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On even rainbow or nontriangular directed cycles
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Let G = (V,E) be an n-vertex edge-colored graph. In 2013, H. Li
proved that if every vertex v ∈ V is incident to at least (n+ 1)/2
distinctly colored edges, then G admits a rainbow triangle. We
establish a corresponding result for fixed even rainbow �-cycles C�:
if every vertex v ∈ V is incident to at least (n + 5)/3 distinctly
colored edges, where n ≥ n0(�) is sufficiently large, then G admits
an even rainbow �-cycle C�. This result is best possible whenever
� �≡ 0 (mod 3). Correspondingly, we also show that for a fixed
(even or odd) integer � ≥ 4, every large n-vertex oriented graph
�G = (V, �E) with minimum outdegree at least (n + 1)/3 admits a

(consistently) directed �-cycle �C�. Our latter result relates to one
of Kelly, Kühn, and Osthus, who proved a similar statement for
oriented graphs with large semi-degree. Our proofs are based on
the stability method.
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1. Introduction

An edge-colored graph is a pair (G, c), where G = (V,E) is a graph and c :
E → P is a function mapping edges to some palette of colors P . A subgraph
H ⊆ G is a rainbow subgraph if the edges of H are distinctly colored by
c. We consider degree conditions ensuring the existence of rainbow cycles
C� in (G, c) of fixed even length � ≥ 4. To that end, a vertex v ∈ V in
an edge-colored graph (G, c) has c-degree degcG(v) given by the number of
distinct colors assigned by c to the edges {v, w} ∈ E, where we set δc(G) =
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minv∈V degcG(v). The following result of H. Li [12] motivates the main results
of our paper.

Theorem 1.1 (H. Li, 2013). Let (G, c) be an n-vertex edge-colored graph.
If δc(G) ≥ (n+ 1)/2, then (G, c) admits a rainbow 3-cycle C3.

A rainbow K�n/2�,�n/2� shows that Theorem 1.1 is best possible.
Our first result ensures rainbow cycles of fixed even length.

Theorem 1.2. There exists an absolute constant α > 0 so that, for every
even integer � ≥ 4, every edge-colored graph (G, c) on n ≥ n0(�) many
vertices satisfying

(1) δc(G) ≥
{ (

1
3 − α

)
n if � ≡ 0 (mod 3),

n+5
3 if � �≡ 0 (mod 3),

admits a rainbow �-cycle C�.

Theorem 1.2 is best possible for � �≡ 0 (mod 3), which we verify at
the end of the Introduction. We prove Theorem 1.2 in Section 2 using the
stability method.

Remark 1.3. In a related paper [3], we establish an analogue of Theorem 1.2
for fixed odd integers � ≥ 3. In particular, we show that for large integers
n ≥ n0(�), H. Li’s condition δc(G) ≥ (n+ 1)/2 ensures rainbow �-cycles C�

in (G, c), which is again best possible by a rainbow K�n/2�,�n/2�. �

We also consider an analogue of Theorem 1.2 for oriented graphs �G =
(V, �E), i.e., those for which �E ⊂ V × V satisfies the rule that (u, v) ∈ �E
forbids (v, u) ∈ �E. Here, we seek a directed or consistently oriented �-cycle
�C�, whose vertices V ( �C�) may be ordered (v0, . . . , v�−1) so that (vi, vi+1) ∈ �E
for all i ∈ Z�. In this context, we may take � ≥ 4 to be even or odd.

Theorem 1.4. For every fixed integer � ≥ 4, whether even or odd, every
oriented graph �G = (V, �E) on n ≥ n0(�) many vertices with minimum out-
degree δ+( �G) ≥ (n+ 1)/3 admits a directed �-cycle �C�.

We prove Theorem 1.4 in Section 2 using ideas similar to that of Theo-
rem 1.2. Note that Theorem 1.4 is best possible for every � �≡ 0 (mod 3), as
seen by the blow-up �G = (V, �E) of a directed triangle:

let V = V0 ∪ V1 ∪ V2 be a partition,

and let �E = (V0 × V1) ∪ (V1 × V2) ∪ (V2 × V0),
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where |V2| ≤ |V1| ≤ |V0| ≤ |V2|+ 1. Here, δ+( �G) = |V2| ≥ ((n+ 1)/3)− 1.
Note that Theorem 1.4 omits the case � = 3, which is the triangular case

of the Caccetta-Häggkvist conjecture (cf. [2, 5]) and is beyond the reach of
our methods. We also mention that Theorem 1.4 relates to the following
result of Kelly, Kühn, and Osthus [8].

Theorem 1.5 (Kelly, Kühn, Osthus, 2010). For every integer � ≥ 4 and
for every integer n ≥ 1010�, every n-vertex oriented graph �G = (V,E) with
δ0( �G) = min{δ+( �G), δ−( �G)} ≥ (n + 1)/3 contains a directed �-cycle �C�.
Moreover, every vertex v ∈ V belongs to a directed �-cycle �C�.

The remainder of this paper is organized as follows. In Section 2, we prove
both Theorems 1.2 and 1.4. For these proofs, we need upcoming Lemmas 2.6
and 2.9, which (in a sense made precise later) distinguish whether or not a
given context is extremal. We prove Lemma 2.6 in Sections 3–5 where we
also prove supplemental results needed along the way. We prove Lemma 2.9
in Sections 6–8, where again we prove supplemental results needed along
the way. We conclude this Introduction by verifying the sharpness of The-
orem 1.2 when � �≡ 0 (mod 3). To aid in the description of these sharpness
examples, we let K[A,B] denote the complete bipartite graph with parts A
and B, and similarly, for a set C disjoint from A and B, we let K[A,B,C]
denote the complete tripartite graph with parts A, B, and C.

1.1. Theorem 1.2 is sharp for � �≡ 0 (mod 3)

Fix an integer � �≡ 0 (mod 3), which in the constructions below can be even
or odd. Let V = V0 ∪ V1 ∪ V2 be a partition of an n-element set V , where
for optimality we take �n/3� = m = |V2| ≤ |V1| ≤ |V0| ≤ |V2| + 1. Let
G = (V,E) be given by the complete 3-partite graph K[V0, V1, V2]. We now
distinguish the cases n, � (mod 3).

Case 1 (n �≡ 2 (mod 3)). Define c+ : E → V by setting, for each i ∈ Z3

and (vi, vi+1) ∈ Vi × Vi+1,

(2) c+({vi, vi+1}) = vi+1.

We say this same edge e = {vi, vi+1} ∈ E is of type i, and we write t(e) = i for
its type. We write a fixed �-cycle C� inG by a cyclic ordering (e0, e1, . . . , e�−1)
of its consecutive edges. A consecutive such pair (ek, ek+1) is a reversal when
ek and ek+1 are of the same type t(ek) = t(ek+1) = i ∈ Z3, where (ek, ek+1) is
a backward reversal when ek∩ek+1 ∈ Vi+1, and (ek, ek+1) is a forward reversal
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when ek∩ek+1 ∈ Vi. Since C� is a cycle, the number of backward reversals is
the number of forward reversals, and C� admits backward reversals lest � ≡ 0
(mod 3). Fix an arbitrary backward reversal (ek, ek+1) of C�, where k ∈ Z�,
where t(ek) = t(ek+1) = i ∈ Z3, and where ek ∩ ek+1 = {vi+1} ⊂ Vi+1. Then

(3) c+(ek)
(2)
= vi+1

(2)
= c+(ek+1),

whence C� isn’t rainbow. We observe from (2) that deg
c+
G (vi) = 1 + |Vi+1|

holds for each fixed i ∈ Z3 and for each fixed vi ∈ Vi. Indeed, an incident
edge e = {vi, vj} ∈ E is assigned the fixed color c+(e) = vi when vj ∈ Vi−1,
and is assigned the variable color c+(e) = vj among all |Vi+1| many possible
vj ∈ Vi+1. As such, δc+(G) = deg

c+
G (v1) = m + 1 is achieved by any vertex

v1 ∈ V1, while �(n+ 5)/3� = m+ 2 is ensured by n �≡ 2 (mod 3). �

Case 2 (n ≡ 2, � ≡ 1 (mod 3)). Here, n ≡ 2 (mod 3) ensures that |V0| =
|V1| = m + 1. Fix a perfect matching M = {{x1, y1}, . . . , {xm+1, ym+1}} of
G[V0, V1] = K[V0, V1], where V0 = {x1, . . . , xm+1} and V1 = {y1, . . . , ym+1},
and fix a symbol � �∈ V . Define cM : E → {�} ∪ V by

(4) cM (e) =

⎧⎨
⎩

c+(e) if e ∈ E \ EG[V0, V1],
� if e ∈ M ,
xb if e = {xa, yb} ∈ EG[V0, V1] \M .

We observe from (4) that (G, cM ) is (m+2)-color-regular, while �(n+5)/3� =
m + 3 is ensured by n ≡ 2 (mod 3). Indeed, as before in Case 1, a vertex
v2 ∈ V2 has color-degree degcMG (v2) = deg

c+
G (v2) = 1 + |V0| = m + 2. Less

easily, fix xa ∈ V0 and fix an incident edge xa ∈ e ∈ E. If e∩V2 �= ∅, then e is
assigned the fixed color cM (e) = c+(e) = xa, and if e = {xa, ya} ∈ M , then e
is assigned the fixed color cM (e) = �. Otherwise, e = {xa, yb} ∈ E[V0, V1]\M
for some ya �= yb ∈ V1, whence e is assigned the variable color cM (e) = xb
among all |V1| − 1 = m many possible yb ∈ V1 \ {ya}. Similarly, fix yb ∈ V1,
and fix an incident edge yb ∈ e ∈ E. If e = {xb, yb} ∈ M , then e is assigned
the fixed color cM (e) = �, and if e = {xa, yb} ∈ E[V0, V1] \ M for some
xb �= xa ∈ V0, then e is assigned the fixed color cM (e) = xb. Otherwise,
e = {yb, v2} ∈ E[V1, V2] for some v2 ∈ V2, whence e is assigned the variable
color cM (e) = c+(e) = v2 among all |V2| = m many possible v2 ∈ V2.

We now observe that (G, cM ) avoids rainbow �-cycles C�. For that, fix
an �-cycle C� = (e0, . . . , e�−1) of G with backward reversal (ek, ek+1), where
k ∈ Z�. For C� to be rainbow, we claim thatGmust assume the color � within
the backward reversal (ek, ek+1). Indeed, let t(ek) = t(ek+1) = i ∈ Z3, and
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let ek ∩ ek+1 = {vi+1} ⊂ Vi+1. For C� to be rainbow, i = 0 is necessary
lest (3) holds, so write vi+1 = y1 ∈ V1. Since M is a matching, at most one
of ek, ek+1 ∈ M , but for C� to be rainbow, at least one such containment is
necessary (as claimed) lest (4) gives cM (ek) = x1 = cM (ek+1). Now, for C�

to be rainbow, the following are necessary:

(a) ek ∈ M implies (ek−1, ek) is a forward reversal, lest

cM (ek−1)
(4)
= c+(ek−1)

(2)
= x1

(4)
= cM (ek+1);

(b) ek+1 ∈ M implies (ek+1, ek+2) is a forward reversal, lest

cM (ek+2)
(4)
= c+(ek+2)

(2)
= x1

(4)
= cM (ek).

Either way, C� has further backward reversals (assuming � again) lest � ≡ 2
(mod 3). �

Case 3 (n, �≡ 2 (mod 3)).We first slightly alter the graphG=K[V0, V1, V2]
above, as follows. Fix x ∈ V0 and y ∈ V1 so that U0 = V0\{x}, U1 = V1\{y},
and U2 = V2 all have size m. Define Ê by the rule that, for each {u, v} ∈

(
V
2

)
,

we put {u, v} ∈ Ê if, and only if,

{y} × U0 �� (u, v) �∈
⋃
i∈Z3

(Ui × Ui).

In other words, G = (V,E) and Ĝ = (V, Ê) differ only in the 3m = n − 2
elements among

Ê \ E =
⋃{

{x, u0} : u0 ∈ U0

}
∪
⋃{

{y, u1} : u1 ∈ U1

}
and

E \ Ê =
⋃{

{y, v0} : v0 ∈ U0

}
.

Define ĉ : Ê → {�} ∪ V by setting, for each e ∈ Ê,

(5) ĉ(e) =

⎧⎨
⎩

� if e ∈ Ê \ E,

� if e = {x, u2} ∈ Ê ∩ E for some u2 ∈ U2,
c+(e) otherwise.

We observe from (5) that (Ĝ, ĉ) is (m+2)-color-regular, while �(n+5)/3)� =
m+ 3 is ensured by n ≡ 2 (mod 3). Indeed, fix a vertex u0 ∈ U0, and fix an
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incident edge u0 ∈ e ∈ Ê. If x ∈ e, then e is assigned the fixed color ĉ(e) = �,
and if e ∩ U2 �= ∅, then e is assigned the fixed color ĉ(e) = c+(e) = u0.
Otherwise, e = {u0, u1} ∈ Ê[U0, U1] = E[U0, U1] for some u1 ∈ U1, whence
e is assigned the variable color ĉ(e) = c+(e) = u1 among all |U1| = m many
possible u1 ∈ U1. Vertices u1 ∈ U1 and u2 ∈ U2 similarly have ĉ-degree
m + 2. For the fixed vertex x ∈ V , fix an incident edge x ∈ e ∈ Ê. If
e ∩ (U0 ∪ U2) �= ∅, then e is assigned the fixed color ĉ(e) = �, and if y ∈ e,
then e is assigned the fixed color ĉ(e) = y. Otherwise, e = {x, u1} for some
u1 ∈ U1, whence e is assigned the variable color ĉ(e) = c+(e) = u1 among
all |U1| = m many possible u1 ∈ U1. The fixed vertex y ∈ V similarly has
ĉ-degree m + 2. That (Ĝ, ĉ) avoids rainbow �-cycles C� is sketched in the
Appendix, when more needed concepts are developed. �

2. Proofs of Theorems 1.2 and 1.4

The proofs of Theorems 1.2 and 1.4 are based on the well-known stability
method, together with a few elementary results. We present the tools we
need in order of increasing technicality.

