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Avoiding long Berge cycles II, exact bounds for all n
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Let EGr(n, k) denote the maximum number of edges in an n-vertex
r-uniform hypergraph with no Berge cycles of length k or longer.
In the first part of this work [5], we have found exact values of
EGr(n, k) and described the structure of extremal hypergraphs for
the case when k − 2 divides n− 1 and k ≥ r + 3.

In this paper we determine EGr(n, k) and describe the extremal
hypergraphs for all n when k ≥ r + 4.
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1. Definitions, Berge F subhypergraphs

An r-uniform hypergraph, or simply r-graph, is a family of r-element subsets
of a finite set. We associate an r-graph H with its edge set and call its vertex
set V (H). Usually we take V (H) = [n], where [n] is the set of first n integers,

[n] := {1, 2, 3, . . . , n}. We also use the notation H ⊆
(
[n]
r

)
.

Definition 1.1. For a graph F with vertex set {v1, . . . , vp} and edge set
{e1, . . . , eq}, a hypergraph H contains a Berge F if there exist distinct ver-
tices {w1, . . . , wp} ⊆ V (H) and edges {f1, . . . , fq} ⊆ E(H), such that if
ei = vαvβ, then {wα, wβ} ⊆ fi.

Of particular interest to us are Berge cycles and Berge paths.

Definition 1.2. A Berge cycle of length � in a hypergraph is a set of
� distinct vertices {v1, . . . , v�} and � distinct edges {e1, . . . , e�} such that
{vi, vi+1} ⊆ ei with indices taken modulo �.
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A Berge path of length � in a hypergraph is a set of �+1 distinct vertices

{v1, . . . , v�+1} and � distinct hyperedges {e1, . . . , e�} such that {vi, vi+1} ⊆ ei
for all 1 ≤ i ≤ �.

Let H be a hypergraph and p be an integer. The p-shadow, ∂pH, is the

collection of the p-sets that lie in some edge of H. In particular, we will often

consider the 2-shadow ∂2H of a r-uniform hypergraph H. Each edge of H
yields in ∂2H a clique on r vertices.

2. Graphs without long cycles

Theorem 2.1 (Erdős and Gallai [1]). Let k ≥ 3 and let G be an n-vertex

graph with no cycle of length k or longer. Then e(G) ≤ (k − 1)(n− 1)/2.

This bound is the best possible if n− 1 is divisible by k− 2. A matching

lower bound can be obtained by gluing together complete graphs of sizes

k − 1.

Let EG(n, k) denote the maximum size of a graph on n vertices such

that it does not contain any cycle of length k or longer. Write n in the form

of (k − 2)�n−1
k−2 � +m where 1 ≤ m ≤ k − 2. Considering an n-vertex graph

whose 2-connected blocks are complete graphs of size k−1 except one which

is a Km we get

(1) EG(n, k) ≥ f(n, k) :=

⌊
n− 1

k − 2

⌋(
k − 1

2

)
+

(
m

2

)
.

It took some 15 years to prove that equality holds in (1) for all n and

k ≥ 3 (Kopylov [8] and independently Woodall [10]). One of the difficulties

is, as Faudree and Schelp [3, 4] observed, that for odd k there are infinitely

many extremal graphs very different from the ones above.

Construction 2.2. Fix k ≥ 4, n ≥ k, k
2 > a ≥ 1. Define the n-vertex

graph Hn,k,a as follows. The vertex set of Hn,k,a is partitioned into three sets

A,B,C such that |A| = a, |B| = n − k + a and |C| = k − 2a and the edge

set of Hn,k,a consists of all edges between A and B together with all edges in

A ∪ C. B is taken to be an independent set.

When a ≥ 2, Hn,k,a is 2-connected, has no cycle of length k or longer,

and

e(Hn,k,a) =

(
k − a

2

)
+ a(n− k + a).
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Figure 1: H14,11,3.

Kopylov and Woodall ([8] and [10]) characterized the structure of the
extremal graphs. Namely, either

– the blocks of G are p complete graphs Kk−1 and a Km, where p :=
�n−1
k−2 �, or

– k is odd, m = (k + 1)/2 or (k − 1)/2 and q of the blocks of G are
Kk−1’s and one block is a copy of an Hn−q(k−2),k,(k−1)/2.

3. Main result: Hypergraphs with no long Berge cycles

Let EGr(n, k) denote the maximum size of an r-uniform hypergraph on n
vertices that does not contain any Berge cycle of length k or longer. In [5],
we proved an analogue of the Erdős–Gallai theorem on cycles for r-graphs.

Theorem 3.1 ([5]). Let r ≥ 3 and k ≥ r+3, and suppose H is an n-vertex
r-graph with no Berge cycle of length k or longer. Then e(H) ≤ n−1

k−2

(
k−1
r

)
.

Moreover, equality is achieved if and only if ∂2H is connected and for every

block D of ∂2H, D = Kk−1 and H[D] = K
(r)
k−1.

Since a Berge cycle can only be contained in a single block of the 2-
shadow ∂2H, the construction in Theorem 3.1 cannot contain Berge cycles
of length k or longer. Thus Theorem 3.1 determines EGr(n, k) and describes
extremal r-graphs when k − 2 divides n − 1 and k ≥ r + 3. Ergemlidze,
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Győri, Methuku, Salia, Tompkins, and Zamora [2] proved similar results for
k ∈ {r + 1, r + 2}. The case of short cycles, k ≤ r, is different, see [9, 7].

Our goal in this paper is to determine EGr(n, k) for all n when r ≥ 3 and
k ≥ r + 4. We also describe the extremal hypergraphs. We conjecture that
our results below holds for k = r+3 too. The tools used here do not seem to
be sufficient to verify the conjecture (see the remark at the end of Section 6).
The case n ≤ k − 1 is trivial, EGr(n, k) =

(
n
r

)
. Let n = (k − 2)�n−1

k−2 � + m
where 1 ≤ m ≤ k − 2. Define

(2) fr(n, k) :=

⌊
n− 1

k − 2

⌋(
k − 1

r

)
+

⎧⎨
⎩

m− 1 for 1 ≤ m ≤ r,(
m

r

)
for r + 1 ≤ m ≤ k − 2.

