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Relations in doubly laced crystal graphs via discrete
Morse theory∗

Molly Lynch

We study the combinatorics of crystal graphs given by highest
weight representations of finite simply and doubly laced type, un-
covering new relations that exist among crystal operators. Much
structure in these graphs has been revealed by local relations given
by Stembridge and Sternberg. However, there exist relations among
crystal operators that are not implied by Stembridge or Sternberg
relations. Viewing crystal graphs as edge colored posets, we use
poset topology to study them. Using the lexicographic discrete
Morse functions of Babson and Hersh, we relate the Möbius func-
tion of a given interval in a crystal poset of simply laced or doubly
laced type to the types of relations that can occur among crystal
operators within this interval.

More specifically, for a crystal of a highest weight representa-
tion of finite simply or doubly laced type, we show that whenever
there exists an interval whose Möbius function is not equal to −1,
0, or 1, there must be a relation among crystal operators within
this interval not implied by Stembridge or Sternberg relations. As
an example of an application, this yields relations among crystal
operators in types Bn and Cn that were not previously known. Ad-
ditionally, by studying the structure of Sternberg relations in the
doubly laced case, we prove that crystals of highest weight repre-
sentations of types B2 and C2 are not lattices. Finally, we prove a
result under certain conditions regarding the truncation algorithm
for lexicographic discrete Morse functions.

Keywords and phrases: Crystals, Möbius function, crystal operators,
discrete Morse functions.

1. Introduction

In this paper we study crystal graphs given by highest weight representations
of finite simply and doubly laced type. These graphs are equipped with
a natural partial ordering (see Section 2 for background information on
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partially ordered sets). This partial order is given by covering relations,
denoted �, as follows: we say that x � y whenever y = fi(x), where fi is a
so-called crystal operator. We color each of these covering relations with i,
giving the crystal the structure of an edge colored poset. We aim to study
the structure of these crystal posets. We do so here by trying to understand
the relations that can exist among crystal operators.

In [14], Stembridge provides a characterization of crystal graphs coming
from highest weight representations in the simply laced case. He gives ax-
ioms that can be used to construct the crystal graph corresponding to the
crystal of a highest weight representation. These axioms imply a list of local
relations that exist among crystal operators. The axioms and relations also
hold for crystals coming from highest weight representations in the doubly
laced case, but do not provide a complete characterization. In [15], Stern-
berg proves that there are additional local relations that hold among crystal
operators in the doubly laced case. Danilov, Karzanov, and Koshevoy give a
characterization of doubly laced crystals in [4]. In spite of this, when viewing
these crystal graphs as posets, there exist intervals within the poset where
Stembridge relations do not control the structure of the interval, as seen in
[8] and this paper. By this, we mean that within the interval, there exist
saturated chains that are not connected by some sequence of Stembridge
relations, in the sense seen with braid relations in weak order.

The question of what types of relations can exist among crystal operators
has been previously studied by Hersh and Lenart in [8] in the simply laced
case. They show that for arbitrary intervals in crystals of simply laced type,
there exist relations among crystal operators not implied by Stembridge
relations. More generally, Hersh and Lenart prove that whenever there is
an interval [u, v] in a crystal of finite, simply-laced type with the Möbius
function μ(u, v) /∈ {−1, 0, 1}, then within [u, v] there exists a relation among
crystal operators not implied by Stembridge relations. However, the proof
technique that is used does not carry over to the doubly laced case.

Here, we prove the analogue of this result for crystals of finite, doubly
laced type, which was not previously known, using a tool developed in [1]
known as lexicographic discrete Morse functions. These functions have been
previously used to study certain classes of posets, see e.g. [12, 18]. By using
these for crystal posets, we also give a new proof of the result in the simply
laced case. More specifically, we show that if we have an interval [u, v] in
a crystal poset of finite simply or doubly laced type such that all relations
among crystal operators are implied by Stembridge or Sternberg relations,
then the Möbius function of this interval must be equal to −1, 0, or 1. We do
so by constructing a discrete Morse function on the order complex, Δ(u, v),
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with at most one critical cell. We give a procedure for determining if [u, v]
has a critical cell, and finding this cell when it exists. If the discrete Morse
function has exactly one critical cell, this results in the Möbius function of
the interval equalling ±1, else the Möbius function equals 0.

Danilov, Karzanov, and Koshevoy have studied these crystal posets in
case when n = 2 in [4, 5]. They show that crystals of highest weight repre-
sentations of type A2 are in fact lattices. In the present paper, by studying
the structure of the Sternberg relations, we prove that crystals of highest
weight representations of types B2 and C2 are not lattices. Additionally,
using SAGE, we search for intervals in crystal posets with Möbius function
not equal to −1,0, or 1. As an example, we present new relations among
crystal operators in crystals of types B3 and C3.

Our main results, Corollaries 4.21 and 4.28 consider intervals in crystal
posets where all relations among crystal operators are implied by Stembridge
or Sternberg relations. Now let us describe and illustrate the main ideas of
this paper through an example.

The interval [u, v] in Figure 1 is a subposet of the crystal of type A4

with highest weight (3, 1, 0, 0). We order the saturated chains in our interval
according to lexicographic order on their edge label sequences as we travel
up each chain from u to v. The critical cells in our lexicographic discrete
Morse function come from so-called fully covered saturated chains in the
interval. Informally, we have a fully covered saturated chain C from u to v
when each rank along C, excluding that of u and v, is covered by a “minimal
skipped interval”. Roughly speaking, we have a skipped interval from u′ to
v′ consisting of all elements strictly between u′ and v′ along C if there is a
lexicographically earlier chain C ′ from u′ to v′. If there are no strictly smaller
skipped intervals between u′ and v′ then we have a minimal skipped interval.
The technique we are using is a generalization of a lexicographic shelling. It
differs from lexicographic shellings as we allow our minimal skipped intervals
to cover more than one rank.

Consider the chain in bold in our example. This chain has edge label
sequence (4, 3, 2, 2, 3). We can see that this saturated chain is fully covered
by looking at its minimal skipped intervals. For our first minimal skipped
interval, instead of traveling up this chain via the edges labeled 4 and 3, we
could have traveled up the lexicographically earlier segment via the edges
labeled 3 and then 4. Next, instead of traveling along the edges labeled by the
sequence (3, 2, 2, 3), we could have traveled up the lexicographically earlier
segment labeled (2, 3, 3, 2). These two minimal skipped intervals cover all
proper ranks of our interval and so the chain with label sequence (4, 3, 2, 2, 3)
is fully covered. This is the only fully covered saturated chain within [u, v].
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Figure 1: Subposet of type A4 crystal with highest weight λ = (3, 1, 0, 0).

As having a fully covered saturated chain gives rise to a critical cell in our
discrete Morse function, we are able to deduce that the Möbius function,
μ(u, v), of our interval is −1.

We give an algorithm for finding a fully covered saturated chain, when
one exists, in intervals in crystals of highest weight representations of finite
simply and doubly type where all relations are implied by Stembridge or
Sternberg relations. In the process, we prove that there is at most one such
fully covered saturated chain in any given interval. We note that when a
fully covered saturated chain exists, it is not always the lexicographically
last chain, though often it is. For such an instance, see Example 4.18.

We give background information on crystals, partially ordered sets, and
discrete Morse functions in Section 2. In Section 3, we point out some imme-
diate consequences of the Stembridge axioms for the simply laced and doubly
laced cases. Additionally, we use the structure of the degree five Sternberg
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relation to prove that crystals of highest weight representations of types B2

and C2 are not lattices. In Section 4, we construct lexicographic discrete
Morse functions for intervals in crystals of highest weight representations of
finite simply and doubly laced type where all relations among crystal oper-
ators are implied by Stembridge or Sternberg relations. This construction
allows us to prove the main result, namely that if there is an interval in a
crystal of finite simply or doubly laced type with Möbius function not equal
to −1, 0, or 1, then there exists a relation among crystal operators within
that interval not implied by Stembridge or Sternberg relations. In doing so,
we prove a more general result regarding fully covered saturated chains and
the truncation algorithm for lexicographic discrete Morse functions. Finally,
we give two concrete applications of the main result in Section 5 demon-
strating how it can lead to the discovery of new relations among crystal
operators via computer search. Specifically, we present new relations among
crystal operators in crystals of types B3 and C3.

2. Background and terminology

2.1. Crystal bases

Crystals bases are combinatorial structures that give information regarding
representations of Lie algebras. Each crystal is associated with a root system
Φ that has index set I and weight lattice Λ. Let {αi}i∈I be the set of simple
roots and Λ+ be the set of dominant integral weights. The root systems
considered in this paper are all of finite type. For more background on root
systems, see [9].

