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Recently, Souza introduced blowup Ramsey numbers as a gener-
alization of bipartite Ramsey numbers. For graphs G and H, say
G

r−→ H if every r-edge-coloring of G contains a monochromatic
copy of H. Let H[t] denote the t-blowup of H. Then the blowup
Ramsey number of G,H, r, and t is defined as the minimum n
such that G[n]

r−→ H[t]. Souza proved upper and lower bounds on
n that are exponential in t, and conjectured that the exponential
constant does not depend on G. We prove that the dependence on
G in the exponential constant is indeed unnecessary, but conjecture
that some dependence on G is unavoidable.

An important step in both Souza’s proof and ours is a theorem of
Nikiforov, which says that if a graph contains a constant fraction
of the possible copies of H, then it contains a blowup of H of
logarithmic size. We also provide a new proof of this theorem with
a better quantitative dependence.
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1. Introduction

A graph G is called r-Ramsey for a graph H, denoted G
r−→ H, if every

r-edge-coloring of G contains a monochromatic copy of H. Given a graph
H and an integer t, the t-blowup of H, denoted H[t], is the graph obtained
from H by replacing every vertex of H by an independent set of order t,
and replacing every edge of H by a complete bipartite graph Kt,t between
the corresponding parts. Say that a copy of H[t] in G[n] is canonical if it is
the t-blowup of a copy of H in G. Recently, Souza [6] introduced the notion
of blowup Ramsey numbers, which are a natural generalization of several
well-studied problems in Ramsey theory, such as that of bipartite Ramsey
numbers.

arXiv: 1912.08328
∗Research supported by a Packard Fellowship and by NSF award DMS-1855635.
†Research supported by NSF GRFP Grant DGE-1656518.

1

http://www.intlpress.com/JOC/
https://arxiv.org/abs/1912.08328


2 Jacob Fox et al.

Definition 1.1 (Souza [6]). Let G,H be graphs and r an integer such that

G
r−→ H. For an integer t, define the blowup Ramsey number B(G

r−→
H; t) to be the minimum n such that every r-coloring of G[n] contains a

monochromatic canonical copy of H[t].

Souza proved that these numbers exist and are finite, and further ob-

tained an exponential upper bound on them.

Theorem 1.1 (Souza [6]). Let G,H be graphs and r an integer such that

G
r−→ H. Then there is a number c = c(G,H, r) such that for every t,

B(G
r−→ H; t) ≤ ct.

Moreover, using the Lovász Local Lemma, Souza showed that such an

exponential-type bound is necessary. Indeed, he proved that if t is sufficiently

large in terms of G and n ≤ (c′)t for some constant c′ = c′(H, r) > 1, then

there exists an r-edge-coloring of G[n] with no monochromatic canonical

copy of H[t].

The exponential constant in Souza’s upper bound depends on G, while

the exponential constant in his lower bound does not depend on G. Souza

conjectured that the dependence on G in Theorem 1.1 is unnecessary. In

this paper, our main result is that the exponential constant indeed does not

depend on G, but our upper bound nevertheless has some dependence on

G. More precisely, we prove the following result.

Theorem 1.2. Let G,H be graphs and r ≥ 2 an integer such that G
r−→ H.

There exist constants a = a(G,H, r) and b = b(H, r) such that for every

integer t,

B(G
r−→ H; t) ≤ a · bt.

Moreover, for γ > 0 sufficiently small with respect to r, we may take b =

r(r+γ)|E(H)|−1

, so long as a is sufficiently large with respect to γ.

This result shows that if we are only interested in the exponential rate

of growth of B(G
r−→ H; t) as a function of t, then indeed the choice of G

does not matter. However, for fixed t, the upper bound in Theorem 1.2 does

depend on G, and we believe that this dependence is in fact necessary for

some H; for more details, see the concluding remarks.

An important step in Souza’s proof of Theorem 1.1 is the following result

of Nikiforov, which says that a graph with many copies of H must contain

a blowup of H of logarithmic size.
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Theorem 1.3 (Nikiforov [4, 5]). For every η > 0 and every graph H on k
vertices, there exists a constant λ > 0 such that the following holds for all
n sufficiently large. Let G be a graph on n vertices containing at least ηnk

copies of H. Then G contains a blowup H[t], where t = λ log n. Moreover,
one can take λ = ηk if H is a clique and λ = ηk

2

if H is an arbitrary graph.

