

Figure 1 shows the frieze vectors and their clusters in the exchange graph,
where the clusters are illustrated by their position in the Auslander-Reiten
quiver of the cluster category.

3.5. Mutation of frieze vectors in type A

Mutations of positive integral friezes are described in [BFGST], where the
authors compute the effect of mutation on the whole frieze. Here, we are
interested in describing the effect of mutation on the frieze vector relative to
a fixed cluster x. To give this description, we use the combinatorial formula of
[MS] to write the cluster variables of x with respect to the cluster x′ in terms
of perfect matchings of snake graphs. Then the values in the frieze vectors
are simply given as the number of perfect matchings of the appropriate snake
graph.

We will not define snake graphs here but rather refer to the survey [S2].
For our purpose it suffices to say that a snake graph is a planar graph
consisting of a sequence of square tiles that are glued together such that two
consecutive tiles share exactly one edge which is either the north edge of the
first tile and the south edge of the second tile or the east edge of the first
tile and the west edge of the second tile. We associate a snake graph to each
cluster variable in x. The tiles of the snake graph are labeled by the cluster
variables in the cluster x′ = (x′1, . . . , x

′
n) and its edges are labeled by the

cluster variables in x′ or by the constant 1. Since our cluster algebra is of
Dynkin type A, no two tiles have the same label and no two interior edges
are labeled by the same cluster variable.

The mutation from x′ to x′′ = (x′ \ {x′i})∪ {x′′i } has the following effect
on the snake graphs from a cluster algebra of Dynkin type A.

1. If the first or last tile of the snake graph has label x′i then this tile
is removed and the new boundary edge is labeled by the new cluster
variable x′′i , see the top row of Figure 2. Conversely, if the snake graph
ends with an edge that is labeled x′i then a new tile with label x′′i is
glued to this edge.

2. If the snake graph has a tile labeled x′i that is the middle tile of a
3-tile straight subgraph then it transforms as shown in the second row
of Figure 2.
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Figure 1: Frieze vectors relative to (x1, x2, x3), 1 → 2 ← 3 together with
their clusters.
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Figure 2: Mutation of snake graphs in direction x′i.

Figure 3: Mutations of frieze vectors.

3. If the snake graph has a tile labeled x′i that is the middle tile of a
3-tile subgraph that is not straight, then it transforms as shown in
the third row of Figure 2. Conversely, if the snake graph contains an
interior edge labeled x′i shared by two tiles with labels x′h, x

′
j then a

new tile labeled x′′i is inserted such that the three consecutive tiles
labeled x′h, x

′′
i , x

′
j do not form a straight subgraph.

The above description gives the mutations of frieze vectors in the exam-
ple of Figure 1. For example the mutations of frieze vectors in Figure 3 are
given by the snake graph mutations in Figure 4.

4. Friezes of type Ã

In this section, we study the special case of integral friezes of affine Dynkin
type A. We show that every positive integral frieze of this type is unitary.
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Figure 4: Snake graph mutations of the frieze vectors in Figure 3.

Let Q be a quiver that is mutation equivalent to a quiver Q′ of type Ãp,q.
The cluster algebra A(Q) is of surface type and the corresponding surface is
an annulus with p marked points on one boundary component and q marked
points on the other boundary component, see [FST]. The cluster variables
xγ in A(Q) are in bijection with the arcs γ in the annulus. We call a cluster
variable xγ transjective if its arc γ has its two endpoints on two different
boundary components (bridging arc) and we call the cluster variable xγ
regular if the arc γ has both endpoints on the same boundary component
(peripheral arc). The terminology transjective versus regular comes from the
cluster category CQ.

Lemma 4.1. Let F : A(Q) → Z be a positive integral frieze of type Ãp,q

and let x = (x1, . . . , xn) be a cluster such that F(x) = 1 for each regular
cluster variable x ∈ x if any. Let i be such that F(xi) ≥ F(xj) for all j, and
suppose that F(xi) > 1. Let x′i be the cluster variable obtained from x by
mutation in direction i. Then F(x′i) < F(xi) and if x′i is a regular cluster
variable then F(x′i) = 1.

Proof. Let τj be the arc corresponding to the cluster variable xj , so that
T = (τ1, . . . , τn) is the triangulation corresponding to the cluster x. The
mutation in direction i is given by flipping the arc τi in T , and the exchange
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Figure 5: Quadrilateral in the triangulation T .

relation in the cluster algebra is of the form

(4.1) xix
′
i = xaxc + xbxd

where τi is the diagonal in the quadrilateral in T with sides τa, τb, τc, τd as
in Figure 5 some of which may be boundary edges.

Our assumption that F(xi) > 1 and F(x) = 1 for every regular cluster
variable x ∈ x imply that xi is transjective. Hence τi is a bridging arc, so its
endpoints lie on different boundary components. Therefore one of the arcs
τa, τb is bridging and the other is peripheral (or a boundary edge), and also
one of τc, τd is bridging and the other is peripheral (or a boundary edge).
We assume without loss of generality that τa is bridging and consider two
cases.

Suppose first that τc is bridging. Then the relation (4.1) implies

(4.2) F(x′i) = (F(xa)F(xc) + 1)/F(xi)

because the frieze has value 1 on the two regular variables (or boundary edge
weights) xb and xd. Note that in this case the flipped arc τ ′i is bridging. Recall
that F(xa) ≤ F(xi) and F(xc) ≤ F(xi). If F(xa) = F(xi) then the right
hand side of (4.2) would be equal to F(xc)+1/F(xi) which is not an integer.
Thus F(xa) < F(xi) and similarly F(xc) < F(xi). Therefore the right hand
side of (4.2) is at most ((F(xi) − 1)2 + 1)/F(xi) = F(xi) − 2 + (2/F(xi))
which is strictly smaller than F(xi), and we are done.