Theorem 3.2. Let r ≥ 3 and k ≥ r + 4, and suppose H is an n-vertex
r-graph with no Berge cycle of length k or longer. Then e(H) ≤ fr(n, k).
Moreover, equality is achieved if and only if H has the structure described
in Constructions 4.1 and 4.2 in the next section.

The structure of the paper is as follows. In the next section (Section 4)
we prove the lower bound EGr(n, k) ≥ fr(n, k). In Section 5 we recall some
tools we developed in [5]: the notion of representative pairs and Kopylov’s
Theorem in a useful form. In Section 6 we introduce one more tool, the
notion of (2, r) mixed hypergraphs and propose a more general problem. In
Section 7 we prepare the proof by proving a handy upper bound in the case
of a 2-connected ∂2H, and finally in Section 8 we prove our main result,
Theorem 3.2.

4. Constructions

In this section we define two classes of r-graphs avoiding Berge cycles of
length k or longer (for k ≥ r + 2). Write n in the form of (k − 2)�n−1

k−2 �+m

where 1 ≤ m ≤ k− 2. Let p := �n−1
k−2 �. Let V = [n] be an n-element set (the

set of vertices).

Construction 4.1. In case of m ≥ r + 1, let V1, . . . , Vp+1 be a sequence of
subsets of [n] satisfying

(3) |(V1 ∪ · · · ∪ Vi−1) ∩ Vi| = 1,

for all 1 < i ≤ p+1 such that one Vi has m elements and each other Vj has

(k − 1)-elements. Then replace each Vi with a copy of K
(r)
|Vi|, the complete

r-uniform hypergraph on it.
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Each Berge cycle in the r-uniform families in Construction 4.1 must be
contained in one of the Vi’s so its length is at most k − 1. Hence

EGr(n, k) ≥ p

(
k − 1

r

)
+

(
m

r

)

for all n, k, and r. We will see in Section 8 that in case of m ≥ r + 1 (and
k ≥ r + 4 ≥ 7) these are the only extremal hypergraphs.

Construction 4.2. In case of m ≤ r, let V := {V1, . . . , Vp} be a sequence
of (k − 1)-element subsets of [n] such that

(4) |(V1 ∪ · · · ∪ Vi−1) ∩ Vi| ≤ 1

for every i ≥ 2. Let H be the graph whose vertex set is [n] and whose
edge set is the union of the edge sets of complete graphs on Vi ∈ V, so
|E(H)| = p

(
k−1
2

)
. Then H has a forest-like structure of cliques (i.e., every

block of H is a clique), and in particular every cycle is contained in some
Vi ∈ V.

The graph H necessarily consists of m (nonempty) components, with
vertex sets C1, . . . , Cm respectively. Some Cα’s could be singletons, and⋃m

α=1Cα = V . Let Hα := H|Cα. Define Bi as the complete r-graph with
vertex set Vi, and set Hα := ∪{Bi : Vi ∈ V, Vi ⊂ Cα}, H := ∪m

α=1Hα.
If m > 1, let T be a tree with vertex set [m] such that a pair e =

{α(e), α′(e)} is in E(T ) only if the components Cα and Cα′ in H satisfy
|V (Cα)|+ |V (Cα′)| ≥ r. For each such edge e, we “blow up” e into an r-edge
containing vertices of Cα and Cα′ as follows:

Select the non-empty sets A(e) ⊆ Cα and A′(e) ⊆ Cα′ so that |A(e)| +
|A′(e)| = r and if |V (Cα)| > 1 (resp. |V (Cα′)| > 1), then A(e) ⊆ Vi ⊆ Cα

for some Vi ∈ V (resp. A′(e) ⊆ Vi′ ⊆ Cα′ for some Vi′ ∈ V). Let D :=
{A(e) ∪A′(e) : e ∈ E(T )}. Our construction is H ∪D (see Figure 2).

By definition, H ∪D has no long Berge cycle yielding

EGr(n, k) ≥ |H|+ |D| = p

(
k − 1

r

)
+m− 1

for all n, k, and r. Indeed, every edge of D is a cut-edge of the hypergraph
H ∪ D, every Berge cycle of H ∪ D is contained in a single component Cα,
even more, it is contained a single Vi.

We will see in Section 8 that in the case of m ≤ r (and k ≥ r + 4 ≥ 7)
these are the only extremal hypergraphs.
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Figure 2: An example of a hypergraph from Construction 4.2.

5. Representative pairs, the structure of Berge F -free
hypergraphs

In this section we collect some tools and statements developed and used
in [5]. We do not repeat their proofs.

Definition 5.1. For a hypergraph H, a system of distinct represen-
tative pairs (SDRP) of H is a set of distinct pairs A = {{x1, y1}, . . . ,
{xs, ys}} and a set of distinct hyperedges A = {f1, . . . fs} of H such that for
all 1 ≤ i ≤ s

– {xi, yi} ⊆ fi, and
– {xi, yi} is not contained in any f ∈ H − {f1, . . . , fs}.

Lemma 5.2. Let H be a hypergraph, let (A,A) be an SDRP of H of max-
imum size. Let B := H \ A and let B = ∂2B be the 2-shadow of B. For a
subset S ⊆ B, let BS denote the set of hyperedges that contain at least one
edge of S. Then for all nonempty S ⊆ B, |S| < |BS |.

Note that |H| = |A|+ |B|.
Lemma 5.3. Let H be a hypergraph and let (A,A) be an SDRP of H of
maximum size. Let B := H \ A, B = ∂2B, and let G be the graph on V (H)
with edge set A ∪ B. If G contains a copy of a graph F , then H contains a
Berge F on the same base vertex set.

In this paper, we only use the previous lemma in the case that F is a
cycle or path. I.e., if the longest Berge cycle (path) in H is of length �, then
the longest cycle (path) in G is also of length at most �.

