
Journal of Combinatorics

Volume 12, Number 2, 303–354, 2021

Some combinatorial results on smooth permutations

Shoni Gilboa and Erez Lapid

We show that any smooth permutation σ ∈ Sn is characterized by
the set C(σ) of transpositions and 3-cycles in the Bruhat interval
(Sn)≤σ, and that σ is the product (in a certain order) of the trans-
positions in C(σ). We also characterize the image of the map σ �→
C(σ). As an application, we show that σ is smooth if and only if the
intersection of (Sn)≤σ with every conjugate of a parabolic subgroup
of Sn admits a maximum. This also gives another approach for enu-
merating smooth permutations and subclasses thereof. Finally, we
relate covexillary permutations to smooth ones and rephrase the
results in terms of the (co)essential set in the sense of Fulton.
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1. Introduction

1.1.

Fix an integer n ≥ 1. Consider the symmetric group Sn of all the per-
mutations of the set [n] = {1, 2, . . . , n}, with the Bruhat order ≤. Let
T = {Ti,j : 1 ≤ i < j ≤ n} ⊂ Sn be the set of transpositions. For ev-
ery permutation σ ∈ Sn define the 2-table of σ to be

CT (σ) = {τ ∈ T : τ ≤ σ}.

For every σ ∈ Sn we have �(σ) ≤ #CT (σ) where

�(σ) = #{i < j : σ(i) > σ(j)}

is the number of inversions of σ [15]. If �(σ) = #CT (σ), then σ is called
smooth, a terminology that is justified by the fact that this condition also
characterizes the smoothness of the Schubert variety Xσ pertaining to σ
[ibid.]. Another well-known combinatorial characterization of the smooth-
ness of σ is that σ is 4231 and 3412 avoiding [14]. We refer to [2] and the
references therein for more information about singularities of Schubert va-
rieties.

Distinct smooth permutations may have the same 2-table (for example,
for n = 3, CT ((231)) = {T1,2, T2,3} = CT ((312))). However, we show that
smooth permutations are distinguishable from each other at the ‘next level’.
More precisely, let C2,3 ⊂ Sn be the set of permutations consisting of a single
cycle of length 2 or 3. Denote the 3-cycle permutation i �→ j �→ k �→ i with
i < j < k by Ri,j,k, so that

C2,3 = T ∪ {Ri,j,k, R
−1
i,j,k : i < j < k}.

We define the 2-3-table of a permutation σ ∈ Sn to be

C(σ) = {τ ∈ C2,3 : τ ≤ σ}.

Clearly, C(σ) is downward closed and it is easy to see that if Ri,j,l, R
−1
i,k,l ∈

C(σ) with i < j, k < l, then Ti,l ∈ C(σ).
Our main result is the following.

Theorem 1.1. [See §5] The map σ �→ C(σ) defines a bijection between the
smooth permutations of Sn and the downward closed subsets A of C2,3 that
satisfy the following two conditions.
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• If Ri,j,l, R
−1
i,k,l ∈ A with i < j, k < l, then Ti,l ∈ A.

• Whenever Ti,j , Tj,k ∈ A, i < j < k, at least one of Ri,j,k and R−1
i,j,k

belongs to A.

The inverse bijection A �→ π(A) is given by

(1.1)
π(A) = max{τ ∈ Sn : C(τ) = A}

= max{τ ∈ Sn : CT (τ) = AT , C(τ) ⊆ A}

where the maximum (i.e., the greatest element, which in particular exists)
is with respect to the Bruhat order.

1.2.

The subsets A ⊂ C2,3 satisfying the properties of Theorem 1.1 will be called
admissible. We give an alternative, more constructive definition of π(A) for
an admissible set A ⊂ C2,3. We say that a linear order ≺ on AT = A ∩ T is
compatible (with A) if whenever Ti,j , Tj,k ∈ A, i < j < k:

• If Ti,k ∈ A, then either Ti,j ≺ Ti,k ≺ Tj,k or Tj,k ≺ Ti,k ≺ Ti,j .
• If Ti,k /∈ A, then Ri,j,k ∈ A ⇐⇒ Ti,j ≺ Tj,k.

Theorem 1.2. [See §§4, 5] Let A be an admissible subset of C2,3. Then, a
compatible order on AT always exists and π(A) is equal to the product of the
elements of AT taken with respect to a compatible order ≺. (In particular,
the product depends only on A.) Consequently, every smooth permutation
may be written as the product, in an appropriate order, of the transpositions
in its 2-table (each appearing exactly once).

More precisely, we define a graph GA whose vertices are the compatible
orders on AT and whose edges connect two compatible orders that can be
obtained from one another by one of the following elementary operations.

• Interchanging the order of two adjacent commuting transpositions.
• Switching the order of consecutive Ti,j , Ti,k, Tj,k (with i < j < k) to
Tj,k, Ti,k, Ti,j , or vice versa.

These operations do not change the product of the elements of AT , taken
in the respective orders. In Section 4 we show that GA is connected (and
in particular, non-empty). In other words, a compatible order exists and
every two compatible orders are obtained from one another by a sequence of
elementary operations. The situation is reminiscent of the case of reduced
decompositions of a permutation σ, which form the vertices of a connected
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graph G(σ) whose edges are given by basic Coxeter relations. In fact, for
A = C2,3 itself, there is a natural isomorphism between GA and G(w0) where
w0 is the longest permutation. However, for a general smooth permutation
σ, the number of compatible orders on CT (σ) with respect to C(σ) does not
agree with the number of reduced decompositions of σ.

1.3.

As an application of Theorem 1.1 we give another remarkable characteri-
zation of smooth permutations. Let X be a partition (i.e., an equivalence
relation) of [n]. Consider the subgroup SX of Sn preserving every X ∈ X.
The group SX is isomorphic to the direct product of S#X over X ∈ X.
The product order on SX, which we denote by ≤X, is (in general, strictly)
stronger than the one induced from Sn. We say that an element of SX is
X-smooth if all its coordinates in S#X , X ∈ X are smooth. (This is weaker
than smoothness in Sn.)

Theorem 1.3. [See §6] σ ∈ Sn is smooth if and only if for every partition
X of [n], the set

{τ ∈ SX : τ ≤ σ}
admits a maximum σX with respect to ≤X. Moreover, in this case σX is
X-smooth.

1.4.

We may also interpret the bijection of Theorem 1.1 in terms of more familiar
combinatorial objects, namely Dyck paths. We may view a Dyck path as a
weakly increasing function f : [n] → [n] such that f(i) ≥ i for all i. (Their
number is the Catalan number Cn = 1

n+1

(
2n
n

)
.) By definition, a decorated

Dyck path is such a function f together with a function g : [n] → {0, 1} such
that

1. g(i) = 0 whenever f(f(i)) = f(i).
2. g(i) = g(i+ 1) whenever i < n and f(i+ 1) < f(f(i)).

In terms of Dyck paths, such a decoration g corresponds to an (unre-
stricted) 2-coloring of a certain distinguished set of vertices of the path.

Write g−1(0) = {i1, . . . , ik} and g−1(1) = {j1, . . . , jl} with i1 < · · · < ik
and j1 < · · · < jl.

For every 1 ≤ i < j ≤ n let R[i,j] ∈ Sn be the cycle permutation
i → i+ 1 → · · · → j → i. For consistency, R[i,i] is the identity permutation
for all i.
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Theorem 1.4. [See §7] The map

(1.2) (f, g) → (R[jl,f(jl)] · · ·R[j1,f(j1)])
−1R[ik,f(ik)] · · ·R[i1,f(i1)]

is a bijection between the decorated Dyck paths and the smooth permutations
in Sn. Moreover, the expression on the right-hand side of (1.2) is reduced.

Theorem 1.4 is in the spirit of Skandera’s factorization of smooth permu-
tation [19]. Using Theorem 1.4, we can recover several known enumerative
results concerning smooth permutations.

1.5.

Using Theorem 1.1, we can also give a curious relation between smooth
permutations and covexillary ones. Recall that a permutation is called cov-
exillary if it avoids the pattern 3412.

Theorem 1.5. [See §9] For any covexillary τ ∈ Sn, C(τ) is admissible.
Therefore, the map τ �→ π(C(τ)) is an idempotent function from the set of
covexillary permutations onto the subset of smooth permutations. Moreover,
this map is order preserving and for any covexillary τ ∈ Sn,

π(C(τ)) = min{σ ∈ Sn smooth : σ ≥ τ}.

1.6.

Finally, we can relate our results to Fulton’s notion of essential set [10]. For
any σ ∈ Sn let E(σ) be the set of pairs (i, j) ∈ [n− 1]× [n− 1] such that

σ(i) ≤ j < σ(i+ 1) and σ−1(j) ≤ i < σ−1(j + 1).

Up to change of coordinates, this is the essential set of wσ0 in Fulton’s
formulation.

Theorem 1.6. [See §10] The map σ �→ E(σ) defines a bijection between the
smooth permutations in Sn and the subsets E ⊆ [n − 1]× [n − 1] satisfying
the property that for every two distinct points (i1, j1) and (i2, j2) in E such
that min(i2, j2) ≥ min(i1, j1) we have

i2 ≥ i1, j2 ≥ j1, max(i2, j2) > max(i1, j1) and min(i2, j2) > min(i1, j1).

We also relate this result to the previous theorems.
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1.7.

Although we will not discuss it any further here, we mention that smooth
permutations are important in representation theory. This is because of
the Kazhdan–Lusztig conjecture [13] (proved independently by Bernstein–
Beilinson and Brylinski–Kashiwara) and the fact that smooth permutations
are characterized in terms of Kazhdan–Lusztig polynomials [6]. See [17] for a
more recent surprising occurrence of smooth permutations in representation
theory.

Theorem 1.3 was the original motivation of the paper. It came up in
studying a related problem, which is discussed in [16]. The result of [ibid.]
is relevant for a certain representation-theoretic context. We hope that the
same will be true for Theorem 1.3 and its variants, although we will not
discuss these possible applications here.

Likewise, it would be interesting to find a geometric context for Theo-
rems 1.1 and 1.3.

It is natural to ask whether Theorem 1.1 admits an analogue for other
Weyl groups W . In particular, one may ask whether any smooth element w
ofW can be written as the product (in a suitable order) of the reflexions that
are smaller than or equal to w in the Bruhat order (each reflexion occurring
exactly once).

The rest of the paper is organised as follows. In Section 2 we study the
notion of admissible sets. In Section 3 we develop some tools that will en-
able us to apply inductive arguments. In Section 4 we study the notion of
a compatible order. Sections 5, 6, 7, 9 and 10 are devoted to the proofs of
Theorems 1.1, 1.3, 1.4, 1.5 and 1.6, respectively. In Section 8 we use The-
orem 1.4 to reproduce some known enumerative results concerning smooth
permutations.

An extended abstract of this paper appears in [12].

1.8. Notation and preliminaries

Recall that the Bruhat order on Sn is defined by inclusion of Schubert vari-
eties. (See [3] for standard facts about the Bruhat order.) It can be described
combinatorially as the partial order generated by

σ < σTi,j if σ(i) < σ(j).

It is also be given by

(1.3) τ ≤ σ if and only if #(τ([i]) ∩ [j]) ≥ #(σ([i]) ∩ [j]) for every i, j.
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This relation endows Sn with the structure of a ranked poset, with rank func-
tion �. The minimum of Sn is the identity permutation e and the maximum
is the permutation w0 given by w0(i) = n+ 1− i, i ∈ [n].

The Bruhat order is invariant under inversion σ �→ σ−1 and under up-
ending σ �→ w0σw0.

For any σ ∈ Sn we denote by (Sn)≤σ the Bruhat interval defined by σ.
For any σ ∈ Sn define the “maximal function” μσ : [n] → [n] of σ by

μσ(i) = maxσ([i]).

Clearly, μσ(i) ≥ i with equality if and only if σ([i]) = [i]. Also, if τ ≤ σ then
μτ ≤ μσ pointwise, although the converse in not true in general.

Recall that T = {Ti,j}1≤i<j≤n where Ti,j is the transposition interchang-
ing i and j. These are the reflexions of Sn, as a Coxeter group.

We denote by (Sn)sm the set of smooth permutations.
Recall that Ri,j,k, 1 ≤ i < j < k ≤ n is the 3-cycle permutation i �→ j �→

k �→ i. Let also Li,j,k = R−1
i,j,k. We have w0Ri,j,kw0 = Lw0(k),w0(j),w0(i) and

w0Li,j,kw0 = Rw0(k),w0(j),w0(i). We write

C2,3 = C2,3
n = T ∪ {Ri,j,k, Li,j,k}1≤i<j<k≤n

and for any σ ∈ Sn

C(σ) = {τ ∈ C2,3 : τ ≤ σ}.
Note that C(σ−1) = C(σ)−1 and C(w0σw0) = w0C(σ)−1w0.

It is useful to bear in mind the following explication of the Bruhat order
for Sn.

Ti,j ≤ σ ⇐⇒ μσ(i) ≥ j and μσ−1(i) ≥ j,(1.4a)

Ri,j,k ≤ σ ⇐⇒ μσ(i) ≥ j, μσ(j) ≥ k and μσ−1(i) ≥ k,(1.4b)

Li,j,k ≤ σ ⇐⇒ μσ−1(i) ≥ j, μσ−1(j) ≥ k and μσ(i) ≥ k.(1.4c)

In particular,

Ti−1,i ≤ σ ⇐⇒ μσ(i) > i ⇐⇒ μσ−1(i) > i

⇐⇒ σ([i− 1]) �= [i− 1],
(1.5a)

Ri,j,j+1 ≤ σ ⇐⇒ μσ(i) ≥ j and μσ−1(i) ≥ j + 1.(1.5b)

It also follows that for any i < j, k < l,

(1.6) Ri,k,l ∨ Li,j,l = Ti,l,

i.e., for every σ ∈ Sn: σ ≥ Ri,k,l, Li,j,l ⇐⇒ σ ≥ Ti,l.
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The comparisons among the elements of C2,3 with respect to the Bruhat

order are summarized in the following list.

Ti,j ≤ Tx,y ⇐⇒ x ≤ i < j ≤ y,(1.7a)

Ri,j,k ≤ Tx,y ⇐⇒ Li,j,k ≤ Tx,y ⇐⇒ Ti,k ≤ Tx,y,(1.7b)

Ti,j ≤ Rx,y,z ⇐⇒ Ti,j ≤ Lx,y,z

⇐⇒ either Ti,j ≤ Tx,y or Ti,j ≤ Ty,z,
(1.7c)

Ri,j,k ≤ Lx,y,z ⇐⇒ Li,j,k ≤ Rx,y,z

⇐⇒ either Ti,k ≤ Tx,y or Ti,k ≤ Ty,z,
(1.7d)

Ri,j,k ≤ Rx,y,z ⇐⇒ Li,j,k ≤ Lx,y,z

⇐⇒
either Ti,k ≤ Tx,y or Ti,k ≤ Ty,z

or x ≤ i < j = y < k ≤ z.

(1.7e)

2. Admissible sets

2.1.

Definition 2.1. We say that a subset A ⊆ C2,3 is admissible if it satisfies

the following three conditions.

