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Pak-Stanley labeling for central graphical
arrangements
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The original Pak-Stanley labeling was defined by Pak and Stanley
as a bijective map from the set of regions of an extended Shi ar-
rangement to the set of parking functions. This map was later gen-
eralized to other arrangements associated with graphs and directed
multigraphs. In these more general cases the map is no longer bi-
jective. However, it was shown that it is surjective to the set of the
G-parking functions, where G is the multigraph associated with
the arrangement.

This leads to a natural question: when is the generalized Pak-
Stanley map bijective? In this paper we answer this question in the
special case of central hyperplane arrangements, i.e. the case when
all the hyperplanes of the arrangement pass through a common
point.
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Introduction

Let V ⊂ R
n be given by x1 + . . . + xn = 0. Consider an arrangement A

of affine hyperplanes in V , such that every hyperplane of A is of the form
Ha

i,j := {xi − xj = a} for some i, j ∈ {1, . . . n} and a > 0. Let GA be the
associated directed multigraph, defined as follows. The set of vertices of GA
is {1, . . . , n}, and the edge i → j has multiplicity

mij := #{a ∈ R>0|Ha
i,j ∈ A}.

Note that one gets mij+mji hyperplanes parallel to {xi = xj} in A, mij

of them on one side of the origin, and mji of them on the other. Note also
that the multigraph GA does not determine the combinatorial type of the
arrangement A, as one can shift the hyperplanes by changing the constants
on the right hand sides of the equations without changing the graph.
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Definition 1. We will call the arrangements of the type described above
the multigraphical arrangements.

The generalized Pak-Stanley labeling of the regions (connected compo-
nents of the complement) of a multigraphical arrangement was defined in [4]:

Definition 2. Let R be a region of A. Let AR ⊂ A be the subset consisting
of the hyperplanes that separate R from the origin. We define the label λR

to be the function λR : {1, . . . , n} → Z≥0 given by the following formula:

λR(i) := #{(a, j)|a ∈ R>0, j ∈ {1, . . . , n}, and Ha
i,j ∈ AR}.

In other words, λR(i) equals to the number of hyperplanes of the arrange-
ment A of the form Ha

i,j separating the region R from the origin. (Note that
here i is fixed, but j and a might vary.)

We will use the notation 〈λ(1), . . . , λ(n)〉 for a label λ. The region R0

containing the origin is called the fundamental region. It is the only region
labeled by 〈0, . . . , 0〉. Note that the labeling can be defined inductively: as
one crosses a hyperplane Ha

ij = {xi − xj = a > 0} in the direction away
from the origin, the ith component of the label is increased by one, while
the rest of the components remain unchanged.

Definition 3. Let G be a directed multigraph on a vertex set {1, . . . , n}.
A function λ : {1, . . . , n} → Z≥0 is called a G-parking function if for any
non-empty subset I ⊂ {1, . . . , n} there exists a vertex i ∈ I such that the
number of edges (i → j) ∈ EG, counted with multiplicity, such that j /∈ I is
greater than or equal to λ(i).

The following results were proved in [3] and [4]:

Theorem 4 ([3, 4]). Let R be any region of a multigraphical arrangement
A. Then the corresponding label λR is a GA-parking function.

Theorem 5 ([3, 4]). Let A be a multigraphical arrangement, and let λ be any
GA-parking function. Then there exists a region R of A, such that λR = λ.

Combining the above, we get that the generalized Pak-Stanley labeling
is a surjective map from the set of regions of A to the set of GA-parking
functions.

In [3] these results were proved in a more restricted context. In [4] they
were generalized to multigraphical arrangements. In the classical case of ex-
tended Shi arrangements, one can show the bijectivity of the Pak-Stanley
labeling by using the above results and then comparing the cardinalities of
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the two sets. The bijectivity results can be extended to other families of ar-
rangements (see [2]). However, in general the generalized Pak-Stanley label-
ings often fail to be injective. Study of the examples suggests that whenever
the map is not injective “globally” it is also not injective “locally.”

Definition 6. Let A be a multigraphical arrangement and let p ∈ V be any
point. We say that the Pak-Stanley labeling for A is locally injective near p
if all labels of regions R such that p ∈ R are distinct. Further, if this holds
for all p ∈ V , we say that A is locally injective.

Conjecture 7. Let A be a multigraphical arrangement, then the generalized
Pak-Stanley map from the set of regions of A to the set of parking functions
is injective if and only if it is injective locally.

Remark 8. Note that the “only if” part of the conjecture is trivial.

Furthermore, the examples indicate that a stronger form of Conjecture
7 can be made about the proximity of repeated labels.