Definition. For a natural number α and a graph G, the α-disintegration
of a graph G is the process of iteratively removing from G the vertices with
degree at most α until the resulting graph has minimum degree at least α+1
or is empty. This resulting subgraph H(G,α) will be called the (α+1)-core
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of G. It is well known (and easy) thatH(G,α) is unique and does not depend
on the order of vertex deletion.

The following theorem is a consequence of Kopylov’s Theorem [8] on
the structure of graphs without long cycles. We state it in the form that we
need.

Theorem 5.4 ([8], see also Theorem 5.1 in [5]). Let k ≥ 5 and let t = �k−1
2 �.

Suppose that G is an n-vertex graph with no cycle of length at least k. If G
is 2-connected and n ≥ k then there exists a subset S ⊂ V (G), s := |S|,
k − t ≤ s ≤ k − 2 (i.e., 2 ≤ k − s ≤ t), such that the vertices of V \ S can
be removed by a (k − s)-disintegration.

Lemma 5.5 ([5], Lemma 5.3). Let w, r ≥ 2 and let H be a w-vertex r-graph.
Let ∂2H denote the family of pairs of V (H) not contained in any member of
H (i.e., the complement of the 2-shadow). Then

|H|+ |∂2H| ≤

⎧⎪⎪⎨
⎪⎪⎩

(
w

2

)
for 2 ≤ w ≤ r + 2,

(
w

r

)
for r + 2 ≤ w.

Moreover, equality holds if and only if

– w > r + 2 and H is complete, or
– w = r + 2 and either H or ∂2H is complete.

We say a graph G is hamilton-connected if for any x, y ∈ V (G), G
contains a path from x to y that covers V (G).

Lemma 5.6 ([6], Theorem 5). Let G be an n-vertex graph with minimum
degree δ(G) ≥ 2. If e(G) ≥

(
n−1
2

)
+ 2 then G is hamilton-connected unless

G is obtained from Kn−1 by adding a vertex of degree 2.

6. Maximal mixed hypergraphs

One of our tools is the notion of mixed hypergraphs. For r ≥ 3, a (2, r) mixed
hypergraph is a triple M = (A,B, V ), where V is a vertex set, A is the edge
set of a graph, B is an r-graph (i.e., A ⊆

(
V
2

)
, B ⊆

(
V
r

)
) such that A ∪ B

satisfies the Sperner property : there is no a ∈ A, b ∈ B with a ⊂ b. We often
will denote the 2-shadow ∂2B by B.

Let mr(n, k) denote the maximum size of a mixed hypergraph M on n
vertices such that ∂2M does not contain any cycle of length k or longer.

Lemma 6.1.

EGr(n, k) ≤ mr(n, k).
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Proof. Let H be an r-uniform hypergraph on n vertices with no Berge cycle
of length k or longer (k ≥ r + 3 ≥ 6) with EGr(n, k) edges. Let (A,A) be
an SDRP of H of maximum size. Let B := H \ A, B = ∂2B. By definition,
M := (A,B, V ) is a (2, r) mixed hypergraph (r ≥ 3) with vertex set V . By
Lemma 5.3 the graph G with edge set A ∪ B does not contain a cycle of
length k or longer. Hence

EGr(n, k) = |H| = |A|+ |B| ≤ mr(n, k).

We will show that these two functions are very close to each other and
determine mr(n, k) for all n (when k ≥ r + 4, r ≥ 3). We need more defini-
tions and constructions.

A sequence of sets S = (V1, . . . , Vp), Vi ⊆ V , is called a (linear) hyper-
graph forest with vertex set V if

(5) |(V1 ∪ · · · ∪ Vi−1) ∩ Vi| ≤ 1

holds for each 2 ≤ i ≤ p. To avoid trivialities we usually suppose that
|Vi| ≥ 2 for each i. If

∑
i(|Vi| − 1) = |V | − 1 then equality holds in (5) for

all i, and we call S a hypergraph tree.

Construction 6.2. Write n in the form of (k−2)�n−1
k−2�+m where 1 ≤ m ≤

k−2. Let p := �n−1
k−2 �. In case of m = 1, let V1, . . . , Vp be a sequence of (k−1)-

element subsets of [n] forming a hypergraph tree. In case of 2 ≤ m ≤ k − 2,
let V1, . . . , Vp+1 be a sequence of subsets of [n] satisfying (5) such that one
Vi has m elements and each other has (k − 1)-elements. Finally, put either

a copy of K
(r)
|Vi| or K|Vi| into each Vi.

Each cycle in the 2-shadow of any (2, r) mixed family in Construction 6.2
must be contained in one of the Vi’s, so its length is at most k − 1. Taking
the largest possible mixed hypergraph of this type we get
(6)

mr(n, k) ≥ f+
r (n, k) :=

⌊
n− 1

k − 2

⌋(
k − 1

r

)
+

⎧⎪⎪⎨
⎪⎪⎩

(
m

2

)
for 1 ≤ m ≤ r + 1,

(
m

r

)
for r + 2 ≤ m ≤ k − 2.

Theorem 6.3. Let r ≥ 3 and k ≥ r + 4, and suppose M is an n-vertex
(2, r) mixed hypergraph with no cycle of length k or longer in ∂2M. Then
|M| ≤ f+

r (n, k). Moreover, equality is achieved if and only if M has the
structure described in Construction 6.2 above.
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Remark. This is one point that does not hold for k = r + 3, because in
that case every SDRP is simply a graph, B = ∅, and according to Kopylov’s
Theorem 5.4, there are more extremal graphs than in Construction 6.2.

7. Inequalities

Let k ≥ 5 and let t = �k−1
2 �, r ≥ 3, and k ≥ r + 3. In this section most of

the time we suppose that k ≥ r + 4, but almost all inequalities hold for the
case k = r + 3, too.

Let M = (A,B, V ) be a (2, r) mixed hypergraph such that G := A ∪ B
is an n-vertex graph with no cycle of length at least k.

Suppose that A∪B is 2-connected and n ≥ k. Theorem 5.4 implies that
for some k − t ≤ s ≤ k − 2 (i.e., 2 ≤ k − s ≤ t) there exist an s-element set
S ⊂ V such that

(7) the vertices of A ∪B \ Scan be removed by a (k − s)-disintegration.