Definition 2.1. For a fixed root system Φ with index set I and weight
lattice Λ, a crystal of type Φ is a nonempty set B together with maps

ei, fi : B → B � {0},(1a)

εi, ϕi : B → Z � {−∞},(1b)

wt : B → Λ,(1c)

where i ∈ I and 0 /∈ B is an auxillary element satisfying the following:

(A1) If x, y ∈ B then ei(y) = x if and only if fi(x) = y, and in this case we
assume

wt(x) = wt(y) + αi, εi(x) = εi(y)− 1, ϕi(x) = ϕi(y) + 1
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(A2) We require that

ϕi(x) = 〈wt(x), α∨
i 〉+ εi(x)

for all x ∈ B and i ∈ I. In particular, if ϕ(x) = −∞, then εi(x) = −∞
as well. If ϕi(x) = −∞ then we require ei(x) = fi(x) = 0.

The map wt is the weight map. The operators ei, fi are called Kashiwara
or crystal operators, and the maps ϕi, εi are called string lengths.

We will only be referring to crystals of highest weight representations
of finite type and our main results will hold for crystals of highest weight
representations of finite simply and doubly laced type. For a dominant in-
tegral weight λ ∈ Λ+, we let B = Bλ denote the crystal of the irreducible
representation V (λ) of highest weight λ.

Given any crystal B, we can associate to it a crystal graph.

Definition 2.2. A crystal graph of some crystal B is a directed, edge colored
(with colors i ∈ I) graph with vertices in B satisfying the following:

(S1) all monochromatic directed paths have finite length,

(S2) for every vertex x ∈ B and i ∈ I, there is at most one edge z
i−→ x,

and dually, at most one edge x
i−→ y. Here, we say that z = ei(x) and

y = fi(x).

All examples in this paper will use a well known combinatorial model
for crystals where vertices of the crystal graph are represented by tableaux.
For a description of this model, see [2, 11].

2.2. Stembridge axioms and Sternberg relations

In [14], Stembridge gives a local characterization of crystals coming from
integrable highest weight representations in the simply laced case. In doing
so, he provides a list of local relations that exist among crystal operators.
He shows that these relations also hold in the doubly laced case, but do not
give a complete characterization. In [15], Sternberg shows that for crystals
of doubly laced type coming from a highest weight representation, there are
additional relations among crystal operators other than those given by the
Stembridge axioms. For a complete characterization of doubly laced crystals
see [4, 16]. Now, we introduce some notation and the axioms as seen in [14].

Throughout this section we will let A = (aij)i,j∈I be the Cartan matrix of
a Kac-Moody algebra g, where I is a finite index set. We recall the following
from [14].
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We define the i-string through x to be:

f−d
i (x) → · · · → f−1

i (x) → x → fi(x) → · · · → f r
i (x).

We can then define the i-rise of x to be ϑi(x) := r and the i-depth of x to

be δi(x) := −d. To measure the effect of the crystal operators ei and fi on

the j-rise and j-depth of each vertex, we define the difference operators Δi

and ∇i to be:

Δiδj(x) = δj(ei(x))− δj(x), Δiϑj(x) = ϑj(ei(x))− ϑj(x),

whenever ei(x) is defined, and

∇iδj(x) = δj(x)− δj(fi(x)), ∇iϑj(x) = ϑj(x)− ϑj(fi(x)),

whenever fi(x) is defined.

Definition 2.3. We say that an edge-colored, directed graph, X, is A-

regular if the axioms (S1) and (S2) from Definition 2.2 hold as well as (S3)-

(S6) and (S5′)-(S6′).

(S3) For a fixed x ∈ X and i, j ∈ I such that ei(x) is defined, we require

Δiδj(x) + Δiϑj(x) = aij ,

(S4) For a fixed x ∈ X and i, j ∈ I such that ei(x) is defined, we require

Δiδj(x) ≤ 0 and Δiϑj(x) ≤ 0.

(S5) For a fixed x ∈ X such that ei(x) and ej(x) are both defined, we require

that Δiδj(x) = 0 implies eiej(x) = ejei(x) �= 0 and ∇jϑi(y) = 0 where

y = eiej(x) = ejei(x).

(S6) For a fixed x ∈ X such that ei(x) and ej(x) are both defined, we require

that Δiδj(x) = Δjδi(x) = −1 implies eie
2
jei(x) = eje

2
i ej(x) �= 0 and

∇iϑj(y) = ∇jϑi(y) = −1 where y = eie
2
jei(x) = eje

2
i ej(x).

Dually, we have the additional two requirements for X to be A-regular,

(S5′) For a fixed x ∈ X, ∇iϑj(x) = 0 implies fifj(x) = fjfi(x) �= 0 and

Δjδi(y) = 0 where y = fifj(x) = fjfi(x).

(S6′) For a fixed x ∈ X, ∇iϑj(x) = ∇jϑi(x) = −1 implies fif
2
j fi(x) =

fjf
2
i fj(x) �= 0 and Δiδj(y) = Δjδi(y) = −1 where y = fif

2
j fi(x) =

fjf
2
i fj(x).
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In [14], Stembridge proves the following:

Theorem 2.4 ( [14]). The crystal graph corresponding to any highest weight
representation is A-regular. These axioms characterize crystal graphs in the
simply laced case.

All crystals studied in this paper are such that the Stembridge axioms
hold. The axioms only give a complete characterization in the simply laced
case.

Definition 2.5. If we have x ∈ B such that

fifj(x) = fjfi(x) �= 0,

then we say there is a degree two Stembridge relation upward from x. Simi-
larly, if we have x ∈ B such that

fif
2
j fi(x) = fjf

2
i fj(x) �= 0,

then we say that there is a degree four Stembridge relation upward from x.
Dually, when these relations occur involving the ei crystal operators, we say
we have a degree two or degree four Stembridge relation downward from x,
the degree coming from the number of operators.

See Figure 2 for visualizations of the degree two and degree four Stem-
bridge relations.

(a)

x

i j

j i

(b)

x

i j

j i

j i

i j

Figure 2: (a) The degree two Stembridge relation, and (b) the degree four
Stembridge relation.

We now consider the doubly laced case, i.e. crystals corresponding to
the root systems of type Bn and Cn. In [15], Sternberg proves a conjecture
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of Stembridge by providing a description of the local structure of crystals
arising from highest weight representations in the doubly laced case.

Theorem 2.6 ( [15]). Let B be a crystal coming from a highest weight
representation of doubly laced type. Let x be a vertex of B such that fi(x) �= 0
and fj(x) �= 0 where fi and fj are two distinct crystal operators. Then
exactly one of the following is true:

1. fifj(x) = fjfi(x),
2. fif

2
j fi(x) = fjf

2
i fj(x),

3. fif
3
j fi(x) = fjfifjfifj(x) = f2

j f
2
i fj(x),

4. fif
3
j f

2
i fj(x) = fif

2
j fifjfifj(x) = fjf

2
i f

3
j fi(x) = fjfifjfif

2
j fi(x).

The equivalent statement with the crystal operators ei and ej also holds.

For crystals of doubly laced type, there are additional relations besides
those seen in Definition 2.5.

Definition 2.7. If we have x ∈ B such that

fif
3
j fi(x) = fjfifjfifj(x) = f2

j f
2
i fj(x),

then we say there is a degree five Sternberg relation upward from x. Similarly,
if we have x ∈ B such that

fif
3
j f

2
i fj(x) = fif

2
j fifjfifj(x) = fjf

2
i f

3
j fi(x) = fjfifjfif

2
j fi(x),

then we say that there is a degree seven Sternberg relation upward from
x. Dually, when these relations occur involving the ei’s, we say we have a
degree five or degree seven Sternberg relation downward from x.

See Figure 3 for visualizations of the degree five and degree seven Stern-
berg relations.

2.3. Basics of partially ordered sets (posets)

We will now give a brief overview of partially ordered sets, as the main
objects of study in this paper are crystal posets.

Definition 2.8. A partially ordered set P (or poset) is a set P together
with a binary relation ≤ such that for all s, t, u ∈ P we have:

1. reflexivity: s ≤ s.
2. antisymmetry: if s ≤ t and t ≤ s, then s = t.
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Figure 3: (a) The degree five Sternberg relation, and (b) the degree seven
Sternberg relation.

3. transitivity: if s ≤ t and t ≤ u, then s ≤ u.

We call “≤” a partial order.

Given a subset Q ⊆ P , we say that Q is a subposet of P if for s, t ∈ Q,
we have s ≤ t in Q if and only if s ≤ t in P . We say that u is covered by v
(or v covers u), denoted by u � v if u < v and there is no element w ∈ P
such that u < w < v. We call these cover relations. For finite posets (and
more generally for locally finite posets), P is generated by such relations.
An interval [u, v] is a subposet of P defined by [u, v] = {s ∈ P : u ≤ s ≤ v}
whenever u < v, Similarly, an open interval (u, v) is defined by (u, v) = {s ∈
P : u < s < v}. A poset P is locally finite if each interval [u, v] is finite. We
say that P has a minimum element, denoted 0̂, if there exists an element
0̂ ∈ P such that 0̂ ≤ u for all u ∈ P . Similarly, P has a maximum element,
denoted 1̂, if there exists an element 1̂ ∈ P such that u ≤ 1̂ for all u ∈ P .
A chain is a poset in which any two elements x and y are comparable (i.e.
x ≤ y or y ≤ x). A subset C of P is a chain if it is a chain when considered as
a subposet of P . A saturated chain from u to v is a series of cover relations
u = u0 � u1 � · · · � uk = v. We say that a finite poset is graded if for all
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u ≤ v, every saturated chain from u to v has the same number of cover

relations, and we call this number the rank of the interval [u, v]. The rank

of an element x ∈ P is the rank of the interval [0̂, x]. The Hasse diagram of

a finite poset P is the graph whose vertices are elements of P with an edge

drawn upward from x to y whenever x� y.