Conjecture 9. Let A be a multigraphical arrangement. Then for a fixed
label λ, the closure of the union of all regions labeled by λ is connected.

It is clear from the definition of the Pak-Stanley labeling that the local
injectivity near a point x ∈ V is a local question. More precisely one has the
following fact

Lemma 10. Let A be a multigraphical arrangement and p ∈ V be a point.
Let Ap ⊂ A be the subarrangement consistenting of hyperplanes that contain
p. Then the Pak-Stanley labeling for A is locally injective near p if and only
if the Pak-Stanley labeling for Ap is injective.

Proof. Let R0, . . . , RN be all of the regions of A whose closures contain
the point p. Let also Rp

0, . . . , R
p
N be the corresponding regions of Ap, i.e.

Ri ⊂ Rp
i for each i. Let λ(Ri) denote the Pak-Stanley labeling for A and

λp(R
p
i ) denote the Pak-Stanley labeling for Ap. Let us also assume that the

origin belongs to the region Rp
0, so that λp(R

p
0) = 〈0, . . . , 0〉. According to

the inductive definition of the labeling, as one crosses a hyperplane of Ap,
the labels for A and Ap change in the same way. Therefore, one gets

λ(Ri) = λp(R
p
i ) + λ(R0)

for all i. It follows that λ(Ri) = λ(Rj) if and only if λp(R
p
i ) = λp(R

p
j ), which

concludes the proof.

The natural question is to characterize the directed multigraphs for
which there exist arrangements with bijective labelings. Conjecture 7 and
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Figure 1: In [6] Baker shows that the graph on the left does not emit an
arrangement with a bijective labeling despite satisfying conditions listed in
Theorem 11. We illustrate this with two arrangements (center and right) cor-
responding to the graph. In the first arrangement (center) the label 〈0, 1, 0〉
appears twice, while in the second arrangement (right) the label 〈1, 0, 0〉
appears twice. One can modify the arrangements by changing the posi-
tive constants a1, a2, b1, and c1 on the right hand sides of the equations
of Ha1

12 , H
a2

12 , H
b1
12, and Hc1

12, but one cannot get rid of both duplicates at the
same time (see [6] for details).

Observation 10 motivates studying this question in the special case of central
hyperplane arrangements, i.e. arrangements for which all the hyperplanes
pass through a common point.

In this paper we answer this question for the special case of central
affine multigraphical arrangements, which correspond to acyclic digraphs,
by giving necessary and sufficient conditions on the digraph such that the
labeling is injective.

Baker, in [6], has been working on generalizing to arbitrary multigraph-
ical arrangements in the n = 3 case. She noticed that arrangements with a
bijective labeling had a corresponding graph that satisfied the following.

Theorem 11. Suppose A is a multigraphical arrangement with a bijective
Pak-Stanley labeling and GA is the corresponding graph, then for i, j, k ∈ V
with mij �= 0, mik �= 0, then mjk +mkj ≥ mij +mik − 1.

In her thesis, she showed that the above criterion was necessary, but
not sufficient for a graph to yield a bijective labeling by giving several fam-
ilies of graphs that satisfy the conditions of Theorem 11 but do not emit
arrangements with a bijective labeling.
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If A is a central multigraphical arrangement, then GA is a simple acyclic

digraph, and the condition of Theorem 11 reduces to the following: if both

edges i → j and i → k are in GA then mkj +mjk > 1, i.e. either j → k or

k → j is also in GA. The main result of this paper is that in this case the

condition is not only necessary for the bijectivity of the Pak-Stanley labeling

of A, but also sufficient (see Theorem 15).

1. Central affine multigraphical arrangements

In the case of central multigraphical arrangements, the arrangement is fully

determined by the corresponding multigraph (up to a global shift). We start

by characterizing the multigraphs corresponding to central arrangements.

Theorem 12. Let A be a central multigraphical arrangement, then the cor-

responding multidigraph is simple and acyclic. Vice versa, if G is a simple

acyclic digraph, then there exists a central multigraphical arrangement A,

such that GA = G.

Proof. Let A be a central multigraphical arrangement such that all hyper-

planes intersect at the point c = (c1, c2, . . . , cn). Since all hyperplanes Ha
i,j

intersect at c, then we can have at most one Ha
i,j for each pair i, j. Moreover,

if we have a hyperplane Ha
i,j then we cannot have a hyperplane of the form

Hb
j,i, because they would also be parallel. Thus the digraph GA is simple.

Assume that GA contains the cycle i0 → i1 → · · · → ik → i0. It then

follows that the hyperplanes corresponding to the edges in the cycle exhibit

xi0 − xi1 = a1 > 0
xi1 − xi2 = a2 > 0

...
...