2.1. Elementary tools

Edge-colored graphs (G, c) on a vertex set V correspond to directed graphs
�G = (V, �E), as follows. For each v ∈ V , let {v, w1}, . . . , {v, wd} ∈ E be a
system of representatives of the color classes of c on edges at v, where d =
degcG(v). We put (v, w1), . . . , (v, wd) ∈ �E, and we say that a directed graph
�G = (V, �E) obtained in this way (which need be neither oriented nor unique)
is associated with (G, c). Directed graphs �G = (V, �E) correspond to edge-
colored graphs (G, c), as follows. For each (v, w) ∈ �E, we put {v, w} ∈ E(G)
and define c({v, w}) = w. Then (G, c) is uniquely determined by �G, although
G = (V,E) may be a multigraph. We pause for the following remark.

Remark 2.1. In this paper, no directed graph �G = (V, �E) will allow �E to
be a multiset, nor will �E consist of any directed loops. When (v, w) ∈ �E
forbids (w, v) ∈ �E, then �G = (V, �E) is an oriented graph. When so, the
edge-colored graph (G, c) determined by �G is simple. �

In the contexts above, we make a couple of elementary observations.
On the one hand, if (G, c) is an edge-colored graph and �G = (V, �E) is a
directed graph associated with (G, c), then every vertex v ∈ V has out-
degree deg+�G

(v) = degcG(v). On the other hand, if �G = (V, �E) is an oriented

graph and (G, c) is the edge-colored graph determined by �G = (V, �E), then
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every vertex v ∈ V satisfies degcG(v) = deg+�G
(v) + 1 when v has positive

in-degree in �G, and degcG(v) = deg+�G
(v) otherwise. In these contexts, we

next consider the extent to which rainbow cycles of (G, c) relate to directed
cycles of �G, and vice versa. We begin with the following elementary but
useful observation first noted by H. Li in [12].

Fact 2.2. Let �G = (V, �E) be an oriented graph, and let (G, c) be the edge-
colored graph determined by �G. Every directed �-cycle �C� in �G corresponds
to a rainbow �-cycle C� in (G, c). Moreover, every properly colored �-cycle C�

in (G, c) is, in fact, a rainbow �-cycle, and corresponds to a directed �-cycle
�C� in �G.

In Fact 2.2, the edge-colored graph (G, c) is derived from a given ori-
ented graph �G = (V, �E), and directed �-cycles �C� of �G are in one-to-one
correspondence with rainbow �-cycles C� of (G, c). However, when (G, c) is
given and �G = (V, �E) is associated with (G, c), the same conclusion need
not hold.

Fact 2.3. Let (G, c) be an n-vertex edge-colored graph, and let �G = (V, �E)
be a directed graph associated with (G, c). Then �G admits at most (1/2)(�−
1)n�−1 many directed �-cycles �C� that were not rainbow in (G, c).

Remark. We apply Fact 2.3 with � fixed, and from the O(n�−1) bound, we
only ever use o(n�). �
Proof of Fact 2.3. Consider a directed �-cycle �C� = (v0, v1, . . . , v�−1) in �G,
where vi+1 ∈ N+

�G
(vi) for all i ∈ Z�. When �C� was not rainbow in (G, c), some

distinct pair (j, k) ∈ Z� × Z� satisfies c({vj , vj+1}) = c({vk, vk+1}). Owing

to the construction of �G from (G, c), the vertex vk+1 ∈ N+
�G
(vk) is uniquely

determined by c({vj , vj+1}). There are at most �(� − 1)(n)�−1 many vertex
sequences (v0, v1, . . . , v�−1) with the property that, for some distinct pair
(j, k) ∈ Z� ×Z�, the vertex vk+1 depends uniquely on j. Since each directed
�-cycle �C� of �G has 2� many symmetries, the bound in Fact 2.3 follows.

The following concept is central throughout the remainder of the paper.

Definition 2.4 (λ-extremal). Fix λ ≥ 0, an n-vertex directed graph �G =
(V, �E), and an edge-colored graph (G, c) with vertex set V and edge set E.
We say that

1. �G is λ-extremal if there exists a partition V = V0 ∪ V1 ∪ V2 where for
all i ∈ Z3,

(6) e �G(Vi, Vi+1) ≥
(
1
9 − λ

)
n2,
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where e �G(Vi, Vi+1) denotes the number of edges (vi, vi+1) ∈ �E ∩ (Vi ×
Vi+1);

2. (G, c) is λ-extremal if there exists a partition V = V0∪V1∪V2 on which
some directed graph �G = (V, �E) associated with (G, c) is λ-extremal.

In these contexts, V = V0 ∪ V1 ∪ V2 is said to be λ-extremal for �G or (G, c).

We conclude our elementary tools with the following fact. In its proof,
we use the notation (x)k = x(x− 1) · · · (x− k + 1) for the falling factorial.

Fact 2.5. For all 0 ≤ λ ≤ 1/(28), and for every positive integer � ≡ 0 (mod
3), the following hold:

1. Every λ-extremal n-vertex directed graph �G = (V, �E) has Ω(n�) many
directed �-cycles �C�.

2. Every λ-extremal n-vertex edge-colored graph (G, c) has Ω(n�) many
rainbow �-cycles C�.

Proof of Fact 2.5. Fix 0 ≤ λ ≤ 1/(28) and fix a positive integer � ≡ 0
(mod 3). To prove Statement (1), set k = �/3, and let �G = (V, �E) be an
n-vertex directed graph with λ-extremal vertex partition V = V0 ∪ V1 ∪ V2.
Let �H be a blow-up of the directed triangle on V = V0 ∪ V1 ∪ V2, whose
edges consist of (V0 × V1)∪ (V1 × V2)∪ (V2 × V0). Then, �H admits precisely
(|V0|)k × (|V1|)k × (|V2|)k many directed �-cycles �C� meeting each of V0,
V1, and V2 exactly k times. The number of these cycles having some edge
�e = (v0, v1) of �H \ �G, where v0 ∈ V0 and v1 ∈ V1, is at most(
|V0||V1| −

(
1
9 − λ

)
n2

)
|V2| × (|V0| − 1)k−1 × (|V1| − 1)k−1 × (|V2| − 1)k−1.

More generally, the number of these cycles having some edge �e of �H \ �G is
at most (

3−
(
1
9 − λ

) n3

|V0||V1||V2|

)
(|V0|)k × (|V1|)k × (|V2|)k.

Thus, �G admits at least((
1
9 − λ

) n3

|V0||V1||V2|
− 2

)
(|V0|)k × (|V1|)k × (|V2|)k

many directed �-cycles �C�. Since |V0||V1||V2| ≤ n3/(27) holds by convexity,
�G admits at least

(1− 27λ)(|V0|)k × (|V1|)k × (|V2|)k = Ω(n�)
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many directed �-cycles �C�, where we used λ ≤ 1/(28).
For Statement (2), let (G, c) be an n-vertex λ-extremal edge colored

graph, and let �G = (V, �E) be a directed graph associated with (G, c) which
has λ-extremal partition V = V0∪V1∪V2. Let �F ⊆ �G consist of all (vi, vi+1) ∈
�E where vi ∈ Vi and vi+1 ∈ Vi+1 for i ∈ Z3. Then �F is an oriented graph with
λ-extremal partition V = V0∪V1∪V2 which, by Statement (1), admits Ω(n�)
directed �-cycles �C�. Fact 2.3 ensures that Ω(n�) − o(n�) of these directed
cycles correspond to rainbow cycles in (G, c), because the edge-colored graph
F determined by �F is, by construction, a subgraph of G.

2.2. Stability results

In what follows, we distinguish between whether or not a given structure is
λ-extremal (cf. Definition 2.4).

Lemma 2.6. For all λ > 0, there exists α = α(λ) > 0 so that for all integers
� ≥ 4, there exists an integer n0 = n0(λ, α, �) ≥ 1 so that whenever �G is an
oriented graph on n ≥ n0 many vertices satisfying

(7) δ+( �G) ≥
{ (

1
3 − α

)
n if � �= 5,

n+1
3 if � = 5,

then �G is λ-extremal or �G admits a closed directed �-walk �W�.

We prove Lemma 2.6 in Sections 3–4. We apply Lemma 2.6 in the fol-
lowing convenient form.

Corollary 2.7 (the non-extremal case). In the context of Lemma 2.6, the
following statements hold:

1. If � = 5 and �G is not λ-extremal, then �G contains a directed 5-cycle
�C5;

2. If � �= 5 and �G is not λ-extremal, then �G contains Ω(n�) many directed
�-cycles �C�.

Moreover, for even integers �, Statement (2) above holds when �G is allowed
to be a directed graph.

Note that Statement (1) of Corollary 2.7 restates the conclusion of
Lemma 2.6 when � = 5, since the only closed directed 5-walk �W5 is the
5-cycle �C5. It is standard to derive Statement (2) of Corollary 2.7 from
Lemma 2.6 by using a suitable regularity lemma. We sketch such a proof
below.
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Remark 2.8. In the context of Lemma 2.6, let �G be an oriented graph on

n ≥ n0(λ, �) many vertices which satisfies (7), where � �= 5. We may apply

Lemma 3.2 from [7] to obtain a regular partition V = V0 ∪ V1 ∪ · · · ∪ Vt

of �G with cluster digraph �R, where �R may not be oriented. Nonetheless,

Lemma 3.2 guarantees that �R admits an oriented spanning subgraph �Q ⊆ �R,

where δ+( �Q)/t can be taken arbitrarily close to δ+( �G)/n, and where δ−( �Q)/t

can be taken arbitrarily close to δ−( �G)/n. As such, if the oriented graph �G

is not λ-extremal, then the oriented graph �Q isn’t λ′-extremal for some

suitably small 0 < λ′ ≤ λ. Lemma 2.6 then guarantees that �Q admits a

closed directed �-walk �W�. Applying a counting lemma to the system of pairs

(Vi, Vj) corresponding to the edges of �W� guarantees Ω(n�) many directed

�-cycles �C�.

When � is even, �G need not be oriented. Here, we may apply Lemma 3.1

of [1] to obtain a regular partition V = V0 ∪ V1 ∪ · · · ∪ Vt of �G with cluster

digraph �R. Again, if �G is not λ-extremal, then �R is not λ′-extremal for

some suitably small 0 < λ′ ≤ λ. If �R is, in fact, an oriented graph, then

we proceed identically to the above. Assume that �R admits a 2-cycle, i.e.,

a closed 2-walk �W2. Since � is even, the pair (Vi, Vj) corresponding to �W2

admits Ω(n�) many directed �-cycles �C�. �

We continue with an extremal counterpart to Corollary 2.7.

Lemma 2.9 (the extremal case). There exists an absolute constant λ0 > 0

so that, for all 0 < λ ≤ λ0 and for all integers � ≥ 4 not divisible by

three, there exists an integer n0 = n0(λ0, λ, �) ≥ 1 so that whenever (G, c)

is a λ-extremal edge colored graph on n ≥ n0 many vertices, the following

hold:

1. If � �= 5 and δc(G) ≥ (n+ 5)/3 (cf. (1)), then (G, c) admits a rainbow

�-cycle C�;

2. If δc(G) ≥ (n+ 4)/3, then (G, c) admits a properly colored �-cycle C�.

We prove Lemma 2.9 in Sections 6–8. We proceed to the proofs of The-

orems 1.2 and 1.4, which are formal consequences of Corollary 2.7 and

Lemma 2.9.

2.3. Proof of Theorem 1.2

To define the absolute constant α > 0 promised by Theorem 1.2, we consider

auxiliary parameters. Let λLem. 2.9 be the absolute constant λ0 guaranteed
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by Lemma 2.9. Set

(8) λ = min
{

1
28 , λLem. 2.9

}
,

which is suitably small for an application of Fact 2.5. With λ > 0 given

in (8), let

(9) α = αLem. 2.6(λ) > 0

be the constant guaranteed by Lemma 2.6, which we take to be the constant

promised by Theorem 1.2.

Fix an even integer � ≥ 4. Let (G, c) be an n-vertex edge-colored graph

satisfying (1), where in all that follows we assume that n ≥ n0(λ, α, �) is

sufficiently large. To prove Theorem 1.2, we distinguish between the cases

of whether or not (G, c) is λ-extremal, where λ is given in (8).