For the edges of A and B contained in S we use Lemma 5.5 to see that

|A[S]|+ |B[S]| ≤ max

{(
s

2

)
,

(
s

r

)}
.

In the (k−s)-disintegration steps, we iteratively remove vertices with degree
at most (k−s) until we arrive to S. When we remove a vertex v with degree
� ≤ (k − s) from G, a of its incident edges are from A, and the remaining
� − a incident edges eliminate at most

(
�−a
r−1

)
hyperedges from B containing

v. Therefore v contributes at most a+
(
�−a
r−1

)
to |A|+ |B|. Since the function

a +
(
�−a
r−1

)
is convex (for nonnegative integers a) it takes its maximum at

either a = 0 or a = �, and since � ≤ k − s we obtain that
(8)

|A|+|B| ≤ ur(n, k, s) := max

{(
s

2

)
,

(
s

r

)}
+(n−s)max

{
k − s,

(
k − s

r − 1

)}
.

In the rest of this section we give upper bounds for ur(n, k, s). The follow-
ing inequalities can be obtained by some elementary estimates on binomial
coefficients. The main result of this section is the following lemma.

Lemma 7.1. If r ≥ 3, k ≥ r + 4, k − t ≤ s ≤ k − 2, and n ≥ k, then

ur(n, k, s) ≤ fr(n, k)−
(
r

2

)
.
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Proof. When s is a variable taking only nonnegative integer values, and r,
n and k are fixed, the functions

(
s
2

)
,
(
s
r

)
, (n− s)(k− s) and (n− s)

(
k−s
r−1

)
are

convex. So their maximums and sums, in particular, ur(n, k, s), are convex,
too. We obtain that

max
k−t≤s≤k−2

ur(n, k, s) = max {ur(n, k, k − 2), ur(n, k, k − t)} .

Our first observation is that (for r ≥ 3, k ≥ r+3) if n ≥ k− 2+ s, then

ur(n, k, s) = ur(n− k + 2, k, s) + (k − 2)max

{
k − s,

(
k − s

r − 1

)}
.(9)

Claim 7.2. For 2 ≤ k − s ≤ t and k ≥ r + 4,

(10) (k − 2)max

{
k − s,

(
k − s

r − 1

)}
<

(
k − 1

r

)
−
(
r

2

)
.

Proof of Claim 7.2. Because of the convexity of the left-hand side (in vari-
able s), it is enough to check the cases s ∈ {k− t, k− 2} (i.e., k− s ∈ {t, 2},
respectively). We have three cases to consider: when k−s = 2, when k−s = t
and r ≥ k − s, and finally when k − s = t and 3 ≤ r ≤ t − 1. Substituting
k − s = 2 and k − s = t into the left-hand side of (10), we get (k − 2)2 and
(k − 2)t, respectively. Then (for k ≥ 7) we have

(k − 2)t <

(
k − 1

3

)
−
(
k − 4

2

)
≤

(
k − 1

r

)
−
(
r

2

)
.

This settles the first two cases.
In the case k− s = t and r < k− s, we need the following inequality (for

3 ≤ r < t):

(k − 2)

(
t

r − 1

)
<

(
k − 1

r

)
−
(
r

2

)
.

We prove the following stronger inequality (for 3 ≤ r < t), because we will
use it again.

(11)

(
k − t

r

)
+ (k − 3)

(
t

r − 1

)
<

(
k − 1

r

)
−
(
r

2

)
.

Since
(
k−t
r

)
≥

(
t+1
r

)
≥

(
t

r−1

)
(for t ≥ r), equation (11) completes the proof

of (10).
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Returning to the proof of (11) note that (since 2 ≤ r − 1 ≤ t− 2)

(
r

2

)
<

(
r + 1

2

)
≤

(
t

2

)
≤

(
t

r − 1

)
.

So (11) is implied by the inequality below.

(12)

(
k − t

r

)
+ (k − 2)

(
t

r − 1

)
≤

(
k − 1

r

)
.

We give a purely combinatorial proof of (12).
Define four r-graphs with vertex set [k − 1].

F0 :=

(
[k − 1]

r

)
,

F1 :=

(
[k − t]

r

)
,

F2 :=

{
e ∪ {i} : e ∈

(
[t]

r − 1

)
, i ∈ [k − t+ 1, k − 1]

}
, and

F3 :=

{
f ∪ {j} : f ∈

(
[k − t, k − 1]

r − 1

)
, j ∈ [k − t− 1]

}
.

Their sizes are
(
k−1
r

)
,
(
k−t
r

)
, (t−1)

(
t

r−1

)
, and (k−t−1)

(
t

r−1

)
respectively.

We claim that F1, F2, and F3 are disjoint. Indeed, |A∩[k−t]| ≤ r−1 holds for
every A ∈ F2∪F3, so A /∈ F1. Also, if A ∈ F2 then |A∩[k−t−1]| = r−1 > 1
so A /∈ F3. Since the families F1, F2, and F3 are disjoint subfamilies of F0,
we have |F1|+ |F2|+ |F3| ≤ |F0|. This completes the proof of (12).

Claim 7.3. For k ≤ n ≤ 2k − 3 and k ≥ r + 4, one has ur(n, k, k − 2) ≤
fr(n, k)−

(
r

2

)
.

Proof. We have

ur(n, k, k − 2) = max
{(

k−2
2

)
,
(
k−2
r

)}
+ (n− k + 2)max

{
2,
(

2
r−1

)}

=

(
k − 2

r

)
+ 2(n− k + 2).

We will show(
k − 2

r

)
+2(n−k+2) ≤

(
k − 1

r

)
+(n−k+1)−

(
r

2

) (
≤ fr(n, k)−

(
r

2

))
.
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Since k ≥ 7, we have

((
k − 2

r

)
+ 2(n− k + 2)

)
−
(
(n− k + 1)−

(
r

2

))

=

(
k − 2

r

)
+ (n− k + 3) +

(
r

2

)

≤
(
k − 2

r

)
+ k +

(
k − 4

2

)
≤

(
k − 2

r

)
+

(
k − 2

2

)
≤

(
k − 1

r

)
.