As a consequence of our main technical result, whose proof is inspired by
Nikiforov’s original proof but further adds ideas from graph regularity, we
provide a new proof of Theorem 1.3 with a better quantitative dependence
between λ and η. Specifically, we prove that one can take λ = η1−1/|E(H)|+o(1)

in Theorem 1.3; see Section 3 for details.
The paper is organized as follows. In Section 2, we state and prove

several technical lemmas, related to regularity of graphs, that we will need
in the proof of Theorem 1.2. In Section 3, we use these lemmas to state and
prove our stronger version of Theorem 1.3. In Section 4, we again use these
lemmas to prove Theorem 1.2. We end with some concluding remarks. For
the sake of clarity of presentation, we systematically omit floor and ceiling
signs whenever they are not crucial. All logarithms in this paper are base e
unless otherwise stated.

2. Tools from regularity theory

Our first technical result is the weak regularity lemma of Duke, Lefmann,
and Rödl [1]. In fact, we will use a generalization of it due to Fox and Li [2]
which is well-adapted for dealing with colorings, as opposed to single graphs.
The main advantage of their result over that of Duke, Lefmann, and Rödl is
that the bounds do not depend on the number of colors. Before stating it,
we will need to recall some standard terminology.

Definition 2.1. Let ε > 0 be a parameter, and let X,Y be vertex subsets of
a graph F . Let e(X,Y ) denote the number of pairs in X×Y that are edges in
F , and let d(X,Y ) = e(X,Y )/(|X||Y |) denote the edge density between X
and Y . We say that the pair (X,Y ) is ε-regular if for every X ′ ⊆ X,Y ′ ⊆ Y
with |X ′| ≥ ε|X|, |Y ′| ≥ ε|Y |, we have that

|d(X,Y )− d(X ′, Y ′)| < ε.

Suppose now that F is m-partite, with m-partition V = V1 � · · · � Vm.
A cylinder K is a set of the form W1 × · · ·Wm, where Wi ⊆ Vi for all
i ∈ [m]. For such a cylinder K, let Vi(K) = Wi. We say that K is ε-regular
if (Wi,Wj) is ε-regular for all 1 ≤ i < j ≤ m. A cylinder partition K is a
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partition of V1 × · · · × Vm into cylinders, and we say that K is ε-regular if
at most an ε-fraction of the m-tuples (v1, . . . , vm) ∈ V1 × · · · × Vm are not
in ε-regular cylinders of K.

Lemma 2.1 (Duke–Lefmann–Rödl [1], Fox–Li [2, Theorem 7.2]). Let r ≥
1,m ≥ 2 be integers, 0 < ε < 1

2 a parameter, and define β = εm
2ε−5

. Suppose
that F = (V,E) is an m-partite graph with m-partition V1 � · · · � Vm whose
edges are r-colored, so that E = E(F1) � · · · � E(Fr). Then there exists a
cylinder partition K of V1 × · · · × Vm into at most 4m

2ε−5

cylinders that is
ε-regular in each of the graphs F1, . . . , Fr. Moreover, for each K ∈ K and
i ∈ [m], we have that |Vi(K)| ≥ β|Vi|.

We will use this result in conjunction with our main technical lemma
below. If V (H) = k and Γ is a k-partite graph with parts W1, . . . ,Wk, we
say a copy of H[t] in Γ is canonical if all copies of vertex i ∈ V (H) are in
part Wi of Γ. This generalizes the earlier definition of canonical copies in
case Γ is a blowup G[n].

Lemma 2.2. Let H be a graph with V (H) = [k], where we suppose that
{1, 2} ∈ E(H). For every ij ∈ E(H), let pij ∈ (0, 1] be a real number, with
p12 ≤ 1

2 , and let 0 < α <
∏

ij∈E(H) pij be another parameter. Then the
following holds for sufficiently large n. Suppose that Γ is a k-partite graph
with k-partition W1�· · ·�Wk, with |Wi| ≥ n for all i. Suppose that whenever
ij ∈ E(H), the pair (Wi,Wj) is α2

8k2 -regular with d(Wi,Wj) ≥ pij. Then Γ
contains a canonical copy of H[t], where

t =

⎛
⎝ ∏

ij∈E(H)\{1,2}
pij − α

⎞
⎠ log n

log 1
p12

.