For s, t ∈ P , an upper bound of s and t is an element v in P such that

v ≥ s and v ≥ t. Similarly, a lower bound of s and t is an element u such

that u ≤ s and u ≤ t. A least upper bound for s and t is an element v such

that for any w where s ≤ w ≤ v and t ≤ w ≤ v, we must have v = w.

We define a greatest lower bound similarly. If two elements have a unique

least upper bound it is called a join. Similarly, if two elements have a unique

greatest lower bound, it is called a meet. We denote by s ∨ t the join of s

and t and s ∧ t the meet of s and t. A poset L in which every two elements

have a meet and a join is a lattice.

The Möbius function, μ of a poset P is a function μ : P ×P → Z defined

recursively as follows: μ(u, u) = 1, for all u ∈ P , μ(u, v) = −
∑

u≤t<v μ(u, t),

for all u < v ∈ P , and μ(u, v) = 0 otherwise. Given a poset P , the order

complex Δ(P ) is the abstract simplicial complex whose i-dimensional faces

are the chains x0 < x1 < · · · < xi of P . Let Δ(u, v) denote the order complex

of the subposet consisting of the open interval (u, v).

One reason to be interested in the order complex of a poset is the connec-

tion between the Möbius function of a poset P and the Euler characteristic

of the order complex Δ(P ), discussed e.g. in [13, 17].

Theorem 2.9. Let P be a poset with 0̂ and 1̂. Then μ(0̂, 1̂) = χ̃(Δ(P )).

The posets that we study in this paper come from crystals. More specif-

ically, we study the crystal graphs of crystals of highest weight representa-

tions. We view these crystal graphs as posets with exactly the cover relations

u � v for v = fi(u) for some i ∈ I. This extends transitively to a partial

order on the crystal graph, namely u ≤ v whenever there is a directed path

from u to v. We color the edge of the covering relation given by fi(u) = v

with the color i. This gives the structure of an edge-colored poset. We call

these posets crystal posets. Note that the crystal graph is the Hasse diagram

of the crystal poset. The following definition will be useful later.

Definition 2.10. Given [u, v] ⊆ B, for B a crystal poset, let C = u� x1 �

· · ·�xm�v be a saturated chain from u to v. The edge label sequence of C is

the tuple (β(u�x1), ..., β(xm� v)) where β(xk�xk+1) = i if xk+1 = fi(xk).
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2.4. Discrete Morse functions

Discrete Morse theory was introduced in [6] by Forman as a tool to study the

homotopy type and homology groups of (primarily finite) CW complexes.

In [3], Chari gave a combinatorial reformulation in the case of regular

CW complexes in terms of acyclic matchings on their face posets, which is

what we will use in this paper. A matching on the Hasse diagram of a face

poset is acyclic if the directed graph obtained by directing matching edges

upward and all other edges downward has no directed cycles. It is shown, for

example in [7], that whenever a face poset has an acyclic matching, there is

a nonempty set of associated discrete Morse functions on the corresponding

complex.

In this paper, we will apply discrete Morse theory to simplicial complexes

associated to crystal posets. Let Δ be a simplicial complex. We denote a d-

simplex α by α(d).

Definition 2.11. A discrete Morse function on a simplicial complex Δ is a

function f : Δ → R such that for each d-dimensional simplex, α(d) ∈ Δ,

1. |{β(d+1) ⊇ α|f(β) ≤ f(α)}| ≤ 1,

2. |{γ(d−1) ⊆ α|f(γ) ≥ f(α)}| ≤ 1.

We are interested in finding critical cells of discrete Morse functions.

Definition 2.12. A simplex α is called a critical cell if |{β(d+1) ⊇ α|f(β) ≤
f(α)}| = 0 and |{γ(d−1) ⊆ α|f(γ) ≥ f(α)}| = 0. Equivalently, a simplex α

is called a critical cell if it is left unmatched by the matching on the face

poset.

One of the reasons discrete Morse functions are useful is the following

theorem.

Theorem 2.13 ([6]). Suppose Δ is a simplicial complex with a discrete

Morse function. Then Δ is homotopy equivalent to a CW-complex with ex-

actly one cell of dimension d for each critical cell of dimension d with respect

to this choice of discrete Morse function.

We deviate slightly from Forman’s conventions in a way that is typical

in combinatorics. We allow the empty set to be in the domain of our discrete

Morse function f , as well as in the face posets on which we construct acyclic

matchings. By doing so, we must express our results in terms of reduced

Euler characteristic and reduced homology.
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Remark 1. From Theorem 2.13, rephrased to use reduced Betti numbers and
Morse numbers, we can immediately deduce that if a discrete Morse function
has exactly one critical cell of dimension i and no other critical cells, then
our original simplicial complex is homotopy equivalent to an i-dimensional
sphere.

In [1], Babson and Hersh introduced lexicographic discrete Morse func-
tions as a tool to study the topology of order complexes of partially ordered
sets with 0̂ and 1̂. This is what we will use to study crystal posets.

Before we describe how to construct lexicographic discrete Morse func-
tions, we explain some of the useful properties they will have. Because we
attach the facets by lexicographic order on saturated chains, the lexico-
graphic discrete Morse functions will have relatively few critical cells. If the
attachment of the facet corresponding to some saturated chain does not
change the homotopy of the subcomplex of our order complex built so far,
then this step does not introduce any critical cells. Additionally, each facet
can contribute at most one critical cell. We describe these critical cells using
minimal skipped intervals, which will be discussed shortly.

We now review lexicographic discrete Morse functions in general. This
will rely on a notion of rank within a chain that does not require the poset
to be graded. However, in this paper, the crystal posets we are interested
in are graded by the weight function, as seen in Lemma 4.1, simplifying the
grading in a chain.

Given a poset P graded of rank n, let β be an integer labeling on the
edges of the Hasse diagram of P such that β(u�v) �= β(u�w) whenever v �=
w. Each facet of Δ(P ) corresponds to a saturated chain, 0̂�u1�· · ·�uk�1̂ in
P . For each saturated chain we read off the label sequence (β(0̂�u1), β(u1�
u2), · · · , β(uk� 1̂)) and order these lexicographically. This labeling gives rise
to a total order on the facets F1, ..., Fk of the order complex. By virtue of
the fact that we attach facets in a lexicographic order, each maximal face
in F j ∩ (∪i<jF i) has rank set of the form 1, ..., i, j, ..., n for j > i + 1 i.e.
it omits a single interval of consecutive ranks. We call this rank interval
[i + 1, j − 1] a minimal skipped interval of Fj with support i + 1, ..., j − 1
and height j − i− 1. For a given facet Fj , we call the collection of minimal
skipped intervals the interval system of Fj .

Remark 2. In order to determine the minimal skipped intervals for a given
saturated chain M corresponding to some facet Fj , we consider each cover
relation u � v as we travel up M . At each cover relation u � v, we check if
there is a lexicographically earlier cover relation u�v′ upward from u. If so,
we obtain a maximal face in F j ∩ (∪i<jF i), and hence a minimal skipped
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interval, by taking the intersection of F j with the closure of any facet Fi′

that includes u� v′, that agrees with Fj below u and agrees with Fj above
w ∈ Fj for some w > v′ of minimal rank.

When our poset has some natural labeling, like that of our crystal posets,
it is often possible to classify its minimal skipped intervals.

Any face in F j \(∪i<jF i) must include at least one rank from each of the
minimal skipped intervals of Fj . For each j, an acyclic matching on the set
of faces in F j \ (∪i<jF i) is constructed in [1] in terms of the interval system.
The union of these matchings is acyclic on the entire Hasse diagram of the
face poset of the order complex of P , and therefore give rise to a family of
discrete Morse functions. For more about this acyclic matching, see [7].

A facet Fj will contribute a critical cell if and only if the interval sys-
tem of Fj covers all ranks in Fj after the truncation algorithm described
below. In this case we say that the corresponding saturated chain is fully
covered. The dimension of such a critical cell is one less than the number
of minimal skipped intervals in the interval system after the truncation al-
gorithm. This truncation algorithm is needed when the interval system of
some facet Fj covers all ranks but there are overlapping minimal skipped
intervals. Otherwise the truncated system equals the original system.