Claim 7.4. For k ≤ n ≤ 2k − t− 3, r ≥ t and k ≥ r + 4,

ur(n, k, k − t) <

(
k − 1

r

)
+ (n− k + 1)−

(
r

2

)
.

Note that the right-hand side is at most fr(n, k)−
(
r

2

)
.

Proof. We have

ur(n, k, k − t) = max
{(

k−t
2

)
,
(
k−t
r

)}
+ (n− k + t)max

{
t,
(

t
r−1

)}

=

(
k − 2

2

)
+ (n− k + t)t.

Moreover

((
k − t

2

)
+ (n− k + t)t

)
−
(
(n− k + 1)−

(
r

2

))

=

(
k − t

2

)
+ (t− 1)(n− k + t) + (t− 2) +

(
r

2

)

≤
(
k − t

2

)
+ (t− 1)(k − 3) + (t− 2) +

(
k − 4

2

)
<

(
k − 1

3

)
≤

(
k − 1

r

)
.

Claim 7.5. For k ≤ n ≤ 2k − t− 3, r < t and k ≥ r + 4,

ur(n, k, k − t) <

(
k − 1

r

)
−
(
r

2

)
.

Note that the right-hand side is at most fr(n, k)−
(
r

2

)
.
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Proof. We have

ur(n, k, k − t) = max

{(
k − t

2

)
,

(
k − t

r

)}
+ (n− k + t)max

{
t,

(
t

r − 1

)}

=

(
k − t

r

)
+ (n− k + t)

(
t

r − 1

)

≤
(
k − t

r

)
+ (k − 3)

(
t

r − 1

)
.

Here the right-hand side is less than

(
k − 1

r

)
−
(
r

2

)
by (11).

Proof of Lemma 7.1. Because of the convexity of ur(n, k, s) (in the variable

s), it is enough to check the cases k − s ∈ {2, t}. Note that for n1, n2 ≥ 2

fr(n1, k) + fr(n2, k) ≤ fr(n1 + n2 − 1, k)(13)

f+
r (n1, k) + f+

r (n2, k) ≤ f+
r (n1 + n2 − 1, k)(14)

and here equalities hold for n2 = k−1. (If we define fr(1, k) = f+
r (1, k) = 0,

then we can use (13), (14) for these values, too).

If s = 2 and k ≤ n ≤ 2k − 3, then Claim 7.3 yields ur(n, k, k − 2) ≤
fr(n, k) −

(
r

2

)
. For n ≥ 2k − 2 we use (9), then the induction hypothesis

ur(n− k+2, k, k− 2) ≤ fr(n− k+2, k), and then Claim 7.2 (equation (10))

implies that

ur(n, k, k − 2) = ur(n− k + 2, k, k − 2) + (k − 2)2

< fr(n− k + 2, k) +

(
k − 1

r

)
−
(
r

2

)

= fr(n− k + 2, k) + fr(k − 1, k)−
(
r

2

)

= fr(n, k)−
(
r

2

)
,

and we are done.

When k − s = t the proof is similar. For k ≤ n ≤ 2k − t− 3, Claim 7.4

and Claim 7.5 yield ur(n, k, k− t) < fr(n, k)−
(
r

2

)
. For n ≥ 2k− t− 2, we

use (9), then the induction hypothesis ur(n−k+t, k, k−t) ≤ fr(n−k+t, k),
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and then Claim 7.2 (equation (10)) implies that

ur(n, k, k − t) = ur(n− k + 2, k, k − 2) + (k − 2)max

{
t,

(
t

r − 1

)}

< fr(n− k + 2, k) +

(
k − 1

r

)
−
(
r

2

)

= fr(n− k + 2, k) + fr(k − 1, k)−
(
r

2

)

= fr(n, k)−
(
r

2

)
.

8. Proofs of the main results

In this section we first prove Theorem 6.3 and then Theorem 3.2 for all
n ≥ k (and r ≥ 3, k ≥ r + 4).

8.1. Proof of Theorem 6.3 about mixed hypergraphs

Let M = (A,B, V ) be a (2, r) mixed hypergraph such that G := A ∪ B
is an n-vertex graph with no cycle of length at least k (B := ∂2B and
A∩B = ∅). Let V1, V2, . . . , Vq be the vertex sets of the standard (and unique)
decomposition of G into blocks of sizes n1, n2, . . . , nq. Then the graph A∪B
restricted to Vi, denoted by Gi, is either a 2-connected graph or a single edge
(in the latter case ni = 2), each edge from A ∪ B is contained in a single
Gi, and

∑q
i=1(ni − 1) ≤ (n− 1). This decomposition yields a decomposition

of A = A1 ∪ A2 ∪ · · · ∪ Aq and B = B1 ∪ B2 ∪ · · · ∪ Bq, Ai ∪ Bi = E(Gi).
If an edge e ∈ Bi is contained in f ∈ B, then f ⊆ Vi (because f induces
a 2-connected graph Kr in B), so the block-decomposition of G naturally
extends to B, Bi := {f ∈ B : f ⊆ Vi} and we have B = B1 ∪ · · · ∪ Bq, and
Bi = ∂2Bi. By definition, G has no cycle of length k or longer, so the same
is true for each Gi. Suppose that the size of A∪B is as large as possible, M
is extremal, |M| = mr(n, k).

Lemma 5.5 implies that for ni ≤ k − 1,

|Ai|+ |Bi| ≤ max

{(
ni

2

)
,

(
ni

r

)}
= f+

r (ni, k),

and equality holds only if Ai is the complete graph (and Bi = ∅) or Bi is the
r-uniform complete r-graph (and Ai = ∅).
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Lemma 7.1 implies that in the case ni ≥ k

(15) |Ai|+ |Bi| ≤ fr(ni, k)−
(
r

2

)
≤ f+

r (ni, k)−
(
r

2

)
.

Adding up these inequalities for all 1 ≤ i ≤ q and applying (14), we get

(16)
∑
i

(|Ai|+ |Bi|) ≤
∑
i

f+(ni, k) ≤ f+
r (1 +

∑
i

(ni − 1), k) ≤ f+
r (n, k).