Case 1 ((G, c) is λ-extremal). In this case, we apply Fact 2.5 or Lemma 2.9

to (G, c). Assume first that � ≡ 0 (mod 3). By our choice of λ ≤ 1/(28)

from (8), Statement (2) of Fact 2.5 guarantees Ω(n�) many rainbow �-cycles

C� in (G, c). Assume now that � �≡ 0 (mod 3). By our choice of λ ≤ λLem. 2.9

from (8), Statement (1) of Lemma 2.9 guarantees a rainbow �-cycle C� in

(G, c). (Note: � �= 5 by the parity of �.) �

Case 2 ((G, c) is not λ-extremal). In this case, we will indirectly apply

Fact 2.3 and Corollary 2.7 to (G, c). For that, let �G = (V, �E) be any directed

graph associated with (G, c), where necessarily �G is not λ-extremal, and

where δ+
(
�G
)

= δc(G) ≥
(
1
3 − α

)
n is ensured by (1). By our choice of

α = αLem. 2.6(λ) in (9) (and � �= 5), Statement (2) of Corollary 2.7 guarantees

Ω(n�) many directed �-cycles �C� in �G. Fact 2.3 then guarantees that at least

one of these corresponds to a rainbow �-cycle C� in (G, c). �

2.4. Proof of Theorem 1.4

We again use the auxiliary constants λ > 0 and α > 0 determined in (8)

and (9). Fix an integer � ≥ 4. Let �G = (V, �E) be an n-vertex oriented

graph satisfying δ+
(
�G
)
≥ (n + 1)/3, where in all that follows we assume

that n ≥ n0(λ, α, �) is sufficiently large. Let �H ⊆ �G be maximally induced

w.r.t. satisfying δ−( �H) ≥ 1, and set U = V ( �H). Note that every u ∈ U
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satisfies deg+�H
(u) = deg+�G

(u). Consequently, |U | = Ω(n) can be taken as

large as needed since the number e( �H) of edges of �H satisfies(
|U |
2

)
≥ e

(
�H
)
≥ |U |δ+

(
�H
)
≥ |U |δ+

(
�G
)

=⇒ |U | ≥ 2δ+
(
�G
)
≥ 2n/3.

We now distinguish between the cases of whether or not �H is λ-extremal,
where λ is determined in (8).

Case 1 ( �H is not λ-extremal). In this case, we apply Corollary 2.7 to �H,
which is possible on account that δ+( �H) ≥ δ+( �G) ≥ (n+1)/3 ≥ ((1/3)−α)n,
for α = αLem. 2.7 in (9). Whether or not � = 5, Corollary 2.7 guarantees a
directed �-cycle �C� in �H, where �C� also appears in �G ⊇ �H. �

Case 2 ( �H is λ-extremal). In this case, we will apply Fact 2.5 to �H or
we will indirectly apply Fact 2.2 and Lemma 2.9 to �H. Assume first that
� ≡ 0 (mod 3). By our choice of λ ≤ 1/(28) in (8), Statement (1) of Fact 2.5
guarantees Ω(n�) many directed �-cycles �C� in �H, each of which also appears
in �G ⊇ �H. Assume now that � �≡ 0 (mod 3). Let (H, c) be the edge-colored
graph determined by �H, where H has vertex set U = V ( �H). Since every
vertex u ∈ U has positive in-degree in �H, we have that

degcH(u) = 1 + deg+�H
(u) ≥ n+4

3 .

By our choice of λ ≤ λLem. 2.9 in (8), Statement (2) of Lemma 2.9 guarantees
a properly colored �-cycle C� in (H, c). Since (H, c) was determined by the
oriented graph �H, Fact 2.2 guarantees that C� corresponds to a directed
�-cycle �C� in �H, which also appears in �G ⊇ �H. �

3. Proof of Lemma 2.6

Lemma 2.6 is a formal consequence of the following two propositions (recall
δ0( �G) from Theorem 1.5).

Proposition 3.1. For all β > 0, there exists α = α(β) > 0 so that for
every integer � ≥ 4, there exists an integer n0 = n0(β, α, �) ≥ 1 so that
the following holds. Let �G = (V, �E) be an oriented graph satisfying (7) on
n ≥ n0 many vertices. If �G admits no closed directed �-walk, then �G admits
an induced subgraph �H = �G[U ] on |U | = m ≥ (1− β)n many vertices which
satisfies

(10) δ0
(
�H
)
≥

( δ+( �G)
n − β

)
m.
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Proposition 3.2. For all λ0 > 0, there exists β = β(λ0) > 0 so that for
every integer � ≥ 4, there exists an integer m0 = m0(λ0, β, �) ≥ 1 so that
the following holds. Let �H be an oriented graph on m ≥ m0 vertices which
admits no closed directed �-walk, but which satisfies δ0( �H) ≥ ((1/3)− β)m.
Then �H is λ0-extremal.

The proof of Proposition 3.1 is not too difficult, and will be given later
in this section. The proof of Proposition 3.2 is more involved, and will be
postponed to the following section.

3.1. Proof of Lemma 2.6

Let λ > 0 be given. To define the constant α = α(λ) > 0 promised by
Lemma 2.6, we consider several auxiliary constants. First, set λ0 = λ/2, and
let

(11) βProp. 3.2 = βProp. 3.2(λ0) > 0

be the constant guaranteed by Proposition 3.2. Second, set

(12) β = 1
2 min{λ0, βProp. 3.2}.

Third, let

(13) αProp. 3.1 = αProp. 3.1(β) > 0

be the constant guaranteed by Proposition 3.1. We define

(14) α = min{αProp. 3.1, β}

to be the constant promised by Lemma 2.6. Let an integer � ≥ 4 be given.
Let �G = (V, �E) be an n-vertex oriented graph satisfying (7) with α in (14),
where in all that follows we assume that n ≥ n0(λ, α, �) is sufficiently large.
We assume that �G admits no closed directed �-walk, and establish that �G
is λ-extremal.

Since �G admits no closed directed �-walk, and by our choice of α ≤
αProp. 3.1 in (13) and (14), Proposition 3.1 guarantees that �G admits an

induced subgraph �H = �G[U ] on |U | = m ≥ (1−β)n (cf. (12)) many vertices
for which

δ0
(
�H
) (10)

≥
( δ+( �G)

n −β
)
m

(7)

≥
(
1
3−α−β

)
m

(14)

≥
(
1
3−2β

)
m

(12)

≥
(
1
3−βProp. 3.2

)
m.
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Since �H admits no closed directed �-walk, and by our choice of βProp. 3.2
in (11), Proposition 3.2 guarantees that �H is λ0-extremal. Let U = V ( �H) =
U0 ∪ U1 ∪ U2 be any λ0-extremal partition of �H (cf. Definition 2.4), and
let V = V ( �G) = V0 ∪ V1 ∪ V2 be any partition satisfying Ui ⊆ Vi for each

0 ≤ i ≤ 2. Then, for each i ∈ Z3,

e �G(Vi, Vi+1) ≥ e �G(Ui, Ui+1) = e �H(Ui, Ui+1)

Prop. 3.2

≥
(
1
9 − λ0

)
m2

Prop. 3.1

≥
(
1
9 − λ0

)
(1− β)2n2

(12)

≥
(
1
9 − λ

)
n2,

where we also used λ = 2λ0. Thus, V = V0∪V1∪V2 is a λ-extremal partition
of �G, as desired.

3.2. Proof of Proposition 3.1

Let β > 0 be given. Define

(15) α = β6/(96).

Let integer � ≥ 4 be given. Let �G = (V, �E) be an n-vertex oriented graph
satisfying (7), where in all that follows, we take n ≥ n0(β, α, �) to be suf-

ficiently large. Assume that �G admits no closed directed �-walks. The sub-
graph �H = �G[U ] desired in (10) is induced on the following vertices of large

in-degree:

(16) U = Vhigh =
{
v ∈ V : deg−�G(v) ≥ δ+( �G)− n(β2/2)

}
.

To see that �H = �G[Vhigh] satisfies (10), we use the following claim (whose
proof we defer for a moment).

Claim 3.3. Δ−( �G) ≤ δ+( �G)+n(β3/4), where Δ−( �G) denotes the maximum
in-degree in �G.

Using Claim 3.3, we will verify that |U | = |Vhigh| = m ≥ (1 − β)n.
Indeed, with Vlow = V \ Vhigh,

nδ+
(
�G
)
≤

∑
u∈V

deg+�G
(u) =

∑
v∈V

deg−�G(v) =
∑

w∈Vlow

deg−�G(v) +
∑

x∈Vhigh

deg−�G(w)

(16)
<

∣∣Vlow

∣∣ (δ+( �G)
− 1

2β
2n

)
+
∣∣Vhigh

∣∣Δ−( �G)
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Clm. 3.3

≤
∣∣Vlow

∣∣ (δ+( �G)
− 1

2β
2n

)
+
∣∣Vhigh

∣∣ (δ+( �G)
+ 1

4β
3n

)
,

from which 2|Vlow| ≤ β|Vhigh| ≤ βn and |Vhigh| ≥ (1 − (β/2))n follow. By
construction, both

δ+
(
�H
)
≥ δ+

(
�G
)
−|Vlow| ≥ δ+

(
�G
)
− 1

2βn ≥
( δ+( �G)

n −β
)
n ≥

( δ+( �G)
n −β

)
m,

and δ−
(
�H
)
≥ min

{
deg−�G(v) : v ∈ Vhigh

}
− |Vlow|

(16)

≥ δ+
(
�G
)
− 1

2β
2n− 1

2βn ≥
( δ+( �G)

n − β
)
m

hold, as promised in (10). Thus, it remains to prove Claim 3.3, where we
will use the following fact.

Fact 3.4. Let R,S ⊂ V be some disjoint pair with sizes |R| ≥ Δ−( �G) and
|S| ≥ δ+( �G), where (S,R) admits no path s → v → r in �G with s ∈ S and
r ∈ R. Then Δ−( �G) ≤ δ+( �G) + n(β3/4) (cf. Claim 3.3).

Proof of Fact 3.4. Let R,S ⊂ V be given as above. Fix S0 ⊆ S with |S0| =
δ+( �G) and set S1 = N+

�G
(S0). Then N+

�G
(S1) ∩ R = ∅. Set S2 = N+

�G
(S1) \ S0

so that R, S0 and S2 are pairwise disjoint. Thus

(17) Δ−( �G)
+ δ+

(
�G
)
+ |S2| ≤ |R|+ |S0|+ |S2| ≤ n.

We double-count the number e �G(S1, S2) of edges from S1 to S2. On the one
hand,

(18) e �G(S1, S2) ≤ |S2|Δ−(�G) (17)

≤ Δ−( �G) (
n−Δ−( �G)

− δ+
(
�G
))

.

On the other hand,

(19) e �G(S1, S2) ≥ |S1|δ+
(
�G
)
− e �G(S1, S0)

≥ |S1|δ+
(
�G
)
−
(
|S0||S1| − e �G(S0, S1)

)
= e �G(S0, S1) ≥ |S0|δ+

(
�G
)
=

(
δ+

(
�G
))2

,

where we twice used that |S0| = δ+( �G). Comparing (18) and (19), we infer

(
Δ−(�G))2

−
(
n− δ+

(
�G
))

Δ−( �G)
+
(
δ+

(
�G
))2

≤ 0
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=⇒ Δ−( �G)
≤ 1

2

(
n− δ+

(
�G
)
+

√(
n− 3δ+( �G)

)(
n+ δ+( �G)

))

(7)

≤ 1
2

(
n− δ+

(
�G
)
+ n

√
6α

)
= δ+

(
�G
)
+ 1

2

(
n− 3δ+

(
�G
)
+ n

√
6α

)
(7)

≤ δ+
(
�G
)
+ 1

2n
(
3α+

√
6α

) (15)

≤ δ+
(
�G
)
+ n

√
6α,

and so our choice of α = β6/(96) from (15) completes the proof of Fact 3.4.

We now prove Claim 3.3.

Proof of Claim 3.3 Assume, on the contrary, that

(20) Δ−( �G)
> δ+

(
�G
)
+ 1

4β
3n.

Then Fact 3.4 ensures that

(21) every disjoint pair R,S ⊂ V with |R| ≥ Δ−( �G)
and |S| ≥ δ+

(
�G
)

admits a directed path s → v → r in �G with s ∈ S and r ∈ R.

Fix xmax ∈ V satisfying deg−�G(xmax) = Δ−( �G). We distinguish several cases
of � ≥ 4.

Case 1 (� = 4). Set R = N−
�G
(xmax) and S = N+

�G
(xmax), which are disjoint

and satisfy |R| = Δ−( �G) and |S| ≥ δ+( �G). Then (21) guarantees a directed
4-cycle (xmax, s, v, r, xmax), which contradicts that �G admits no closed di-
rected 4-walks. In other words, (20) must be false when � = 4. �

Case 2 (� = 5). We use the following peculiar observation, proven in a
moment:

(22) if xmax → y → z → a is a directed path in �G,

then (xmax, a) �∈ �E, (xmax, z) �∈ �E, and (y, a) �∈ �E.

Using (22), N+
�G
(xmax) is an independent set whose every fixed element

y ∈ N+
�G
(xmax) has an independent out-neighborhood N+

�G
(y) which is dis-

joint from N+
�G
(xmax). Thus, for z ∈ N+

�G
(y) fixed, it must be that N+

�G
(z) ∩
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N+
�G
(xmax) �= ∅ since otherwise N+

�G
(xmax)∪N+

�G
(y)∪N+

�G
(z) ⊆ V is a disjoint

union with

deg+�G
(xmax)+deg+�G

(y)+deg+�G
(z) ≥ 3δ+

(
�G
)
≥ n+1 (recall � = 5 in (7)).

On the other hand, N+
�G
(z)∩N+

�G
(xmax) �= ∅ violates (22), and so (20) is false

when � = 5.
To see (22), we first observe that

(23) N+
�G
(a) ∩N−

�G
(xmax) = ∅,

since b ∈ N+
�G
(a)∩N−

�G
(xmax) would give the directed 5-cycle (xmax, y, z, a, b,

xmax), which would contradict that �G admits no closed directed 5-walks.
Now, (23) forbids (xmax, a) ∈ �E, since otherwise we set R = N−

�G
(xmax) and

S=N+
�G
(a) and use (21) to guarantee a directed 5-cycle (xmax, a, s, v, r, xmax).