Remark 3. In actuality, we study the order complexes of the proper parts of
our posets; if P has a 0̂ and 1̂ then Δ(P ) is contractible as it is a cone. We use
the 0̂ and 1̂ in the lexicographic discrete Morse functions in a bookkeeping
role. More specifically, 0̂ and 1̂ are needed to record the labels of covering
relations upward from 0̂ and upward towards 1̂. In particular, when we refer
to fully covered saturated chains, the ranks of 0̂ and 1̂ are not covered.

For the truncation algorithm, we begin with our interval system, I, and
initialize the truncated system, which we call J , to be the empty set. Then,
we repeatedly move the minimum interval in I to the truncated system
J and truncate all other elements of I to eliminate any overlap with the
minimum interval in I being moved to J at this step. Here, by minimum
we mean the minimal skipped interval containing the element of smallest
rank. Next, remove any intervals in I that are no longer minimal. We repeat
this until there are no longer any minimal skipped intervals in I. We call
the truncated, minimal intervals obtained by this algorithm the J-intervals
of Fj . By construction, these are non-overlapping. If the J-intervals cover
all ranks of Fj , then Fj contributes a critical cell. We get this critical cell
by taking the lowest rank element of each of the J-intervals. Otherwise Fj

does not contribute any critical cells. For a more detailed background on
lexicographic discrete Morse functions, see [7].
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3. Consequences of the Stembridge axioms

In this section, we deduce consequences of the Stembridge axioms regarding
relations among crystal operators in both the simply laced and doubly laced
cases. The axioms give restrictions on which Stembridge/Sternberg relations
can occur among two given crystal operators for crystals coming from high-
est weight representations. In addition, we prove that crystals of types B2

and C2 are not lattices due to the asymmetry of the degree five Sternberg
relation.

As we are studying crystals coming from representations, all crystal
graphs are A-regular. In the simply laced case, all off diagonal entries of
the Cartan matrix are either equal to −1 or 0. Therefore, by axioms (S3)
and (S4) we have that for any vertex x in a crystal graph of simply laced
type, there are only three possibilities for the triples (aij ,Δiδj(x),Δiϑj(x)),
namely (0, 0, 0), (−1,−1, 0) or (−1, 0,−1). Hence, by axioms (S5)-(S6) and
(S5′)-(S6′), we have the following result.

Proposition 3.1. Let B be the crystal of a representation of simply laced
type. Let x ∈ B such that fi(x) �= 0 and fj(x) �= 0. Then we have:

1. If the (i, j) entry of the Cartan matrix is 0, then fifj(x) = fjfi(x).
2. If the (i, j) entry of the Cartan matrix is −1, then either fifj(x) =

fjfi(x) or fif
2
j fi(x) = fjf

2
i fj(x).

In the doubly laced case, namely crystals of representations of types Bn

and Cn, there is an off diagonal entry of the Cartan matrix that is equal to
−2. This is either the (n, n− 1) entry or the (n− 1, n) entry. Therefore, we
have the following.

Proposition 3.2. Let B be the crystal of a representation of simply laced
type. Let x ∈ B such that fi(x) �= 0 and fj(x) �= 0. Then we have:

1. If the (i, j) entry of the Cartan matrix is 0, then fifj(x) = fjfi(x).
2. If the (i, j) entry of the Cartan matrix is −1, then either fifj(x) =

fjfi(x) or fif
2
j fi(x) = fjf

2
i fj(x).

3. If the (i, j) entry of the Cartan matrix is −2, then we either have a
degree two Stembridge relation, degree four Stembridge relation, or a
Sternberg relation upward from x.

Remark 4. This says that in the doubly laced case, the degree five and degree
seven Sternberg relations can only occur among the crystal operators fn−1

and fn. In the simply laced case, degree four Stembridge relations can only
occur among certain crystal operators. In type An, degree four Stembridge
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relations can only occur among consecutively indexed operators, i.e. fk and
fk+1. In type Dn, we also may have a degree four Stembridge relation among
fn−2 and fn but not fn−1 and fn.

Crystals of rank two algebras are often of particular interest. This is
due to the result seen in [10] which says that a crystal graph with a unique
maximal vertex is the crystal graph of some representation if and only if it
decomposes as the disjoint union of crystals of representations relative to the
rank two subalgebras corresponding to each pair of edge colors. Therefore,
we now consider crystals of type B2 and C2. In [5], it is shown that crystals
of type A2 are lattices. We show that this result does not carry over to the
doubly laced case.

Theorem 3.3. Crystals of highest weight representations of types B2 and
C2 are not lattices.

Proof. This follows from the asymmetry of the degree five Sternberg rela-
tions. Let B be the crystal of a highest weight representation of type B2 or
C2. Let x ∈ B such that there is a degree five Sternberg relation upward
from x. Then we have y ∈ B such that

y = f1f
3
2 f1(x) = f2f1f2f1f2(x) = f2

2 f
2
1 f2(x),

or

y = f2f
3
1 f2(x) = f1f2f1f2f1(x) = f2

1 f
2
2 f1(x).

In either case, we have that e1(y) �= 0 and e2(y) �= 0. As a result, there
must be a Stembridge or Sternberg relation downward from y. Hence, e1(y)
and e2(y) will have two distinct, incomparable greatest lower bounds, one
coming from the Stembridge or Sternberg relation downward from y and the
other being x.

Similarly, if there exists y ∈ B such that there is a degree five Sternberg
relation downward from y, then there will exist two vertices that have two
distinct, incomparable least upper bounds. Hence, highest weight represen-
tations of types B2 and C2 are not lattices.

4. Connections between the Möbius function of a poset and
relations among crystal operators

In this section we consider crystal posets coming from highest weight repre-
sentations of simply and doubly laced Cartan type. We prove that whenever
there is an interval [u, v] in such a crystal poset whose Möbius function,
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μ(u, v), is not equal to −1, 0 or 1, then there must be a relation among

crystal operators within [u, v] not implied by Stembridge or Sternberg rela-

tions. We do so by proving the contrapositive. By “implied” we mean that

there exists two saturated chains that are not connected by a sequence of

Stembridge or Sternberg relations. Hersh and Lenart showed this result in

[8] for crystals of highest weight representations of finite simply laced type.

However, the proof used there does not extend to the doubly laced case. In

this section, we extend the result to crystals of finite doubly laced type, and

in doing so, give a new proof for crystals of finite simply laced type. We first

develop properties of crystal graphs.

Lemma 4.1. Let B be the crystal graph of a crystal of type Φ given by a

highest weight representation. Let u, v ∈ B such that u < v. Any saturated

chain from u to v uses the same multiset of edge labels. Moreover, we can

determine this multiset from wt(u) and wt(v).

Proof. Recall that if y = fi(x) then wt(y) = wt(x)− αi where αi is the ith

simple root of the root system Φ. Since u < v, there exists some sequence of

crystal operators fi1 , fi2 , ..., fik such that v = fik · · · fi2fi1(u). Then we have,

wt(v) = wt(u)−
k∑

j=1

αij .

Suppose by way of contradiction that there exists another distinct sequence

of crystal operators fl1 , fl2 , ..., flm such that v = flm · · · fl2fl1(u). Then we

have

wt(u)− wt(v) =

k∑

j=1

αij =

m∑

n=1

αln .

Since the set of simple roots {αi}i∈I is a basis, we must have that {αi1 , ...,

αik} = {αl1 , ..., αlm}. Therefore, the same crystal operators are used with

the same multiplicities along any saturated chain from u to v. In addition,

by writing the vector wt(u)− wt(v) as a linear combination of the simple

roots, we can see exactly how many times each crystal operator fi is applied

along any saturated chain from u to v.

Remark 5. This implies that crystal posets are graded since every saturated

chain in a given interval [u, v] will have the same length.

With Lemma 4.1 in mind, we have the following definition.



134 Molly Lynch

Definition 4.2. Let B be the crystal graph of a crystal of type Φ given by a
highest weight representation and let [u, v] ⊆ B. The multiset of edge labels
of [u, v] is the multiset of edge labels of any saturated chain C from u to v.

To prove our main result, we will show that for intervals [u, v] ⊆ B of
simply laced (respectively, doubly laced) type with the property that all
relations among crystal operators are implied by Stembridge (respectively,
Stembridge or Sternberg) relations, we must have that μ(u, v) ∈ {−1, 0, 1}.
We do so by constructing a lexicographic discrete Morse function on the
order complex Δ(u, v) that has at most one critical cell. Recall that a satu-
rated chain from u to v contributes a critical cell for Δ(u, v) if and only if
it is fully covered. Therefore, we will give a method to find the unique fully
covered saturated chain in the given interval [u, v] when such a chain exists.
We lexicographically order the edge label sequences of saturated chains in
order to construct the lexicographic discrete Morse function.

Definition 4.3. Let B be the crystal of a highest weight representation
and let [u, v] ⊆ B. If all relations among crystal operators within [u, v] are
implied by Stembridge relations, then we say that [u, v] is a Stembridge only
interval. Similarly, if all relations among crystal operators are implied by
Stembridge or Sternberg relations, then we say that [u, v] is a Stembridge
and Sternberg only interval.