A is downward closed, i.e.,

if σ ∈ A, τ ∈ C2,3 and τ ≤ σ, then τ ∈ A.
(2.1a)

If Ri,j,l, Li,k,l ∈ A for some i < j, k < l, then Ti,l ∈ A.(2.1b)

If Ti,j , Tj,k ∈ A for some i < j < k,

then at least one of Ri,j,k or Li,j,k is in A.
(2.1c)

Note that by (1.7), the first two conditions imply that for every i < j < k,

Ti,k ∈ A if and only if Ri,j,k ∈ A and Li,j,k ∈ A.

It is clear that if A is admissible, then so are the inverted set A−1 =

{σ−1 : σ ∈ A} and the upended set w0Aw0 = {w0σw0 : σ ∈ A}.
We verify the first part of Theorem 1.5 in the following lemma.

Lemma 2.2. If τ ∈ Sn is covexillary, then C(τ) is admissible.
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Proof. By transitivity of the Bruhat order and (1.6), the set A = C(τ)

satisfies properties (2.1a) and (2.1b) for every τ ∈ Sn.

To prove (2.1c) for covexillary τ , assume on the contrary that Ti,j , Tj,k ∈
A but Ri,j,k, Li,j,k /∈ A. Then,

• μτ (i) ≥ j, μτ−1(i) ≥ j,

• μτ (j) ≥ k, μτ−1(j) ≥ k,

• μτ (i) < k, μτ−1(i) < k.

Therefore, there exist u, v, x, y ∈ [n] such that

• u ≤ i and j ≤ τ(u) < k,

• i < v ≤ j and τ(v) ≥ k,

• j ≤ x < k and τ(x) ≤ i,

• y ≥ k and i < τ(y) ≤ j.

Thus, u < v ≤ x < y and τ(x) < τ(y) ≤ τ(u) < τ(v) in contradiction to the

assumption on τ .

Remark 2.3. The assumption on τ in Lemma 2.2 is essential. For instance,

for n = 4 and τ = (3412) we have

C(τ) = C2,3 \ {T1,4, R1,2,4, L1,2,4, R1,3,4, L1,3,4}

which is not admissible since (2.1c) is not satisfied.

On the other hand, the converse to Lemma 2.2 is also false. For n = 5

and τ = (45231) we have

C(τ) = C2,3 \ {T1,5, L1,2,5, L1,3,5, L1,4,5}

which is admissible although τ is not covexillary.

2.2.

The following observation follows directly from (1.4a).

Observation 2.4. Let τ ∈ Sn, i < j and x < y. Then,

1. If μτ (x) < y ≤ μτTi,j
(x), then i ≤ x < j and τ(i) < y ≤ τ(j).

2. If μτ−1(x) < y ≤ μ(τTi,j)−1(x), then i < y ≤ j and τ(i) ≤ x < τ(j).

For inductive arguments, the following result will be useful.



312 Shoni Gilboa and Erez Lapid

Lemma 2.5. Suppose that σ ∈ Sn and i ∈ [n] are such that σ([i−1]) = [i−1]
and σ(i) ≥ j := σ−1(i) > i. (In particular, σ(j) = i < σ(j − 1).) Let
σ′ = σTj−1,j. Then,

(2.2) CT (σ
′) ⊆ CT (σ) and Ti,j ∈ CT (σ) \CT (σ

′)

and

(2.3) CT (σ
′) ⊇ {Tr,s ∈ CT (σ) : r �= j − 1 and s �= j}.

Moreover, σ is smooth if and only if σ′ is smooth and CT (σ) = CT (σ′) ∪
{Ti,j}.
Proof. It is clear from the assumptions that σ′ < σ and Ti,j ∈ CT (σ) \
CT (σ′). Hence, (2.2).

The inclusion (2.3) follows from Observation 2.4 and (1.4a).
Consider the second part. Note that by our assumptions, �(σ′) = �(σ)−1.

Since #CT (σ′) ≥ �(σ′), it follows from (2.2) that the two conditions are
equivalent.

Corollary 2.6. Let e �= σ ∈ (Sn)sm. Then, there exists σ′ ∈ (Sn)sm such
that �(σ′) = �(σ)−1 and at least one of σ−1σ′ or σ′σ−1 is a simple reflection.

Proof. Let i be the minimal non-fixed point of σ. Replacing σ by σ−1 if
necessary, we may assume that j := σ−1(i) ≤ σ(i). Note that j > i. Then
σ′ := σTj−1,j is smooth by Lemma 2.5, σ−1σ′ = Tj−1,j is a simple reflection
and �(σ′) = �(σ)− 1.

Example 2.7. The permutation σ = (365214) is smooth but there is no
i ∈ [5] such that σ(i) > σ(i+ 1) and σTi,i+1 is smooth.

3. Wedges and derived sets

In this section we define a few technical notions that are useful for future
inductive proofs.

3.1.

Given a subset A ⊆ C2,3 we will write for simplicity AT = A∩ T . Note that
(C(σ))T = CT (σ).

Observation 3.1. If A1 ⊆ A2 are admissible sets and (A1)T = (A2)T , then
necessarily A1 = A2.
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Definition 3.2. Suppose that A ⊆ C2,3 is admissible and T = Ti,j ∈ AT .
Then, we say that T is a wedge for A if Ti−1,i /∈ A (or i = 1) and Ri,j,j+1 /∈ A
(or j = n).

Observation 3.3. If Ti,j is a wedge for A, then

{T ∈ AT : T (i) �= i} = {Ti,r}jr=i+1.

Remark 3.4. Note that the definition of wedge is not symmetric with respect
to either A �→ A−1, A �→ w0Aw0, or A �→ w0A

−1w0. In other words, if T is a
wedge for A, then T is not necessarily a wedge for A−1, nor is w0Tw0 a wedge
for either w0Aw0 or w0A

−1w0 in general. However, for every non-empty
admissible A, at least one of A or A−1 has a wedge. Namely, if Ti,j ∈ AT
with i minimal and j maximal (with respect to this i), then Ti,j is a wedge
for A or A−1 (or both).

We record some simple properties of wedges in the following lemma.

Lemma 3.5. Suppose that A ⊆ C2,3 is admissible and Ti,j is a wedge for A.
Then,

1. For every k > j, Li,j,k ∈ A if and only if Tj,k ∈ A.
2. Ri,k,l /∈ A for all i < k ≤ j < l.

Proof. Suppose that k > j. If Li,j,k ∈ A, then Tj,k ∈ A, by (1.7) and (2.1a).
If Tj,k ∈ A, then Li,j,k ∈ A or Ri,j,k ∈ A, by (2.1c), but Ri,j,k /∈ A by (1.7)
and (2.1a), since Ri,j,j+1 /∈ A. This proves the first part. The second part
holds since otherwise we would have Ri,k,j+1 ∈ A in contradiction to the
property (2.1b) for A and the fact that Li,j,j+1 ∈ A (by the first part).

3.2.

Definition 3.6. Suppose that A ⊆ C2,3 is admissible and T = Ti,j is a wedge
for A. Then, the derived set of A with respect to T is

A′ := A \
(
{T} ∪ {Li,j,k : k > j} ∪ {Ri,k,j : i < k < j}

)
.

In particular,

A′
T = AT \ {T}.

We record some simple properties of derived sets in the following lemma.

Lemma 3.7. Suppose that A ⊆ C2,3 is admissible and T = Ti,j is a wedge
for A. Then,
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1. A = A′ ∪ {T} ∪ {Li,j,k : Tj,k ∈ A′} ∪ {Ri,k,j : i < k < j}. In particular,
A is determined by T and A′.

2. Lk,j,l ∈ A′ for every i < k < j < l such that Tj,l ∈ A.
3. A′ is admissible.
4. If j > i+ 1, then Ti,j−1 is a wedge for A′.

Proof. The first two parts follow easily from the first part of Lemma 3.5.

Write A′ = A \B where

B = {T} ∪ {Li,j,k : k > j} ∪ {Ri,k,j : i < k < j}.

To check that A′ is admissible, we check the properties (2.1a)–(2.1c).

For (2.1a) we need to check that if τ ≤ σ for some τ ∈ B and σ ∈ C2,3,
then σ ∈ B or σ /∈ A. This follows from the table (1.7) and the second part
of Lemma 3.5.

The properties (2.1b), (2.1c) are immediate.

If j > i+1, then clearly Ri,j−1,j /∈ A′. Also, Ti,j−1 ∈ A′ since Ti,j−1 ∈ A.
Finally, Ti−1,i /∈ A (or i = 1), since T is a wedge for A, so in particular
Ti−1,i /∈ A′ (or i = 1) and the last part follows.

Lemma 3.8. Let σ ∈ Sn be such that C(σ) is admissible, and let 1 ≤ i <
j ≤ n. Then,

1. Ti,j is a wedge for C(σ) if and only if σ([i − 1]) = [i − 1] and σ(i) ≥
j = σ−1(i).

2. Suppose that σ ∈ (Sn)sm and Ti,j is a wedge for C(σ). Let σ′ :=
σTj−1,j. Then,

(C(σ))′ = C(σ′)

(where the derived set is taken with respect to Ti,j).

Proof. Suppose that Ti,j is a wedge for C(σ). Since Ti−1,i �≤ σ (or i = 1),
σ([i − 1]) = [i − 1], by (1.5a). Therefore, since Ti,j ≤ σ, we have σ(i) ≥ j
and σ−1(i) ≥ j. If j < n, then since Ri,j,j+1 �≤ σ but Ti,j ≤ σ we must have
μσ−1(i) = j, by (1.5b). Hence, σ−1(i) = j.

Conversely, if σ([i − 1]) = [i − 1] and σ(i) ≥ j = σ−1(i), then it is easy
to see that Ti,j is a wedge for C(σ).

Assume now that σ is smooth and that Ti,j is a wedge for C(σ). By
the first part, σ([i − 1]) = [i − 1] and σ(i) ≥ j = σ−1(i). Therefore, by
Lemma 2.5, (

C(σ′)
)
T = CT (σ

′) = CT (σ) \ {Ti,j} = C(σ)′T
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and σ′ is smooth, and hence C(σ′) is admissible. The set C(σ)′ is admissible
as well, by the third part of Lemma 3.7, and it is easy to see that C(σ′) ⊆
C(σ)′. Therefore, C(σ′) = C(σ)′, by Observation 3.1.

3.3.

The last two parts of Lemma 3.7 justify the following definition.

Definition 3.9. Suppose that A ⊆ C2,3 is admissible and Ti,j is a wedge
for A. The iterated derived set A◦ of A with respect to Ti,j is the set obtained
from A by deriving it repeatedly j − i times with respect to Ti,j , Ti,j−1, . . . ,
Ti,i+1. Explicitly,

A◦ =A \
(
{Ti,k : k > i} ∪ {Li,k,l, Ri,k,l : l > k > i}

)
=A \

(
{Ti,k : i < k ≤ j} ∪ {Li,k,l : i < k < l} ∪ {Ri,k,l : i < k < l ≤ j}

)
.

In particular,

A◦
T = AT \ {Ti,k : k > i} = AT \ {Ti,k : i < k ≤ j}.

Lemma 3.10. Suppose that A ⊆ C2,3 is admissible and Ti,j is a wedge for
A. Then,

1. A◦ is admissible.
2. If j > i+ 1, then there exists k ≥ j such that Ti+1,k is a wedge for A◦

or (A◦)−1 (or both).

Proof. The first part follows by repeatedly using the last two parts of
Lemma 3.7. Suppose that j > i + 1. Clearly, Ti+1,j ∈ A◦ since Ti+1,j ∈ A.
Take the maximal k ≥ j for which Ti+1,k ∈ A◦. Note that Ti,i+1 /∈ A◦.
Therefore, if k = n, then Ti+1,k is a wedge for both A◦ and (A◦)−1. If k < n,
then Ti+1,k+1 /∈ A◦, by the maximality of k, and therefore Ri+1,k,k+1 /∈ A◦

or Li+1,k,k+1 /∈ A◦, by the admissability of A◦ and (2.1b). If Ri+1,k,k+1 /∈ A◦,
then Ti+1,k is a wedge for A

◦ and if Li+1,k,k+1 /∈ A◦, i.e., Ri+1,k,k+1 /∈ (A◦)−1,
then Ti+1,k is a wedge for (A◦)−1.

4. Compatible orders

In this section we define the notion of a compatible order for an admissible
set. We show that a compatible order always exists and any two are obtained
from one another by a sequence of elementary operations.
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4.1.

Definition 4.1. Given an admissible subset A ⊆ C2,3, a compatible order
for A is a (strict) total order ≺ on AT such that for all 1 ≤ i < j < k ≤ n,
the following three conditions are satisfied.

If Ri,j,k ∈ A but Li,j,k /∈ A, then Ti,j ≺ Tj,k.(4.1a)

If Li,j,k ∈ A but Ri,j,k /∈ A, then Ti,j � Tj,k.(4.1b)

If Ti,k ∈ A, then either Ti,j ≺ Ti,k ≺ Tj,k or Ti,j � Ti,k � Tj,k.(4.1c)

This notion is closely related to reflection order (cf. [7], [3, §5.2]) except
that we do not consider a total order on the whole of T .

Remark 4.2. Note that (by the admissibility of A) we can rephrase (4.1a)–
(4.1b) by requiring that for all 1 ≤ i < j < k ≤ n such that Ti,j , Tj,k ∈ AT
but Ti,k /∈ AT we have Ti,j ≺ Tj,k if and only if Ri,j,k ∈ A (or equivalently,
if and only if Li,j,k /∈ A).

Observation 4.3. If ≺ is a compatible order for A, then the reverse order is
a compatible order for A−1. Similarly, T ≺′ T ′ ⇐⇒ w0Tw0 � w0T

′w0 is a
compatible order for w0Aw0.

Remark 4.4. Consider σ = w0. Then, it is well known that the compatible
orders for C2,3 = C(w0) are in one-to-one correspondence with the reduced
decomposition of w0 [22]. Their number is given by a well-known formula
of Stanley [20]. In general, the number of reduced decompositions of σ ∈
(Sn)sm can be either bigger or smaller than the number of compatible orders
for C(σ).

4.2.

The following lemma is clear from the definition of A◦ and the first part of
Lemma 3.10.

Lemma 4.5. Suppose that ∅ �= A ⊆ C2,3 is admissible and Ti,j is a wedge
for A. Then,

1. Any compatible order for A induces a compatible order for A◦.
2. Any compatible order ≺◦ for A◦ may be extended to a compatible order

≺ on A by requiring that

(4.2) Tk,l ≺ Ti,j ≺ Ti,j−1 ≺ · · · ≺ Ti,i+1 for every Tk,l ∈ A◦
T
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Corollary 4.6. For every admissible subset A ⊆ C2,3 there is a compatible
order.

Proof. The corollary follows by induction from the second part of Lemma 4.5
using Remark 3.4 and Observation 4.3.

In general, given a total order ≺ on a set, we will write x ≺· y if y covers
x, i.e., if x ≺ y and there is no z such that x ≺ z ≺ y.