We next observe that

(24) N+
�G
(a) ∩N+

�G
(xmax) �= ∅,

since otherwise (23) gives that N+
�G
(a) ∪ N+

�G
(xmax) ∪ N−

�G
(xmax) ⊆ V is a

disjoint union with

deg+�G
(a) + deg+�G

(xmax) + deg−�G(xmax)
(20)
> 3δ+

(
�G
) (7)

≥ n+ 1.

Using (24), fix b ∈ N+
�G
(a) ∩N+

�G
(xmax). Then

(25) N+
�G
(b) ∩N−

�G
(xmax) �= ∅,

as otherwise we set R = N−
�G
(xmax) and S = N+

�G
(b) and use (21) to guaran-

tee a directed 5-cycle (xmax, b, s, v, r, xmax). Using (25), we fix c ∈ N+
�G
(b) ∩

N−
�G
(xmax), which forbids (xmax, z) ∈ �E lest (xmax, z, a, b, c, xmax) is a di-

rected 5-cycle. Similarly (y, a) �∈ �E, which proves (22). �

Case 3 (� ≥ 6). By the argument of Case 1, xmax belongs to a directed
4-cycle �C4. We first observe that xmax does not belong to a directed 3-cycle
�C3. Indeed

1,

1This statement holds for all integers � ≥ 3 outside of � = 5, and can be proven
by inducting on � = ��/2�+ ��/2�.
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(26) every integer � ≥ 6 can be expressed as � = 3i+ 4j

for some integers i, j ≥ 0,

and so the inclusion of xmax along both a directed 3-cycle �C3 and a directed 4-
cycle �C4 would place xmax in a closed directed �-walk in �G, contradicting our
hypothesis. We next observe that a longest directed path �P = (y1, . . . , yk)
in N+

�G
(xmax) satisfies k = Ω(n). Indeed, |N+

�G
(yk)∩N+

�G
(xmax)| ≤ k− 2 holds

by the optimal length of �P , and so

(27)
∣∣N+

�G
(yk) ∪N+

�G
(xmax)

∣∣
= deg+�G

(yk) + deg+�G
(xmax)−

∣∣N+
�G
(yk) ∩N+

�G
(xmax)

∣∣ ≥ 2δ+
(
�G
)
− k.

Since xmax belongs to no directed 3-cycles �C3,

(28) N+
�G
(yk) ∩N−

�G
(xmax) = ∅ = N+

�G
(xmax) ∩N−

�G
(xmax)

=⇒ N+
�G
(yk) ∪N+

�G
(xmax) ⊆ V \N−

�G
(xmax)

=⇒
∣∣N+

�G
(yk) ∪N+

�G
(xmax)

∣∣ ≤ n− deg−�G(xmax) = n−Δ−(�G)
.

Then k = Ω(n) follows comparing (27) and (28):

k ≥ 2δ+
(
�G
)
+Δ−( �G)

− n
(20)
> 3δ+

(
�G
)
+ 1

4β
3n− n

(7)

≥ n
(
1
4β

3 − 3α
) (15)

= n
(
1
4β

3 − 1
32β

6
)
≥ β3n/8.

To conclude Case 3, set R = N−
�G
(xmax) and S = N+

�G
(yk), which we

observed above are disjoint. Then (21) guarantees a path (s, v, r) with s ∈ S
and r ∈ R, whence

(
xmax, yk−�+5, yk−�+6, . . . , yk, s, v, r, xmax

)
is a closed directed �-walk, contradicting our hypothesis. In other words,
(20) must be false when � ≥ 6. which proves Claim 3.3. �

4. Proof of Proposition 3.2

In this section, we prove Proposition 3.2, where we will use several auxiliary
facts. The first fact is taken from Corollary 1.5 in [6].
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Fact 4.1. Fix an integer � ≥ 4. Let �G = (V, �E) be a large n-vertex ori-

ented graph which contains no directed triangle, but which satisfies δ0( �G) ≥
(0.3025)n. Then �G admits a directed �-cycle �C�.

Our remaining facts are independent of the context of proving Proposi-

tion 3.2, and are therefore verified in Section 5.

Fact 4.2. Fix an integer � ≥ 4 and an ε ∈ (0, 1/(11)]. Let �G = (V, �E) be an

oriented graph on n ≥ n0(�, ε) many vertices which admits no closed directed

�-walk, but which satisfies δ0( �G) ≥ ((1/3) − ε)n. Let (U0, U1) be a pair of

subsets U0, U1 ⊆ V satisfying the following conditions:

(i) |U0|, |U1| ≥ δ0( �G);

(ii) |U0 ∩ U1| ≤ ((1/3)− 21ε)n;

(iii) �G admits no directed paths u0 → v → u1, where u0 ∈ U0 and u1 ∈ U1.

Then, there exist independent sets I0 ⊆ U0 \ U1 and I1 ⊆ U1 \ U0 with sizes

(29) |I0| ≥ |U0\U1|−7εn ≥ 20εn and |I1| ≥ |U1\U0|−7εn ≥ 20εn.

Remark 4.3. In many applications of Fact 4.2, the pair (U0, U1) will satisfy

U0 ∩ U1 = ∅. �

Fact 4.4. Fix an integer � ≥ 4 and an ε ∈ (0, 1/(54)). Let �G = (V, �E)

be an oriented graph on n ≥ n0(�, ε) many vertices which admits no closed

directed �-walk, but which satisfies δ0( �G) ≥ ((1/3) − ε)n. Let (x, y, z, x) be

a directed 3-cycle �C3 in �G, and assume that neither x nor y belongs to a

directed 4-cycle �C4. Then, |N−
�G
(x) ∩N+

�G
(y)| ≥ ((1/3)− 18ε)n.

We now prove Proposition 3.2, and distinguish whether or not � = 5.

4.1. Proof of Proposition 3.2 when � �= 5

Fix λ0 > 0. Define the promised constant

(30) β = β(λ0) = min
{

1
21λ0,

1
3 − 0.3025, 1

55

}
.

Fix an integer � ≥ 4, where � �= 5. Let �H = (V, �E) be an m-vertex oriented

graph, where m ≥ m0(λ0, β, �) is assumed to be sufficiently large when-

ever needed. Assume that �H admits no closed directed �-walk but satisfies

δ0( �H) ≥ ((1/3)− β)m. We prove that �H is λ0-extremal.
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The central observation of the proof is that �H admits directed triangles,
since otherwise with

δ0
(
�H
)
≥

(
1
3 − β

)
m

(30)

≥ (0.3025)m

Fact 4.1 would guarantee a directed �-cycle �C� in �H, contradicting our hy-
pothesis. Thus, fix a directed 3-cycle (v0, v1, v2, v0) in �H. Our observation
in (26) guarantees that no vertex vi ∈ {v0, v1, v2} can belong to a directed
4-cycle �C4 lest �H admits a closed directed �-walk. For fixed i ∈ Z3, we define

(31) Ui = N−
�H
(vi) ∩N+

�H
(vi+1).

Then U0, U1, and U2 are pairwise disjoint because �H is an oriented graph.
By our choice of β < 1/(54) in (30), and by no vj ∈ {v0, v1, v2} belonging

to a directed 4-cycle �C4, Fact 4.4 guarantees that

(32) |Ui| =
∣∣N−

�H
(vi) ∩N+

�H
(vi+1)

∣∣ ≥ (
1
3 − 18β

)
n.

We claim that each ui ∈ Ui satisfies

(33)
∣∣Ui+1 ∩N+

�H
(ui)

∣∣ ≥ (
1
3 − 45β

)
n.

If true, any partition V = V0 ∪ V1 ∪ V2, where Uj ⊆ Vj for each j ∈ Z3, is
λ0-extremal since

e �H(Vi, Vi+1) ≥ e �H(Ui, Ui+1) =
∑
ui∈Ui

∣∣Ui+1 ∩N+
�H
(ui)

∣∣ (33)

≥ |Ui|
(
1
3 − 45β

)
n

(32)

≥
(
1
3 − 45β

) (
1
3 − 18β

)
n2 ≥

(
1
9 − 21β

)
n2

(30)

≥
(
1
9 − λ0

)
n2.

To prove (33), fix i ∈ Z3, and w.l.o.g. assume i = 0. Fix u0 ∈ U0 =
N−

�H
(v0) ∩N+

�H
(v1). Then (v1, u0, v0, v1) is a directed 3-cycle �C3, and so (26)

gives that u0 can belong to no directed 4-cycle �C4. As such, Fact 4.4 (applied
to (v1, u0, v0, v1)) guarantees that

(34)
∣∣N−

�H
(v1) ∩N+

�H
(u0)

∣∣ ≥ (
1
3 − 18β

)
n,

which isn’t yet (33), but it will be very close. With an error we can control,
we shall ‘replace’ N−

�H
(v1) in (34) with U1 ⊆ N−

�H
(v1) from (31). We claim
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this error will be small if

(35) deg−�H(v1) ≤
(
1
3 + 9β

)
n.

Indeed, if (35) holds, then we would have

(36)
∣∣N−

�H
(v1) \ U1

∣∣ (31)
= deg−�H(v1)− |U1|

(32)

≤ deg−�H(v1)−
(
1
3 − 18β

)
n

(35)

≤ 27βn,

and so comparing (34) with (36) yields

∣∣U1 ∩N+
�H
(u0)

∣∣+ 27βn
(36)

≥
∣∣N+

�H
(u0) ∩N−

�H
(v1)

∣∣ (34)

≥
(
1
3 − 18β

)
n,

which gives (33). It thus remains to prove that (35) holds.

To prove (35), we will apply Fact 4.2 to the pair (N−
�H
(v1), N

+
�H
(v1)). Note

that the hypotheses (i)–(iii) of Fact 4.2 are met by (N−
�H
(v1), N

+
�H
(v1)) since

|N−
�H
(v1)|, |N+

�H
(v1)| ≥ δ0( �H), since |N−

�H
(v1) ∩ N+

�H
(v1)| = 0, and since there

are no paths u+ → v → u− with u+ ∈ N+
�H
(v1) and u− ∈ N−

�H
(v1) lest

(v1, u
+, v, u−, v1) is a directed 4-cycle containing v1. Fact 4.2 guarantees an

independent set Iv1
⊆ N−

�H
(v1) of size

(37) |Iv1
| ≥ deg−�H(v1)− 7βn ≥ δ0

(
�H
)
− 7βn

≥
(
1
3 − β

)
n− 7βn ≥

(
1
3 − 8β

)
n

(30)
> 0,

so fix w1 ∈ Iv1
. Now, N+

�H
(w1) ∪ N−

�H
(w1) ∪ Iv1

⊆ V is a pairwise disjoint

union, in which case

n ≥ deg+�H
(w1)+deg−�H(w1)+|Iv1

|
(37)

≥ deg+�H
(w1)+deg−�H(w1)+deg−�H(v1)−7βn

≥ 2δ0
(
�H
)
+ deg−�H(v1)− 7βn

≥ 2
(
1
3 − β

)
n+ deg−�H(v1)− 7βn = deg−�H(v1) +

(
2
3 − 9β

)
n,

from which (35) now follows.
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4.2. Proof of Proposition 3.2 when � = 5

To prove Proposition 3.2 when � = 5, we use Facts 4.1–4.4 together with the
following two additional facts (which are also proven in Section 5).

Fact 4.5. Fix an integer � ≥ 4 and an ε > 0. Let �G = (V, �E) be an oriented
graph on n ≥ n0(�, ε) many vertices which admits no closed directed �-walk.
Then, δ+( �G) ≤ ((1/3) + ε)n and δ−( �G) ≤ ((1/3) + ε)n.

Fact 4.6. For all λ > 0, there exists ε = ε(λ) > 0 so that every oriented
graph �G = (V, �E) on n ≥ n0(λ, ε) many vertices with δ0( �G) ≥ ((1/3) − ε)n
will be λ-extremal, provided �G has either:

1. a partition V = V0 ∪ V1 ∪ V2 with |V1|, |V2| ≥ ((1/3)− ε)n and e �G(V1),
e �G(V2), e �G(V2, V1) ≤ εn2,

2. or no transitive triangles.

Now, let λ0 > 0 be given. Let

(38) εFct. 4.6 = εFct. 4.6(λ = λ0) > 0

be the constant guaranteed by Fact 4.6. We define the promised constant

(39) β = 1
109εFct. 4.6.

Let �H = (V, �E) be an m-vertex oriented graph, where in all that follows we
assume m ≥ m0(λ0, εFct. 4.6, β) is sufficiently large. Assume that �H admits
no closed directed 5-walks, i.e., directed 5-cycles �C5, but which satisfies
δ0( �H) ≥ ((1/3)− β)m. We prove that �H is λ0-extremal.

For sake of argument, we assume that �H admits some transitive triangles,
as otherwise by our choice of β and εFct. 4.6 in (38) and (39), Conclusion (2)
of Fact 4.6 would give that �H is λ0-extremal. For the remainder of the
proof, we fix a transitive triangle (x, y), (x, z), (y, z) ∈ �E. Let I = Ix,z =

N−
�H
(x) ∩N+

�H
(z), which is an independent set lest (a, b) ∈ �E ∩ (I × I) gives

the directed 5-cycle (x, y, z, a, b, x). Our first main observation is that I is
‘large’.

Claim 4.7.

(40) |I| ≥
(
1
3 − 21β

)
n.