Remark. Note that by relabelling the vertices of H, we can exclude any
pij we want from the product and instead replace the factor (log 1

p12
)−1 by

(log 1
pij

)−1, as long as pij ≤ 1
2 . As y = (x log 1/x)−1 is a decreasing function

of x for x ∈ [0, 1/e] and is bounded for x ∈ [1/e, 1/2], this result is strongest,
up to an absolute constant factor, when we pick p12 to be the minimum of
the pij .

Proof of Lemma 2.2. In a blowup H[t], we call t vertex-disjoint copies of H
a perfect matching of copies of H. Let Hi be the subgraph of H induced on
the first i vertices, and for j > i, let Ni(j) denote the set of neighbors � of
vertex j in graph H with � ≤ i. We let deg(i) denote the degree of vertex i
in H. We also set ε = α2/(8k2) and δ = 8kε/(p12 log

1
p12

); observe that both
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δ and ε are in (0, 1) and do not depend on n. Finally, let qi =
∏

�∈Ni−1(i)
p�i

for 2 ≤ i ≤ k, and let t1 = (1− deg(1)ε)|W1|, t2 = (1− δ) logn/ log 1
p12

, and

ti = (qi − kε) ti−1 for 3 ≤ i ≤ k.
A copy of Hi in Γ is canonical if the copy of vertex j is in Wj for j ≤ i.

A copy of Hi in Γ is good if it is canonical and for each j > i, the number of
extensions of this copy ofHi to a copy of the induced subgraphH[{1, . . . , i}∪
{j}] with the copy of vertex j in Wj is at least (

∏
�∈Ni(j)

(p�j − ε))|Wj |.
We prove by induction on i for 1 ≤ i ≤ k that we can find a copy

of Hi[ti] which contains a perfect matching Mi of copies of Hi, each of
which is good. Observe that by regularity, for any ij ∈ E(H) and subset
W ′

j ⊆ Wj with |W ′
j | ≥ ε|Wj |, the number of vertices in Wi with less than

(pij−ε)|W ′
j | neighbors in W ′

j is less than ε|Wi|. So, all but at most (deg(i)−
|Ni−1(i)|)ε|Wi| vertices in Wi have degree at least (pij − ε)|W ′

j | to W ′
j for

all neighbors j > i. In particular, applying this observation with i = 1 and
W ′

j = Wj for all j yields that W1 contains at least t1 = (1 − deg(1)ε)|W1|
good vertices (i.e. good copies of H1), which together trivially form a perfect
matching M1. This proves the base case i = 1 of our induction.

For the inductive step, assume that our claim has been shown for a
given i. Fix a copy Li of Hi in the perfect matching Mi of good copies of
Hi. For j > i, let Wj,i denote the subset of vertices in Wj which together
with Li form induced copies of H[{1, . . . , i}∪{j}]. Since Li is good, we have
|Wj,i| ≥ (

∏
�∈Ni(j)

(p�j − ε))|Wj | for each i < j ≤ k. A vertex v in Wi+1,i

together with Li form a good copy of Hi+1 so long as v has degree at least
(p(i+1)j − ε)|Wj,i| to Wj,i for each neighbor j > i+ 1 of i+ 1. Applying the
regularity observation above with W ′

j = Wj,i, we conclude that the number
of such v is at least

|Wi+1,i| − (deg(i+ 1)− |Ni(i+ 1)|)ε|Wi+1|

≥

⎛
⎝
⎛
⎝ ∏

�∈Ni(i+1)

(p�(i+1) − ε)

⎞
⎠− (deg(i+ 1)− |Ni(i+ 1)|)ε

⎞
⎠ |Wi+1|

≥

⎛
⎝ ∏

�∈Ni(i+1)

p�(i+1) − deg(i+ 1)ε

⎞
⎠ |Wi+1|

≥ (qi+1 − kε) |Wi+1|.