Lemma 4.7. Let ∅ �= A ⊆ C2,3 be an admissible set and let ≺ be a com-
patible order for A. Suppose that r1 < r2 < s2 and s1 > r1 are such that
Tr1,s1 , Tr1,s2 ∈ A and Tr1,s1 ≺· Tr1,s2 ≺· Tr2,s2. Then s1 = r2.

Proof. Assume on the contrary that s1 �= r2. By (4.1c), Tr1,r2 ≺ Tr1,s2 and
therefore, since Tr1,s1 ≺· Tr1,s2 ,

(4.3) Tr1,r2 ≺ Tr1,s1 .

We first show that s1 < s2. Otherwise, r1 < r2 < s2 < s1. Then Ts2,s1 ≺
Tr1,s1 by (4.1c), and hence Ts2,s1 ≺ Tr2,s2 . Therefore, Tr2,s1 ≺ Tr2,s2 by (4.1c).
In addition, Tr1,s1 ≺ Tr2,s1 by (4.1c) and (4.3). Hence, we obtained that
Tr1,s1 ≺ Tr2,s1 ≺ Tr2,s2 , in contradiction with Tr1,s1 ≺· Tr1,s2 ≺· Tr2,s2 .

Thus, s1 < s2. Therefore, Tr1,s2 ≺ Ts1,s2 by (4.1c), and hence, since
Tr1,s2 ≺· Tr2,s2 ,

(4.4) Tr2,s2 ≺ Ts1,s2 .

Assume that r1 < s1 < r2 < s2. Then Ts1,r2 ≺ Tr1,s1 by (4.1c) and (4.3).
On the other hand, Tr2,s2 ≺ Ts1,r2 by (4.1c) and (4.4). Hence, we obtained
that Tr2,s2 ≺ Ts1,r2 ≺ Tr1,s1 , in contradiction with Tr1,s1 ≺ Tr2,s2 .

Finally, assume that r1 < r2 < s1 < s2. Then Tr1,s1 ≺ Tr2,s1 by (4.1c)
and (4.3). Additionally, Tr2,s1 ≺ Tr2,s2 by (4.1c) and (4.4). Hence, we ob-
tained that Tr1,s1 ≺ Tr2,s1 ≺ Tr2,s2 , in contradiction with Tr1,s1 ≺· Tr1,s2 ≺·
Tr2,s2 .

Thus, s1 = r2 as required.

Lemma 4.8. Let ∅ �= A ⊆ C2,3 be an admissible set and Ti,j a wedge for A.
Let ≺ be a compatible order for A. Then, we cannot have Ti,j1 ≺· Tj1,j2 for
any i < j1 < j2.

Proof. Suppose that Ti,j1 , Tj1,j2 ∈ A for i < j1 < j2. Then necessarily j1 ≤ j.
If j2 > j then Ri,j1,j2 /∈ A by the second part of Lemma 3.5, and hence
Ti,j1 ⊀ Tj1,j2 by (4.1c). If j2 ≤ j then Ti,j2 ∈ A and hence Ti,j1 ≺ Ti,j2 ≺ Tj1,j2

by (4.1c).
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4.3.

Suppose that Ti,j ≺· Tk,l and {i, j} ∩ {k, l} = ∅. Then, upon switching the
order of Ti,j and Tk,l (but no other elements) we get a new compatible
order. Similarly, if Ti,j ≺· Ti,k ≺· Tj,k or Tj,k ≺· Ti,k ≺· Ti,j , then we get a
new compatible order by reversing the order of Ti,j , Ti,k, Tj,k (and otherwise
keeping ≺). We call these two operations on compatible orders elementary.
We say that two compatible orders are equivalent if they can be obtained
from one another by a finite sequence of elementary operations.

Lemma 4.9. If A ⊆ C2,3 is admissible, then all compatible orders for A are
equivalent.

Proof. We will argue by induction on #AT . The base of the induction (the
case A = ∅) is trivial. Suppose that A �= ∅. By passing to A−1 if necessary, we
may assume that there is a wedge Ti,j for A. By the induction hypothesis and
Lemma 4.5, it suffices to show that any compatible order for A is equivalent
to one which satisfies (4.2).

Following Observation 3.3, denote

W = {Ti,r}jr=i+1 = {T ∈ AT : T (i) �= i}.

For every compatible order ≺ for A and every i < r ≤ j, denote

wr(≺) = #{T ∈ AT \W : Ti,r ≺ T}.

Let E be an equivalence class of compatible orders for A. Let ≺ be an order
in E for which the sum w :=

∑j
r=i+1wr(≺) is minimal. We claim that ≺

satisfies (4.2). By (4.1c) it is enough to show that w = 0.
Assume on the contrary that w > 0, i.e.,

Z := {T ∈ AT \W : Ti,r ≺ T for some i < r ≤ j} �= ∅.

Let Tk,l be the minimum of Z with respect to ≺. Then there is i < r1 ≤ j
such that Ti,r1 ≺· Tk,l. Note that k �= i since Tk,l /∈ W , l �= i since Ti,j is a
wedge for A, and r1 �= k by Lemma 4.8. On the other hand, {i, r1}∩{k, l} �=
∅, otherwise we could switch the order of Ti,r1 , Tk,l and reduce w by 1,
contradicting the choice of ≺. Therefore r1 = l. in particular, i < l and hence
i < k since Ti,j is a wedge for A and i �= k. Then, by (4.1c), Ti,k ≺ Ti,l ≺· Tk,l.
By the minimality of Tk,l in Z, it follows that there is i < r0 ≤ j such that
Ti,r0 ≺· Ti,l ≺· Tk,l. By Lemma 4.7, r0 = k. Then we could switch the order
of Ti,k, Tk,l and reduce w by 2, contradicting the choice of ≺.
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Lemma 4.9 and the braid relations

Ti,jTi,kTj,k = Tj,kTi,kTi,j , i < j < k,

immediately imply the following corollary.

Corollary 4.10. Let A ⊆ C2,3 be admissible and let ≺ be a compatible order

for A. Write AT = {σ1, . . . , σk} with σ1 ≺ · · · ≺ σk. Then, the product

π(A) := σ1 · · ·σk ∈ Sn depends only on A and not on the choice of ≺.

Observation 4.11. For every admissible A ⊆ C2,3 we have, in light of Obser-

vation 4.3,

π(A−1) = (π(A))−1, π(w0Aw0) = w0π(A)−1w0.

Remark 4.12. Suppose that ≺ is a total order on AT and write AT =

{σ1, . . . , σk} with σ1 ≺ · · · ≺ σk. It is possible that the product σ1 · · ·σk
is equal to π(A) even if ≺ is not compatible with respect to A. For instance,

if A = C2,3
4 , then there are 64 total orders on T with this property (i.e., 64

ways to write w0 as the product of all transpositions) and only 16 of them

are compatible with respect to C2,3.

5. The main bijection

In this section we prove Theorem 1.1.

5.1.

Recall that R[i,j] ∈ Sn, i < j is the cycle permutation i → i + 1 → · · · →
j → i

Lemma 5.1. Suppose that A ⊆ C2,3 is admissible and Ti,j is a wedge for A.

Let σ = π(A). Then,

1. σ = π(A◦)R[i,j].

2. σ = π(A′)Tj−1,j.

3. σ(j) = i.

4. σ([i− 1]) = [i− 1].

5. σ(k) ≥ i+ j − k and σ−1(k) ≥ i+ j − k for every i ≤ k ≤ j.

6. σ(i) = j =⇒ σ(k) = i+ j − k for all i < k ≤ j.
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Proof. For the first part, by considering a compatible order for A satisfy-
ing (4.2), we have

σ = π(A) = π(A◦)Ti,jTi,j−1 · · ·Ti,i+1 = π(A◦)R[i,j].

The second part follows from the first part if j = i+1 (in which case A◦ = A′

and R[i,j] = Tj−1,j). On the other hand, if j > i+ 1, then σ is equal to

π(A◦)R[i,j] = π(A◦)R[i,j−1]Tj−1,j = π
(
(A′)◦

)
R[i,j−1]Tj−1,j = π(A′)Tj−1,j

by applying the first part to A′ and using the last part of Lemma 3.7.
Moreover, since A◦ does not contain any transposition of the form Tr,i

or Ti,l, we have

σ(j) = π(A◦)
(
R[i,j](j)

)
= π(A◦)(i) = i,

proving part three.
Since Tr,s /∈ A if r < i ≤ s, we have σ([i − 1]) = [i − 1], i.e., the fourth

part.
For the last two parts we use induction on the size of A. If j = i+1, then

the claims of part 5 and part 6 follow directly from parts 3 and 4. Therefore,
assume that j > i + 1. By Lemma 3.10 part 2 there exists r ≥ j such that
Ti+1,r is a wedge for A◦ or (A◦)−1. Since π((A◦)−1) = (π(A◦))−1, we have
for every i < k ≤ r, by the induction hypothesis,

(π(A◦))(k), (π(A◦))−1(k) ≥ i+ 1 + r − k,

and if (π(A◦))(i+1) = r then (π(A◦))(k) = i+1+r−k for every i+1 < k ≤ r.
Therefore, by the first part, for every i ≤ k < j,

(5.1) σ(k) = π(A◦)(R[i,j](k)) = (π(A◦))(k+1) ≥ i+1+r−(k+1) ≥ i+j−k,

σ(j) = i = i+ j − j, and for every i ≤ k ≤ j

σ−1(k) = R−1
[i,j](π(A

◦)−1(k)) ≥ (π(A◦))−1(k)− 1 ≥ i+ r − k ≥ i+ j − k.

Moreover, if σ(i) = j then by (5.1), (π(A◦))(i+ 1) = r = j and hence

σ(k) = (π(A◦))(k + 1) = i+ 1 + r − (k + 1) = i+ j − k

for every i < k ≤ r − 1 = j − 1 (and obviously σ(j) = i = i+ j − j).
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Recall that C(σ) is admissible for every smooth σ, by Lemma 2.2.

Proposition 5.2. For every σ ∈ (Sn)sm it holds that π(C(σ)) = σ.

Proof. We argue by induction on �(σ). The base of the induction (the case
where σ is the identity permutation) is trivial. For the induction step, let i
be the smallest index such that j := σ−1(i) �= i. Passing to σ−1 if necessary
we may assume that σ(i) ≥ j. Then, σ′ = σTj−1,j is smooth by Lemma 2.5.
By Lemma 3.8, the transposition Ti,j is a wedge for C(σ) and the derived
set is C(σ′). Hence, by the second part of Lemma 5.1 and the induction
hypothesis,

π(C(σ)) = π
(
(C(σ))′

)
Tj−1,j = π(C(σ′))Tj−1,j = σ′Tj−1,j = σ.

Proposition 5.3. For every admissible A ⊆ C2,3, the permutation π(A) is
smooth and C(π(A)) = A

Proof. We argue by induction on the size of A. The base of the induction (the
case A = ∅) is trivial. For the induction step, passing to A−1 if necessary,
we may assume that there is a wedge Ti,j for A. For simplicity, denote
σ := π(A) and σ′ := σTj−1,j . By Lemma 5.1, σ′ = π(A′), σ([i− 1]) = [i− 1],
σ(i) ≥ j = σ−1(i) and σ−1(i+ 1) ≥ j − 1. By the induction hypothesis, the
permutation σ′ = π(A′) is smooth and C(σ′) = A′.

We show that CT (σ) = CT (σ′)∪{Ti,j}. It is clear that CT (σ′) ⊆ CT (σ)
and that Ti,j ∈ CT (σ). Hence,CT (σ′)∪{Ti,j} ⊆ CT (σ). Conversely, suppose
that Tr,s ∈ CT (σ). By (2.3), if r �= j − 1 and s �= j, then Tr,s ∈ CT (σ′).
If s = j, then either r = i or Tr,s ∈ CT (σ′) since σ−1(i + 1) ≥ j − 1.
Suppose now that r = j − 1 and s �= j. Then, r > i and Tj,s ∈ CT (σ) and
hence by (2.3), Tj,s ∈ CT (σ′). By Lemma 3.7 part 2, Lr,j,s ∈ A′ = C(σ′). In
particular, μσ′(r) ≥ s. In light of Observation 2.4, the condition μσ′ −1(r) ≥ s
also holds, since μσ−1(r) ≥ s and s �= j. Hence Tr,s ∈ CT (σ′). In conclusion,
CT (σ) = CT (σ′) ∪ {Ti,j} as claimed.

It follows from Lemma 2.5 that σ is smooth. In particular,C(σ) is admis-
sible. Finally, by Lemma 3.8, Ti,j is a wedge for C(σ) and C(σ)′ = C(σ′) =
A′. Hence, C(σ) = A, by Lemma 3.7 part 1. The proposition follows.

Note that Proposition 5.2 and Proposition 5.3 do not yet finish the proof
of Theorem 1.1 since we still have to show the relation (1.1).

5.2.

For every non-empty subset A = {i1, . . . , ik} ⊆ [n] with i1 < · · · < ik let RA

be the cycle permutation i1 → i2 → · · · → ik → i1 and let LA := R−1
A . Note
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that this is consistent with the notation R[i,j] introduced before. Denote by

C = Cn the set of permutations of the form RA or LA for some ∅ �= A ⊆ [n],

and let

Cspcl = (Cn)spcl := {R[i,j]}1≤i<j≤n ∪ {L[i,j]}1≤i<j≤n.

Note that RA = LA = Ti,j if A = {i, j} and RA = LA = e if A is a singleton.

Thus,

#Cn = 2n+1 −
(
n

2

)
− 2n− 1,

whereas

#Tn =

(
n

2

)
, #(Cn)spcl = 2

(
n

2

)
−(n−1) = (n−1)2, #C2,3

n = 2

(
n

3

)
+

(
n

2

)
.

It is easy to see that for every σ ∈ Sn and ∅ �= A = {i1, . . . , ik} ⊆ [n] with

i1 < · · · < ik we have

RA ≤ σ ⇐⇒ μσ(ij) ≥ ij+1 for all 1 ≤ j < k and μσ−1(i1) ≥ ik,(5.2a)

LA ≤ σ ⇐⇒ μσ−1(ij) ≥ ij+1 for all 1 ≤ j < k and μσ(i1) ≥ ik.(5.2b)

In particular, for every i < j

(5.2c) R[i,j] ≤ σ ⇐⇒ μσ−1(i) ≥ j.

Indeed, if μσ−1(i) ≥ j, then for all r ∈ [i, j − 1], μσ(r) ≥ r + 1, otherwise

σ([r]) = [r] and in particular, μσ−1(i) ≤ μσ−1(r) = r < j. Similarly,

(5.2d) L[i,j] ≤ σ ⇐⇒ μσ(i) ≥ j.

Observation 5.4.

1. Let A ⊆ [n] be a set consisting of at least two elements. Then,

LA\{minA} ≤ LA, RA\{minA} ≤ RA,

LA\{maxA} ≤ LA, RA\{maxA} ≤ RA.

2. Let ∅ �= A ⊂ B ⊆ [n] be sets such that minA = minB and maxA =

maxB. Then,

LB ≤ LA, RB ≤ RA.
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For every σ ∈ Sn let

D(σ) = {τ ∈ C : τ ≤ σ},
Dspcl(σ) = {τ ∈ Cspcl : τ ≤ σ} = D(σ) ∩ Cspcl.