Proof of Claim 4.7. Assume for contradiction that (40) fails to hold. We
will apply Fact 4.2 to the pair (N−

�H
(x), N+

�H
(z)). Note that the hypothe-

ses (i)–(iii) are met by (N−
�H
(x), N+

�H
(z)) since |N−

�H
(x)|, |N+

�H
(z))| ≥ δ0( �H),
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since |N−
�H
(x) ∩ N+

�H
(z))| ≤ ((1/3) − 21β)n on account that (40) failed, and

since there are no paths u+ → v → u− with u+ ∈ N+
�H
(z) and u− ∈ N−

�H
(x)

lest (x, z, u+, v, u−, x) is a directed 5-cycle �C5. Fact 4.2 guarantees disjoint
independent sets Ix ⊆ N−

�H
(x) \ N+

�H
(z) and Iz ⊆ N+

�H
(z) \ N−

�H
(x) (disjoint

also from I) with sizes

|Ix| ≥
∣∣N−

�H
(x) \N+

�H
(z)

∣∣− 7βn = deg−�H(x)− |I| − 7βn ≥ 20βn and

|Iz| ≥
∣∣N+

�H
(z) \N−

�H
(x)

∣∣− 7βn = deg+�H
(z)− |I| − 7βn ≥ 20βn.

(41)

Fix ax ∈ Ix and bz ∈ Iz. One may check that

N−
�H
(ax) ∩N+

�H
(bz) = N−

�H
(ax) ∩ I = N+

�H
(bz) ∩ I

= N−
�H
(ax) ∩ Iz = N+

�H
(bz) ∩ Ix = ∅.

Thus, together with the independence of I, Ix, and Iz, we have that I ∪ Ix∪
Iy ∪N−(ax) ∪N+(bz) ⊆ V is a pairwise disjoint union, and so

n ≥ |I|+ |Ix|+ |Iz|+ deg−�H(ax) + deg+�H
(bz)

(41)

≥ deg−�H(x) + deg+�H
(z)− |I|+ deg−�H(ax) + deg+�H

(bz)− 14βn

≥ 4δ0
(
�H
)
− |I| − 14βn

hyp

≥ 4
(
1
3 − β

)
n− |I| − 14βn = n− |I|+

(
1
3 − 18β

)
n,

from which |I| ≥ ((1/3) − 18β)n follows, and contradicts our assumption
that (40) failed to hold.

Continuing the proof of Proposition 3.2, we attempt to meet Condi-
tion (1) of Fact 4.6 to �H with V1 = I and with V2 which we now define. For
the remainder of the proof, fix v ∈ I and take V2 = Iv to be an independent
set which is as large as possible subject to either Iv ⊆ N+

�H
(v) or Iv ⊆ N−

�H
(v).

In the former case, 0 = e �H(V1) = e �H(V2) = e �H(V2, V1) since each of V1 = I
and V2 = Iv is independent and since

(42) a ∈ N+
�H
(v) forbids b ∈ N+

�H
(a) ∩ I,

lest (x, z, v, a, b, x) is a directed 5-cycle �C5 in �H. In the latter case, 0 =
e �H(V1) = e �H(V2) = e �H(V1, V2), where the last equality holds by a ∈ N−

�G
(v)

forbidding b ∈ N−
�H
(a) ∩ I lest (x, z, b, a, v, x) is a directed 5-cycle �C5. In

either case, we make the following claim.
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Claim 4.8.

(43) |V2| =
∣∣Iv∣∣ ≥ (

1
3 − 24β

)
n.

If Claim 4.8 holds, then together with (40) and the considerations above,
the partition V = V0∪V1∪V2, where V0 = V \(V1∪V2), meets the hypotheses
of Fact 4.6. By our choice of εFct. 4.6 and β in (38) and (39), Fact 4.6 guaran-
tees that V = V0 ∪ V1 ∪ V2 is a λ0-extremal partition of �H. Thus, the proof
of Proposition 3.2 when � = 5 will be complete upon proving Claim 4.8.

Proof of Claim 4.8. Assume for contradiction that the �H-subgraphs
�H[N+

�H
(v)] and �H[N−

�H
(v)] induced respectively on N+

�H
(v) and N−

�H
(v) sat-

isfy

(44) α
(
�H
[
N+

�H
(v)

])
<

(
1
3 − 24β

)
n and α

(
�H
[
N−

�H
(v)

])
<

(
1
3 − 24β

)
n,

where α(·) denotes the independence number. Since∣∣N+
�H
(v)

∣∣ = deg+�H
(v) ≥ δ0

(
�H
)
≥

(
1
3 − β

)
n >

(
1
3 − 24β

)
n > α

(
�H
[
N+

�H
(v)

])
,

�H[N+
�H
(v)] admits edges (a, b) ∈ �E. We fix one such and will observe that

(45) N+
�H
(b) ∩N+

�H
(v) �= ∅.

Indeed, assuming otherwise the set N+
�H
(b) ∩N−

�H
(v) satisfies

(46)
∣∣N+

�H
(b) ∩N−

�H
(v)

∣∣ = ∣∣N+
�H
(b)

∣∣+ ∣∣N−
�H
(v)

∣∣− ∣∣N+
�H
(b) ∪N−

�H
(v)

∣∣.
From ∅ = N+

�H
(b)∩N+

�H
(v) = N+

�H
(b)∩ I (cf. (42) and (45)) we infer N+

�H
(b) ⊆

V \ (N+
�H
(v)∪ I), and from ∅ = N−

�H
(v)∩N+

�H
(v) = N−

�H
(v)∩ I (recall that I is

independent and v ∈ I) we infer N+
�H
(b) ∪N−

�H
(v) ⊆ V \ (N+

�H
(v) ∪ I), where

N+
�H
(v) ∪ I is a disjoint union by the independence of I and because v ∈ I.

Thus,

∣∣N+
�H
(b) ∩N−

�H
(v)

∣∣ (46)

≥ deg+�H
(b) + deg−�H(v)−

(
n− deg+�H

(v)− |I|
)

≥ 3δ0
(
�H
)
−n+|I| ≥ 3

(
1
3 − β

)
n−n+|I|

(40)

≥
(
1
3 − 24β

)
n

(44)
> α

(
�H
[
N−

�H
(v)

])
.

Consequently, there exists an edge (c, d) ∈ �E with c, d ∈ N+
�H
(b) ∩N−

�H
(v), in

which case (v, a, b, c, d, v) is a directed 5-cycle �C5 in �H. This proves (45).
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Now, define

(47) C =
{
c ∈ N+

�H
(v) :

∃ a directed path on 3 vertices contained in �H[N+
�H
(v)] that ends in c

}
.

Note that (45) implies that C is non-empty. By this definition, every element
c ∈ C satisfies

(48) N+
�H
(c) ∩N+

�H
(v) = N+

�H
(c) ∩ C.

Since the �H-subgraph �H[C] induced on C admits no directed 5-cycles �C5,
Fact 4.5 guarantees the existence of a vertex c0 ∈ C ⊆ N+

�H
(v) (cf. (47)) so

that

(49)
∣∣N+

�H
(c0) ∩N+

�H
(v)

∣∣ (48)
=

∣∣N+
�H
(c0) ∩ C

∣∣
≤

{ (
1
3 + β

)
|C| if |C| = Ω(1)

|C| else

}
≤

(
1
3 + β

) ∣∣N+
�H
(v)

∣∣.
Consider now N+

�H
(c0) ∩N−

�H
(v) = (N+

�H
(c0) \ C) ∩N−

�H
(v), where C ⊆ N+

�H
(v)

from (47) but where N+
�H
(v) ∩N−

�H
(v) = ∅. Then

∣∣N+
�H
(c0) ∩N−

�H
(v)

∣∣ = ∣∣(N+
�H
(c0) \ C

)
∩N−

�H
(v)

∣∣
=

∣∣(N+
�H
(c0) \ C

)∣∣+ ∣∣N−
�H
(v)

∣∣− ∣∣(N+
�H
(c0) \ C

)
∪N−

�H
(v)

∣∣
(49)

≥ deg+�H
(c0)−

(
1
3 + β

)
deg+�H

(v) + deg−�H(v)−
∣∣(N+

�H
(c0) \ C

)
∪N−

�H
(v)

∣∣
(48)
= deg+�H

(c0)−
(
1
3 + β

)
deg+�H

(v)+deg−�H(v)−
∣∣(N+

�H
(c0)\N+

�H
(v)

)
∪N−

�H
(v)

∣∣.
Using (42) and the independence of I, the last union resides in V \ (N+

�H
(v)∪

I), and so∣∣N+
�H
(c0) ∩N−

�H
(v)

∣∣
≥ deg+�H

(c0)−
(
1
3 + β

)
deg+�H

(v) + deg−�H(v)−
(
n− deg+�H

(v)− |I|
)

= deg+�H
(c0) + deg−�H(v) +

(
2
3 − β

)
deg+�H

(v) + |I| − n

≥
(
8
3 − β

)
δ0
(
�H
)
+ |I| − n ≥

(
8
3 − β

) (
1
3 − β

)
n+ |I| − n

(40)

≥
(
8
3 − β

) (
1
3 − β

)
n+

(
1
3 − 21β

)
n− n ≥

(
2
9 − 24β

)
n,

(50)
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which is positive by (39). Now, (47) and (50) render a directed path a →
b → c0 → d where a, b, c0 ∈ N+

�H
(v) and d ∈ N+

�H
(c0) ∩N−

�H
(v), in which case

(v, a, b, c0, d, v) is a directed 5-cycle in �H. Thus, our assumption in (44) is

incorrect, which completes the proof of Claim 4.8.

5. Proofs of Facts 4.2–4.6

The easiest proof here is that of Fact 4.5, which we give immediately. Fix

an integer � ≥ 4 and fix ε > 0. Let �G = (V, �E) be an oriented graph on

n ≥ n0(�, ε) many vertices which admits no closed directed �-walk. The latter

conclusion of Fact 4.5 follows from the former by reversing the orientations

on �E. If the former fails, then Proposition 3.1 ensures a large m-vertex

subgraph �H ⊆ �G satisfying

δ0
(
�H
)
≥

( δ+( �G)
n − ε

2

)
m ≥

(
1
3 + ε

2

)
m ≥ m+1

3 ,

and so Theorem 1.5 guarantees a directed �-cycle �C� in �H, and hence in �G.

Proof of Fact 4.2

Fix an integer � ≥ 4 and an ε ∈ (0, 1/(11)]. Let �G = (V, �E) be an oriented

graph on n ≥ n0(�, ε) many vertices which admits no closed directed �-walk,

but which satisfies δ0( �G) ≥ ((1/3) − ε)n. Let (U0, U1) be a pair of subsets

satisfying (i)–(iii) in the hypotheses of Fact 4.2. We prove that there exist

independent sets I0 ⊆ U0 \U1 and I1 ⊆ U1 \U0 satisfying (29). To that end,

define

T0 =
{
u0 ∈ U0 \ U1 : N

−
�G
(u0) ∩ (U0 \ U1) �= ∅

}
and

T1 =
{
u1 ∈ U1 \ U0 : N

+
�G
(u1) ∩ (U1 \ U0) �= ∅

}
.

For fixed j ∈ Z2, the set Ij = Uj \ (Uj+1 ∪ Tj) is independent and of size

|Ij | = |Uj \ Uj+1| − |Tj |, so to prove (29) we will prove |Tj | ≤ 7εn. In

particular, our argument will show that |T0| ≥ εn and |T1| ≥ εn can’t both

hold, and that |Tj | < εn implies |Tj+1| ≤ 7εn. It remains to verify these

details.

Write U = U0 ∪ U1, and define

(51) S0 = N+(T0) \ U and S1 = N−(T1) \ U, where S0 ∩ S1
(iii)
= ∅.
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For j ∈ Z2, we will verify the implications

(52) |Tj | ≥ εn =⇒ |Sj | ≥ δ0
(
�G
)
−
(
1
3 + ε

)
|Tj | =⇒ |Tj+1| < εn.

Indeed, �G[Tj ] is a large oriented graph with no closed directed �-walks, so
Fact 4.5 guarantees tj ∈ Tj :

(53) |N+
�G
(t0) ∩ T0| ≤

(
1
3 + ε

)
|T0| and |N−

�G
(t1) ∩ T1| ≤

(
1
3 + ε

)
|T1|.

By definition of Tj , there exist u0 ∈ U0 \ U1 and u1 ∈ U1 \ U0 with

(u0, t0), (t1, u1) ∈ �E, where N+(t0)∩ T0 = N+(t0)∩ (U0 \U1) and N−(t1)∩
T1 = N−(t1) ∩ (U1 \ U0) hold. Moreover, u ∈ N+

�G
(t0) ∩ U1 is impossible

lest (u0, t0, u) violates (iii), and N−
�G
(t1) ∩ U0 �= ∅ is similarly impossible.