Consider the auxiliary bipartite graph B with parts Mi and Wi+1, where
a copy Li of Hi in Mi and a vertex w ∈ Wi+1 are adjacent if Li together
with w form a good copy of Hi+1. In B, each vertex in Mi has degree at least
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(qi+1 − kε) |Wi+1|, and hence B has edge density at least ρ := qi+1−kε. For
the rest of the argument, we split into two cases to deal with the smallest
case separately:

Case 1: i + 1 = 2. In this case, M1 is actually a subset of W1. By
adding back in the remaining vertices of W1 as disconnected vertices, we
can view B as a bipartite subgraph of Γ between W1 and W2, with edge

density at least ρ |M1|
|W1| = (1 − deg(1)ε)(p12 − kε) ≥ p12 − 2kε. Then, by

deleting vertices of lowest degree from each part one at a time, we can find
an induced subgraph with exactly n vertices in each part and edge density at
least p12−2kε between its parts. The Kővari–Sós–Turán theorem [3] implies
that a Kr,r-free bipartite graph where both parts have n vertices has at most
(r − 1)1/rn2−1/r + (r − 1)n edges. Let r = t2 = (1 − δ) log1/p12

n. Observe
that

( r

n

)1/r
≤

(
log 1

p12

n

n

)1/r

= exp

[(
log

1

p12

)(
log logn− log log(1/p12)

(1− δ) log n
− 1

1− δ

)]

≤ p
1+3δ/4
12

for n sufficiently large in terms of p12. Also for n sufficiently large, we have

that r/n ≤ kε. By the definition of δ, we see that p
3δ/4
12 = e−6kε/p12 ≤

1−3kε/p12, using the inequality e−x < 2−x ≤ 1−x/2 for x ∈ [0, 1]. Therefore,
we find that

(r − 1)1/rn2−1/r + (r − 1)n <

(( r

n

)1/r
+

r

n

)
n2

≤
(
p
1+3δ/4
12 + kε

)
n2

≤ (p12 − 2kε)n2.

Thus, B contains a Kr,r, since it has a bipartite subgraph with n vertices
in each part and at least (p12 − 2kε)n2 edges. This Kr,r corresponds to a
canonical H2[t2] in Γ, all of whose edges are good; we finish by choosing any
perfect matching M2 inside this H2[t2].

Case 2: i + 1 > 2. In this case, the average degree of vertices in Wi+1

in B is at least ρti = ti+1. For a given vertex w ∈ Wi+1, letting degB(w)

denote the degree of w in graph B, there are exactly
(
degB(w)

ti+1

)
pairs (w, S)

with w ∈ Wi+1 and S is a subset of Mi of size ti+1 and in B the vertex w
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is adjacent to all vertices in S. So the total number of such pairs, ranging
over all vertices w ∈ Wi+1, is

∑
w∈Wi+1

(
degB(w)

ti+1

)
. Define the convex function

f by

f(x) =

{(
x

ti+1

)
if x ≥ ti+1 − 1

0 if x < ti+1 − 1
,

which agrees with
(

x
ti+1

)
if x is a nonnegative integer. Applying Jensen’s

inequality to f , we see that there are at least n pairs (w, S), where S is a
subset of Mi of size ti+1 and in B the vertex w is adjacent to all vertices in
S. The number of subsets S of Mi of size ti+1 is

(
ti

ti+1

)
≤ 2ti ≤ 2t2 ≤ n1−δ, so

there is such a set S ⊂ Mi for which at least n/n1−δ = nδ ≥ ti+1 vertices w
are adjacent to all vertices in S in the bipartite graph B, as long as n is large
enough so that nδ ≥ log1/p12

n ≥ ti+1. These ti+1 copies of Hi together with
ti+1 such vertices w ∈ Wi+1 form the vertex set of a copy of Hi+1[ti+1] which
has a matching Mi+1 of good copies of Hi+1 which extends the matching Mi

of good copies of Hi. Thus in either case we get a copy of Hi+1[ti+1] with
the desired properties. This completes the induction proof.