We say that σ ∈ Sn is defined by inclusions if for every τ ∈ Sn we have

τ ≤ σ ⇐= μτ (i) ≤ μσ(i) and μτ−1(i) ≤ μσ−1(i) for all i.

(The implication =⇒ always holds, cf. (1.3).) This terminology conforms
with a similar notion for Schubert varieties [11].

Lemma 5.5. The following three conditions are equivalent for σ ∈ Sn.

1. σ is defined by inclusions.
2. For every τ ∈ Sn, τ ≤ σ if and only if D(τ) ⊆ D(σ).
3. For every τ ∈ Sn, τ ≤ σ if and only if Dspcl(τ) ⊆ Dspcl(σ).

Proof. Clearly, if τ ≤ σ, then D(τ) ⊆ D(σ) and Dspcl(τ) ⊆ Dspcl(σ). Also,
if D(τ) ⊆ D(σ), then Dspcl(τ) ⊆ Dspcl(σ). Thus, 3 =⇒ 2.

Conversely, if Dspcl(τ) ⊆ Dspcl(σ), then by (5.2) we have D(τ) ⊆ D(σ).
Hence 2 =⇒ 3.

The equivalence of conditions 1 and 3 follows from (5.2c) and (5.2d).

Lemma 5.6. Let σ be a covexillary permutation in Sn, let r ≥ 3 and 1 ≤
i1 < · · · < ir ≤ n.

If Ti1,ir−1
� σ, Ti2,ir � σ, Li1,...,ir−1

≤ σ and Li2,...,ir ≤ σ, then
Li1,...,ir ≤ σ.

Similarly, if Ti1,ir−1
� σ, Ti2,ir � σ, Ri1,...,ir−1

≤ σ and Ri2,...,ir ≤ σ, then
Ri1,...,ir ≤ σ.

Proof. First note that the statements are empty if r = 3, so we may assume
r > 3. We only need to prove the first statement, as the second one would
then follow by passing to σ−1. Since Li1,...,ir−1

≤ σ and Li2,...,ir ≤ σ, it follows
from (5.2b) that μσ(i1) ≥ ir−1, μσ(i2) ≥ ir and μσ−1(it) ≥ it+1 for every
1 ≤ t ≤ r − 1. Since Ti1,ir−1

� σ, it follows that μσ−1(i1) < ir−1. Similarly,
μσ−1(i2) < ir, since Ti2,ir � σ.

By way of contradiction assume now that Li1,...,ir � σ. Since μσ−1(it) ≥
it+1 for every 1 ≤ t ≤ r − 1, it follows that μσ(i1) < ir.

Since ir−1 ≤ μσ(i1) < ir, there is x ≤ i1 such that ir−1 ≤ σ(x) < ir.
Similarly, since i2 ≤ μσ−1(i1) < ir−1, there is i2 ≤ z < ir−1 such that
σ(z) ≤ i1. Since μσ(i1) < ir ≤ μσ(i2), there is i1 < y ≤ i2 such that
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σ(y) ≥ ir. Finally, since μσ−1(i2) < ir ≤ μσ−1(ir−1), there is w ≥ ir such
that i2 < σ(w) ≤ ir−1.

Therefore, x < y ≤ z < w and σ(z) < σ(w) ≤ σ(x) < σ(y), violating
the covexillarity of σ.

The following observation immediately follows from (5.2a) and (5.2b).

Observation 5.7. Suppose that τ ∈ Sn, r ≥ 3 and 1 ≤ i1 < · · · < ir ≤ n.
Then,

1. Ti1,ir−1
∨ Li1,...,ir = Li1,ir−1,ir .

2. Ti1,ir−1
∨Ri1,...,ir = Ri1,ir−1,ir .

3. Ti2,ir ∨ Li1,...,ir = Li1,i2,ir .
4. Ti2,ir ∨Ri1,...,ir = Ri1,i2,ir .

Corollary 5.8. Let σ be a covexillary permutation in Sn, r ≥ 3 and 1 ≤
i1 < · · · < ir ≤ n. Then, Li1,...,ir ≤ σ if and only if at least one of the
following three conditions holds.

• Li1,ir−1,ir ≤ σ,
• Li1,i2,ir ≤ σ,
• Ti1,ir−1

� σ, Ti2,ir � σ, Li1,...,ir−1
≤ σ and Li2,...,ir ≤ σ.

Similarly, Ri1,...,ir ≤ σ if and only if at least one of the following three
conditions holds.

• Ri1,ir−1,ir ≤ σ.
• Ri1,i2,ir ≤ σ.
• Ti1,ir−1

� σ, Ti2,ir � σ, Ri1,...,ir−1
≤ σ and Ri2,...,ir ≤ σ.

Indeed, this follows from Observation 5.4, Observation 5.7 and
Lemma 5.6.

The corollary provides for any covexillary permutation σ, a simple re-
cursive algorithm for constructing D(σ) out of its subset C(σ).

Corollary 5.9. Suppose that σ ∈ Sn is covexillary, τ ∈ Sn and CT (τ) =
CT (σ). Then, D(τ) ⊆ D(σ) if and only if C(τ) ⊆ C(σ).

Proof. If D(τ) ⊆ D(σ), then clearly C(τ) = D(τ) ∩ C2,3 ⊆ D(σ) ∩ C2,3 =
C(σ).

To show the opposite implication, we prove by induction on r that if
Li1,...,ir ≤ τ for some i1 < · · · < ir, then Li1,...,ir ≤ σ. Similarly, by passing
to σ−1, if Ri1,...,ir ≤ τ , then Ri1,...,ir ≤ σ. The base cases r = 2 and r = 3
are given. For the induction step, let r ≥ 4 and assume that the induction
hypothesis is satisfied for r − 1.
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Suppose first that Ti1,ir−1
≤ τ . Then, Li1,ir−1,ir ≤ τ , by Observation 5.7.

Therefore, Li1,ir−1,ir ∈ C(τ) and hence Li1,ir−1,ir ∈ C(σ), i.e., Li1,ir−1,ir ≤ σ.
Hence, Li1,...,ir ≤ σ, by Observation 5.4. A similar argument shows that
Li1,...,ir ≤ σ if Ti2,ir ≤ τ .

Finally, suppose that Ti1,ir−1
� τ and Ti2,ir � τ . Then, Ti1,ir−1

, Ti2,ir /∈
CT (τ) = CT (σ) and hence Ti1,ir−1

� σ and Ti2,ir � σ. On the other hand, by
Observation 5.4, Li1,...,ir−1

≤ τ and Li2,...,ir ≤ τ and hence, by the induction
hypothesis, Li1,...,ir−1

≤ σ and Li2,...,ir ≤ σ. It follows from Lemma 5.6 that
Li1,...,ir ≤ σ.

By [11], σ is defined by inclusions if and only if σ is 4231, 35142, 42513
and 351624 avoiding. (See [1] and the references therein for other equivalent
conditions.) In particular, a permutation is smooth if and only if it is both
covexillary and defined by inclusions.

Corollary 5.10. Suppose that τ ∈ Sn, σ ∈ (Sn)sm and CT (τ) = CT (σ).
Then, τ ≤ σ if and only if C(τ) ⊆ C(σ).

Proof. Clearly, if τ ≤ σ, then C(τ) ⊆ C(σ). Conversely, suppose that σ is
smooth, C(τ) ⊆ C(σ) and CT (τ) = CT (σ). By Corollary 5.9, D(τ) ⊆ D(σ)
since σ is covexillary. Hence, by Lemma 5.5, τ ≤ σ, since σ is defined by
inclusions, as required.

Remark 5.11. It is not true in general that C(τ) ⊆ C(σ) implies that τ ≤ σ
even if σ, τ ∈ (Sn)sm. For instance, if τ = R[1,n] and σ = w0Tn−1,n = T1,2w0,
n > 1, then τ �≤ σ since τ(n) = 1 < 2 = σ(n). On the other hand,

C(τ) = {Ti−1,i : i ∈ [n− 1]} ∪ {Ri−1,i,i+1 : i ∈ [2, n− 1]}

and

C(σ) = C(w0)
′ = C2,3 \ {T1,n, R1,i,n : 1 < i < n},

so that C(τ) ⊆ C(σ) if n > 3. Note that among all pairs of permutations in
Sn such that τ �≤ σ, �(σ)− �(τ) =

(
n
2

)
−n is maximal in the example above.

We can now finish the proof of Theorem 1.1.
In view of Proposition 5.2 and Proposition 5.3 it remains to prove the

relation (1.1). Let A ⊂ C2,3 be admissible and σ = π(A). By Proposition 5.3,
σ is smooth and C(σ) = A. On the other hand, if τ is a permutation such
that CT (τ) = AT and C(τ) ⊆ A, then τ ≤ σ by Corollary 5.10.

Question 5.12. Given σ1, σ2 ∈ (Sn)sm with σ1 ≤ σ2, does there exist a
compatible order for C(σ2) whose restriction to CT (σ1) is a compatible
order for C(σ1)?
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6. An application

Let ∼ be an equivalence relation on [n] and let X be the set of equivalence
classes of ∼ (i.e., the corresponding partition of [n]). We denote by SX the
subgroup of Sn of permutations that preserve every equivalence class. In this
section we prove Theorem 1.3 (see Proposition 6.6 below).

6.1.

For each equivalence class X ∈ X let ηX be the order preserving bijection
[#X] → X and let ιX : S#X → SX be the injective homomorphism given
by

ιX(σ)(ηX(i)) = ηX(σ(i)), i ∈ [#X], ιX(σ)(i) = i, ∀i /∈ X.

Let ι = (ιX)X∈X be the isomorphism

ι :
∏
X∈X

S#X → SX.

Denote by ≤X the partial order on SX obtained from the product order
on

∏
X∈X S#X via ι. Note that ≤X is stronger than the Bruhat order on SX

(induced from Sn). It is strictly stronger if there exist indices i < j < k < l
such that i ∼ l �∼ j ∼ k.

Also, note that in general ι does not preserve smoothness, i.e.,

ι

( ∏
X∈X

(S#X)sm

)
� (Sn)sm.

(For instance, for n = 4, the non-smooth permutation (3412) is in the image
of ι : S2×S2 → S4 with respect to the equivalence relation i ∼ j ⇐⇒ i ≡ j
(mod 2).)

For any X ∈ X and A ⊆ Sn let AX = ι−1
X (A) ⊂ S#X .

Observation 6.1. For every admissible A ⊆ C2,3
n and X ∈ X, the set AX ⊆

C2,3
#X is admissible.

Lemma 6.2. Let σ ∈ Sn, X ∈ X and σ′ ∈ S#X . Assume that σ and σ′ are
covexillary and C(σ′) = (C(σ))X . Then, D(σ′) = (D(σ))X .

Proof. For every τ ∈ C2,3
#X , ιX(τ) ≤ σ, i.e., ιX(τ) ∈ C(σ) if and only if

τ ∈ (C(σ))X = C(σ′), i.e., τ ≤ σ′. Using Corollary 5.8, it now follows by
induction on #I that for every ∅ �= I ⊆ [#X],

ιX(LI) ≤ σ ⇐⇒ LI ≤ σ′,
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ιX(RI) ≤ σ ⇐⇒ RI ≤ σ′,

and the lemma follows.

Lemma 6.3. For every σ ∈ (Sn)sm and X ∈ X we have

σ[X] := max{τ ∈ S#X : ιX(τ) ≤ σ} ∈ (S#X)sm.

Moreover, σ[X] = e (i.e.,

{τ ∈ S#X : ιX(τ) ≤ σ} = {e}),

if and only if there do not exist i < j in X such that Ti,j ≤ σ.

Proof. The set A := C(σ) is an admissible subset of C2,3
n by Lemma 2.2.

Hence, the set AX ⊆ C2,3
#X is admissible, by Observation 6.1. Define pro-

visionally πX = π(AX) ∈ S#X . By Proposition 5.3, πX is smooth and
C(πX) = AX . We need to show that πX = max{τ ∈ S#X : ιX(τ) ≤ σ}.

We first show that ιX(πX) ≤ σ. For every i ∈ [n], let iX := #([i] ∩X)
and jX = μπX

(iX). By (5.2d), L[iX ,jX ] ≤ πX , i.e., L[iX ,jX ] ∈ D(πX). Hence,
by Lemma 6.2, L[iX ,jX ] ∈ (D(σ))X , that is

LηX([iX ,jX ]) = ιX(L[iX ,jX ]) ∈ D(σ),

i.e., LηX([iX ,jX ]) ≤ σ. In particular, by (5.2b), μσ(ηX(iX)) ≥ ηX(jX) and
hence ηX(jX) ≤ μσ(i), since ηX(iX) ≤ i. Therefore,

μιX(πX)(i) = max{ηX(jX), i} ≤ μσ(i).

Similarly, μ(ιX(πX))−1(i) = μιX(π−1
X )(i) ≤ μσ−1(i) and hence ιX(πX) ≤ σ,

since σ is defined by inclusions.

Conversely, let τ ∈ S#X be such that ιX(τ) ≤ σ. Then, D(ιX(τ)) ⊆
D(σ) and hence (D(ιX(τ)))X ⊆ (D(σ))X . Clearly,

(D(ιX(τ)))X = {ρ ∈ S#X : ιX(ρ) ∈ Cn, ιX(ρ) ≤ ιX(τ)}
= {ρ ∈ C#X : ρ ≤ τ)} = D(τ),

and by Lemma 6.2, (D(σ))X = D(πX). Therefore, D(τ) ⊆ D(πX) and
hence, τ ≤ πX , by Lemma 5.5, since πX is defined by inclusions.

Finally, it is clear that πX = e, i.e., the set AX is empty, if and only if
there do not exist i < j in X such that Ti,j ≤ σ.
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6.2.

For τ ∈ SX and X ∈ X, define τX ∈ SX by

(6.1) τX(r) =

{
τ(r) r ∈ X,

r otherwise.

Thus, if τ = ι((σX)X∈X) then τX = ιX(σX) for all X ∈ X.
We give a characterization of permutations defined by inclusions.

Proposition 6.4. The following two properties are equivalent for σ ∈ Sn.

1. σ is defined by inclusions.
2. For every partition X of [n] and τ ∈ SX we have

τ ≤ σ ⇐⇒ τX ≤ σ ∀X ∈ X.

Observation 6.5. Let σ ∈ Sn and i �= j. Assume that i and j are in the same
cycle of σ. Then, the cycles of σ′ = σTi,j are contained in the cycles of σ,
and i, j are in different cycles of σ′.

Proof of Proposition 6.4. Clearly, for any τ ∈ SX and i ∈ [n]

μτ (i) = maxX∈XμτX (i).

Hence, if σ ∈ Sn is defined by inclusions, then for every τ ∈ SX we have

τ ≤ σ ⇐⇒ τX ≤ σ ∀X ∈ X.

Conversely, Suppose that σ is not defined by inclusions. Then σ does not
avoid at least one of the patterns 4231, 35142, 42513, or 351624. Equivalently,
there are indices as < as+1 < · · · < at and bs < bs+1 < · · · < bt in [n] with
s ∈ {0, 1} and t ∈ {4, 5}, such that σ(a1) = b4, σ(a4) = b1 and

• if s = 1, then σ(a2) = b2; if s = 0, then σ(a0) = b2 and σ(a2) = b0.
• if t = 4, then σ(a3) = b3; if t = 5, then σ(a3) = b5 and σ(a5) = b3.