We note that Stembridge and Sternberg only intervals will only appear
in crystals of doubly laced type while Stembridge only intervals may appear
in either simply laced or doubly laced crystals.

Throughout this section, we assume that all intervals are either Stem-
bridge only or Stembridge and Sternberg only intervals. Doing so allows
us to control the structure of minimal skipped intervals and construct lex-
icographic discrete Morse functions. We have that each minimal skipped
interval (as described in Remark 2) in a lexicographic discrete Morse func-
tion will arise from a Stembridge or Sternberg relation. Hence, all minimal
skipped intervals will be of the forms seen in Figure 4 and Figure 5.

In the case where B is the crystal of a highest weight representation
of simply laced type (more generally, when we consider a Stembridge only
interval [u, v]), all minimal skipped intervals are of the form seen in Figure
4. Assume i < j. The saturated chain in red, namely the chain x�u0� y in
the left figure and x�u0�u1�u2�y in the right figure, represent the pieces
of the Stembridge relation that may be on a fully covered saturated chain.
This is because it is the lexicographically second chain. The lexicographically
earlier chain, (with vertices labeled by the vi,) will give rise to a minimal
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skipped interval. In the left figure, the minimal skipped interval covers the

single rank corresponding to the vertex u0. In the right figure, the minimal

skipped interval covers the ranks corresponding to the vertices u0, u1, and u2.

x

v0 u0

y

(i)

i j

j i

x

v0 u0

v1 u1

v2 u2

y

(ii)

i j

j i

j i

i j

Figure 4: Structure of minimal skipped intervals in simply laced case.

When a minimal skipped interval arises from a Stembridge relation (as in

Figure 4), we say the minimal skipped interval involves the crystal operators

fi and fj , (e.g. the minimal skipped intervals in Figure 4 involves the crystal

operators fi and fj). We remark that the possible values for i and j depend

on the type of the crystal. For example, if the crystal is of type An, then a

degree four Stembridge relation can only involve fi and fi+1. We discussed in

Section 3 when a degree four Stembridge relation can occur for the different

types, i.e. the possible values of i and j for our minimal skipped intervals.

When B is the crystal of a highest weight representation of doubly laced

type, in addition to the Stembridge relations, minimal skipped intervals

may also arise from the degree five or degree seven Sternberg relations. By

Proposition 3.2, we know the degree five and degree seven Sternberg relations

can only occur upward from some vertex x if fn−1(x) �= 0 and fn(x) �= 0.

Therefore, we say that minimal skipped intervals arising from Sternberg

relations involve the crystal operators fn−1 and fn. The possible Sternberg

relations are shown below. The saturated chains with vertices labeled by the

ui (which we marked with red), represent the piece of the Sternberg relation

that may be on a fully covered saturated chain, as described above in the

simply laced case.

Remark 6. Note that, unlike in the simply laced case, the chain within

the Sternberg relations that is a candidate to be a part of a fully covered

saturated chain is not always lexicographically last. This is due to the degree
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Figure 5: Additional minimal skipped intervals in doubly laced case.

two Stembridge relations sitting inside the degree five and degree seven

Sternberg relations.

We now give a series of type dependent definitions which are needed to

describe the algorithm used to search for a fully covered saturated chain.

We will use these definitions to define what we will call a greedily maximal

chain. We then show any fully covered saturated chain is greedily maximal

and that there is at most one greedily maximal saturated chain in a given
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interval.

Definition 4.4. Let [u, v] be an interval in a highest weight crystal of type
An, Bn, or Cn. Let x be a vertex along a saturated chain C in [u, v] and
fi(x) also belong to C. Suppose there is a minimal skipped interval for the
interval system of C involving the crystal operators fi and fl beginning at x.
Let I ′ be the multiset of indices of crystal operators that need to be applied
along C from fi(x) to v. We say that fj is the maximal operator for fi at x
if

j = max{k | k ∈ I ′ and k < i}.

Remark 7. This is well defined since there is a finite choice of crystal op-
erators and we can always determine which crystal operators will be used
along any saturated chain by Lemma 4.1. It should be noted that j need
not equal l.

We wish to extend the idea of maximal operators to the remaining types.
We will see that to define greedily maximal saturated chains, we need to
adjust our definition of maximal operators. The main difference is that in
all types except An, we can have a degree four Stembridge relation among
non-consecutively indexed crystal operators. To take this into account, we
define special vertices. We begin with type Dn.

Definition 4.5. Let B be the crystal of a highest weight representation of
type Dn. Let [u, v] ⊆ B be a Stembridge only interval. Let x be a vertex on
a saturated chain C from u to v. We say that x is an (n,n-2)-special vertex
in C if there is an edge labeled n, upward from x along C which is the start
of a minimal skipped interval for the interval system of C and n ∈ I where
I is the multiset of edge labels for [fn(x), v].

Maximal operators for these special vertices behave differently.

Definition 4.6. Let [u, v] be an interval in a highest weight crystal of type
Dn. Let x be a vertex along a saturated chain C in [u, v] and fi(x) also
belong to C. Suppose there is a minimal skipped interval for the interval
system of C involving the crystal operators fi and fl beginning at x. Let
I ′ be the multiset of indices of crystal operators that need to be applied
along C from fi(x) to v. If i = n and n ∈ I ′, then fn−2 is defined to be the
maximal operator for fn at x. Else, we say that fj is the maximal operator
for fi at x if

j = max{k | k ∈ I ′ and k < i}.

We now move on to the exceptional types E6, E7, and E8.
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Definition 4.7. Let B be the crystal of a highest weight representation of
type E6. Let [u, v] ⊆ B be a Stembridge only interval. Let x be a vertex on
a saturated chain C from u to v. We say that x is a (6,3)-special vertex if
there is an edge labeled 6 upward from x along C which is the start of a
minimal skipped interval for the interval system of C and 6 ∈ I where I is
the multiset of edge labels for [f6(x), v].

Definition 4.8. Let [u, v] be an interval in a highest weight crystal of type
E6. Let x be a vertex along a saturated chain C in [u, v] and fi(x) also
belong to C. Suppose there is a minimal skipped interval for the interval
system of C involving the crystal operators fi and fl beginning at x. Let I ′

be the multiset of indices of crystal operators that need to be applied along
C from fi(x) to v. If i = 6 and 6 ∈ I ′, then f3 is defined to be the maximal
operator for fn at x. Else, we say that fj is the maximal operator for fi at
x if

j = max{k | k ∈ I ′ and k < i}.

Similarly, we have the following for type E7.

Definition 4.9. Let B be the crystal of a highest weight representation of
type E7. Let [u, v] ⊆ B be a Stembridge only interval. Let x be a vertex on
a saturated chain C from u to v. We say that x is a (7,3)-special vertex if
there is an edge labeled 7 upward from x along C which is the start of a
minimal skipped interval for the interval system of C and 7 ∈ I where I is
the multiset of edge labels for [f7(x), v].

Definition 4.10. Let [u, v] be an interval in a highest weight crystal of
type E7. Let x be a vertex along a saturated chain C in [u, v] and fi(x) also
belong to C. Suppose there is a minimal skipped interval for the interval
system of C involving the crystal operators fi and fl beginning at x. Let I ′

be the multiset of indices of crystal operators that need to be applied along
C from fi(x) to v. If i = 7 and 7 ∈ I ′, then f3 is defined to be the maximal
operator for fn at x. Else, we say that fj is the maximal operator for fi at
x if

j = max{k | k ∈ I ′ and k < i}.

Finally, we consider type E8.

Definition 4.11. Let B be the crystal of a highest weight representation
of type E8. Let [u, v] ⊆ B be a Stembridge only interval. Let x be a vertex
on a saturated chain C from u to v. We say that x is a (8,5)-special vertex
if there is an edge labeled 8 upward from x along C which is the start of a
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minimal skipped interval for the interval system of C and 8 ∈ I where I is
the multiset of edge labels for [f8(x), v].

Definition 4.12. Let [u, v] be an interval in a highest weight crystal of
type E8. Let x be a vertex along a saturated chain C in [u, v] and fi(x) also
belong to C. Suppose there is a minimal skipped interval for the interval
system of C involving the crystal operators fi and fl beginning at x. Let I ′

be the multiset of indices of crystal operators that need to be applied along
C from fi(x) to v. If i = 8 and 8 ∈ I ′, then f5 is defined to be the maximal
operator for fn at x. Else, we say that fj is the maximal operator for fi at
x if

j = max{k | k ∈ I ′ and k < i}.

We now define what a greedily maximal chain is. We will prove that any
fully covered saturated chain must be greedily maximal.

Definition 4.13. A saturated chain C is greedily maximal if for each mini-
mal skipped interval involving fi and fj , (i < j), fi is the maximal operator
for fj .