Hence, we get a copy of Hk[tk] = H[t] with

tk = (qk − kε) (qk−1 − kε) · · · (q3 − kε) t2

≥

⎛
⎝ ∏

ij∈E(H)\{1,2}
pij − k(k − 2)ε

⎞
⎠ (1− δ)

log n

log 1
p12

≥

⎛
⎝ ∏

ij∈E(H)\{1,2}
pij − k2ε− δ

⎞
⎠ log n

log 1
p12

≥

⎛
⎝ ∏

ij∈E(H)\{1,2}
pij − α

⎞
⎠ log n

log 1
p12

,

where the last step uses that k2ε = α2/8 ≤ α/6 and that

δ =
8kε

p12 log
1
p12

= α · α

kp12 log
1
p12

≤ α · p12

kp12 log
1
p12

≤ 5α

6
,

since α <
∏

pij ≤ p12 and k log 1
p12

≥ 2 log 2 > 6
5 . This is precisely the

blowup we were looking for.

Finally, we will need a standard counting lemma in Section 3.
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Lemma 2.3 (See e.g. [7, Theorem 3.30]). Let H be a graph with V (H) = [k],

and let Γ be a graph with disjoint vertex subsets W1, . . . ,Wk. Suppose that

(Wi,Wj) is ε-regular for all ij ∈ E(H). Let N(H) denote the number of

canonical copies of H in Γ, i.e.

N(H) = |{(w1, . . . , wk) ∈ W1 × · · · ×Wk : wiwj ∈ E(Γ) for all ij ∈ E(H)}|.

Then ∣∣∣∣∣∣N(H)−
∏

ij∈E(H)

d(Wi,Wj) ·
k∏

i=1

|Wi|

∣∣∣∣∣∣ ≤ ε|E(H)|
k∏

i=1

|Wi|.

Remark. Usually, the counting lemma is stated for the number of homo-

morphisms from H to Γ, which might be larger by a lower-order term than

the number of copies of H. However, since we require W1, . . . ,Wk to be

disjoint, these quantities actually coincide.

3. A new proof of Nikiforov’s theorem

Using Lemma 2.2, we can prove a version of Theorem 1.3 with stronger

quantitative dependence in its parameters. Specifically, in this section, we

prove the following theorem.

Theorem 3.1. If 0 < η < e−1, H is a graph on k vertices, and λ =
η1−1/|E(H)|

5 log 1

η

, then the following holds for all n sufficiently large. If G is a graph

on n vertices containing at least ηnk labeled copies of H, then G contains a

blowup H[t], where t = λ log n.

Proof. Let V (H) = [k]. Consider an equitable partition of V (G) picked uni-

formly at random with parts V1, . . . , Vk, each of size n/k. Every labeled copy

of H has a probability at least n−k
∏k

i=1 |Vi| of being canonical with respect

to this partition, namely having vertex i in Vi for all i ∈ [k]. Therefore, by

linearity of expectation, there exists a partition V1, . . . , Vk with |Vi| = n/k

for all i and such that V1, . . . , Vk contain at least η
∏k

i=1 |Vi| canonical copies
of H.

Let F be the k-partite subgraph of G whose parts are V1, . . . , Vk obtained

by deleting all edges contained in each Vi. We apply Lemma 2.1 to F , with

m = k, r = 1, and ε = η2k
2

/(8k2). We obtain an ε-regular cylinder partition
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K of V1 × · · · × Vk with |Vi(K)| ≥ βn/k for all i, where β = εk
2ε−5

. Notice

that if K ∈ K is an ε-regular cylinder, then the counting lemma implies that

the number of canonical copies of H in K is at most

⎛
⎝ ∏

ij∈E(H)

d(Vi(K), Vj(K)) + ε|E(H)|

⎞
⎠ k∏

i=1

|Vi(K)|.

Moreover, recall that at most an ε-fraction of the tuples in V1×· · ·×Vk are in

non-ε-regular cylinders, and in particular at most ε
∏k

i=1 |Vi| canonical copies
of H are in such cylinders. Adding these two facts up over all cylinders in

K, we find that the total number of canonical copies of H in F is at most

ε

k∏
i=1

|Vi|+
∑

K regular

⎛
⎝ ∏

ij∈E(H)

d(Vi(K), Vj(K)) + ε|E(H)|

⎞
⎠ k∏

i=1

|Vi(K)|.

On the other hand, we know that the number of such copies is at least

η
∏k

i=1 |Vi|. Therefore, there must exist an ε-regular cylinder K in the cylin-

der partition for which

∏
ij∈E(H)

d(Vi(K), Vj(K)) + ε|E(H)| ≥ η − ε.