Denote A := {ai : s ≤ i ≤ t}. Let τ be a permutation such that

{τ(a1), τ(a2)} = {b3, b4}, {τ(a3), τ(a4)} = {b1, b2}, τ(ai) = bi

for every i ∈ [s, t] \ [1, 4] = {s, t} \ {1, 4} and τ(r) = σ(r) for every r /∈ A.
Note that τ([a2]) = σ([a2]) ∪ {b3} \ {b2} and hence #(τ([a2]) ∩ [b2]) =

#(σ([a2]) ∩ [b2])− 1. Therefore, τ � σ.
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By Observation 6.5, upon replacing τ by τTa1,a2
, τTa3,a4

or τTa1,a2
Ta3,a4

if necessary, we may assume that a1, a2 lie in different cycles of τ , and the
same for a3, a4. Let ∼ be an equivalence relation on [n] such that a1 �∼ a2,
a3 �∼ a4 and τ(r) ∼ r for all r. (In fact, we may choose such ∼ with precisely
two equivalence classes.) As usual, let X be the set of equivalence classes of∼.
We claim that τX ≤ σ for all X ∈ X, i.e., #(σ([i]) ∩ [j]) ≤ #(τX([i]) ∩ [j])
for every i, j.

Since X is τ -invariant,

#(τX([i]) ∩ [j]) = #(([i] \X) ∩ [j]) + #(τ([i] ∩X) ∩ [j])

= #([min(i, j)] \X) + #(τ([i]) ∩ [j] ∩X),

and since τ ≡ σ outside the set A,

#(σ([i]) ∩ [j]) = #(τ([i]) ∩ [j])−#(τ([i] ∩A) ∩ [j]) + #(σ([i] ∩A) ∩ [j]).

Hence,

#(τX([i]) ∩ [j])−#(σ([i]) ∩ [j]) = α+ β

where

α := #([min(i, j)] \X)−#(τ([i]) ∩ [j] \X)

and

β := #(τ([i] ∩A) ∩ [j])−#(σ([i] ∩A) ∩ [j]).

It is easy to verify that β ≥ 0 unless a2 ≤ i < a3 and b2 ≤ j < b3, in which
case β = −1. Therefore, it would follow that α+β ≥ 0, as required, provided
that we show that α ≥ 0 and moreover, if a2 ≤ i < a3 and b2 ≤ j < b3, then
α > 0.

If i ≤ j, then since X is τ -invariant,

#([min(i, j)] \X) = #([i] \X) = #(τ([i] \X)) = #(τ([i]) \X)

and therefore,

α = #(τ([i]) \X)−#(τ([i]) ∩ [j] \X) = #((τ([i]) \ [j]) \X) ≥ 0.

Moreover, if a2 ≤ i < a3 and b2 ≤ j < b3, then α = #((τ([i]) \ [j]) \X) > 0
since both τ(a1), τ(a2) belong to τ([i]) \ [j], but they cannot both belong to
X since τ(a1) ∼ a1 �∼ a2 ∼ τ(a2).

Similarly, if i ≥ j, then

α = #([j] \X)−#(τ([i]) ∩ [j] \X) = #(([j] \ τ([i])) \X) ≥ 0.
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Moreover, if a2 ≤ i < a3 and b2 ≤ j < b3, then α = #(([j] \ τ([i])) \X) > 0
since {τ(a3), τ(a4)} ⊆ [j] \ τ([i]) but {τ(a3), τ(a4)} � X.

6.3.

We now give another characterization of smooth permutations.

Proposition 6.6. The following conditions are equivalent for σ ∈ Sn.

1. σ is smooth.
2. For every partition X of [n], the maximum

σX := max≤X
(SX ∩ (Sn)≤σ)

with respect to ≤X exists.

Moreover, in this case σX = ι ((σ[X])X∈X). Finally, σX = e (i.e.,

SX ∩ (Sn)≤σ = {e}),

if and only if there do not exist i < j with i ∼ j such that Ti,j ≤ σ.

We start with the following simple result.

Lemma 6.7. Let σ be the right cyclic shift in Sr, r > 1. Then

1. The interval (Sr)≤σ = {τ ∈ Sr : τ ≤ σ} is isomorphic as a poset to the
Boolean lattice {0, 1}r−1. In particular, the are precisely r−1 maximal
elements in (Sr)<σ, namely σTi,r, i ∈ [r − 1].

2. τ ≥ σ if and only if τ(r) = 1.
3. The following conditions are equivalent for σ′ ∈ Sr.

(a) σ′ ≥ τ for all τ ∈ (Sr)<σ.

(b) σ′ ≥ σT1,r = (134 . . . r2) and σ′ ≥ σTr−1,r = (23 . . . (r − 1)1r).

(c) Either σ′(r) = 1 or σ′(r) = 2 and σ′(r − 1) = 1.

(d) σ′ ≥ σ or σ′ ≥ σ2.

Proof. The first part follows from the fact that σ = T1,2 · · ·Tr−1,r is a Cox-

eter element and σTi,r = T1,2 · · · T̂i,i+1 · · ·Tr−1,r, i ∈ [r − 1].
The second part is clear.
Evidently, (3a) =⇒ (3b).
If σ′ ≥ σT1,r and σ′ ≥ σTr−1,r, then σ′(r) ∈ {1, 2} and σ′ −1(1) ∈

{r − 1, r} respectively. Thus, (3b) =⇒ (3c).
The implication (3c) =⇒ (3d) is straightforward.
It is immediate to verify that σTi,r ≤ σ2 for all i ∈ [r − 1]. Hence, using

the first part, (3d) =⇒ (3a).
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Lemma 6.8. Let σ be 4231 avoiding but not smooth. Then, there exists an
index i such that

μσ(μσ−1(i)) > μσ(i) > i and μσ−1(μσ(i)) > μσ−1(i) > i.

Proof. We first remark that the inequality μσ(μσ−1(i)) > μσ(i) implies that
μσ(i) > i (or equivalently, μσ−1(i) > i).

Since σ is 4231 avoiding but not smooth, it is not covexillary, i.e., the
set

P := {(a, b, c, d) : a < b < c < d and σ(c) < σ(d) < σ(a) < σ(b)}

is non-empty. Choose (a, b, c, d) ∈ P such that (a, b, σ(c), σ(d)) is minimal
with respect to the lexicographic order (from left to right) on [n]4. Since
σ is 4231 avoiding, either a = 1 or μσ(a − 1) < σ(b). Moreover, if there is
ã < a such that σ(d) < σ(ã) < σ(b) then (ã, b, c, d) ∈ P , contradicting the
minimality of (a, b, σ(c), σ(d)). It follows that either a = 1 or μσ(a − 1) <
σ(d). In particular, σ([a− 1] ∪ {c}) ⊆ [σ(d)− 1] and hence,

(6.2) a < σ(d).

If there is a < b̃ < b such that σ(b̃) > σ(a), then (a, b̃, c, d) ∈ P , gainsaying
the minimality of (a, b, σ(c), σ(d)). It follows, since μσ(a− 1) < σ(d) < σ(a)
(or a = 1), that

(6.3) μσ(b− 1) = σ(a).

Similarly,

(6.4) σ(c) < b

and

μσ−1(σ(d)− 1) = c.

Let i = max (a, σ(c)). It follows from (6.2) and (6.4) that i < min (b, σ(d)).
Therefore, by (6.3), μσ(i) ≤ μσ(b− 1) = σ(a). Hence, since a ≤ i, it follows
that

μσ(i) = σ(a).

Similarly,

μσ−1(i) = c.

The lemma now follows by noting that μσ(c) ≥ σ(b) > σ(a) and μσ−1(σ(a))≥
σ−1(σ(d)) = d > c.
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Proof of Proposition 6.6. Suppose that σ is smooth. Then, it follows imme-

diately from Proposition 6.4 and Lemma 6.3 that for any partition X of [n]

and any τ ∈ SX we have τ ≤ σ if and only if τX ≤ ιX(σ[X]) for all X. Thus,

ι((σ[X])X∈X) = max≤X
(SX ∩ (Sn)≤σ)

as required.

Suppose now that σ is not defined by inclusions. Then, by Proposi-

tion 6.4, there exists a partition X of [n] and τ ∈ SX such that τ �≤ σ but

τX ≤ σ for all X ∈ X. Since τ = ∨X∈XτX in SX with respect to ≤X, it

follows that the set (Sn)≤σ ∩ SX does not admit a maximum with respect

to ≤X.

It remains to consider the case where σ is defined by inclusions, and in

particular 4231 avoiding, but not smooth. Let i be as in Lemma 6.8 and let

j = μσ(i) and k = μσ−1(i). Then, μσ(k) > j > i and μσ−1(j) > k > i.

Upon passing to σ−1 if necessary, we may assume without loss of gener-

ality that j ≤ k. Let A = {i, j, j+1, . . . , k+1}. Then, RA\{i}, RA\{k+1} ≤ σ

(by (5.2)) but RA, R
2
A �≤ σ since μR−1

A
(i) = k + 1 > μσ−1(i) and μR2

A
(i) =

j+1 > μσ(i). Let X be the partition of [n] consisting of A and the singletons

{r}, r /∈ A. Note that SX ⊆ Sn is isomorphic to Sk−j+3. (The order on SX

induced from the Bruhat order on Sn coincides with ≤X.) By Lemma 6.7,

there is no σ′ ∈ SX such that RA\{i}, RA\{k+1} ≤ σ′ ≤ σ. It follows that

max≤X
(SX ∩ (Sn)≤σ) does not exist.

Example 6.9. Let ∼ be the equivalence relation

i ∼ j ⇐⇒ i ≡ j (mod 2)

on [n] and let ι : Sn1
× Sn2

→ Sn be the corresponding embedding where

n1 = �n2 � and n2 = �n2 �. Then, for every smooth σ ∈ Sn

SX ∩ (Sn)≤σ = {e} ⇐⇒ σ is 321 avoiding.

Indeed, σ is 321 avoiding if and only if σ is a product of distinct simple

reflections if and only if CT (σ) consists of simple reflections.

7. Relation to Dyck paths

In this section we prove Theorem 1.4.
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7.1.

For any n ≥ 1, let

Fn = {f : [n] → [n] : f is weakly increasing, f(i) ≥ i for all i ∈ [n]}.

We can view elements of Fn as Dyck paths from (0, 0) to (n, n) by taking
f(i) to be the minimal x such that the lattice point (x, i) lies in the path.

We can give an alternative interpretation of Fn as follows. For any subset
Γ ⊆ T define f∗

Γ : [n] → [n] by

f∗
Γ(i) = max

(
{i} ∪ {j > i : Ti,j ∈ Γ}

)
.

For any f ∈ Fn, let Λf := {(i, j) ∈ [n]× [n] : i < j ≤ f(i)}.
Observation 7.1. The map Γ �→ f∗

Γ is a bijection between the downward
closed subsets of T and Fn. The inverse map is given by

f �→ {Ti,j : (i, j) ∈ Λf}.

Observation 7.2. Let Γ be a downward closed subset of T and let 1 ≤ i ≤
l ≤ i + 1. Then, f∗

Γ(f
∗
Γ(i)) > f∗

Γ(l) if and only if there are i < j < k such
that Ti,j , Tj,k ∈ Γ but Tl,k /∈ Γ.

7.2.

Given a Dyck path f ∈ Fn we define a decoration of f to be a function
g : [n] → {0, 1} such that

1. g(i) = 0 whenever f(f(i)) = f(i).
2. g(i) = g(i+ 1) whenever i < n and f(i+ 1) < f(f(i)).

In particular,

(7.1) g(n) = 0 and if n > 1 then g(n− 1) = 0 as well.

Note that the number of decorations of f is

(7.2) 2#{i∈[n−1]:f(i)<f(f(i))=f(i+1)}.

We say that a vertex (p, q) of a Dyck path D is distinguished if it is the
top left corner of a (non-degenerate) rectangle R such that
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1. The left side of R is the intersection of D with the vertical line x = p.
2. The top side of R is contained in D.
3. The bottom right corner of R lies on the main diagonal x = y.

If f ∈ Fn corresponds to D then the exponent in (7.2) is precisely the
number of distinguished vertices of D. Thus, (7.2) counts the number of
(unrestricted) 2-colorings of the set of distinguished vertices.

Denote by Pn the set of pairs (f, g) consisting of a function f ∈ Fn and
a decoration g of f . Informally, Pn is the set of decorated Dyck paths.

For any A ⊆ C2,3 define fA : [n] → [n] and gA : [n] → {0, 1} by

fA = f∗
AT

,

gA(i) =

{
1 if i < fA(i) < n and Ri,fA(i),fA(i)+1 ∈ A,

0 otherwise.

Lemma 7.3. Let A ⊆ C2,3 be admissible, let f = fA and let i, j ∈ [n] be
such that i < j ≤ f(i) < f(j). Then,

(7.3) for any f(i) < k ≤ f(j) exactly one of Ri,j,k and Li,j,k belongs to A.

More precisely,

gA(i) = 1 ⇐⇒ Li,j,k /∈ A and Ri,j,k ∈ A;

gA(i) = 0 ⇐⇒ Li,j,k ∈ A and Ri,j,k /∈ A.

Proof. If i < j ≤ f(i) < k ≤ f(j), then Ti,j , Tj,k ∈ A but Ti,k /∈ A and
therefore (7.3) follows from (2.1b) and (2.1c).

Suppose that gA(i) = 1, i.e., Ri,f(i),f(i)+1 ∈ A. Then Li,j,f(i)+1 /∈ A
by (2.1b), since Ti,f(i)+1 /∈ A. Therefore, Li,j,f(j) /∈ A by (2.1a) and hence
Ri,j,f(j) ∈ A, by (7.3). Therefore, by (2.1a), Ri,j,k ∈ A for every j < k ≤ f(j).
In particular, for every f(i) < k ≤ f(j), Ri,j,k ∈ A and hence Li,j,k /∈ A,
by (7.3).

Similarly, if gA(i) = 0, i.e., Ri,f(i),f(i)+1 /∈ A then Li,f(i),f(i)+1 ∈ A
by (7.3). Hence Ri,j,f(i)+1 /∈ A by (2.1b), since Ti,f(i)+1 /∈ A. Therefore
Ri,j,f(j) /∈ A by (2.1a) and hence Li,j,f(j) ∈ A by (7.3). Therefore, by (2.1a),
Li,j,k ∈ A for every j < k ≤ f(j). In particular, for every f(i) < k ≤ f(j),
Li,j,k ∈ A and hence Ri,j,k /∈ A, by (7.3).

Conversely, for every pair of functions f : [n] → [n] and g : [n] → {0, 1}
define

Af,g ={Ti,j : (i, j) ∈ Λf}∪
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{Ri,j,k : (i, j) ∈ Λf , (j, k) ∈ Λf and if (i, k) /∈ Λf then g(i) = 1}∪
{Li,j,k : (i, j) ∈ Λf , (j, k) ∈ Λf and if (i, k) /∈ Λf then g(i) = 0}.