In order to prove our main result connecting the Möbius function of an
interval [u, v] with relations among crystal operators within this interval,
we first prove a series of lemmas. We will first show that any fully covered
saturated chain must be greedily maximal. Then we will show that in the
intervals we are interested in, namely Stembridge only and Stembridge and
Sternberg only intervals, there is at most one greedily maximal saturated
chain. Finally, we give an algorithm to find the greedily maximal chain.

We begin by proving the following lemma for crystals of highest weight
representations of all types. The main idea from this proof is used in several
proofs throughout the rest of this section.

Lemma 4.14. Let [u, v] ⊆ B be a Stembridge only or a Stembridge and
Sternberg only interval, for B the crystal of a highest weight representation.
Let

j = max{k | k is in the multiset of edge labels of (u, v)},

then fj must be the first operator applied along a fully covered saturated
chain, i.e. j must appear first in the edge label sequence of any fully covered
saturated chain.

Proof. Suppose by way of contradiction that there is a fully covered satu-
rated chain, C, from u to v such that fj is not the first operator applied



140 Molly Lynch

along C. Consider the first occurrence of the crystal operator fj as we pro-
ceed upward along C from u towards v, namely the first edge colored j.
By definition of j, the label k on the edge immediately preceding the edge
colored j on C satisfies k < j. Since all Stembridge and Sternberg relations
involve exactly two crystal operators and all minimal skipped intervals in
[u, v] arise from Stembridge or Sternberg relations, the rank corresponding
to the vertex labeled x (see Figure 6) on the fully covered saturated chain C
will not be covered by any minimal skipped intervals, as we justify next. If

C:
u

· · ·
x

· · ·
v

k j

Figure 6.

the rank corresponding to the vertex labeled x was covered by some minimal
skipped interval, the corresponding Stembridge or Sternberg relation must
involve the crystal operators fk and fj . However, since k < j, this piece of
the Stembridge or Sternberg relation along C will be lexicographically ear-
lier than the piece with edge label sequence (j, k). Hence, we will not have
a minimal skipped interval covering the rank corresponding to the vertex x.
This contradicts the saturated chain C being fully covered.

The interval systems for Stembridge and Sternberg only intervals behave
differently than those for Stembridge only intervals. Namely, no minimal
skipped intervals will overlap in the Stembridge only intervals case, but this
does not carry over to the Stembridge and Sternberg only intervals case. We
begin with the Stembridge only intervals. We note that any result proven for
Stembridge only intervals proves the result for crystals of simply laced type
whereas we need to prove analogous results for Stembridge and Sternberg
only intervals to extend to the doubly laced case.

Lemma 4.15. Let [u, v] ⊆ B where B is the crystal of a highest weight rep-
resentation. Assume [u, v] is a Stembridge only interval. Let C be a saturated
chain in [u, v]. Then no two minimal skipped intervals in the interval system
of C overlap, i.e. no two minimal skipped intervals cover a common rank.

Proof. Let I be the interval system for C. Any minimal skipped interval in
I is of the form seen in Figure 4. The first type of minimal skipped interval
coming from the degree two Stembridge relation covers exactly one rank.
Therefore, any minimal skipped interval arising from this relation cannot
overlap with another minimal skipped interval. Hence, we restrict our atten-
tion to minimal skipped intervals that arise from the degree four Stembridge
relation fifjfjfi(x) = fjfififj(x) where i < j.
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Suppose we have a vertex x ∈ C such that there is a minimal skipped
interval for the interval system of C beginning at x coming from a degree
four Stembridge relation. If there exists another minimal skipped interval
that overlaps with the one arising from the degree four Stembridge relation
beginning at x, then using the notation from Figure 4, it must either begin
at the vertex u0 or the vertex u1. Since [u, v] is a Stembridge only interval,
if we have a minimal skipped interval beginning at u0 or u1, it must come
from a degree two or degree four Stembridge relation involving fi and fj .
In fact, it must come from a degree four Stembridge relation. If not, the
minimal skipped interval arising from the degree four Stembridge relation
beginning at x for the interval system of C would not be minimal.

However, we cannot have a minimal skipped interval beginning at u0
because the lexicographically last chain in a degree four Stembridge relation
does not have an edge label sequence beginning with i, i, j. We also cannot
have a minimal skipped interval beginning at u1 since we have fi being ap-
plied before fj and therefore we would only see the lexicographically earlier
piece of a Stembridge relation on C. As a result, this will not give rise to
a minimal skipped interval. Therefore, no two minimal skipped intervals in
the interval system of C will overlap.

Remark 8. Lemma 4.15 tells us that if we have a fully covered saturated
chain in a Stembridge only interval in a crystal of a highest weight repre-
sentation, then the truncation algorithm will not need to be performed.

Now, we prove that any fully covered saturated chain must be greedily
maximal, in the sense of Definition 4.13. We begin with the proof in type An.
The ideas for the proofs of the other types are similar but require slightly
more care. We include the proof for type Dn. The proofs for types E6, E7,
and E8 are analogous. We will use this to prove that if there is a fully covered
saturated chain in a given interval, then this chain is unique.

Lemma 4.16. Let B be the crystal of a highest weight representation of
type An and [u, v] ⊆ B be a Stembridge only interval, then any fully covered
saturated chain in [u, v] is greedily maximal.

Proof. Let C be a fully covered saturated chain from u to v and let I be
the interval system for C. Let x ∈ C such that the rank of x is the last rank
covered by some minimal skipped interval in I. Since C is fully covered, by
Lemma 4.15, x must be the start of a new minimal skipped interval for I.
Suppose the first edge along C in this minimal skipped interval is labeled i.
Let j be the index such that fj is the maximal operator for fi at x. Assume
by way of contradiction that the minimal skipped interval upward from x
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involves fi and fk where k �= j. Since fk is not the maximal operator for fi
at x, we know that k < j.

We note that since i > j > k, we cannot have k = i − 1. This implies
the minimal skipped interval involving fi and fk arises from a degree two
Stembridge relation, fkfi(x) = fifk(x). Therefore, the next time there is an
edge colored j upward from x to v along C, the edge below it on C will have
label strictly less than j by definition of maximal operator. This contradicts
C being fully covered via the same argument as the proof of Lemma 4.14.
Namely, there will exist a vertex along the saturated chain C that is not
contained in any minimal skipped interval.

We now prove the analogous result for type Dn.

Lemma 4.17. Suppose that [u, v] ⊆ B is a Stembridge only interval, for B a
crystal of a highest weight representation of type Dn, then any fully covered
saturated chain in [u, v] is greedily maximal.

Proof. Recall, for crystals coming from highest weight representations of
type Dn, for all y such that fn(y) �= 0 and fi(y) �= 0, we have that fnfi(y) =
fifn(y) unless i = n − 2. In the case i = n − 2, it is possible we have
fnf

2
n−2fn(y) = fn−2f

2
nfn−2(y).

Suppose by way of contradiction that the fully covered saturated chain
C is not greedily maximal. Therefore, there exists a vertex x that is the
start of a minimal skipped interval involving fi and fj with i > j, where
fj is not the maximal operator for fi at x. As can be seen in Proposition
3.1, each crystal operator fk can be involved in a degree four Stembridge
relation with at most one crystal operator fl, where l < k. Additionally, with
the exception of fn and fn−2, all degree four Stembridge relations involve
consecutively indexed operators, i.e. fk and fk+1. Therefore, the case where
x is a (n, n− 2)-special vertex needs to be treated separately.

Assume x is a (n, n − 2)-special vertex in C and the minimal skipped
interval upward from x involves fn and fj . Since we are assuming for con-
tradiction that C is not greedily maximal, we must have that fn−2 is not
the maximal operator for fn at x (i.e. j �= n−2). Then the minimal skipped
interval must arise from a degree two Stembridge relation since fn com-
mutes with all other operators. Consider the next edge labeled n proceeding
upwards along C. Since n is the largest possible edge label occurring on
saturated chains from u to v, the edge in C below the edge colored n will
have label k for some k ∈ [n−1]. By the nature of Stembridge relations, the
rank of the vertex between the k edge and the n edge must be uncovered as
seen in the proof of Lemma 4.14.
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Therefore, the only way to have C be a fully covered saturated chain is
if the maximal operator for fn at x is fn−2. This is because if the minimal
skipped interval for C beginning at x comes from a degree four Stembridge
relation involving fn and fn−2, then the next time there is a vertex y on
C such that fn(y) is also along C, it is the start of a new minimal skipped

interval and the rank of y is contained in a previous minimal skipped interval.
For any minimal skipped interval that does not begin with an (n, n − 2)-
special vertex, the proof is analogous to the type An case from Lemma
4.16.

We now demonstrate via example the ideas of Lemma 4.17.

Example 4.18. Consider the type D3 crystal B of shape (2, 1, 1) and the
interval [u, v] shown in Figure 7 where

u = 1 2

3

3

, v = 2 2

3

1

.