Fixing such a K, let Wi = Vi(K), and let Γ be the subgraph of G induced

on W1 ∪ · · · ∪ Wk. We know that each part of Γ has size at least βn/k.

Suppose without loss of generality that d(W1,W2) is minimum among all

d(Wi,Wj), and let p12 = min(d(W1,W2),
1
2) and pij = d(Wi,Wj) for all other

ij ∈ E(H). Then by Lemma 2.2 (assuming n, and thus βn/k, is sufficiently

large), we find that Γ contains a copy of H[t], where

t =

⎛
⎝ ∏

ij∈E(H)\{1,2}
pij − α

⎞
⎠ log(βn/k)

log 1
p12

,

and α =
√
8εk2 = ηk

2

. Let P =
∏

ij∈E(H) pij . We have

P ≥ 1

2

∏
ij∈E(H)

d(Vi(K), Vj(K)) ≥ 1

2
(η − (|E(H)|+ 1)ε) >

9

20
η > 9α
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and P ≤ p12 ≤ P 1/|E(H)|, so for n sufficiently large in terms of η, we can
bound

t ≥ log(βn/k)
P − p12α

p12 log
1
p12

≥ log(βn/k)
P − α

P 1/|E(H)| log 1
P

≥ (log n+ log(β/k))
(P − 1

9P )P−1/|E(H)|

log 1
P

≥
(

9

10
log n

)
8

9

( 9
20η)

1−1/|E(H)|

log 1
η + log 20

9

≥ log n
9

10

8

9

9

20

η1−1/|E(H)|

9
5 log

1
η

≥ η1−1/|E(H)|

5 log 1
η

logn,

as claimed.

Remark. In contrast with Nikiforov’s result, where he assumes a bound on
the number of unlabeled copies, we work here with labeled copies, which
allows us to pick an η which is a factor the number of automorphisms of H
larger.

Also, just as in Nikiforov’s original proof of Theorem 1.3, we can use the
same technique to find an unbalanced blowup of H. Namely, for any c > 0,
there is a 0 < λ′ < λ such that we can find a blowup ofH in G where the first
k−1 parts have size λ′ log n and the last part has size n1−c. Indeed, this fol-
lows directly by examining the proof of Lemma 2.2, which shows that at each
step, we can actually pick out n1−c vertices in the second part of the auxiliary
graph, as long as ti is decreased by a sufficiently large constant factor.

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2.

Proof of Theorem 1.2. Fix 0 < α < r−|E(H)| and let γ = α2r2 be the pa-
rameter in the theorem statement. Let m = |V (G)| and k = |V (H)|. Let
a = a(G,H, r) and b = b(H, r) be parameters to be defined later, and let
n = a·bt. Let F = G[n], and fix an r-coloring E(F ) = E(F1)�· · ·�E(Fr); we
wish to show that this coloring contains a monochromatic canonical copy of
H[t]. We identify V (G) with [m], and let V1, . . . , Vm be the parts of F = G[n].
We also identify the vertex set of H with [k].

Let ε = α2/(8k2) be the parameter from Lemma 2.2. We apply Lemma
2.1 with parameters r,m and ε. Then we obtain a cylinder partition K of
V1×· · ·×Vm which is ε-regular for each of the color classes F1, . . . , Fr. Fix an
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ε-regular cylinder K ∈ K, say K = W1 × · · · ×Wm. By Lemma 2.1, we have
|Wi| ≥ βn for all i ∈ [k], where β = εm

2ε−5

. Define an r-coloring of E(G)
by coloring the edge ij by the most popular color in Wi ×Wj , breaking ties

arbitrarily. Since G
r−→ H, this r-coloring must contain a monochromatic

copy of H. By renaming the colors and the parts, we may assume without
loss of generality that this copy of H is on the vertices 1, . . . , k, so that ij
is of color 1 if ij is an edge of H.