Denote by A = An the set of admissible subsets of C2,3.

Proposition 7.4. The map A �→ (fA, gA) is a bijection A → P whose

inverse is (f, g) �→ Af,g.

Proof. Suppose that A is admissible.

Let f = fA and g = gA. We show that Af,g = A. Clearly, Ti,j ∈ A if and

only if j ≤ f(i), and moreover, Ri,j,k, Li,j,k ∈ A if k ≤ f(i). Suppose that k >

f(i). Then, by admissibility, {Ri,j,k, Li,j,k}∩A �= ∅ if and only if j ≤ f(i) and

k ≤ f(j). Moreover, in this case, by the last part of Lemma 7.3, if gA(i) = 1,

then Li,j,k /∈ A,Ri,j,k ∈ A and if gA(i) = 0, then Li,j,k ∈ A,Ri,j,k /∈ A.

We now show that (f, g) ∈ P . By Observation 7.1, f ∈ Fn. It is also

clear that g(i) = 0 if f(f(i)) = f(i) since i < f(i) < n and Ri,f(i),f(i)+1 ∈ A

would imply that Tf(i),f(i)+1 ∈ A and hence f(f(i)) > f(i). Suppose that

f(i + 1) < f(f(i)) and let j = f(i) and k = f(j). Then, i < i + 1 < j =

f(i) ≤ f(i + 1) < k < f(j). Therefore, if g(i) = 1, then Ri,j,k ∈ A by

Lemma 7.3, hence Ri+1,j,k ∈ A by (2.1a), and therefore g(i + 1) = 1 again

by Lemma 7.3. Similarly, if g(i) = 0, then Li,j,k ∈ A, hence Li+1,j,k ∈ A and

therefore g(i+ 1) = 0. Thus, (f, g) ∈ P .

On the other hand, let (f, g) ∈ P and A = Af,g. It is easy to check that

A is admissible and (fA, gA) = (f, g). The only non-trivial observation to

make is that if i+1 < j ≤ f(i) ≤ f(i+1) < k ≤ f(j), then f(i+1) < f(j) ≤
f(f(i)), hence g(i) = g(i + 1) and therefore, by Lemma 7.3, if Li,j,k ∈ A,

then Li+1,j,k ∈ A and if Ri,j,k ∈ A, then Ri+1,j,k ∈ A.

Corollary 7.5. Let Γ be a (possibly empty) downward closed subset of T .

Then,

#{A ∈ An : AT = Γ} = 2r

where r is the number of indices i < n satisfying the following two properties.

1. There exists i < j < k such that Ti,j , Tj,k ∈ Γ but Ti,k /∈ Γ.

2. For every i < j < k such that Ti,j , Tj,k ∈ Γ we have Ti+1,k ∈ Γ.

Proof. By Observation 7.1,

{(f, g) ∈ Pn : (Af,g)T = Γ} = {(f, g) ∈ Pn : {Ti,j : i < j ≤ f(i)} = Γ}
= {(f, g) ∈ Pn : f = f∗

Γ}.
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Therefore, by Proposition 7.4

#{A ∈ An : AT = Γ} = #{(f, g) ∈ Pn : (Af,g)T = Γ}
= #{g : [n] → {0, 1} : (f∗

Γ, g) ∈ Pn},

and the result follows from (7.2) and Observation 7.2.

7.3.

Given f ∈ Fn and g : [n] → {0, 1}, write g−1(0) = {i1, . . . , ik} and g−1(1) =
{j1, . . . , jl} with i1 < · · · < ik and j1 < · · · < jl, and define

(7.4) σ(f, g) = L[j1,f(j1)] · · ·L[jl,f(jl)]R[ik,f(ik)] · · ·R[i1,f(i1)].

Observation 7.6. Suppose that g is a decoration of f and i ∈ [n] is such that
f(i) > i and f(i− 1) = i− 1 (or i = 1). Then, σ(f, g)([i− 1]) = [i− 1] and
if g(i) = 0, then σ(f, g)(f(i)) = i.

In particular, if i is the minimal index such that j := f(i) > i, then
σ(r) = r for every r < i and if g(i) = 0, then σ(f, g)(j) = i < σ(f, g)(j− 1).

Lemma 7.7. Suppose that f ∈ Fn and g is a decoration of f . Let i ∈ [n] be
such that j := f(i) > i, g(i) = 0 and f(i − 1) = i − 1 (or i = 1). Define a
function f ′ ∈ Fn by f ′(i) = f(i)− 1 and f ′(r) = f(r) for every r �= i. Then,

1. g is a decoration of f ′.
2. Ti,j is a wedge for Af,g and the derived set is Af ′,g. (See §3.)
3. σ(f ′, g) = σ(f, g)Tj−1,j.

Proof. It is clear that (f ′, g) ∈ P since f ′(i) > i − 1 = f ′(f ′(i − 1)) and
the condition f ′(i + 1) < f ′(f ′(i)) implies f(i + 1) < f(f(i)). Note that
(i, j) ∈ Λf , (i − 1, i) /∈ Λf (or i = 1) and (i, k) /∈ Λf for every k > j.
Therefore, Ti,j ∈ Af,g, Ti−1,i /∈ Af,g (or i = 1) and since g(i) = 0 also
Ri,j,j+1 /∈ Af,g (or j = n). Hence, Ti,j is a wedge for Af,g. Noting that
Λf ‘ = Λf \ {(i, j)}, it is elementary to check that the derived set of Af,g

with respect to Ti,j is Af ′,g. Finally, the last assertion follows readily from
the definition (7.4).

Let f ∈ Fn. Note that by monotonicity, if f(i + 1) < f(f(i)), then
f(i) < f(f(i)) and f(i + 1) < f(f(i + 1)). Therefore, for any decoration g
of f we can define the inverse decoration g̃ by

g̃(i) =

{
0 if f(f(i)) = f(i),

1− g(i) otherwise.
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Lemma 7.8. For every (f, g) ∈ P,

σ(f, g)−1 = σ(f, g̃).

Proof. Clearly, σ(f, g)−1 = σ(f, 1− g). Note that (f, 1− g) is generally not
in P . However, we claim that σ(f, 1 − g) = σ(f, g̃). This follows from the
definition of σ(f, g) in (7.4). The point is that if f−1({j}) = [i, j], then
R[j,j] · · ·R[i+1,j]R[i,j] is an involution (namely, r → i + j − r for i ≤ r ≤ j
and r → r otherwise) and it commutes with R[r,s] (and with its inverse L[r,s])
for every j < r ≤ s. Hence, we can flip 1 − g in the set ∪j:f(j)=jf

−1({j})
(where it differs from g̃) without changing σ(f, 1− g).

For every f ∈ Fn, let �(f) =
∑n

i=1(f(i)− i).

Proposition 7.9. For every (f, g) ∈ P,

σ(f, g) = π(Af,g).

Moreover, for every (f, g) ∈ P,

�(σ(f, g)) = �(f),

and hence, since evidently �(f) =
∑n

i=1 �(R[i,f(i)]), the expression (7.4) is
reduced.

Proof. We prove it by induction on �(f). The case �(f) = 0 is obvious.
For the induction step, let i be the minimal index such that f(i) > i. By
Lemma 7.8, we may assume without loss of generality that g(i) = 0. Let
j = f(i) and let f ′ be defined as in Lemma 7.7. By the induction hy-
pothesis, π(Af ′,g) = σ(f ′, g) and �(σ(f ′, g)) = �(f) and by the third part
of Lemma 7.7, σ(f ′, g) = σ(f, g)Tj−1,j . Therefore, by the second part of
Lemma 5.1 and the second part of Lemma 7.7,

π(Af,g) = π
(
(Af,g)

′)Tj−1,j = π(Af ′,g)Tj−1,j = σ(f ′, g)Tj−1,j = σ(f, g).

Moreover, σ(f, g)(j) < σ(f, g)(j − 1) by Observation 7.6 and hence,

�(σ(f, g)) = �(σ(f, g)Tj−1,j) + 1 = �(σ(f ′, g)) + 1 = �(f ′) + 1 = �(f).

Theorem 1.4 follows directly by combining Theorem 1.1 and Proposi-
tions 7.4 and 7.9.

Question 7.10. Can we describe explicitly the partial order on P induced
from the Bruhat order on (Sn)sm by the map σ?
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8. Enumerative consequences

In this section we interpret combinatorial properties of smooth permutations

in terms of the bijection of the previous section, and recover some known

enumerative results.

Proposition 8.1. Let (f, g) ∈ Pn. Then,

1. σ(f, g) is 231 avoiding (also known as stack-sortable in Knuth’s ter-

minology) if and only if g ≡ 0.

2. σ(f, g) is 321 avoiding if and only if f(i) ≤ i+ 1 for all i ∈ [n− 1].

3. σ(f, g) is indecomposable1 if and only if f(i) > i for all i ∈ [n− 1].

Proof.

1. We first show that if σ ∈ Sn and i < j < k are such that Ri,j,k ≤ σ

but Ti,k �≤ σ, then σ is not 231 avoiding. Indeed, by our conditions,

μσ−1(i) ≥ k, μσ(j) ≥ k and j ≤ μσ(i) < k. Therefore, there are a ≤ i,

i < b ≤ j and c ≥ k such that j ≤ σ(a) < k, σ(b) ≥ k and σ(c) ≤ i.

Then, a < b < c and σ(c) < σ(a) < σ(b) as claimed.

It follows that if g �≡ 0, then σ(f, g) is not 231 avoiding. Indeed,

suppose that g(i) = 1. Then clearly i < f(i) < f(f(i)) and then

Ri,f(i),f(f(i)) ∈ Af,g but Ti,f(f(i)) /∈ Af,g, i.e., Ri,f(i),f(f(i)) ≤ σ(f, g)

but Ti,f(f(i)) � σ(f, g).

Conversely, we show by induction on �(f) that for every f ∈ Fn,

σ := σ(f, 0) is 231 avoiding. This is clear if �(f) = 0. Otherwise, let i

be the minimal index such that j := f(i) > i, let f ′ be defined as in

Lemma 7.7 and let σ′ = σ(f ′, 0). Then, σ(j) = i by Observation 7.6,

σ = σ′Tj−1,j , by Lemma 7.7 and σ′ is 231 avoiding by the induction

hypothesis. In addition, it is easy to see from the definition (7.4) that

(8.1) k := σ−1(i+ 1) =

{
j − 1 f(i+ 1) = j

f(i+ 1) f(i+ 1) > j.

Assume on the contrary that σ is not 231 avoiding, i.e., there are

a < b < c such that σ(c) < σ(a) < σ(b). Then σ′(Tj−1,j(c)) <

σ′(Tj−1,j(a)) < σ′(Tj−1,j(b)) and hence, since σ′ is 231 avoiding, neces-

sarily b = j−1 and c = j. Hence, a < j−1 and i < σ(a) < σ(j−1). In

1Recall that a permutation σ in Sn is called indecomposable if there does not
exist 1 ≤ k < n such that σ([k]) = [k].
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particular, σ(j−1) > i+1 and hence k = f(i+1) > j, by (8.1). In par-
ticular, a �= k, i.e., σ(a) �= i+1 and hence σ(a) > i+1 = σ(k). There-
fore, a < j < k and σ(k) < σ(a) < σ(j−1), i.e., σ′(k) < σ′(a) < σ′(j),
in contradiction to the fact that σ′ is 231 avoiding.

2. Suppose that f(i) ≤ i+1 for all i. We show that σ(f, g) is 321 avoiding
by induction on �(f). This is certainly true if �(f) = 0. For the induc-
tion step, let i be the smallest index such that f(i) > i and let f ′ be
defined as in Lemma 7.7. By passing to g̃ if necessary we may assume
that g(i) = 0. Let σ = σ(f, g) and σ′ = σ(f ′, g). Then σ = σ′Ti,i+1 by
Lemma 7.7. By the induction hypothesis σ′ is 321 avoiding, and since
σ(r) = r for all r < i and σ(i+1) = i by Observation 7.6, it is easy to
check that σ is 321 avoiding as well.
Conversely, suppose that σ = σ(f, g) is 321 avoiding. We show that
induction on �(f) that f(i) ≤ i+ 1 for all i. Again, the case �(f) = 0
is trivial. For the induction step, let i be the minimal index such that
j := f(i) > i, let f ′ be defined as in Lemma 7.7, let σ′ = σ(f ′, g)
and assume, as we may, that g(i) = 0. Then, σ([i − 1]) = [i − 1] and
σ(j) = i < σ(j−1) by Observation 7.6 and σ = σ′Tj−1,j by Lemma 7.7.
It is clear that σ′ is 321 avoiding since σ is, and σ′(j) > σ′(j−1). Thus,
by the induction hypothesis f ′(r) ≤ r+1 for all r. Hence, f(r) ≤ r+1
for every r �= i and f(i) ≤ i+ 2. If f(i) = i+ 2 then σ(i+ 2) = i and
it is easy to see from the definition (7.4) that σ(i + 1) = i + 1 and
σ(i) ≥ i+2, in contradiction to the fact that σ′ is 321 avoiding. Thus,
f(r) ≤ r + 1 for all r.

3. Clearly, σ ∈ Sn is indecomposable if and only if Ti,i+1 ≤ σ for all i < n,
i.e., if and only if fC(σ)(i) = f∗

CT (σ)(i) > i for all i < n.

It is well known that #Fn, n ≥ 1 is the n-th Catalan number Cn =
1

n+1

(
2n
n

)
. Since clearly #{(f, g) ∈ Pn : g ≡ 0} = #Fn, combining Theo-

rem 1.4 and the first part of Proposition 8.1 we recover the standard fact
that the number of 231 avoiding permutations in Sn (which are automati-
cally smooth) is Cn.

Similarly, Theorem 1.4 and Proposition 8.1 enable us to recover several
additional enumerative results concerning smooth permutations, as we show
next.

Proposition 8.2. for every n ≥ 1,

(8.2) #{(f, g) ∈ Pn : f(i) ≤ i+ 1 for every i ∈ [n− 1]} = F2n−1,

where Fk, k ≥ 1 is the Fibonacci sequence F1 = F2 = 1, Fk = Fk−1 + Fk−2,
k > 2.
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Proof. For every n ≥ 1, denote

On := {(f, g) ∈ Pn : f(i) ≤ i+ 1 for every i ∈ [n− 1]},

and for every n > 1, let

En := {(f, g) ∈ On : f(n− 1) = n}.

For every n > 1, the map (f, g) �→ (f |[n−1], g|[n−1]) is clearly a bijection
On \ En → On−1 and hence

(8.3) #On = #En +#On−1.