...
xik−1

− xik = ak > 0
xik − xi0 = ak+1 > 0

Since each hyperplane passes through the point c all these equations are

satisfied at x = c. After taking the sum of the above equations we see that

0 =
∑k+1

i=1 ai which contradicts the assumption that the ai > 0 for all i.

Thus GA is acyclic.

Now, given an acyclic digraph G = (V,E), with V = {1, . . . , n}, one
can assume without loss of generality that the edges are oriented in an

increasing way. We create the corresponding arrangement A by: for every

edge (i → j) ∈ E create the hyperplane Hj−i
i,j = {xi − xj = j − i}. Consider
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the following point c ∈ V :

c =

(
n+ 1

2
, . . . ,

n+ 1

2

)
− (1, 2, . . . , n)

We immediately see that the point c lies in the intersection of all the
hyperplanes since ci − cj = j − i for all 1 ≤ i < j ≤ n. Therefore the graph
G has a corresponding central multigraphical arrangement.

Let A be a central multigraphical arrangement, and let A′ be the linear
arrangement obtained from A by shifting all the hyperplanes so that they
pass through the origin. Let G be the simple graph obtained from GA by re-
moving the orientations on the edges. Then it is well-known that the acyclic
orientations of G are in one to one correspondence with the regions of A′.
The bijection is constructed as follows. Given a region R of A′ and an edge
i− j of G, we orient it i → j if and only if xi < xj at every point of R.

The regions of the original arrangement A are simply the regions of A′

shifted by a vector. Therefore, they are also in bijection with the acyclic
orientations of G, or acyclic reorientations of GA.

Theorem 13. The fundamental region of A corresponds to the original ori-
entation of GA, and crossing a hyperplane Ha

i,j ∈ A switches the orientation
of the corresponding edge between i and j.

Proof. Let R0 be the fundamental region of the arrangement A, and let
A′ be the corresponding linear arrangement. Let c = (c1, . . . , cn) be in the
intersection of all the hyperplanes of the arrangement A. Then it follows
that −c belongs to the corresponding region R′ = R0 − c of A′. Therefore,
if Ha

i,j ∈ A and the edge i → j is the corresponding edge in GA, then at c
we have ci − cj = a, in particular we have that ci > cj . It then follows that
at −c ∈ R′ that we have −ci < −cj . Thus, in the orientation corresponding
to R′ we also get the edge oriented as i → j.

Finally, crossing a hyperplane Ha
i,j corresponds to crossing the hyper-

plane xi = xj of the linear arrangement A′, which switches the orientation
of the corresponding edge.

Lemma 14. The Pak-Stanley labels for the arrangement A can be computed
in terms of acyclic reorientations of the graph GA. More precisely, for a
region R of A the label λR(i) equals to the number of edges of GA leading from
i, such that their orientations got switched in the reorientation corresponding
to R.

Proof. For an arrangement A the Pak-Stanley label for a region R is calcu-
lated by counting the number of hyperplanes of the form Ha

i,j separating R
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2 3〈0, 0, 0〉x1 < x2 < x3

1

2 3

〈0, 1, 0〉
1

2 3

〈1, 1, 0〉
1

2 3

Figure 2: We consider the central arrangement corresponding to the digraph
GA = (1 → 2, 1 → 3, 2 → 3). The regions of the arrangement are labeled
by the corresponding reorientations and the generalized Pak-Stanley labels.
Note that the fundamental region is labeled by GA and 〈0, 0, 0〉, and as we
cross the hyperplanes the orientations of the corresponding edges switch.
Moreover, as we cross the hyperplane Ha

i,j in a direction away from the
origin, the ith entry of the Pak-Stanley label increases by 1.

from the origin and increasing the value λR(i) accordingly. However, Theo-
rem 13 implies that as we cross a hyperplane Ha

i,j we reorient the edge from
(i → j) to (j → i), so it follows that λR(i) is the number of edges of GA
leading from i that get reoriented in the graph corresponding to R.

Now we are ready to prove our main theorem:

Theorem 15. Let V = {1, 2, . . . , n} and G = (V,E) be an acyclic directed
graph on n vertices with edges oriented in the increasing way. Then the
hyperplane arrangement corresponding to G produces duplicate Pak-Stanley
labelings if and only if there exists 1 ≤ k < i < j ≤ n such that (k →
i), (k → j) ∈ E and (i → j) /∈ E.

Proof of Theorem 15. ⇒) Assume that G produces duplicate Pak-Stanley
labelings and for the sake of contraction assume that no such i, j, k exists.
Since labelings correspond to acyclic reorientations of G, let G′ = (V,E′)
and G′′ = (V,E′′) be such reorientations.