Altogether,

deg+�G
(t0) =

∣∣N+
�G
(t0) ∩ U

∣∣+ ∣∣N+
�G
(t0) \ U

∣∣
=

∣∣N+
�G
(t0) ∩ (U0 \ U1)

∣∣+ ∣∣N+
�G
(t0) \ U

∣∣ = ∣∣N+
�G
(t0) ∩ T0

∣∣+ ∣∣N+
�G
(t0) \ U

∣∣
(53)

≤
(
1
3 + ε

)
|T0|+

∣∣N+
�G
(t0) \ U

∣∣ (51)

≤
(
1
3 + ε

)
|T0|+ |S0|,

and so the former implication of (52) holds with j = 0. Similarly,

deg−�G(t1) =
∣∣N−

�G
(t1) ∩ U

∣∣+ ∣∣N−
�G
(t1) \ U

∣∣
≤

∣∣N−
�G
(t1) ∩ T1

∣∣+ |S1| ≤
(
1
3 + ε

)
|T1|+ |S1|,

and so the former implication of (52) holds with j = 1. Finally, if both
|T0|, |T1| ≥ εn, then

n
(51)

≥ |U |+ |S0|+ |S1|
(52)

≥ |U |+ 2δ0
(
�G
)
−
(
1
3 + ε

)
(|T0|+ |T1|)

≥ |U |+ 2δ0
(
�G
)
−
(
1
3 + ε

)
|U0�U1|

=
(
2
3 − ε

)
(|U0|+ |U1|) + 2δ0

(
�G
)
−
(
1
3 − 2ε

)
|U0 ∩ U1|

(i)

≥ 2δ0
(
�G
) (

5
3 − ε

)
−
(
1
3 − 2ε

)
|U0 ∩ U1|

(ii)

≥ 2δ0
(
�G
) (

5
3 − ε

)
−
(
1
3 − 2ε

) (
1
3 − 21ε

)
n

≥ 2δ0
(
�G
) (

5
3 − ε

)
−
(
1
9 − 23

3 ε+ 42ε2
)
n

≥ 2
(
1
3 − ε

) (
5
3 − ε

)
n−

(
1
9 − 23

3 ε+ 42ε2
)
n,
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from which ε ≥ 11/(120) follows and contradicts the hypothesis ε ≤ 1/(11).
This proves (52).

By (52), it suffices to assume for fixed j ∈ Z2 that |Tj | ≥ εn, and then
to prove that |Tj | ≤ 7εn. To that end, we find a vertex zj+1 ∈ Uj+1 \ Tj+1

where,

(a) when j = 0, the vertex z1 ∈ U1 \ T1 has no in-neighbors from U1 \ T1;
(b) when j = 1, the vertex z0 ∈ U0 \ T0 has no out-neighbors in U0 \ T0.

We start by fixing vj+1 ∈ Ij+1 = Uj+1 \ (Uj ∪ Tj+1), which is possible by

|Ij+1| =
∣∣Uj+1 \ (Uj ∪ Tj+1)

∣∣ = |Uj+1| − |U0 ∩ U1| − |Tj+1|
(i)

≥ δ0
(
�G
)
− |U0 ∩ U1| − |Tj+1|

(ii)

≥ δ0
(
�G
)
−
(
1
3 − 21ε

)
n− |Tj+1|

(52)

≥ δ0
(
�G
)
−
(
1
3 − 21ε

)
n− εn ≥ 19εn.

Consider (a) above (j = 0). If v1 has an in-neighbor w1 ∈ U1 \ T1, then
w1 ∈ U0∩U1 because I1 is independent. If w1 has an in-neighbor x1 ∈ U1\T1,
then x1 ∈ I1 lest we violate (iii). If x1 has an in-neighbor y1 ∈ U1 \ T1, then
y1 ∈ U0 ∩ U1 because I1 is independent, but now we have violated (iii).
Thus, some z1 ∈ {v1, w1, x1, y1} has no in-neighbor within U1 \ T1. Purely
symmetric arguments establish (b).

We use (a) and (b) above to conclude the proof of Fact 4.2, where we
first consider j = 0. The sets U1 \ T1, S0, and T0 are pairwise disjoint by
construction, and the set Z1 = N−

�G
(z1) is disjoint from U1 \ T1 by (a) and is

disjoint from each of S0 and T0 by (iii). When j = 1, the sets Z0 = N+(z0),
U0\T0, S1, and T1 are similarly pairwise disjoint. Thus, for whichever j ∈ Z2

satisfies |Tj | ≥ εn, we have

n ≥ |Zj+1|+ |Uj+1\Tj+1|+ |Sj |+ |Tj | ≥ δ0
(
�G
)
+ |Uj+1|−|Tj+1|+ |Sj |+ |Tj |

(52)
> 2δ0

(
�G
)
+ |Uj+1| − εn+

(
2
3 − ε

)
|Tj |

(i)

≥ 3δ0
(
�G
)
− εn+

(
2
3 − ε

)
|Tj | ≥ n− 4εn+

(
2
3 − ε

)
|Tj |,

from which |Tj | ≤ (132/(19))εn < 7εn follows from ε ∈ (0, 1/(11)].

Proof of Fact 4.4

Fix an integer � ≥ 4 and an ε ∈ (0, 1/(54)). Let �G = (V, �E) be an oriented
graph on n ≥ n0(�, ε) many vertices which admits no closed directed �-walk,
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but which satisfies δ0( �G) ≥ ((1/3)−ε)n. Let (x, y, z, x) be a directed 3-cycle
�C3 in �G, and assume that neither x nor y belongs to a directed 4-cycle �C4.
Assume, on the contrary, that

(54)
∣∣N−

�G
(x) ∩N+

�G
(y)

∣∣ < (
1
3 − 18ε

)
n.

We will show that our assumption in (54) implies

(55) N+
�G
(x) ∩N−

�G
(y) �= ∅,

in which case an element v ∈ N+
�G
(x) ∩ N−

�G
(y) would result in the directed

4-cycle (x, v, y, z, x) containing both x and y. We now establish the details
for (55).

First, we apply Fact 4.2 to each of the pairs (X0, X1) and (Y0, Y1), where

X0 = N+
�G
(x), X1 = N−

�G
(x), Y0 = N+

�G
(y), Y1 = N−

�G
(y).

Note that the hypotheses of Fact 4.2 are met since �G admits no closed

directed �-walks but satisfies δ0( �G) ≥ ((1/3) − ε)n for 0 < ε < 1/(54) <
1/(11), and where e.g. (X0, X1) satisfies the hypotheses (i)–(iii) of Fact 4.2

since |X0|, |X1| ≥ δ0( �G), since |X0 ∩ X1| = 0, and since a directed path

x0 → v → x1 with x0 ∈ X0 and x1 ∈ X1 would give a directed 4-cycle �C4

containing x. Fact 4.2 guarantees independent sets Ix ⊆ X1 \ X0 = X1 =

N−
�G
(x) and Iy ⊆ Y0\Y1 = Y0 = N+

�G
(y) of respective sizes |Ix| ≥ |N−

�G
(x)|−7εn

and |Iy| ≥ |N+
�G
(y)|−7εn. Note that |Ix∩Iy| is bounded by (54), we but claim

that Ix ∩ Iy = ∅. Indeed, a vertex v ∈ Ix ∩ Iy must have its neighborhood

N �G(v) = N−
�G
(v) ∪N+

�G
(v) outside of Ix ∪ Iy, and so

∣∣N−
�G
(x) ∩N+

�G
(y)

∣∣ ≥ |Ix ∩ Iy| = |Ix|+ |Iy| − |Ix ∪ Iy|
≥ |Ix|+ |Iy|+

∣∣N+
�G
(v)

∣∣+ ∣∣N−
�G
(v)

∣∣− n

Fct. 4.2

≥
∣∣N−

�G
(x)

∣∣− 7εn+
∣∣N+

�G
(y)

∣∣− 7εn+
∣∣N+

�G
(v)

∣∣+ ∣∣N−
�G
(v)

∣∣− n

≥ 4δ0
(
�G
)
− 14εn− n ≥ 4

(
1
3 − ε

)
n− 14ε− n =

(
1
3 − 18ε

)
n

contradicts (54).

Second, we claim that every ax ∈ Ix and by ∈ Iy satisfy

(56) N−
�G
(ax) ∩N+

�G
(by) �= ∅.
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Indeed, (by, ax) �∈ �E lest (x, y, by, ax, x) is a directed 4-cycle containing both
x and y. Thus, V \ (Ix∪ Iy) contains each of N−

�G
(ax) and N+

�G
(by), and hence

their union. As such,

(57)
∣∣N−

�G
(ax) ∩N+

�G
(by)

∣∣ = ∣∣N−
�G
(ax)

∣∣+ ∣∣N+
�G
(by)

∣∣− ∣∣N−
�G
(ax) ∪N+

�G
(by)

∣∣
≥

∣∣N−
�G
(ax)

∣∣+ ∣∣N+
�G
(by)

∣∣+ |Ix∪Iy|−n =
∣∣N−

�G
(ax)

∣∣+ ∣∣N+
�G
(by)

∣∣+ |Ix|+ |Iy|−n

Fct. 4.2

≥
∣∣N−

�G
(ax)

∣∣+ ∣∣N+
�G
(by)

∣∣+ ∣∣N−
�G
(x)

∣∣+ ∣∣N+
�G
(y)

∣∣− 14εn− n

≥ 4δ0
(
�G
)
− 14εn− n ≥ 4

(
1
3 − ε

)
n− 14εn− n =

(
1
3 − 18ε

)
n > 0.

Third and finally, we observe that N+
�G
(x)∩Iy = ∅ = N−

�G
(y)∩Ix. Indeed,

and for example, any by ∈ N+
�G
(x) ∩ Iy and ax ∈ Ix beget cxy ∈ N−

�G
(ax) ∩

N+
�G
(by) by (56), in which case (x, by, cxy, ax, x) would be a directed 4-cycle

containing x. Now, V \ (Ix ∪ Iy) contains each of N+
�G
(x) and N−

�G
(y), and so

∣∣N+
�G
(x) ∩N−

�G
(y)

∣∣ ≥ ∣∣N+
�G
(x)

∣∣+ ∣∣N−
�G
(y)

∣∣+ |Ix ∪ Iy| − n,

where calculations identical to (57) establish (55).

Proof of Fact 4.6

Let λ > 0 be given. The promised constant ε = ε(λ) > 0 will be defined in
context. Let �G = (V, �E) be an oriented graph on n ≥ n0(λ, ε) many vertices
which satisfies δ0( �G) ≥ ((1/3) − ε)n. We show that �G is λ-extremal when
Conditions (1) or (2) hold, which we handle separately.

For Condition (1), it suffices to take ε ∈ (0, λ/7]. Let V = V0∪V1∪V2 be a
partition satisfying |V1|, |V2| ≥ ((1/3)−ε)n and e �G(V1), e �G(V2), e �G(V2, V1) ≤
εn2. We bound each of e �G(V2, V0), e �G(V0, V1), and e �G(V1, V2) suitably from
below. First, our hypotheses give

(58) e �G(V2, V0) ≥
( ∑

v2∈V2

deg+�G
(v2)

)
− e �G(V2)− e �G(V2, V1)

≥
(
1
3 − ε

)2
n2 − 2εn2 ≥

(
1
9 − λ

)
n2,

where we used 3ε ≤ λ. Second, and similarly,

e �G(V0, V1) ≥
( ∑

v1∈V1

deg−�G(v1)
)
− e �G(V1)− e �G(V2, V1)
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≥
(
1
3 − ε

)2
n2 − 2εn2 ≥

(
1
9 − λ

)
n2,

where we again used 3ε ≤ λ. Note that, since �G is oriented, our hypotheses
and (58) give

(59) e �G(V0, V2) ≤ |V0||V2| − e �G(V2, V0) ≤
(n−|V1|

2

)2 − e �G(V2, V0) ≤ 5εn2.

Third, our hypotheses and (59) give

e �G(V1, V2) ≥
( ∑

v2∈V
deg−�G(v2)

)
− e �G(V2)− e �G(V0, V2)

≥
(
1
3 − ε

)2
n2 − 6εn2 ≥

(
1
9 − λ

)
n2,

where we used 7ε ≤ λ.
For Condition (2), we consider a suitably small γ ∈ (0, λ/3] in context,

and we take ε = ε(γ) > 0 according to an application of the Erdős-Stone
theorem [4], discussed below. Assume that �G = (V, �E) has no transitive
triangles. Then the underlying graph G = (V,E) (obtained by removing
orientations on arcs) is K4-free. By our hypothesis,

∣∣ �E∣∣ = ∑
v∈V

deg+�G
(v) ≥ nδ0

(
�G
)
≥

(
1
3 − ε

)
n2,

and so altogether the underlying graph G = (V,E) is K4-free with |E| ≥
((1/3)− ε)n2 many edges. As such, the Erdős-Stone theorem [4] guarantees
a partition V = V0 ∪ V1 ∪ V2, where |V0| ≤ |V1| ≤ |V2| ≤ |V0|+ 1, and where
each 0 ≤ i < j ≤ 2 satisfies

(60) |E(G[Vi, Vj ])| ≥
(
1
9 − γ

)
n2.

Then2, the 3-partite graph

(61) G[V0, V1] ∪G[V1, V2] ∪G[V2, V0]

admits at least ((1/(27))− μ)n3 many triangles K3,

where μ = μ(γ) → 0 as γ → 0. Since �G has no transitive triangles,
every triangle of G corresponds to a directed 3-cycle �C3 in �G. Among
other conclusions, we will show that almost all of the triangles of (61) are

2See, for example, the proof of Fact 2.5.
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commonly oriented, in one of the following two senses. We say that a di-
rected 3-cycle �C3 of �G is positively oriented when all of its arcs are among
(V0 × V1) ∪ (V1 × V2) ∪ (V2 × V0), and we say that it is negatively oriented
when all of its arcs are among (V0 × V2) ∪ (V2 × V1) ∪ (V1 × V0).

We average (61) over, say V0, to obtain a vertex v̄0 ∈ V0 belonging to at
least ((1/9) − 2μ)n2 many directed 3-cycles �C3 of �G. At least half of these
directed 3-cycles are commonly oriented, so w.l.o.g. assume that at least half
are positively oriented. Then

(62) v̄0 ∈ V0 belongs to at least ((1/9)− 2μ)n2

many directed 3-cycles �C3 of �G, and in particular

v̄0 ∈ V0 belongs to at least ((1/(18))− μ)n2

many positively oriented 3-cycles �C3 of �G.