Let now n > 2. For any f ∈ Fn such that f(n−2) = n−1, let f † ∈ Fn−1 be
defined by f † ≡ f on [n− 2] and f †(n− 1) = n− 1. For any g : [n] → {0, 1}
let g‡ : [n − 1] → {0, 1} be defined by g‡ ≡ g on [n − 3] and g‡(n − 2) =
g‡(n− 1) = 0. It is easy to verify, using (7.1), that for any n > 2, the map

(f, g) �→ (g(n− 2), (f †, g‡))

is a bijection {(f, g) ∈ En : f(n − 2) = n − 1} → {0, 1} × En−1. Also, it
is clear that the map (f, g) �→ (f |[n−2], g|[n−2]) is a bijection {(f, g) ∈ En :
f(n− 2) = n− 2} → On−2. Therefore, for any n > 2,

#En = 2#En−1 +#On−2

and hence, using (8.3)

(8.4) #En = 2#En−1 + (#On−1 −#En−1) = #On−1 +#En−1

Since obviously #O1 = #E2 = 1, it follows from (8.3) and (8.4) that

#O1,#E2,#O2,#E3, . . .

is the Fibonacci sequence (Fk)
∞
k=1. In particular #On = F2n−1 for every

n ≥ 1.

Corollary 8.3 ([21, 9]). The number of 321 avoiding smooth permutations
in Sn is F2n−1.

For every n ≥ 1, let

F̃n = {f ∈ Fn : f(i) > i for all i ∈ [n− 1]}.



Some combinatorial results on smooth permutations 341

It is well known that for every n ≥ 1,

(8.5) #F̃n = Cn−1.

Proposition 8.4. For every n ≥ 1, let

P̃n := {(f, g) ∈ P : f ∈ F̃n}, p̃n = #P̃n.

Then, for every n ≥ 2,

(8.6) p̃n = p̃n−1 + 2

n−2∑
i=1

Ci−1p̃n−i.

Consequently, the generating function
∑∞

n=1 p̃nx
n is

(8.7)

(
1

x
− 1√

1− 4x

)−1

,

and the generating function
∑∞

n=1 pnx
n, where pn = #Pn, is

(8.8)

(
1

x
− 1√

1− 4x
− 1

)−1

.

For the proof of Proposition 8.4 we introduce additional notation. Let

Πn :=

⎧⎪⎨⎪⎩((i0, i1, . . . , ik), (j1, . . . , jk)) :

k ≥ 0, 1 = i0 < i1 < · · · < ik,

j1 < · · · < jk < n,

and il ≤ jl for every 1 ≤ l ≤ k

⎫⎪⎬⎪⎭ .

For every π := ((i0, . . . , ik), (j1, . . . , jk)) ∈ Πn, define an endofunction fπ on
[n] by

fπ(i) =

{
jl if il−1 ≤ i < il for l ∈ [k],

n if i ≥ ik.

The map π �→ fπ is a bijection Πn → F̃n. In particular, for every n ≥ 1,

(8.9) #Πn = Cn−1.

Moreover, for every π := ((i0, . . . , ik), (j1, . . . , jk)) ∈ Πn, let

Iπ := {l ∈ [k] : #({i1, . . . , ik} ∩ [jl]) = l}.
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Note that if k ≥ 1, then k necessarily belongs to Iπ. Observe that fπ(i) <

fπ(fπ(i)) = fπ(i+ 1) if and only if i = il − 1 for l ∈ Iπ. Hence, by (7.2),

#{g : [n] → {0, 1} : (fπ, g) ∈ Pn} = 2#Iπ .

It follows that for every positive integer n,

(8.10) p̃n =
∑
π∈Πn

2#Iπ .

Proof of Proposition 8.4. First note that

{((i0, . . . , ik), (j1, . . . , jk)) ∈ Πn : k = 0 or jk < n− 1} = Πn−1.

For every π := ((i0, . . . , ik), (j1, . . . , jk)) ∈ Πn \Πn−1, let

lπ := max {l ∈ [k] : #({j1, . . . , jk} ∩ [il − 1]) = l − 1} ,
L(π) := ((i0, . . . , ilπ−1), (j1, . . . , jlπ−1)),

R(π) := ((ilπ − i, . . . ik − i), (jlπ − i, . . . , jk−1 − i)).

For every i ∈ [n− 2] let

Πn,i := {π ∈ Πn \Πn−1 : ilπ = i}.

The map π �→ (L(π), R(π)) is a bijection of Πn,i to Πi+1 × Πn−i−1 and for

every π = ((i0, . . . , ik), (j1, . . . , jk)) ∈ Πn,i we have

IL(π) = Iπ \ {k}.

It follows that

p̃n =
∑
π∈Πn

2#Iπ =
∑

π∈Πn−1

2#Iπ +

n−2∑
i=1

( ∑
π∈Πn,i

2#Iπ
)

= p̃n−1 +

n−2∑
i=1

( ∑
(π1,π2)∈Πi+1×Πn−i−1

2#Iπ1+1
)

= p̃n−1 + 2

n−2∑
i=1

#Πn−i−1

( ∑
π1∈Πi+1

2#Iπ1

)
= p̃n−1 + 2

n−2∑
i=1

Cn−i−2p̃i+1,
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which proves (8.6). Let us denote the generating functions

C(x) =

∞∑
n=0

Cnx
n, P (x) =

∞∑
n=1

pnx
n, P̃ (x) =

∞∑
n=1

p̃nx
n.

The recurrence relation (8.6) yields that

P̃ (x)− x = xP̃ (x) + 2xC(x)(P̃ (x)− x) = (x+ 2xC(x)) (P̃ (x)− x) + x2.

Therefore, since C(x) = 1−
√
1−4x
2x , P̃ (x) is equal to

x+
x2

1− x− 2xC(x)
= x+

x2√
1− 4x− x

=
x
√
1− 4x√

1− 4x− x
=

1
1
x − 1√

1−4x

,

which proves (8.7). Finally, for every n ≥ 2, obviously

pn = p̃n +

n−1∑
i=1

p̃ipn−i.

Therefore,

P (x) = P̃ (x) + P̃ (x)P (x),

hence, by (8.7),

1

P (x)
=

1

P̃ (x)
− 1 =

1

x
− 1√

1− 4x
− 1,

and (8.8) follows.

Corollary 8.5 (cf. [4, 5, 18] and the references therein). Let an, n ≥ 1 be
the number of smooth indecomposable permutations in Sn. Then,

∞∑
n=1

anx
n =

(
1

x
− 1√

1− 4x

)−1

and
∞∑
n=1

#(Sn)smx
n =

(
1

x
− 1√

1− 4x
− 1

)−1

.

9. From covexillary to smooth

In this section we prove Theorem 1.5.
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9.1.

The following observation follows directly from Observation 2.4.

Observation 9.1. Let τ ∈ Sn and i < j be such that τ(i) < τ(j) and let

τ ′ = τTi,j . Then,

1. If there is k > j for which τ(k) < τ(i), then μτ ′−1 ≡ μτ−1 .

2. If there is k < i for which τ(k) > τ(j), then μτ ′ ≡ μτ .

Corollary 9.2. Let τ ∈ Sn and suppose that i < j < k < l and τ(l) <

τ(j) < τ(k) < τ(i). Then, C(τTj,k) = C(τ).

Lemma 9.3. A permutation σ is defined by inclusions if and only if it

satisfies the following property

(9.1)
for any τ ≤ σ and i < j < k < l such that

τ(l) < τ(j) < τ(k) < τ(i) we have τTj,k ≤ σ.

Proof. We first show that if σ ∈ Sn satisfies the property (9.1) and π ∈ Sm

appears as a pattern in σ, i.e., there are strictly increasing functions λ, η :

[m] → [n] such that σ ◦ λ = η ◦ π, then π also satisfies the property (9.1).

For every τ ∈ Sm, define τ̂ ∈ Sn by τ̂ ◦λ = η◦τ on [m] and τ̂ ≡ σ outside

λ([m]). It is easy to verify that for every τ ∈ Sm we have τ̂ ≤ σ if and only

if τ ≤ π. Suppose now that τ ≤ π, 1 ≤ i < j < k < l ≤ m and τ(l) < τ(j) <

τ(k) < τ(i). Let τ ′ = τTj,k. Then, τ̂ ≤ σ, λ(i) < λ(j) < λ(k) < λ(l) and

η(τ(i)) < η(τ(j)) < η(τ(k)) < η(τ(l)), i.e., τ̂(λ(i)) < τ̂(λ(j)) < τ̂(λ(k)) <

τ̂(λ(l)). Therefore, since σ satisfies the property (9.1), τ̂ ′ = τ̂Tλ(j),λ(k) ≤ σ

and hence τ ′ ≤ π as required.

Thus, in order to show that every permutation that satisfies the prop-

erty (9.1) is defined by inclusions, it is enough to check that this property is

not satisfied for the four permutations (4231), (35142), (42513) and (351624),

for which we can take τ = (4231), (15342), (42315) and (153426) respectively

where we underlined the entries with indices i < j < k < l.

Conversely, suppose that σ is defined by inclusions and let τ and i <

j < k < l be as in (9.1). Since τ ≤ σ, μτ ≤ μσ and μτ−1 ≤ μσ−1 pointwise.

Let τ ′ = τTj,k. By Observation 9.1, μτ ′ ≡ μτ and μτ ′−1 ≡ μτ−1 and hence,

μτ ′ ≤ μσ and μτ ′−1 ≤ μσ−1 . Therefore, since σ is defined by inclusions,

τ ′ ≤ σ.
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9.2.

We need another result.

Lemma 9.4. Suppose that τ ∈ Sn is covexillary but not smooth. Then,
there exist i < j < k < l such that τ(l) < τ(j) < τ(k) < τ(i) and τTj,k is
covexillary. More precisely, suppose that i < l is such that the set

P := {(j, k) : i < j < k < l and τ(l) < τ(j) < τ(k) < τ(i)}

is non-empty. Then, ∃(j, k) ∈ P such that τTj,k is covexillary.

The (rather technical) proof will be given in several steps. For the rest
of the subsection, fix a covexillary τ in Sn.

Denote

A0 :={a < i : τ(l) < τ(a) < τ(i)},
A1 :={a > l : τ(l) < τ(a) < τ(i)},
B0 :={b < τ(l) : i < τ−1(b) < l},
B1 :={b > τ(i) : i < τ−1(b) < l},
P0 :={(j, k) ∈ P : τ(j) > τ(a) for every a ∈ A0},
P1 :={(j, k) ∈ P : τ(k) < τ(a) for every a ∈ A1}.

Note that since τ is covexillary, at most one of the sets A0, B0 is non-empty
and at most one of the sets A1, B1 is non-empty.

Lemma 9.4 will easily follow from the following claim which will be
proved below.

Claim 9.5.

1. Suppose that B1 = ∅ �= P0. Let (j, k) be the minimal element of P0 with
respect to the lexicographic order from left to right. Then, τ ′ := τTj,k

is covexillary.
2. Similarly, if B0 = ∅ �= P1, let (j, k) be the maximal element of P1 with

respect to the lexicographic order from right to left. Then, τ ′ := τTj,k

is covexillary.
3. Suppose that B0 = B1 = P0 = P1 = ∅. Let (j, k) ∈ P be such that j is

maximal and k is minimal (for that j). Then, τ ′ := τTj,k is covexillary.

Proof of Lemma 9.4. Passing to τ−1 if necessary, we may assume that
B1 = ∅. If P0 �= ∅, then we can invoke the first part of Claim 9.5. Therefore
we may assume that P0 = ∅. In particular, A0 �= ∅ and hence B0 = ∅. If
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P1 �= ∅, then we are done by the second part of Claim 9.5. Otherwise P1 = ∅
as well, and we apply third part of Claim 9.5.

Before proving Claim 9.5 we need another fact.

Claim 9.6. Suppose that (j, k) ∈ P , a < b < c < d and

(9.2) τ ′(c) < τ ′(d) < τ ′(a) < τ ′(b)

where τ ′ = τTj,k. Then,

1. j ∈ {a, b} or k ∈ {c, d}.
2. • If a = j, then b < k and τ(d) > τ(j).

• If b = j, then c ≤ k and τ(a) > τ(j).

• If c = k, then b ≥ j and τ(d) < τ(k).

• If d = k, then c > j and τ(a) < τ(k).
3. Suppose that B1 = ∅ and that a = j or c = k > j �= b. Then, (j, b) ∈ P

and b < k. Similarly, suppose that B0 = ∅ and that b = j < k �= c or
d = k. Then, (c, k) ∈ P and c > j.

Proof. Observe first that if x < y and Tj,k(x) > Tj,k(y) then x = j or y = k.
Since τ(Tj,k(c)) < τ(Tj,k(d)) < τ(Tj,k(a)) < τ(Tj,k(b)) by (9.2) and τ is

covexillary, we cannot have Tj,k(a) < Tj,k(b) < Tj,k(c) < Tj,k(d). Therefore,
Tj,k(a) > Tj,k(b), Tj,k(b) > Tj,k(c) or Tj,k(c) > Tj,k(d).

If Tj,k(b) > Tj,k(c) then b = j or c = k, by the observation above.
Suppose that Tj,k(a) > Tj,k(b). If a �= j then necessarily b = k, by the
observation above. It follows that τ(a) = τ ′(a), τ(b) = τ(k) > τ(j) = τ ′(b),
τ(c) = τ ′(c) and τ(d) = τ ′(d). Hence, by (9.2), τ(c) < τ(d) < τ(a) < τ(b),
contradicting the covexillarity of τ , since a < b < c < d. Therefore, a = j.
Similarly, by applying the same argument to w0τw0, we get that if Tj,k(c) >
Tj,k(d), then d = k. This completes the proof of the first part.

Suppose that a = j. Then τ ′(b) > τ ′(a) = τ(k) > τ(j) = τ ′(k) and
hence b �= k. In particular, τ(b) = τ ′(b). Assume that b > k. Then, it follows
that τ(c) = τ ′(c) and τ(d) = τ ′(d). Therefore, by (9.2) we get that τ(c) <
τ(d) < τ(k) < τ(b), refuting the covexillarity of τ , since k < b < c < d.
Hence, b < k. Assume that τ(d) < τ(j). In particular, d �= k and hence
τ(d) = τ ′(d). Therefore, τ ′(c) < τ ′(d) = τ(d) < τ(j) = τ ′(k), thus c �= k and
hence τ(c) = τ ′(c). Therefore, by (9.2), τ(c) < τ(d) < τ(j) < τ(b), rebutting
the covexillarity of τ , since j = a < b < c < d. Hence, τ(d) > τ(j).

Similarly, by applying the same argument to w0τw0, we get that if d = k
then c > j and τ(a) < τ(k).
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Suppose that b = j. Then τ(a) = τ ′(a) and τ(k) = τ ′(b). If c > k, it
follows that τ(c) = τ ′(c) and τ(d) = τ ′(d) and we get by (9.2) that τ(c) <
τ(d) < τ(a) < τ(k), denying the covexillarity of τ , since a < k < c < d.
Therefore, c ≤ k. Assume that τ(a) < τ(j). Then, τ ′(c) < τ ′(d) < τ ′(a) =
τ(a) < τ(j) < τ(k), and hence τ(c) = τ ′(c) and τ(d) = τ ′(d). Therefore, we
get by (9.2) that τ(c) < τ(d) < τ(a) < τ(j), gainsaying the covexillarity of
τ , since a < j = b < c < d. Hence, τ(a) > τ(j).

Similarly, by applying the same argument to w0τw0, we get that if c = k,
then j ≤ b and τ(d) < τ(k).