Since f+
r (n, k) ≤ mr(n, k), here equality holds in each term. Consequently

ni < k for each i, and all but at most one of them should be k−1. Otherwise
we can use the inequality

max

{(
a

2

)
,

(
a

r

)}
+max

{(
b

2

)
,

(
b

r

)}

< max

{(
a− 1

2

)
,

(
a− 1

r

)}
+max

{(
b+ 1

2

)
,

(
b+ 1

r

)}

which holds for all 1 < a ≤ b < k−1 (and 3 ≤ r, r+4 ≤ k). (The inequality
f(a)+f(b) ≤ f(a−1)+f(b+1) holds for every convex function f , and here
equality holds only if the four points (a − 1, f(a − 1)), (a, f(a)), (b, f(b)),
and (b + 1, f(b + 1)) are lying on a line). So M is a linear tree formed by
cliques, as described in Construction 6.2.

8.2. Proof of Theorem 3.2 for m > r + 1

LetH be an r-uniform hypergraph on n vertices with no Berge cycle of length
k or longer (r ≥ 3, k ≥ r+4). Suppose that |H| is maximal, |H| = EGr(n, k).
We have fr(n, k) ≤ EGr(n, k) by Constructions 4.1 and 4.2.

Let (A,A) be an SDRP of H of maximum size. Let B := H\A, B = ∂2B.
By Lemma 5.3 the graph G with edge set A ∪ B does not contain a cycle
of length k or longer. In other words, M = (A,B, V ) is a (2, r) mixed
hypergraph such that G := A ∪ B is an n-vertex graph with no cycle of
length at least k. Then Theorem 6.3 implies that

(17) |A|+ |B| ≤ f+
r (n, k).

Since n = (k − 2)p + m where 1 ≤ m ≤ k − 2 and m ≥ r + 2 we have
f+
r (n, k) = fr(n, k) by (2) and (6). We obtained that EGr(n, k) = fr(n, k),
as claimed.
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Equality can hold in (17) only if M has the clique-tree structure with
vertex sets V1, V2, . . . , Vp+1, described in Construction 6.2. In the case of
m ≥ r+3 each block is a complete r-uniform hypergraph, so Construction 6.2
and Construction 4.1 coincide, and we are done.

In the case m = r+2, Theorem 6.3 implies that all but one block define
complete r-graphs and for one of them, say V�, M|V� could be either Kr+2

or K
(r)
r+2. If M|V� = K

(r)
r+2, then H|V� = K

(r)
r+2, so A = ∅, B = H and we are

done. Consider the other case, M|V� = K
(2)
r+2, i.e., A = G|V� is a complete

graph (and B = ∪i �=�K
(r)
k−1[Vi]). We claim thatH|V� = K

(r)
r+2 which completes

the proof in this subsection.
Suppose, on the contrary, that there exists an fi ∈ A such that {xi, yi} ⊂

V�, {xi, yi, zi} ⊂ fi such that zi /∈ V�. One of the pairs of xizi and yizi is
not an edge of G, say it is xizi. Then removing xiyi from A and replacing
it by xizi, one obtains an SDRP A′ (A and B are unchanged). In this case,
E(G′) = E(G)\{xiyi}∪{xizi} has a different structure (not a tree of cliques),
so it could not be optimal by Theorem 6.3. Therefore such fi does not exist,

i.e., fi ⊂ V�. In other words A ⊆ K
(r)
k−1[Vi]. Since |A| =

(
r+2
2

)
=

(
r+2
r

)
, A is

a complete r-graph on V�.

8.3. Proof of Theorem 3.2 for m ≤ r + 1, preparations

This is a continuation of the previous two subsections.
Consider an extremal H (i.e., |H| = EGr(n, k) ≥ fr(n, k)) with A,B,

A,B, and G as defined in previous subsection. Let G have blocks G1, . . . , Gq

of G with vertex sets V1, . . . , Vq where |Vi| = ni ≥ 2. As we have seen in (15)
and (16),

(18) |H| =
∑
i

(|Ai|+ |Bi|) ≤ f+
r (n, k)−

(
r

2

)

if for any i, ni ≥ k. For m = r + 1, here the right-hand side is

p

(
k − 1

r

)
+

(
m

2

)
−
(
r

2

)
< p

(
k − 1

r

)
+

(
r + 1

r

)
= fr(n, k).

Similarly in the case m ≤ r, the right-hand side is

p

(
k − 1

r

)
+

(
m

2

)
−
(
r

2

)
< p

(
k − 1

r

)
+m− 1 = fr(n, k).

So from now on, we may suppose that ni ≤ k − 1 for all i.
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Claim 8.1. There are exactly p blocks Vi of size k − 1, ni = k − 1.

Proof. For 1 ≤ x ≤ k − 1, define f(x) := f+
r (x, k) = max{

(
x
2

)
,
(
x
r

)
}. Let

f(x1, . . . , xq) :=
∑

i f(xi). We want to estimate f(n1, . . . , nq), so define xi :=

ni. Let n
′ := 1+

∑
i(ni − 1); we have n′ ≤ n. In case of 2 ≤ xi ≤ xj < k− 1

we are going to replace xi by xi − 1 and xj by xj +1. During this process f

never decreases and it ends when all but one xi’s become 1 or k − 1. Then

the value of f is exactly f+
r (n′, k) and since

∑
1≤i≤q xi =

∑
i ni = n′ + q− 1

is unchanged, in the last step our sequence contains (k− 1) exactly p times.

If the number of (k − 1)’s is unchanged, then there is nothing to prove.

Otherwise, after some step the pair x and k − 2 (2 ≤ x ≤ k − 2) is replaced

by (x−1) and (k−1). Then the value of f increased by f(k−1)+f(x−1)−
f(k− 2)− f(x). Since f(k− 1) =

(
k−1
r

)
and f(k− 2) =

(
k−2
r

)
the increment

is

(
k − 1

r

)
+max{

(
x− 1

2

)
,

(
x− 1

r

)
} −

(
k − 2

r

)
−max{

(
x

2

)
,

(
x

r

)
}.