From (62), we will prove that

(63) e �G(V1, V2) ≥
(
1
9 − λ

)
n2

follows. Indeed, recall that K[A,B] is the complete bipartite graph with
parts A and B and that �G has no transitive triangles, so each of

K
[
N+

�G
(v̄0) ∩ V1, N

+
�G
(v̄0) ∩ V2

]
and K

[
N−

�G
(v̄0) ∩ V1, N

−
�G
(v̄0) ∩ V2

]
is edge-disjoint from E. Consequently, (60) gives that each has size at most

|V1||V2| −
(
1
9 − γ

)
n2 ≤

(n−|V0|
2

)2 − (
1
9 − γ

)
n2 ≤ 2γn2

=⇒
∣∣N+

�G
(v̄0) ∩ V1

∣∣ ≤ √
2γn or

∣∣N+
�G
(v̄0) ∩ V2

∣∣ ≤ √
2γn,

and
∣∣N−

�G
(v̄0) ∩ V1

∣∣ ≤ √
2γn or

∣∣N−
�G
(v̄0) ∩ V2

∣∣ ≤ √
2γn.

By (62), it must be that both
∣∣N+

�G
(v̄0) ∩ V2

∣∣ ≤ √
2γn and |N−

�G
(v̄0) ∩ V1| ≤√

2γn hold. As such, v̄0 ∈ V0 belongs to at most 2γn2 many negatively
oriented triangles, and so (62) may be updated to say that v̄0 ∈ V0 belongs
to at least ((1/9)− 2μ− 2γ)n2 many positively oriented triangles. As such,

e �G(V1, V2) ≥
(
1
9 − 2μ− 2γ

)
n2 ≥

(
1
9 − λ

)
n2

holds by taking 2μ+ 2γ ≤ λ, and renders (63).
The argument above shows that, for each i ∈ Z3,



On even rainbow or nontriangular directed cycles 621

(ai) either e �G(Vi, Vi+1) ≥ ((1/9)− λ)n2,
(bi) or e �G(Vi+1, Vi) ≥ ((1/9)− λ)n2.

These outcomes must be consistent across i ∈ Z3, which is to say that either
(a0), (a1), and (a2) all hold, or (b0), (b1), and (b2) all hold. Indeed, assuming
otherwise �G would have Ω(n3) many transitive triangles, contradicting our
hypothesis. This proves that �G is λ-extremal, as desired.

6. Proof of Lemma 2.9 – Part 1: strategy and coarse
structure

It suffices to take the promised constant λ0 > 0 as

(64) λ0 =
(

1
45,000

)4
.

Now, fix 0 < λ ≤ λ0 and fix an integer � ≥ 4 which is not divisible by three.
In all that follows, we take the integer n0 = n0(λ0, λ, �) to be sufficiently
large whenever needed. The proof of Lemma 2.9 is fairly technical, so we
begin by outlining some of its strategy.

6.1. Initial strategy

Let (G, c) be a λ-extremal edge-colored graph on n ≥ n0 many vertices.
Recall that the hypotheses in Statements (1) and (2) of Lemma 2.9 assume

(65) δc(G) ≥
{

(n+ 5)/3 in Statement (1),
(n+ 4)/3 in Statement (2).

If (G, c) admits a rainbow �-cycle C�, then the conclusions of Lemma 2.9
hold, so

(66) we assume throughout this proof that (G, c)

admits no rainbow �-cycles C�.

Moreover,

(67) we assume throughout this proof that (G, c) is edge-minimal

w.r.t. satisfying both (65) and (66).

Observe, for example, that (67) implies that (G, c) admits no monochromatic
paths P or cycles C on three or more edges, lest removing an internal edge
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{x, y} ∈ E from P or C lowers neither degcG(x) nor degcG(y). Finally, for
both cases of (65), we set m = �n/3�, where

(68) δc(G) ≥ n+4
3 =⇒ δc(G) ≥

⌊
n
3

⌋
+ 2 = m+ 2.

Since we assume in Lemma 2.9 that (G, c) is λ-extremal, fix a λ-extremal
partition V = V (G) = V0 ∪V1 ∪V2 of (G, c) (recall Definition 2.4). Our first
main goal in proving Lemma 2.9 is to infer from (67) that (G, c) enjoys
nearly canonical structure on V0 ∪ V1 ∪ V2, in the following sense. Let H =
K[V0, V1, V2] be the complete 3-partite graph with vertex partition V0∪V1∪
V2, and consider an edge-coloring κ on H where, for each i ∈ Z3 and for
each vi ∈ Vi,

(a) κ assigns all distinct colors to the edges {vi, vi+1} ∈ E, where vi+1 ∈
Vi+1;

(b) κ assigns a common color to all the edges {vi, vi−1} ∈ E, where vi−1 ∈
Vi−1.

We say that any such (H,κ) is canonical w.r.t. V0 ∪ V1 ∪ V2. (For example,
a canonical edge-colored graph (H,κ) was used in Case 1 of Section 1.1,
where κ = c+ was defined in (2).) In the immediate sequel, we use (67) to
prove that (G, c) is nearly canonical w.r.t. V0 ∪V1 ∪V2, in the sense that for
each i ∈ Z3, almost all vi ∈ Vi admit distinctly colored edges to almost all
vi+1 ∈ Vi+1, and almost all vi ∈ Vi admit commonly colored edges to almost
all vi−1 ∈ Vi−1. We now make these details precise.

6.2. (G, c) is nearly canonical: getting started

Definition 2.4 ensures that each i ∈ Z3 satisfies

(69) |Vi| =
(
1
3 ± 3

√
λ
)
n.

Indeed,
∑

i∈Z3
|E(G[Vi, Vi+1])| ≥ (1/3− 3λ)n2, so

(
V0

2

)
∪
(
V1

2

)
∪
(
V2

2

)
consists

of at most ((1/6) + 3λ)n2 many pairs. Set |Vi| = ((1/3) + ei)n, i ∈ Z3, so
that e0 + e1 + e2 = 0. Then

(
V0

2

)
∪
(
V1

2

)
∪
(
V2

2

)
has size

(1 + o(1))
(
n2

6 + n2

2

(
e20 + e21 + e22

))
,

and this is too large when max{|e0|, |e1|, |e2|} >
√
6λ.

Next, fix i ∈ Z3. We shall say that a vertex vi ∈ Vi is an i-good vertex if
(70)

degcG(vi, Vi+1) ≥ |Vi+1| − λ1/4n and degG(vi, Vi−1) ≥ |Vi−1| − λ1/4n,
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where as usual degG(vi, Vi−1) denotes the number of neighbors of vi in Vi−1,
and where here degcG(vi, Vi+1) denotes the number of colors seen on the edges
of vi to Vi+1. Then (70) says an i-good vertex vi admits distinctly colored
edges to all but λ1/4n many vertices vi+1 ∈ Vi+1, and it admits edges of
varying colors to all but λ1/4n many vertices vi−1 ∈ Vi−1. Let V

good
i denote

the set of i-good vertices vi ∈ Vi. Using (69) and Definition 2.4, it is easy to
show that

(71)
∣∣V good

i

∣∣ ≥ |Vi| − 24λ1/4n.

With i ∈ Z3 still fixed, we shall say that a vertex vi ∈ Vi \ V good
i is an i-bad

vertex. We write V bad
i = Vi \V good

i for the set of i-bad vertices, and we write
V bad = V bad

0 ∪ V bad
1 ∪ V bad

2 for the set of bad vertices. Then bad vertices
total at most 72λ1/4n by (71).

We now alter the partition V = V0 ∪ V1 ∪ V2 to V = U0 ∪ U1 ∪ U2, as
follows. For each i-good vertex vi ∈ V good

i , we put vi ∈ Ui. For each bad
vertex v ∈ V bad, let jv ∈ Z3 achieve

(72) degcG
(
v, V good

jv

)
= max

{
degcG

(
v, V good

0

)
, degcG

(
v, V good

1

)
, degcG

(
v, V good

2

)}
.

We then put v ∈ Ujv−1. Then Ui consists of V
good
i together with those bad

vertices v ∈ V bad satisfying

(73) degcG
(
v, V good

i+1

)
≥ max

{
degcG

(
v, V good

i

)
, degcG

(
v, V good

i−1

)}
.

We write Ugood
i = Ui∩V good

i = V good
i , and we continue to call these vertices

good. We write Ubad
i = Ui ∩V bad, and we continue to call these vertices bad.

Then (69)–(71) give:

(74) |Ui| =
(
1
3 ± 75λ1/4

)
n,

∣∣Ugood
i

∣∣ = (
1
3 ± 75λ1/4

)
n,∣∣V bad

∣∣ = ∣∣Ubad
0

∣∣+ ∣∣Ubad
1

∣∣+ ∣∣Ubad
2

∣∣ ≤ 72λ1/4n,

∀ i ∈ Z3, ∀ u ∈ Ugood
i , degcG(u, Ui+1) ≥ |Vi+1|−73λ1/4n ≥ |Ui+1|−145λ1/4n,

∀ i ∈ Z3, ∀ u ∈ Ugood
i , degcG

(
u, Ugood

i+1

)
≥

(
1
3 − 76λ1/4

)
n,

∀ i ∈ Z3, ∀ u ∈ Ugood
i , degG(u, Ui−1) ≥ |Vi−1|−73λ1/4n ≥ |Ui−1|−145λ1/4n,

∀ i ∈ Z3, ∀ u ∈ Ugood
i , degG

(
u, Ugood

i−1

)
≥

(
1
3 − 76λ1/4

)
n,
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∀ i ∈ Z3, ∀ u ∈ Ubad
i , degcG(u, Ui+1)

(72)

≥ 1
3δ

c(G)−72λ1/4n
(68)

≥
(
1
9−72λ1/4

)
n.

Henceforth, the initial partition V = V0 ∪ V1 ∪ V2 is largely usurped by

V = U0 ∪ U1 ∪ U2.

6.3. (G, c) is nearly canonical: a next step

The inequalities in (74) show that |U0|, |U1|, |U2| are nearly balanced, and

that G[U0, U1, U3] differs from the complete 3-partite graph K[U0, U1, U2] on

few edges. The inequalities in (74) also show that (G, c) deviates very little

from property (a) of Section 6.1, in that good vertices ui ∈ Ugood
i (which

are pervasive) have distinctly colored edges to nearly all ui+1 ∈ Ui+1. We

now show that (G, c) deviates little from the corresponding property (b). For

that, we first show that good vertices ui ∈ Ugood
i are incident to few colors

c({ui, ui−1}), where ui−1 ∈ Ugood
i−1 .

Fact 6.1. For each i ∈ Z3 and for each ui ∈ Ugood
i , we have degcG(ui,

Ugood
i−1 ) ≤ 240λ1/4n.

Proof of Fact 6.1. Assume for contradiction that Fact 6.1 is false for some

index i ∈ Z3 and vertex ui ∈ Ugood
i , and w.l.o.g. assume i = 2. We will first

determine a set T good
1 ⊆ Ugood

1 so that the fixed good vertex u2 ∈ Ugood
2

satisfies

(75) degcG
(
u2, T

good
1

)
> 160λ1/4n and

every path (u2, u1, v) in G where u1 ∈ T good
1 is rainbow.

Note that T good
1 will be an eventual ‘target space’. To prove (75), we distin-

guish degcG(u2).

Case 1 (degcG(u2) ≥ (n + 10)/3). Set T good
1 = Ugood

1 , where our contrary

assumption gives

(76) degcG(u2, T
good
1 ) = degcG(u2, U

good
1 ) > 240λ1/4n > 160λ1/4,

as desired. Now, every path (u2, u1, v) with u1 ∈ T good
1 = Ugood

1 is rainbow

lest the hypothesis of Case 1 gives that removing the edge {u2, u1} ∈ E from

G contradicts (67). �
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Case 2 (degcG(u2) < (n+ 10)/3). Set

T good
1 =

{
u1 ∈ NG(u2, U

good
1 ) : ∃ u0 ∈ NG(u2, U0)

where c({u2, u0}) = c({u2, u1})
}
.

Observe that

degcG(u2) ≥ degcG(u2, U0) + degcG
(
u2, U

good
1

)
− degcG

(
u2, T

good
1

)
,

and so

degcG
(
u2, T

good
1

)
≥ degcG(u2, U0) + degcG

(
u2, U

good
1

)
− degcG(u2)

(74)

≥
(
1
3 − 76λ1/4

)
n+ degcG

(
u2, U

good
1

)
− degcG(u2)

(76)
>

(
1
3 − 76λ1/4

)
n+ 240λ1/4n− degcG(u2)

Case 2

>
(
1
3 − 76λ1/4

)
n+ 240λ1/4n− n+10

3 ≥ 160λ1/4n.

If (u2, u1, v) is a monochromatic path with u1 ∈ T good
1 , then there exists

u0 ∈ U0 where (u0, u2, u1, v) is monochromatic. Whether or not v = u0,

removing the edge {u2, u1} ∈ E from G contradicts (67). �
We now use (75) to complete the proof of Fact 6.1. Fix an arbitrary

vertex u1 ∈ T good
1 (cf. (75)), and fix an arbitrary vertex u0 ∈ NG(u1, U

good
0 )

(cf. (74)). By (75), the path (u2, u1, u0) is rainbow. We now distinguish the

cases � ≡ 1, 2 (mod 3).