One can check that [u, v] is a Stembridge only interval. By Lemma 4.14, we
know any fully covered saturated chain begins with the application of f3.
By weight considerations, it follows that f3 needs to be applied again to
get from f3(u) to v. Hence, u is a (3, 1)-special vertex, so f1 is the maxi-

mal operator for f3 at u. Therefore, the fully covered saturated chain begins
u�f3(u)�f1f3(u). The first minimal skipped interval comes from the Stem-
bridge relation f1f

2
3 f1(u) = f3f

2
1 f3(u). The next minimal skipped interval

comes from the Stembridge relation f2f3(f
2
1 f3(u)) = f3f2(f

2
1 f3(u)). There-

fore, the chain C with label sequence (3, 1, 1, 3, 2) is fully covered. We note
that C is not the lexicographically last chain in this interval. The lexico-
graphically last chain has edge label sequence (3, 2, 1, 1, 3).

We now state the corresponding lemma for the exceptional types E6, E7,
and E8.

Lemma 4.19. Suppose that [u, v] ⊆ B is a Stembridge only interval, for B
a crystal of a highest weight representation of type E6, E7, or E8, then any
fully covered saturated chain in [u, v] is greedily maximal.

Proof. This proof is analogous to the proof of Lemma 4.17 with (6, 3)-special
vertices playing the role of (n, n−1)-special vertices for type E6, (7, 3)-special
vertices playing the role of (n, n− 1)-special vertices for type E7, and (8, 5)-
special vertices playing the role of (n, n−1)-special vertices for type E8.
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Figure 7: Type Dn greedily maximal saturated chain.

Lemmas 4.16, 4.17, and 4.19 say that for all finite simply laced types, any
fully covered saturated chain is greedily maximal. We now give a description
of how to find the unique fully covered saturated chain in Stembridge only
intervals in crystals of highest weight representations, when it exists.

Theorem 4.20. Let [u, v] ⊆ B be a Stembridge only interval, for B the
crystal of a highest weight representation. Then, there is at most one fully
covered saturated chain in [u, v].

Proof. From Lemma 4.14, we know that in order to have a fully covered
saturated chain, the chain must start with the application of the crystal
operator fk where

k = max{i | i is in the multiset of edge labels of [u, v]}.
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Moreover, this says that if fk(u) = 0, then there is no fully covered satu-
rated chain in [u, v]. Assuming now that fk(u) �= 0, we next need to apply
fj where fj is the maximal operator for fk at u because any fully covered
saturated chain is greedily maximal. If a fully covered saturated chain exists,
then it begins with the relations u� fk(u)� fjfk(u). In order for the rank
of the vertex fk(u) to be covered by a minimal skipped interval, the chain
u� fk(u)� fjfk(u) must be contained within a Stembridge relation. In par-
ticular, this can only happen if fj(u) �= 0. If fj(u) = 0, then there is no fully
covered saturated chain in this interval because the rank of the vertex fk(u)
will be uncovered. If fj(u) �= 0, then C must contain the lexicographically
later chain in the Stembridge relation upward from u, involving fk and fj .

We repeat the process above, beginning at the last uncovered rank. More
specifically, this minimal skipped interval described above either ends with
the application of fk (in the case where we have a degree four Stembridge
relation between fk and fj) or fj (in the case where we have a degree two
Stembridge relation between fk and fj). We then see if the maximal operator
for the final operator in the previous relation is contained in a Stembridge
relation with the final operator beginning at the vertex of the last uncovered
rank. If not, there is no fully covered saturated chain in this interval. We
continue this process until we reach v. If there is a saturated chain from
u to v that is greedily maximal, then we have a fully covered saturated
chain. Note that since we chose maximal operators at each step, this chain
is uniquely described.

Using this result, we can say something about the Möbius function of
the interval.

Corollary 4.21. For an interval as above, we have μ(u, v) ∈ {−1, 0, 1}.

Proof. This follows from the correspondence of the reduced Euler charac-
teristic of the order complex of an open interval with the Möbius function
of the interval. More specifically, we have the following:

μ(u, v) = χ̃(Δ(u, v)) = χ̃(ΔM (u, v)),

where ΔM (u, v) is the CW-complex obtained from the discrete Morse func-
tion. Since there is at most one fully covered saturated chain, the discrete
Morse function has at most one critical cell. In this case, the cell complex is
homotopy equivalent to a sphere with the same dimension as the dimension
of the critical cell. Hence, the reduced Euler characteristic will be ±1 when
there is a fully covered saturated chain, and 0 otherwise.
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Remark 9. The converse of Corollary 4.21 is not true. There exist intervals
[u, v] in crystals of highest weight representations of simply laced type such
that μ(u, v) ∈ {−1, 0, 1} where the relations among crystal operators are
not implied by Stembridge relations.

In practice, we use the contrapositive of Corollary 4.21 to search for new
relations among crystal operators as will be seen for the doubly laced case
in Section 5. We state it here as a corollary.

Corollary 4.22. Let [u, v] ∈ B, for B the crystal of a highest weight rep-
resentation of finite simply laced type. If μ(u, v) /∈ {−1, 0, 1}, then there
exists a relation among crystal operators that is not implied by Stembridge
relations.

We now consider crystals of types Bn and Cn and so we also need to
consider Stembridge and Sternberg only intervals. For these crystals, it is
possible to have minimal skipped intervals that overlap.

Lemma 4.23. Suppose B is the crystal of a highest weight representation of
type Bn or Cn. Let [u, v] ⊆ B be a Stembridge and Sternberg only interval.
If all minimal skipped intervals arise from Stembridge relations or degree
five Sternberg relations, then there is no overlap among minimal skipped
intervals.

Proof. The minimal skipped intervals arising from degree two and degree
four Stembridge relations remain non-overlapping in the doubly laced case
by the same argument used in Lemma 4.15. Therefore, we only need to show
that if there is a minimal skipped interval for some saturated chain C that
comes from a degree five Sternberg relation, then no other minimal skipped
intervals overlap with it. The argument is analogous to that of the degree
four Stembridge case.

First, suppose that there is a minimal skipped interval coming from (i)
in Figure 5. In this case, the minimal skipped interval covers the ranks of
the vertices {u0, u1, u2, u3}. Therefore, we just need to show that no minimal
skipped intervals begin at u0, u1, or u2. In each of these cases, the minimal
skipped interval would have to involve the crystal operators fn−1 and fn.
However, this cannot happen because no saturated chain within a Stem-
bridge or Sternberg relation begins with multiple applications of fn−1, i.e.
no edge label sequence begins (n− 1, n− 1, ...). Hence, there is no minimal
skipped interval that begins at u0 or u1. In addition, there is no minimal
skipped interval beginning at u2 because any Stembridge or Sternberg rela-
tion upward from u2 must involve fn−1 and fn. However, since fn−1 is being
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applied before fn, due to the lexicographic ordering of chains, we would not
have a minimal skipped interval here.

Next, we consider case (iii) from Figure 5. As with before, the only
possibility for overlap occurs if a minimal skipped interval begins at u0, u1,
or u2 and it would need to involve the crystal operators fn−1 and fn. But as
before, no saturated chain within a Stembridge or Sternberg relation begins
with the repeated application of a single crystal operator so we cannot have
a new minimal skipped interval beginning at u0 or u2. Also, any chain in
a Stembridge or Sternberg relation involving the operators fn−1 and fn
beginning with fn−1, will be the lexicographically earlier chain within that
Stembridge or Sternberg relation. As a result, there will be no overlap among
minimal skipped intervals coming from a degree five Sternberg relation.

While there is no overlap among minimal skipped intervals coming from
Stembridge relations and degree five Sternberg relations, there can be over-
lap with a minimal skipped interval coming from a degree seven Sternberg
relation. However, we show that if the interval system of a fully covered sat-
urated chain is overlapping, then the truncated interval system still covers
all ranks. To do so, we prove a general fact about truncated interval systems
for lexicographic discrete Morse functions. See Section 2.4 for background
on the truncation algorithm.

Let P be an edge labeled poset and let [u, v] be an interval in P . We prove
that in certain cases if a saturated chain C from u to v is fully covered by the
I-intervals but there is overlap among minimal skipped intervals, then the
J-intervals will also fully cover C. We will order our I-interval system I =
{I1, ..., Im} so that the lowest rank elements sequentially increase in rank.

Theorem 4.24. Let P be an edge labeled poset and let [u, v] ⊆ P . Suppose
we have constructed a lexicographic discrete Morse function on [u, v]. Let C
be a saturated chain from u to v that is fully covered by its I-interval system
with the following properties:

(1) Every minimal skipped interval in I either covers exactly one rank or
covers at least three ranks,

(2) For two minimal skipped intervals Ik and Ik+1, either Ik ∩ Ik+1 = ∅ or
Ik ∩ Ik+1 contains exactly one element, i.e. any two minimal skipped
intervals can overlap on at most one rank.

In this case, after truncation the J-intervals fully cover C.