This is at least

(
k − 2

r − 1

)
−max{x− 1,

(
x− 1

r − 1

)
} ≥

(
k − 2

r − 1

)
−
(
k − 3

r − 1

)

=

(
k − 3

r − 2

)
≥

(
r + 1

r − 2

)
>

(
r

2

)
.

In this case |H| < f+
r (n′, k)−

(
r
2

)
≤ fr(n

′, k) ≤ fr(n, k), a contradiction.

Claim 8.2. If a block Vi is of size k − 1, then e(Bi) ≥
(
k−2
2

)
+ r − 1.

Proof. If |Bi| >
(
k−2
r

)
then the Kruskal-Katona Theorem (or a simple double

counting) implies that |∂2Bi| ≥
(
k−2
2

)
+ r − 1, and we are done.

If |Bi| ≤
(
k−2
r

)
then we use Lovász’ version of the Kruskal-Katona the-

orem. Write |Bi| in the form of
(
x
r

)
, where x is a real number 0 ≤ x ≤

k − 2 and (only in this paragraph)
(
x
r

)
is defined as the real polynomial

x(x−1) . . . (x−r+1)/r! for x ≥ r−1 and 0 otherwise. We obtain |∂2Bi| ≥
(
x
2

)
.

Since Ai and Bi are disjoint, we have |Ai| ≤
(
k−1
2

)
−
(
x
2

)
. So,

(19) |Ai|+ |Bi| ≤
(
k − 1

2

)
−
(
x

2

)
+

(
x

r

)
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holds for some 0 ≤ x ≤ k − 2. In this range the right-hand side (as a
polynomial of variable x) is maximized at x = k − 2. Hence (19) yields

|Ai|+ |Bi| ≤
(
k − 1

2

)
−
(
k − 2

2

)
+

(
k − 2

r

)
.

Here the right-hand side is less than
(
k−1
r

)
−

(
r
2

)
which (as we have seen

in (18)) leads to the contradiction |H| < fr(n, k).

Claim 8.3. If a block Vi is of size k−1, then Bi = K
(r)
k−1, a complete r-graph.

Proof. Suppose that there exists an r-set f ⊂ Vi, f /∈ H. Consider the
hypergraph H ∪ {f}. By the maximality of H, H ∪ {f} contains a Berge
cycle C of length at least k, say with base vertices {v1, . . . , v�} and edges
{f1, . . . , f�} where f� = f (and so v1, v� ∈ Vi). Since |Vi| = k − 1, there is
a base vertex of C not contained in Vi. Therefore we may pick a segment
P of C (a Berge path in H) say {va, va+1, . . . , vb}, {fa, . . . , fb−1} such that
va, vb ∈ Vi but {va+1, . . . , vb−1} ∩ Vi = ∅.

Since each r-edge in Bi yields a clique of order r in Bi, we have δ(Bi) ≥
r − 1 ≥ 2. By Claim 8.2 and Lemma 5.6, Bi is hamilton-connected unless
r = 3 and Bi is a clique on k − 2 vertices with a vertex x of degree 2. If
the latter holds, then for a neighbor y of x, the edge xy is contained in
exactly one triangle in Bi. But then xy can only be contained in one r-edge
of B, contradicting Lemma 5.2. So we may assume Bi has a hamilton path
between any two vertices, in particular by Lemma 5.3, there is a Berge path
P ′ of length k − 2 from xa to xb containing all k − 1 vertices of Vi as base
vertices and using only the edges from Bi. The cycle P ∪P ′ is a Berge cycle
in H of length at least k, a contradiction. Therefore such an edge f cannot

exist, H|Vi = K
(r)
k−1.

Finally, there is no A-edge in Vi. If {x, y} ⊂ Vi is an A-edge, then no
B-edge can contain {x, y}. So all the

(
k−3
r−2

)
(≥ k − 3) subsets of Vi of size r

and containing xy should belong to A. Therefore Vi must contain at least as
many A-edges. But |Ai| ≤ k−1−r(=

(
k−1
2

)
−
(
k−2
2

)
−r+1) by Claim 8.2.

8.4. Proof of Theorem 3.2 for m ≤ r + 1, the end

This is a continuation of the previous three subsections.
Consider an extremal r-graph H on the n-element vertex set V (i.e.,

|H| = EGr(n, k) ≥ fr(n, k)) where n = p(k − 2) +m, 1 ≤ m ≤ r + 1. Using
the definitions of A,B, A,B,G, V1, . . . , Vq from the previous subsection, we
define a different split of H.
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Let V := {Vi : |Vi| = k − 1}. By Claim 8.1, |V| = p. Let H be the
graph whose edge set is the union of the complete graphs on Vi ∈ V, so
|E(H)| = p

(
k−1
2

)
and it has a forest like structure of cliques (i.e., every

cycle in H is contained in some Vi ∈ V). Let C1, . . . , Cm be the vertex sets
of the connected components of H. The graph H necessarily consists of
m (nonempty) components, ∪Cα = V (1 ≤ α ≤ m), some of them could
be singletons. Let Hα := H|Cα, Hα := ∪{Bi : Vi ∈ V, Vi ⊂ Cα}, and
D := H \ (∪Hα). Note that every edge of H used to be a B-edge, Hα ⊆ B
for all 1 ≤ α ≤ m, and D is the set of edges in H not contained in some

K
(r)
k−1.
Our main observation is the following which is implied by Claim 8.3.

Claim 8.4. If x, y ∈ Cα, x �= y then there exists an x-y Berge path of length
at least k − 2 consisting only of Hα edges. Moreover, if xy /∈ E(Hα) then
there exists such a path of length at least 2k − 4.

Proof. Suppose that f, f ′ ∈ D, (f �= f ′), xα ∈ Cα ∩ f , x′α ∈ Cα ∩ f ′,
xβ ∈ Cβ ∩ f , and x′β ∈ Cβ ∩ f ′, (α �= β), then

(20) xα = x′α and xβ = x′β .