Suppose now that τc is a peripheral arc. Then τd is bridging and the
relation (4.1) implies

(4.3) F(x′i) = (F(xa) + F(xd))/F(xi)

Note that in this case the arc τ ′i is peripheral and forms a triangle with the
two peripheral arcs τb and τc. We will show that F(x′i) = 1. Since F(xi) is the
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Figure 6: Two possible configurations in the triangulation T when τc is a
peripheral arc or a boundary edge.

maximal frieze value in x, equation (4.3) yields F(x′i) ≤ 2F(xi)/F(xi) = 2.
If F(x′i) = 1 we are done. Assume therefore that F(x′i) = 2. Then equation
(4.3) implies

(4.4) F(xa) = F(xd) = F(xi) ≥ 2.

Consider the quadrilateral in T in which τd is the diagonal and denote its
sides τi, τc, τe, τf where τi, τe are bridging arcs and τc, τf are peripheral, see
Figure 6.

Let x′d be the cluster variable obtained by mutating x in direction d.
Then in the situation of the left picture in Figure 6 we have

F(x′d) = (F(xi)F(xe) + 1)/F(xd) = F(xe) + 1/F(xi),

where the last equality holds by (4.4). But since F(xi) ≥ 2, this expression
is not an integer, so we have a contradiction.

Therefore we must be in the situation of the right picture in Figure 6,
and we have

F(x′d) = (F(xi) + F(xe))/F(xd) = 1 + F(xe)/F(xi),

where the last identity holds by (4.4). Since F(xi) ≥ F(xe) and F is a
positive integral frieze, we must have F(xi) = F(xe) and F(x′d) = 2.
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We have thus shown that if F(x′i) = 2 then the triangulation T contains
a fan of bridging arcs τi, τd, τe and F(x′d) = 2,F(xe) = F(xi). We can
now repeat this argument by considering the cluster variable x′e obtained
by mutating x in direction e, and recursively with every new bridging arc
in the fan and we obtain a fan of bridging arcs in T and each arc in this
fan has the same frieze value F(xi) ≥ 2. Since T is a triangulation of the
annulus, this fan is finite, and the two arcs bounding it correspond to a sink
and a source in the quiver QT . Mutating at one of those arcs again gives a
contradiction as in the left picture of Figure 6. We have shown that F(x′i)
cannot be equal to 2, and thus F(x′i) = 1.

We are now ready for the main theorem of this section.

Theorem 4.2. Let Q be a quiver of type Ãp,q and let F : A(Q) → Z be a
positive integral frieze. Then F is unitary.

Proof. We need to show that there exists a cluster x′ such that F(x′) =
(1, . . . , 1). Let x0 be a cluster consisting entirely of transjective cluster vari-
ables. Its triangulation T0 consists entirely of bridging arcs. Then x0 =
(x1, . . . , xn) is a cluster that satisfies the condition of Lemma 4.1. If F(x0) =
(1, . . . , 1) we are done. Otherwise Lemma 4.1 implies that mutating at a
cluster variable xi with maximal frieze value will produce a cluster x1 =
(x0\{xi})∪{x′i} such that F(x′i) < F(xi) and if x′i is regular then F(x′i) = 1.
Therefore, if F(x1) �= (1, . . . , 1) then the cluster x1 also satisfies the hypoth-
esis of Lemma 4.1, and we can repeat this procedure to produce a sequence
of clusters x0,x1, . . . ,xs, . . . such that xs = (xs−1\{x})∪{x′} with F(xs) �=
(1, . . . , 1) and F(x′) < F(x). Since the frieze is positive integral this process
must stop. Thus there is a cluster xt such that F(xt) = (1, . . . , 1).

4.1. Friezes of type Ã2,1

There are precisely two positive integral friezes of type Ã2,1 up to symmetry,
and they are depicted in Figures 7 and 8. By Theorem 4.2 both are unitary.
In the first example, the cluster x with F(x) = (1, 1, 1) is transjective and
in the second example one of the cluster variables in x is regular. In the
figures, we show the values of the friezes on the transjective component of
the Auslander-Reiten quiver.

4.2. Further unitarity questions

It was shown in [CoCo] that every positive integral frieze of Dynkin type

An is unitary, and by Theorem 4.2, the same is true for affine type Ãp,q.
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Figure 7: An Ã1,2 frieze obtained by specializing the cluster variables of an
acyclic seed to 1. The two peripheral arcs have frieze values 2 and 3.

Figure 8: An Ã1,2 frieze obtained by specializing the cluster variables of a
non-acyclic seed to 1. The two peripheral arcs have frieze values 1 and 5.

It is natural to ask if these results can be extended to friezes with values

in other integral domains, for example in quadratic integer rings. However

the following example shows that the result already fails over the Gaussian

integers.

Example 4.3. Let Q be the quiver 1 → 2 and define a frieze F : A(Q) →
Z[i] by F(x1) = 1 and F(x2) = 1 + i. We can visualize F as usual in the

Auslander-Reiten quiver as follows

1 + i 2− i 1

1 2 + i 1− i 1 + i

This is a non-unitary frieze of Dynkin type A2. We don’t know if there exists

a non-unitary frieze whose entries are “positive” in the sense that they are

of the form a+ bi with a, b ≥ 0.

4.2.1. Other Dynkin or affine types For Dynkin types D and E there

are non-unitary positive integral friezes, see [FP], and these examples also

give rise to non-unitary positive integral friezes in the affine types D̃ and Ẽ.
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