Proof. We aim to prove that after the truncation algorithm, the J-intervals
cover all ranks of C. To do so, we examine what happens at each step of
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the algorithm. Note that if a minimal skipped interval Ij covers exactly
one rank, it cannot overlap with any other intervals and thus will also be a
J-interval.

To begin, we set J1 = I1 since I1 has the element of minimal rank among
all I-intervals. We then need to truncate any I-intervals that overlap with
I1. If I1 ∩ I2 = ∅, then set J2 = I2. Otherwise, if I1 ∩ I2 �= ∅, then there is
exactly one rank in this intersection. In this case, we remove the vertex of
this rank from I2 to get an interval I ′2 with one fewer element than I2. If I

′
2

is still minimal, it becomes a J-interval. We assumed each minimal skipped
interval that may have overlap had at least three elements and can overlap
with other elements in at most one rank. Therefore, |I ′2| ≥ 2 and at most
one of these elements is contained in another minimal skipped interval. As a
result, all remaining minimal skipped intervals in the I-interval system are
still minimal so there are none to throw out. We set J2 = I ′2.

We now repeat the process considering I3. If I2 ∩ I3 = ∅, set J3 = I3.
Otherwise, if I2 ∩ I3 �= ∅, there is at most one element in this intersection.
We remove this element from I3 to get I ′3 and by the same argument as
before this is not contained in any other minimal skipped interval in I.

Continuing this process gives nonoverlapping J-intervals that fully cover
the saturated chain C as desired.

We use this result in the next lemma.

Lemma 4.25. Suppose B is the crystal of a highest weight representation of
type Bn or Cn. Let [u, v] ⊆ B be a Stembridge and Sternberg only interval.
Let C be a saturated chain from u to v such that its interval system covers all
ranks, but with overlap among minimal skipped intervals. Then C remains
fully covered after the truncation algorithm.

Proof. From Lemma 4.23, we know that there is no overlap between min-
imal skipped intervals that arise from Stembridge relations or degree five
Sternberg relations. Therefore, we restrict our attention to fully covered sat-
urated chains that have a minimal skipped interval arising from a degree
seven Sternberg relation. Let C be one such fully covered saturated chain.

Suppose the minimal skipped interval for C coming from the degree seven
Sternberg relation is of the form seen in Figure 5 (ii). Say this minimal
skipped interval begins at a vertex x ∈ C. If the number of times fn is
applied to get from x to v is greater than three, then in order for C to be
fully covered, there is overlap among minimal skipped intervals. Similarly, if
the minimal skipped interval comes from the degree seven Sternberg relation
seen in Figure 5 (iv) and the number of times fn is applied to get from x to v
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is greater than four, then there is overlap among minimal skipped intervals.
To see why the previous two statements are true, note that in either case,
the label sequence of the degree seven Sternberg relation that is contained
in C ends with n− 1. If fn still needs to be applied along C to reach v, the
rank of the first vertex y in C such that fn(y) is in C is not be contained in
a minimal skipped interval unless there is overlap. This is because the edge
along C below y is labeled i for some i ∈ [n − 1]. The rank of the vertex
y is uncovered by the same argument seen in Lemma 4.14. To remedy this,
there must exist a minimal skipped interval begin with the application of
fn. However, this can only happen if there is overlap.

In either case, the overlap among minimal skipped intervals will include
only the rank of the vertex u5 from Figure 5. The proof of why this is the case
is analogous to that seen in Lemma 4.23. Since all minimal skipped intervals
arise from Stembridge or Sternberg relations, a new minimal skipped interval
can only arise off of the degree seven Sternberg relation if it starts at the
vertex u4. Depending on how many times fn is applied from u to v, the
minimal skipped interval may be a degree four Stembridge, degree five or
degree seven Sternberg relation. Note that it cannot arise from a degree two
Stembridge relation. If this were the case, the original degree seven minimal
skipped interval would not in fact be minimal.

Note that each minimal skipped interval either covers exactly one rank
or at least three ranks. Additionally, any two minimal skipped intervals are
either disjoint, or overlap at exactly one rank. Therefore, by Theorem 4.24,
if the I-intervals cover all ranks, then the J-intervals do as well.

The proof that fully covered saturated chains are greedily maximal in the
doubly laced case is analogous to the proof for type An. The only difference
is that there are possibly overlapping intervals. These only occur with degree
seven Sternberg relations, which always involve the crystal operators fn−1

and fn. As a result, in this case, the minimal skipped intervals will always
involve the maximal operator for fn. Therefore, we have the following result.

Lemma 4.26. Let B be the crystal of a highest weight representation of type
Bn or Cn and [u, v] ⊆ B be a Stembridge and Sternberg only interval. Then
any fully covered saturated chain in [u, v] is greedily maximal.

Proof. As stated above, the proof is analogous to that of Lemma 4.16.

We now prove for any interval that is Stembridge and Sternberg only
in a highest weight crystal of doubly laced type, there is at most one fully
covered saturated chain. The proof is analogous to the simply laced type
seen in Theorem 4.20.
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Theorem 4.27. Let [u, v] ⊆ B be a Stembridge and Sternberg only interval,
for B the crystal of a highest weight representation of finite doubly laced
type. Then there is at most one fully covered saturated chain in [u, v].

Proof. Let C be a saturated chain from u to v. If there is no overlap among
the minimal skipped intervals in the interval system of C, then the argument
from Theorem 4.20 applies directly. The only difference for doubly laced
crystals is that overlap can occur with minimal skipped intervals that arise
from degree seven Sternberg relations. Hence, we need only to consider fully
covered saturated chains where there is a minimal skipped interval that
arises from a degree seven Sternberg relation.

Let C be one such chain. Suppose x is a vertex in C such that there
is a minimal skipped interval for the interval system of C beginning at x
coming from a degree seven Sternberg relation. In this case, we check if
there is overlap among minimal skipped intervals as described in Lemma
4.25. Recall that this overlap can occur at exactly one place. In this case,
we travel up C until the end of the last minimal skipped interval with an
overlap. From there, we once again look for the maximal operator as in the
proof of Theorem 4.20. At each step, there is a unique choice, therefore a
fully covered saturated chain from u to v is unique, if it exists.

Once again, having at most one fully covered saturated chain in a Stem-
bridge and Sternberg only interval allows us to say something about the
Möbius function.

Corollary 4.28. For an interval as above, μ(u, v) ∈ {−1, 0, 1}.

Proof. The proof is completely analogous to that of Corollary 4.21.

As in the simply laced case, we use the contrapositive of Corollary 4.28
to search for new relations among crystal operators. We state this here as a
corollary. For examples illustrating this result, see Section 5.

Corollary 4.29. Let [u, v] ∈ B, for B the crystal of a highest weight rep-
resentation of type Bn or Cn. If μ(u, v) /∈ {−1, 0, 1}, then there exists a
relation among crystal operators that is not implied by Stembridge or Stern-
berg relations.

5. New relations in crystals of doubly laced type

While trying to find new relations among crystal operators is a difficult
task, computing the Möbius function of a given interval is algorithmic and
efficient. Specifically, we use SAGE to search for intervals among crystals of
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Figure 8: New relation in type C3 crystal B(4,3,1).

finite classical type with Möbius function not equal to −1, 0, or 1. In general,

it is not obvious how to search for new relations among crystal operators.

By establishing a relationship between the Möbius function of an interval

within our crystal posets and relations among crystal operators within this

interval, we have a computational and algorithmic tool to find new relations.

We have found multiple new relations among crystal operators in crystals

of type Bn and Cn. We do so by examining intervals where the Möbius

function is not equal to −1, 0 or 1. See Figure 8 above for an example of a
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Figure 9: New relation in type B3 crystal B(4,2).

new relation among crystal operators found in the type C3 crystal B(4,3,1) of
shape λ = (4, 3, 1), namely we have x ∈ B(4,3,1) such that:

f2f
2
3 f

2
2 f1(x) = f2f3f2f3f2f1(x) = f3f

2
2 f3f1f2(x) = f3f2f1f2f3f2(x)

= f3f
2
2 f1f3f2(x)

See Figure 9 for an example of a new relation among crystal operators
found in the type B3 crystal B(4,2) of shape λ = (4, 2). Note that the open
interval (u, v) has exactly two connected components. It is clear from Figure
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9 that there is no way to move from the saturated chain with label sequence

(2, 3, 3, 1, 1, 2) to the saturated chain with label sequence (1, 2, 3, 3, 2, 1) using

only Stembridge and Sternberg relations. Therefore, this interval gives a new

relation among crystal operators. Namely, we have u ∈ B(4,2) such that:

f2f
2
1 f

2
3 f2(u) = f1f2f

2
3 f2f1(u)

We note that there are many intervals in crystals of highest weight rep-

resentations of finite type where the Möbius function is not equal to −1, 0

or 1 that have yet to be explored. It is likely that there are many unknown

relations in the doubly laced case still to be discovered. This paper gives a

tool to find these.
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