Finally, we prove the last part. Suppose that B1 = ∅ and that a = j
or c = k > j �= b. Using the second part we get that j < b < k, and
hence τ(b) < τ(i), since B1 = ∅, and τ(b) = τ ′(b). Hence, τ(b) > τ(j) since
τ ′(b) > τ ′(a) = τ(k) > τ(j) if a = j and τ ′(b) > τ ′(c) = τ(j) if c = k. It
follows that (j, b) ∈ P . Similarly, by applying the same argument to w0τw0,
we get the last assertion.

Proof of Claim 9.5. To prove the first part, suppose on the contrary that
there are a < b < c < d such that τ ′(c) < τ ′(d) < τ ′(a) < τ ′(b).

If a = j or c = k > j �= b, then by the third part of Claim 9.6, (j, b) ∈ P
and hence (j, b) ∈ P0, and b < k, contradicting the minimality of k.

Therefore, according to the first part of Claim 9.6, we may assume that
b = j or d = k > j �= a. If b = j, then τ(a) > τ(j) by the second part of
Claim 9.6, and τ(a) = τ ′(a) < τ ′(b) = τ(k). If d = k, then τ(a) < τ(k) by the
second part of Claim 9.6. If additionally j �= a, then τ(a) = τ ′(a) > τ ′(d) =
τ(j). Moreover, a < j, otherwise (j, a) ∈ P and hence (j, a) ∈ P0, violating
the minimality of k. In any case, a < j and τ(j) < τ(a) < τ(k). On the other
hand, since (j, k) ∈ P0, we have τ(j) > τ(a0) for every a0 ∈ A0. It follows
that a /∈ A0 and hence necessarily i < a. It also follows that τ(a) > τ(a0)
for every a0 ∈ A0. Therefore, (a, k) ∈ P0, refuting the minimality of j.

The second part follows from the first part by considering w0τw0.

We turn to the third part. The set A0 is non-empty, since P0 = ∅ �= P .
Let a0 ∈ A0 be such that τ(a0) is maximal. Similarly, let a1 ∈ A1 be such that
τ(a1) is minimal. Note that τ(a0) < τ(a1), otherwise a0 < i < l < a1 and
τ(l) < τ(a1) < τ(a0) < τ(i), contradicting the covexillarity of τ . Also, τ(j) <
τ(a0), since (j, k) /∈ P0. Similarly, τ(a1) < τ(k). In a way of contradiction,
suppose that there are a < b < c < d such that τ ′(c) < τ ′(d) < τ ′(a) < τ ′(b).

If a = j or c = k > j �= b, then (j, b) ∈ P and b < k, by the third part
of Claim 9.6, disproving the minimality of k. Similarly, if b = j < k �= c or
d = k, then (c, k) ∈ P and c > j, by the third part of Claim 9.6, invalidating
the maximality of j.
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Therefore, according to the first part of Claim 9.6, we may assume that
b = j and c = k. Then, τ(a) = τ ′(a) < τ ′(b) = τ(k) and τ(j) = τ ′(c) <
τ ′(d) = τ(d). Therefore i < a, otherwise a < i < j < d and τ(j) < τ(d) <
τ(a) < τ(i), rebuffing the covexillarity of τ . Moreover, τ(a0) < τ(d) and
hence τ(a0) < τ(a), otherwise a0 < i < j < d and τ(j) < τ(d) < τ(a0) <
τ(i), contradicting the covexillarity of τ . Therefore (a, k) ∈ P0, denying the
emptiness of P0.

9.3.

We can now prove Theorem 1.5.
If τ is covexillary, then the set C(τ) is admissible by Lemma 2.2 and

hence the permutation π(C(τ)) is smooth by Proposition 5.3.
The map τ �→ π(C(τ)) from the set of covexillary permutations to the

set of smooth permutations is an idempotent function, since π(C(σ)) = σ
for any smooth σ, by Proposition 5.2. Next we show that this map is order
preserving. First note that if τ is covexillary then σ := π(C(τ)) is covexillary
as well (since it is smooth) and C(σ) = C(τ) by Proposition 5.3, hence
D(σ) = D(τ) by Corollary 5.9. Suppose now that τ1 ≤ τ2 are covexillary
permutations, and let σ1 := π(C(τ1)), σ2 := π(C(τ2)). Then, D(σ1) =
D(τ1) ⊆ D(τ2) = D(σ2) and hence σ1 ≤ σ2 by Lemma 5.5, as σ2 is defined
by inclusions (since it is smooth).

It follows that if τ is covexillary, then σ = π(C(σ)) ≥ π(C(τ)) for every
smooth σ ≥ τ . Hence, π(C(τ)) = min{σ ∈ Sn smooth : σ ≥ τ}, since
π(C(τ)) ≥ τ by (1.1).

Remark 9.7. For a general τ ∈ Sn there does not exist a smooth permutation
σ ≥ τ such that CT (σ) = CT (τ), let alone C(σ) = C(τ). For instance for
τ = (462513) ∈ S6, the only smooth permutations σ such that CT (σ) =
CT (τ) are (654123) and (456321) and none of them is ≥ τ .

Remark 9.8. For τ = (3412) ∈ S4, the set {σ ∈ (Sn)sm : σ ≥ τ} contains
two minimal elements (namely (4312) and (3421)). Thus, the assumption on
τ in Theorem 1.5 is essential.

In fact, it is not enough to require that C(τ) is admissible. Indeed, if
τ = (345612) ∈ S6 and σ = (654312) ∈ (S6)sm, then C(τ) is admissible and
τ ≤ σ but π(C(τ)) = (345621) �≤ σ.

10. Relation to coessential set

In [10] Fulton introduced the notion of the essential set of a permutation
σ ∈ Sn. For our purpose it is more convenient to use a slight variant, namely

E(σ) = {(i, j) ∈ [n− 1]2 : σ(i) ≤ j < σ(i+1) and σ−1(j) ≤ i < σ−1(j +1)}.
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In the notation of [ibid.,(3.8)] we have

E(σ) = {(n− i, j) : (i, j) ∈ Ess(σw0)} = {(i, n− j) : (i, j) ∈ Ess(w0σ)}.

For any σ ∈ Sn we have

(10.1)
for any τ ∈ Sn,

τ ≤ σ ⇐⇒ #(τ([i]) ∩ [j]) ≥ #(σ([i]) ∩ [j]) for all (i, j) ∈ E(σ).

In particular, σ is defined by the set E(σ) and the restriction of the function

#(σ([i]) ∩ [j]) to E(σ). The image of the injective map

σ ∈ Sn �→ (E(σ),#(σ([i]) ∩ [j])‖(i,j)∈E(σ))

was described in [8].

The set E(σ) is minimal with respect to the property (10.1). In other

words, if we replace E(σ) by a proper subset then (10.1) will not hold. In

particular, σ is defined by inclusion if and only if #(σ([i]) ∩ [j]) = min(i, j)

for all (i, j) ∈ E(σ). In general, consider the subset

E◦(σ) = {(i, j) ∈ E(σ) : σ([i]) ⊆ [j] or σ−1([j]) ⊆ [i]}.

Thus, σ is defined by inclusion if and only if E(σ) = E◦(σ), in which case σ

is determined by the set E(σ). In particular, this is the case if σ is smooth.

Observation 10.1. For any σ ∈ Sn, if (i1, j1) and (i2, j2) are two distinct

points in E◦(σ) such that j2 ≥ j1 and i2 ≥ i1, then max(i2, j2) > max(i1, j1)

and min(i2, j2) > min(i1, j1).

Let E be the set of subsets E of [n− 1]2 such that for every two distinct

points (i1, j1) and (i2, j2) in E such that min(i2, j2) ≥ min(i1, j1) we have

i2 ≥ i1, j2 ≥ j1, max(i2, j2) > max(i1, j1) and min(i2, j2) > min(i1, j1).

Lemma 10.2. For every covexillary σ ∈ Sn we have E◦(σ) ∈ E.

Proof. By Observation 10.1 it is enough to show that there are no pairs

(i1, j1), (i2, j2) ∈ E(σ) such that i1 < i2 and j1 > j2. Assume on the con-

trary that this is not the case. Then σ−1(j1) < i1 + 1 ≤ i2 < σ−1(j2) and

σ(i2) < j2 < j1 < σ(i1 + 1) in contradiction to the assumption that σ is

covexillary.
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For any (f, g) ∈ Pn let

E(f, g) ={(i, f(i)) : i ∈ [n− 1], f(i+ 1) > f(i) and g(i) = 1}∪
{(f(i), i) : i ∈ [n− 1], f(i+ 1) > f(i) and g(i) = 0}.

For E ∈ E define f̂E : [n] → [n] by

f̂E(k) = min
(
{n} ∪

{
max(i, j) : (i, j) ∈ E ∩ [k, n)2

})
.

Observation 10.3. Suppose that E ∈ E.

1. If i < j, then |E ∩ {(i, j), (j, i)}| ≤ 1.
2. If i < j and E ∩ {(i, j), (j, i)} �= ∅, then f̂E(i) = j < f̂E(i+ 1)
3. If f̂E(i) < f̂E(i+ 1), then {(i, f̂E(i)), (f̂E(i), i)} ∩ E �= ∅.
Let Δ := {(i, j) : 1 ≤ i < j < n} and let

ĝE(i) =

{
1 if (j, f̂E(j)) ∈ E ∩Δ, where j := max f̂−1

E (f̂E(i)),

0 otherwise.

Lemma 10.4. The map (f, g) �→ E(f, g) is a bijection Pn → En. The
inverse map is E �→ (f̂E , ĝE).

Proof. Suppose that (f, g) ∈ P . We first show that E(f, g) ∈ E. Let (i1, j1)
and (i2, j2) be two distinct points in E(f, g) and assume that

k2 := min(i2, j2) ≥ k1 := min(i1, j1).

Then kr ∈ [n − 1], f(kr + 1) > f(kr) and f(kr) = max(ir, jr), r = 1, 2.
Also, k1 �= k2. Therefore, k1 < k2 and hence f(k1) < f(k1 + 1) ≤ f(k2).
If f(k1) ≤ k2 then clearly i1 ≤ i2 and j1 ≤ j2. On the other hand, if
f(k1) > k2 then g(k1) = g(k2) (since (f, g) ∈ P) and therefore either ir = kr
and jr = f(kr), r = 1, 2 or ir = f(kr) and jr = kr, r = 1, 2. In both cases
i1 ≤ i2 and j1 ≤ j2.

For every k, clearly,

f̂E(f,g)(k) = min
(
{n} ∪ {f(i) : k ≤ i < n and f(i+ 1) > f(i)}

)
= f(k).

Moreover, if j = max f−1(f(i)), then f(j) = f(i), g(j) = g(i) and if
j < n then f(j + 1) > f(j). Therefore,

ĝE(f,g)(i) = 1 ⇐⇒ (j, f(j)) ∈ E(f, g) ∩Δ ⇐⇒ g(j) = 1 ⇐⇒ g(i) = 1.

Hence, (f̂E(f,g), ĝE(f,g)) = (f, g).
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Suppose now that E ∈ E. We show that (f̂E , ĝE) ∈ P . It is clear that
f̂E ∈ Fn. If f̂E(f̂E(i)) = f̂E(i) then clearly f̂−1

E (f̂E(i)) = f̂E(i) and hence

ĝE(i) = 0, since (f̂E(i), f̂E(f̂E(i))) = (f̂E(i), f̂E(i)) /∈ Δ.
Suppose that ĝE(i) �= ĝE(i + 1). Then necessarily max f̂−1

E (f̂E(i)) = i,

and let j := max f̂−1
E (f̂E(i + 1)). If ĝE(i) = 1 and ĝE(i + 1) = 0 then

(i, f̂E(i)) ∈ E and (f̂E(j), j) ∈ E. Since ∈ E it follows that f̂E(i) < j and
hence f̂E(f̂E(i)) ≤ f̂E(j) = f̂E(i+1). Similarly if ĝE(i) = 0 and ĝE(i+1) = 1.

Finally we show that E(f̂E , ĝE) = E. Suppose that f̂E(i + 1) > f̂E(i).
Then, max f̂−1

E (f̂E(i)) = i and hence, if ĝE(i) = 1 then (i, f̂E(i)) ∈ E and

if ĝE(i) = 0 then (i, f̂E(i)) /∈ E or i = f̂E(i) and in any case, necessarily
(f̂E(i), i) ∈ E by Observation 10.3. Conversely, suppose first that (i, r) ∈
E∩Δ. Then f̂E(i) = r < f̂E(i+1) by Observation 10.3. Hence, f̂−1

E (f̂E(i)) =

f̂−1
E (r) = i and therefore ĝ(i) = 1, since (i, f̂E(i)) = (i, r) ∈ E ∩Δ. Hence,

(i, r) ∈ E(f̂E , ĝE). Similarly, if (r, i) ∈ E \ Δ then f̂E(i) = r < f̂E(i + 1)
by Observation 10.3, hence f̂−1

E (f̂E(i)) = f̂−1
E (r) = i and therefore ĝ(i) = 0,

since (i, f̂E(i)) = (i, r) /∈ Δ. Hence, (r, i) ∈ E(f̂E , ĝE).

Observation 10.5. For any σ ∈ Sn, the table C(σ) is determined by the set
E◦(σ). More precisely, we have

Ti,j ∈ C(σ) ⇐⇒ E◦(σ) ∩ [i, j)2 = ∅
Ri,j,k ∈ C(σ) ⇐⇒ E◦(σ) ∩ [i, j)2 = E◦(σ) ∩ [j, k)× [i, k) = ∅
Li,j,k ∈ C(σ) ⇐⇒ E◦(σ) ∩ [i, j)× [i, k) = E◦(σ) ∩ [j, k)2 = ∅.

For E ⊆ [n− 1]2, let

AE ={Ti,j : E ∩ [i, j)2 = ∅}∪
{Ri,j,k : E ∩ [i, j)2 = E ∩ [j, k)× [i, k) = ∅}∪
{Li,j,k : E ∩ [i, j)× [i, k) = E ∩ [j, k)2 = ∅}.

Proposition 10.6. We have a commutative diagram of bijections

Pn En

(Sn)sm An

The upper horizontal maps are (f, g) �→ E(f, g) and E �→ (f̂E , ĝE). The right
vertical maps are E �→ AE and A �→ E(fA, gA). The principal diagonal maps
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are (f, g) �→ Af,g and A �→ (fA, gA). The non-principal diagonal maps are

σ �→ E◦(σ) and E �→ σ(f̂E , ĝE). The left vertical maps are (f, g) �→ σ(f, g)
and σ �→ (fC(σ), gC(σ)). The lower horizontal maps are σ �→ C(σ) and A �→
π(A).

Proof. Observation 10.5 readily yields that AE◦(σ) = C(σ) for every σ, and
it is easy to verify that AE(f,g) = Af,g for every (f, g) ∈ P . Therefore, the
proposition follows from Theorem 1.1, Proposition 7.4, Proposition 7.9 and
Lemma 10.4.

Corollary 10.7.

E = {E◦(σ) : σ ∈ (Sn)sm} = {E◦(σ) : σ ∈ Sn covexillary}.

Corollary 10.8. For any covexillary τ ∈ Sn we have E(π(C(τ))) = E◦(τ).
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