Therefore, we find that among all the pairs (Wi,Wj) where 1 ≤ i < j ≤ k
and ij is an edge of H, we have that color 1 is the densest color in (Wi,Wj).
Let Γ be the induced subgraph of F1 on W1 ∪ · · · ∪ Wk. Then we know
that each pair (Wi,Wj) with ij an edge of H is ε-regular in Γ (since the
cylinder K was ε-regular in each color) and satisfies dΓ(Wi,Wj) ≥ p, where
dΓ denotes the edge density in Γ, and p = 1/r. Since α < r−|E(H)| = p|E(H)|,
we may apply Lemma 2.2 with all pij equal to p to find a canonical blowup
H[t∗] (which is monochromatic), where

t∗ =
p|E(H)|−1 − α

log 1
p

log(βn) =
r1−|E(H)| − α

log r
log(βn).

Now, we define a = a(G,H, r) = 1/β and b = b(H, r) = rr
|E(H)|−1(1+αr|E(H)|),

so that

t∗ =
r1−|E(H)| − α

log r
log(bt)

= t
[
(r1−|E(H)| − α)(r|E(H)|−1(1 + αr|E(H)|))

]
= t

[
(1− αr|E(H)|−1)(1 + αr|E(H)|)

]
= t

[
1 + αr|E(H)|(1− r−1 − αr|E(H)|−1)

]
≥ t

[
1 + αr|E(H)|(1− 2r−1)

]
≥ t.

5. Concluding remarks

In addition to eliminating the unnecessary dependence on G in the exponen-
tial constant of B(G

r−→ H; t), Theorem 1.2 also provides quite good bounds
on the exponential constant in many instances. For instance, Souza’s results
[6] imply the bounds

2t ≤ B(K6
2−→ K3; t) ≤ e(3.3×107)t,
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and he asked whether the upper bound could be made more reasonable.
Theorem 1.2 implies

B(K6
2−→ K3; t) ≤ 2(4+o(1))t = (16 + o(1))t.

Moreover, the same bound holds for B(G
2−→ K3; t) for any graph G with

G
2−→ K3, as long as the o(1) term above is allowed to depend on G. We

expect that the upper bound can be improved further using some of our
techniques, but such an improvement would likely require some new ideas.

The most natural question left open by Theorem 1.2 is whether the
dependence on G can be entirely eliminated, or whether B(G

r−→ H; t)
must depend on G. Unlike Souza, we believe the latter to be the case, and
make the following conjecture.

Conjecture 5.1. There exists a graph H and integers r, t ≥ 2 for which the
following holds. There exist graphs G1, G2, . . . such that Gi

r−→ H for all i
and supi B(Gi

r−→ H; t) = ∞.

We even conjecture this holds with H is a triangle and r = t = 2.

Conjecture 5.2. For every s, there exists a graph G such that G
2−→ K3

but G[s]
2

�−→ K3[2].

For certain graphs H and integers r, Conjecture 5.1 does not hold, and
B(G

r−→ H; t) can be bounded by an exponential function independent of
G. One example of such graphs, as observed by Souza, are the r-Ramsey-
finite graphs. Let Mr(H) denote the set of all G which are minimal with
respect to the property G

r−→ H, i.e. all graphs G with G
r−→ H but

G′ r
�−→ H for any proper subgraph G′ of G. H is called r-Ramsey-finite

if |Mr(H)| < ∞, and r-Ramsey-infinite otherwise. If H is r-Ramsey-finite,
then B(G

r−→ H; t) ≤ ct for a constant c that does not depend on G; indeed,
we may find such a c by taking the maximum c from Theorem 1.1 over all
G ∈ Mr(H).

However, there is at least one Ramsey-infinite graph H (namely the
path P3 with two edges) for which Conjecture 5.1 fails to hold and further

B(G
2−→ H; t) ≤ ct for all G with G

2−→ H where c does not depend on
G. Indeed, M2(P3) is infinite, consisting of K1,3 and the odd cycles. Equiv-

alently, G
2−→ P3 if and only if G has a vertex of degree at least 3 or G

contains an odd cycle C2�+1. If G has a vertex of degree at least 3, then

B(G
2−→ P3; t) ≤ B(K1,3

2−→ P3; t), so we can use the same upper bound
for all such G. On the other hand, it is a simple exercise to show that for
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each ε > 0 there is δ > 0 such that if a 2-edge-coloring of P4[n] has at most
δn3 monochromatic canonical P3, then, apart from at most εn2 edges, the
coloring is monochromatic between consecutive parts and alternates color
along the path. In particular, taking ε = 1/3, if a 2-edge-coloring of C2�+1[n]
does not contain δ