For example, if xα �= x′α and xβ �= x′β , then there is a Berge path Pα of
length at least (k − 2) connecting xα with x′α, Pα ⊂ Hα and another Berge
path Pβ of length at least (k − 2) connecting xβ with x′β , Pβ ⊂ Hβ , and
these, together with f and f ′ form a Berge cycle of length at least 2k− 2, a
contradiction. The case |{xα, xβ} ∩ {x′α, x′β}| = 1 is similar: we find a Berge
cycle in H of length at least k.

The same proof, and the second half of Claim 8.4 imply that

(21) ∂2H|Vα = Hα.

In other words, if f ∈ H \ Hα then

|f ∩ Cα| ≥ 2 implies that ∃Vi ∈ V, Vi ⊆ Cα such that Cα ∩ f = Vi ∩ f .

Indeed, otherwise there are x, y ∈ f and a Berge x, y-path in Hi of length
at least 2k − 4, which together with f form a Berge cycle of length at least
2k − 3.

For a subset S ⊆ V , define ϕ(S) as the set of indices 1 ≤ α ≤ m for
which S ∩ Cα �= ∅. Equation (20) can be restated as follows

(22) if {α, β} ⊆ ϕ(f) ∩ ϕ(f ′) then Cα ∩ f = Cα ∩ f ′ is a singleton,



266 Zoltán Füredi et al.

and similarly for β. This implies that ϕ(f) �= ϕ(f ′) for f �= f ′, f, f ′ ∈ D.
Even more, the family {ϕ(f) : f ∈ D} has the Sperner property. This means
that for f, f ′ ∈ D with f �= f ′, one cannot have ϕ(f) � ϕ(f ′). Indeed,
|ϕ(f)| < r implies that there exists a Cα with |Cα ∩ f | ≥ 2, equation (21)
implies that |ϕ(f)| ≥ 2 for every f ∈ D, so there exists a β ∈ ϕ(f), α �= β.
But then {α, β} ⊆ ϕ(f) ∩ ϕ(f ′) and (22) implies that |Cα ∩ f | = 1, a
contradiction.

The following claim on the intersection structure of the edges in D is
a generalization of (22) which can be considered as the case � = 2. (Tech-
nically, two hyperedges sharing at least two vertices form a Berge cycle of
length 2.)

Claim 8.5. Let F =: ϕ(D) = {ϕ(f) : f ∈ D}. Suppose that {α1, . . . , α�} ⊂
{1, . . . ,m} and ϕ(f1), . . . , ϕ(f�) ∈ F form a Berge cycle in F . Then for each
j, the sets Cαj

∩ fj = Cαj
∩ fj−1 are singletons.

Proof. Otherwise, we can relabel j := 1 and find two distinct vertices x1
and x′1 such that x1 ∈ Cα1

∩ ϕ(f1) and x′1 ∈ Cα1
∩ ϕ(f�). Furthermore, let

xi, x
′
i ∈ Cαi

such that {xi−1, xi} ⊂ fi for all 1 ≤ i ≤ � (x0 := x�, etc.),
Pi a Berge path in Hi connecting xi with x′i. These paths could be empty
(if xi = x′i) but by Claim 8.4 we can choose P1 so that its length is at
least k− 2. Then f1, P1, f2, P2, . . . , f�, P� form a cycle of length at least k, a
contradiction.

Case 1: there exists an f such that |ϕ(f)| = r. Then m ≥ r, so m ∈
{r, r+1}. If m = r, then (because of the Sperner property) |D| = 1 < m−1,
a contradiction. So assume m = r+1. Let α := [m]\ϕ(f). We have α ∈ ϕ(f ′)
for all other f ′ ∈ D. Since |D| ≥ r + 1 > 3, there are at least two more
f2 �= f3 ∈ D \ {f}.

Consider first the case that |Cα ∩ ϕ(f2)| ≥ 2 for some f2 ∈ D. The
Sperner property implies that there are distinct α2, α3 ∈ [m] \ α such that
α2 ∈ ϕ(f2)\ϕ(f3) and α3 ∈ ϕ(f3)\ϕ(f2). Then α, α2, α3 with the hyperedges
ϕ(f2), ϕ(f), and ϕ(f3) form a Berge cycle. However this cycle does not satisfy
Claim 8.5. So from now on, we may suppose that |Cα ∩ ϕ(f ′)| = 1 for all
f ′ ∈ D \ {f}.

Suppose that there exists an f2 ∈ D and an α2 ∈ [m] such that |Cα2
∩

ϕ(f2)| ≥ 2 (necessarily α2 �= α). Again Sperner property implies that there
is an α3 ∈ [m] \ α such that α3 ∈ ϕ(f3) \ ϕ(f2) (so we have α3 �= α2). Then
α, α2, α3 with the hyperedges ϕ(f2), ϕ(f), and ϕ(f3) form a Berge cycle.
However this cycle does not satisfy Claim 8.5. So from now on, we may
suppose that |Cα′ ∩ ϕ(f ′)| = 1 for all f ′ ∈ D and all α′ ∈ [m].
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Since |D| ≥ r+1 and [m] has exactly r+1 r-subsets, ϕ(D) is a complete
r-graph. Its hyperedges form many Berge cycles, so Claim 8.5 implies that

D itself is isomorphic to K
(r)
r+1. Thus H is as in Construction 4.1.

Case 2: |ϕ(f)| < r for all f ∈ D. In this case every f ∈ D has an α(f) ∈ [m]
such that |Cα(f) ∩ f | ≥ 2. For every f ∈ D, choose another element β(f) ∈
ϕ(f) (β(f) �= α(f)) and consider the graph T := {{α(f), β(f)} : f ∈ D}.
By Claim 8.5 the graph T has no cycle, and the maximality of |H| implies
that e(T ) = |D| ≥ m − 1. So T is a tree. Since T is a tree, one cannot
replace an edge {α(f), β(f)} by the 3-edge {α(f), β(f), γ(f)} without cre-
ating a cycle in the resulting hypergraph and thus violating Claim 8.5. So
ϕ(f) = {α(f), β(f)}, and (21) implies that the structure of D is as in Con-
struction 4.2. This completes the proof of Theorem 3.2.
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