Since reorientations are in correspondence with labelings then there is
an edge k → i of GA that is reoriented as i → k in G′ but not in G′′.
Moreover since the labels are equal, then there must also be another edge
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G′′

k . . . i . . . j

G′

k . . . i . . . j

Figure 3: Here we see the two reorientations of the graph G, G′ and G′′, and
the corresponding cycles created depending on the orientation of the edge
i → j.

emanating from k, say edge k → j, such that it is reoriented as j → k in G′′

but not in G′. In other words, the duplicate labeling implies that we have

edges (i → k), (k → j) ∈ E′ and (k → i), (j → k) ∈ E′′.
Let k be the largest integer such that this occurs. Since k is the largest

possible, it follows that all edges between vertices p, q where p, q > k are

oriented in the same way in both reorientations. Without loss of generality

we can assume that i < j. This gives arise to two cases depending on whether

or not the edge from i → j, is oriented as i → j or j → i in both G′ and
G′′. If we have the edge i → j then in G′′ we have the cycle k → i → j → k,

a contradiction since G-parking functions arise from acyclic reorientations.

Otherwise we have the edge j → i, but as before we have the cycle k → j →
i → k in G′ (see Figure 3).

⇐) The easiest way to produce the acyclic reorientations, G′ and G′′, is
reordering the vertices and reorienting the edges so that they point in the in-

creasing direction after considering the new vertex order. For the reoriented

graph G′ = (V,E′) we reorder the vertices of G′ as follows

1≺ . . . ≺ k−1≺ k+1≺ . . . ≺ i−1≺ i+1≺ . . . ≺ j−1≺ i≺ k≺ j≺ . . . ≺n.

In other words, for G′ we move the vertices k + 1, . . . , i− 1, i+ 1, . . . , j − 1

to the left so that they precede vertex k, and then switch vertices k and i.

Note that as we reorder the vertices, the only edges that are reversed are

(1) (k → p) ∈ E such that:
p ∈ {k + 1, . . . , i− 1}, or
p ∈ {i+ 1, . . . , j − 1}, or
p = i

(2) (i → p) ∈ E such that: p ∈ {i+ 1, . . . , j − 1}.
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To produce the reorientation that corresponds to G′′ = (V,E′′) we reorder
the vertices of G′′ as follows:

1 ≺ · · · ≺ k − 1 ≺ k + 1 ≺ · · · ≺ i− 1 ≺ i+ 1

≺ · · · ≺ j − 1 ≺ j ≺ k ≺ i ≺ j + 1 ≺ · · · ≺ n.

In other words, for G′′ we move the vertices k + 1, . . . , i− 1, i+ 1, . . . , j − 1
so that they precede vertex k, but now we move vertex j two places to the
left so that it precedes k instead of switching vertices k and i. This time the
following edges are reoriented

(1) (k → p) ∈ E such that:
p ∈ {k + 1, . . . , i− 1}, or
p ∈ {i+ 1, . . . , j − 1}, or
p = j

(2) (i → p) ∈ E such that: p ∈ {i+ 1, . . . , j − 1}.

Note that (i → j) /∈ E by assumption, therefore it does not need to be
reoriented.

We conclude that both G′ = (V,E′) and G′′ = (V,E′′) produce the
labeling

τ = 〈0, . . . , 0,
kth

(N + 1), 0, . . . , 0,
ith

(K), 0, . . . , 0〉

where

N = #{(k → p) ∈ E : p ∈ {k + 1, . . . , i− 1} ∪ {i+ 1, . . . , j − 1}}

and

K = #{(i → p) ∈ E : p ∈ {i+ 1, . . . , j − 1}}.

Example 16. Consider the following graph G = (V,E) where the vertex
and edge sets are given by V = {1, 2, 3, 4} and E = {(1 → 2), (1 → 3), (1 →
4), (2 → 3), (2 → 4)}.

1 2 3 4
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In this example we see that (1 → 3) and (1 → 4), but (3 → 4) /∈ E, so
Theorem 15 implies that there should exist two reorientations G′ and G′′ that
produce the same Pak-Stanley labeling. Consider the following reorientations

1 2 3 41 2 3 4

These two reorientations of GA produce the label 〈2, 0, 0, 0〉. Similarly
for (2 → 3), (2 → 4) ∈ E, but (3 → 4) /∈ E there will be duplicates

1 2 3 41 2 3 4

These two reorientations of G produce the duplicate label 〈0, 1, 0, 0〉. Ac-
tually, this graph produces four more duplicate labelings

{〈1, 1, 0, 0〉, 〈2, 1, 0, 0〉, 〈1, 2, 0, 0〉, 〈3, 1, 0, 0〉}.
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