2n
3 monochromatic canonical P3 between any three con-

secutive parts, then the most common color used between consecutive pairs
of parts alternates along the cycle, contradicting that an odd cycle is nonbi-
partite. That is, every 2-edge-coloring of C2�+1[n] must contain at least δ

2n
3

monochromatic canonical P3 between some three consecutive parts. Apply-
ing Nikiforov’s theorem between these three consecutive parts, there is a
monochromatic canonical copy of P3[t] with t = Ω(logn) and the implicit
constant is absolute. Hence, although P3 is not 2-Ramsey-finite, there is

still an absolute constant c such that B(G
2−→ P3; t) ≤ ct for all G with

G
2−→ P3.
Souza defined the robustness βr(H;G) to be the minimum number of

monochromatic copies of H in an r-coloring of G, divided by the total num-
ber of copies of H in G. Thus, βr(H;G) measures the fraction of copies of H
that must be monochromatic in any r-coloring of G. He also showed, again
as a consequence of Theorem 1.1, that if inf{βr(H;G) : G ∈ Mr(H)} > 0,
then Conjecture 5.1 fails to hold for H. If H is r-Ramsey-finite, then this in-
fimum is certainly positive, so we recover the above observation that Conjec-
ture 5.1 fails for r-Ramsey-finite graphs. Moreover, Souza [6, Conjecture 5.4]
conjectured that these two observations are in fact the same, namely that
inf{βr(H;G) : G ∈ Mr(H)} > 0 if and only if H is r-Ramsey-finite. Indeed,
this conjecture is true.

Proposition 5.1. If H is r-Ramsey-infinite, then inf{βr(H;G) : G ∈
Mr(H)} = 0.

This proposition follows from the next lemma and sup{e(G) : G ∈
Mr(H)} = ∞ if H is r-Ramsey-infinite; this fact follows from the observa-
tion that a Ramsey-minimal graph for H can have at most as many isolated
vertices as H itself, so the number of edges of G must tend to infinity as G
runs over the infinite set Mr(H).

Lemma 5.1. If G is Ramsey minimal for H with r colors, then βr(H;G) ≤
e(H)
re(G) .

Proof. If we fix a copy of H in G and then pick an edge of G uniformly
at random, the probability that it lands in this copy is exactly e(H)/e(G).
Therefore, by linearity of expectation, there exists an edge e ∈ E(G) such
that e lies in at most an e(H)/e(G) fraction of the copies of H in G. Since
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G is Ramsey-minimal for H, we can color G − e so that it contains no
monochromatic copy of H. We then color e according to which color it
would participate in the least number of monochromatic copies of H. We
thus find that the total fraction of copies of H that are monochromatic is

at most e(H)
re(G) , since every such copy must contain e and there are r colors.

Thus, βr(H;G) ≤ e(H)
re(G) .

It is natural to modify the definition of blowup Ramsey numbers to allow
for non-canonical copies. More precisely, we can define

B′(G,H, r, t) = min{n : G[n]
r−→ H[t]}.

Note that B(G
r−→ H; t) is finite if and only if G

r−→ H; the if direction was
proven by Souza, while the only if follows from blowing up any coloring of G
with no monochromatic copy of H. However, B′(G,H, r, t) can be finite for

all t even if G
r

�−→ H. Indeed, let’s say that G
r−�H if every r-edge-coloring

of G contains a monochromatic homomorphic image of H, where we say that
H ′ is a homomorphic image of H if it can be gotten from H by repeatedly
identifying non-adjacent vertices. In this case, a sufficiently large blowup of
H ′ will contain a copy of H. Therefore we can conclude that B′(G,H, r, t)

is finite if and only if G
r−�H, where the only if direction follows by blowing

up a coloring of G containing no monochromatic homomorphic image of H.
Moreover, we thus find that

B′(G,H, r, t) ≤ B(G
r−→ H; t) ≤ B′(G,H, r, ct),

where c = c(H) ≥ 1 is a constant depending on how small a homomorphic
image of H can be. Thus, 1

t log B(G
r−→ H; t) and 1

t log B
′(G,H, r, t) differ

only by a constant factor depending on H.
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