Case A (� ≡ 1 (mod 3)). Using (74) and n ≥ n0(�) sufficiently large, we

can easily extend the rainbow path (u2, u1, u0) to a rainbow path R�−4 =

(u2, u1, u0, v1, v2, . . . , v�−4) on � − 1 vertices, where for each 1 ≤ j ≤ � −
4, we may choose vj ∈ Ugood

J for J ≡ j (mod 3). By (75), u2 ∈ Ugood
2

sees 160λ1/4n colors into T good
1 , and at most � − 1 of them were used on

R�−4. Similarly, (74) gives that the vertex v�−4 ∈ Ugood
0 (recall � ≡ 1 (mod

3)) sees ((1/3) − 76λ1/4)n colors into Ugood
1 , and at most � − 1 of them

were used on R�−4. Then for some w1 ∈ NG(u2, T
good
1 ) ∩ NG(v�−4, U

good
1 )

both paths (w1, u2, u1, u0, v1, . . . , v�−4) and (u2, u1, u0, v1, . . . , v�−4, w1) are

rainbow since

160λ1/4n− (�−1)+
(
1
3 −76λ1/4

)
n− (�−1) ≥

(
1
3 +84λ1/4

)
n−O(1)

(74)
> |U1|.
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Since w1 ∈ T good
1 , the path (u2, w1, v�−4) is rainbow by (75), and so the

�-cycle (u2, u1, u0, v1, . . . , v�−4, w1, u2) is rainbow. �

Case B (� ≡ 2 (mod 3)). The rainbow path (u2, u1) may be extended to a

rainbow path R̂�−2 = (u2, u1, v2, . . . , v�−2) on �− 1 vertices, where for each

2 ≤ j ≤ � − 2, we may choose vj ∈ Ugood
J for J ≡ j (mod 3). Identically

to the above, we may extend the rainbow path R̂�−2 to a rainbow �-cycle

C�.

6.4. (G, c) is nearly canonical: finale

We now show that, for a fixed ui ∈ Ugood
i , edges {ui, ui−1} ∈ E, where

ui−1 ∈ Ugood
i−1 , are dominated by a single color.

Proposition 6.2. For each i ∈ Z3 and for each ui ∈ Ugood
i , there exists a

color cui
from c where all but 241λ1/4n many vertices ui−1 ∈ Ugood

i−1 satisfy

{ui, ui−1} ∈ E and c({ui, ui−1}) = cui
. Together with (74), all but 313λ1/4n

vertices ui−1 ∈ Ui−1 satisfy {ui, ui−1} ∈ E and c({ui, ui−1}) = cui
.

For the proof and use of Proposition 6.2, we establish some notation.

Fix i ∈ Z3 and fix ui ∈ Ui. On the edges EG(ui, Ui−1) between ui and

Ui−1, let cui
be a most frequent color, which we call the primary color of

EG(ui, Ui−1). Edges of EG(ui, Ui−1) colored by cui
are called typical edges,

and edges of EG(ui, Ui−1) colored otherwise are called special edges. We

write N typ
G (ui, Ui−1) for the set of ui−1 ∈ Ui−1 where {ui, ui−1} ∈ E is a

typical edge, and we write N spec
G (ui, Ui−1) for the set of ui−1 ∈ Ui−1 where

{ui, ui−1} ∈ E is a special edge. We write

(77) degtypG

(
ui, Ui−1

)
=

∣∣N typ
G

(
ui, Ui−1

)∣∣ and

degspecG

(
ui, Ui−1

)
=

∣∣N spec
G

(
ui, Ui−1

)∣∣.
Proof of Proposition 6.2. Assume for contradiction that Proposition 6.2 is

false for some index i ∈ Z3 and vertex ui ∈ Ugood
i , and w.l.o.g. assume i = 2.

Then, the fixed vertex u2 ∈ Ugood
2 satisfies

(78) degspecG

(
u2, U

good
1

)
≥ 241λ1/4n while

degcG
(
u2, U

good
1

) Fact 6.1
≤ 240λ1/4n.
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We will produce a contradiction similar to that for Fact 6.1, where we
will use (78) to construct a rainbow �-cycle C� in (G, c), which will con-
tradict (66). We again distinguish the cases � ≡ 1, 2 (mod 3).

Case 1 (� ≡ 1 (mod 3)). The inequalities in (78) together imply that there

exist neighbors u1 �= v1 ∈ NG(u2, U
good
1 ) for which c({u2, u1}) = c({u2, v1})

differs from the primary color cu2
. For simplicity, let cu2

be blue and let

c({u2, u1}) = c({u2, v1}) be red. Using (74), fix u0 �= v0 ∈ NG(u1, U
good
0 ) ∩

NG(v1, U
good
0 ). Since (G, c) admits no monochromatic paths on four vertices,

none of the edges of the four-cycle (u1, u0, v1, v0) can be red, and not all
of them can be blue. W.l.o.g., assume {u1, u0} is colored yellow so that
(u2, u1, u0) is a red-yellow path which avoids the primary color blue for u2.

Similarly to the proof of Fact 6.1, we will extend (u2, u1, u0) to a rainbow
�-cycle C�, which will contradict (66). Consider the following set which will
be an eventual ‘target space’:

T1(u2) =
{
t1 ∈ NG

(
u2, U

good
1

)
:

c({u2, t1}) is neither red nor yellow
}
⊆ Ugood

1 .

Since blue is the primary color for u2, some edges {u2, t1} with t1 ∈ T1(u2)
are colored blue. Now, among the colors blue, red, and yellow, neither red nor
yellow are primary, so at most a 2/3 portion of neighbors v1 ∈ NG(u2, U

good
1 )

have red or yellow edges with u2. Thus,

(79) |T1(u2)| ≥ 1
3 degG

(
u2, U

good
1

) (74)

≥ 1
3

(
1
3 − 76λ1/4

)
n

(64)

≥ n
10 ,

while u2 sees at most 240λ1/4n colors into T1(u2) (cf. Fact 6.1).

Let C(u2) be the set of colors used on edges between u2 and T1(u2). As
we did for Fact 6.1, we extend the rainbow path (u2, u1, u0) to a rainbow
path R�−4 = (u2, u1, u0, w1, w2, . . . , w�−4) on � − 1 vertices, where for each

1 ≤ j ≤ �− 4, we may choose wj ∈ Ugood
J for J ≡ j (mod 3), but where this

time we avoid the |C(u2)| ≤ 240λ1/4n many colors of C(u2), which we may

do on account of (74). Since w�−4 ∈ Ugood
0 (recall � ≡ 1 (mod 3)), (74) gives

that degcG(w�−4, U
good
1 ) ≥ |Ugood

1 | − 145λ1/4n, so from T1(u2) ⊆ Ugood
1 ,

(80) degcG(w�−4, T1(u2)) ≥ |T1(u2)| − 145λ1/4n
(79)

≥ n
10 − 145λ1/4n

(64)
> 240λ1/4n+ �− 1

(79)

≥ |C(u2)|+ �− 1.
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Thus, we may choose a neighbor t1 ∈ NG(w�−4)∩T1(u2) where c({w�−4, t1}) �∈
C(u2) differs from any color used on R�−4. Now, (u2, u1, u0, w1, w2, . . . ,
w�−4, t1) is a rainbow �-cycle C� in (G, c) (where c({u2, t1}) ∈ C(u2) but
where C(u2) was used nowhere else on C�), which contradicts (66). �

Case 2 (� ≡ 2 (mod 3)). The proof is analogous to that above, where
we may simplify the preamble of Case 1. Here, fix a single neighbor u1 ∈
NG(u2, U

good
1 ) where c({u2, u1}) (which we assume is red) differs from the

primary color blue for u2. We will extend the rainbow path (u2, u1) to a
rainbow �-cycle C�, which will contradict (66). To do so, this time we define

T1(u2) =
{
t1 ∈ NG

(
u2, U

good
1

)
: c({u2, t1}) is not red

}
,

and again we define C(u2) to be the set of colors on edges between u2 and
T1(u2). Since red is not the primary color of u2, at most half the neighbors

v1 ∈ NG(u2, U
good
1 ) have a red edge with u2, and so the final conclusions

of (79) hold. On account of (74), we may extend the rainbow path (u2, u1) to
a rainbow path R̂�−2 = (u2, u1, v2, . . . , v�−2) on �−1 vertices, where for each

2 ≤ j ≤ �−2, we may choose vj ∈ Ugood
J for J ≡ j (mod 3), and where again

we may avoid the |C(u2)| ≤ 240λ1/4n many colors of C(u2). The inequality

in (80) holds for the vertex v�−2 ∈ Ugood
0 (recall � ≡ 2 (mod 3)), so we may

choose t1 ∈ NG(v�−2) ∩ T1(u2) where c({v�−2, t1}) �∈ C(u2) differs from any
color used on R̂�−2. Now, (u2, u1, v2, . . . , v�−2, t1) is a rainbow �-cycle C� in
(G, c), which contradicts (66).

We conclude the nearly canonical structure of (G, c) by noting that, for

each i ∈ Z3, distinct good vertices ui �= vi ∈ Ugood
i admit distinct primary

colors.

Corollary 6.3. For each i ∈ Z3 and for each ui �= vi ∈ Ugood
i , the primary

colors cui
and cvi

differ.

Proof of Corollary 6.3. Fix i ∈ Z3 and fix ui �= vi ∈ Ugood
i . Then

∣∣N typ
G (ui, Ui−1) ∩N typ

G (vi, Ui−1)
∣∣ Prop. 6.2

≥ |Ui−1| − 626λ1/4

(74)

≥
(
1
3 − 701λ1/4

)
n

(64)

≥ 2.

If cui
= cvi

, then any pair from the set above renders a monochromatic
4-cycle, contradicting (67).
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7. Proof of Lemma 2.9 – Part 2: strong cycles and the case
� ≡ 2 (mod 3)

Continuing from the previous section, we now prepare to prove Lemma 2.9
when � ≡ 2 (mod 3). The central tools of this proof are important observa-
tions on so-called strong cycles in the nearly canonical edge-colored graph
(G, c). Many of these observations will also be important later when we
prove the case � ≡ 1 (mod 3) of Lemma 2.9.

7.1. Strong cycles

We say that a cycle Ck = (u1, . . . , uk) (with prescribed vertex u1) is a strong

cycle if there exists i ∈ Z3 so that u1 ∈ Ugood
i and uk ∈ N typ

G (u1, Ui−1). We
determine conditions under which rainbow or properly colored paths can be
extended to strong rainbow or strong properly colored cycles.

Proposition 7.1. Fix integers 1 ≤ k < K ≤ � and fix i, j ∈ Z3 for which
K − k ≡ (i − 1) − j (mod 3). Let P be a (ui, uj)-path on k vertices linking

ui ∈ Ugood
i and uj ∈ Uj. The following statements hold:

1. If P is rainbow and cui
-free, then P may be extended to a strong rain-

bow K-cycle CK ;
2. If P is properly colored and its ui-edge is not cui

-colored, then P may
be extended to a strong properly colored K-cycle CK ;

3. When K ≡ k (mod 3) and (G, c) admits a strong rainbow k-cycle Ck,
then (G, c) also admits a strong rainbow K-cycle CK ;

4. When K ≡ k (mod 3) and (G, c) admits a strong properly colored
k-cycle Ck, then (G, c) also admits a strong properly colored K-cycle
CK .

Proof of Proposition 7.1. Let integers 1 ≤ k < K ≤ � and elements i, j ∈ Z3

be given satisfying K − k ≡ (i − 1) − j (mod 3), and let P = (ui, . . . , uj)

be a (ui, uj)-path on k vertices linking ui ∈ Ugood
i and uj ∈ Uj . To prove

Statement (1), assume that P = R is rainbow and cui
-free. Similarly to the

proofs of Fact 6.1 and Proposition 6.2, we will extend R to a cui
-free rainbow

path R̃K−k−1 = (ui, . . . , uj , vj+1, . . . , vj+K−k−1) on K−1 vertices, where for

each j + 1 ≤ h ≤ j +K − k− 1, we may choose vh ∈ Ugood
H for H ≡ h (mod

3). We begin with the first step, where it is not guaranteed in our hypothesis
that uj ∈ Uj is a good vertex. If uj ∈ Ubad

j , then
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(81) degcG(uj , Uj+1)
(74)

≥
(
1
9 − 72λ1/4

)
n

(74)
=⇒

degcG
(
uj , U

good
j+1

) (74)

≥
(
1
9 − 144λ1/4

)
n.

Thus, we may select vj+1 ∈ NG(uj , U
good
j+1 ) for R̃K−k−1 while avoiding cui

and the colors of R. If uj ∈ Ugood
j is a good vertex, then the neighborhood

NG(uj , U
good
j+1 ) is larger still (cf. (74)), and again we may select vj+1 for

R̃K−k−1 as described above. We select all remaining vertices vh for R̃K−k−1,
where j + 2 ≤ h ≤ j + K − k − 1, in a similar fashion. By our hypothesis
K − k ≡ (i − 1) − j (mod 3), the terminal vertex vj+K−k−1 ∈ Ugood

i−2 while

the initial vertex ui ∈ Ugood
i . Comparing Proposition 6.2 and (74), we see

(82) dtypG (ui, Ui−1) + dcG(vj+K−k−1, Ui−1)− |Ui−1|

≥ |Ui−1| − 386λ1/4n
(74)

≥
(
1
3 − 461λ1/4

)
n

and so we may select a vertex ui−1 fromN typ
G (ui, Ui−1)∩NG(vj+K−k−1, Ui−1)

whose adjacency with vj+K−k−1 avoids cui
and the colors of R̃K−k−1. Since

c({ui, ui−1}) = cui
is the primary color of ui, which hasn’t yet been used,

CK = (ui, . . . , uj , vj+1, . . . , vj+K−k−1, ui−1) is a strong rainbow K-cycle.

The proof of Statement (2) is absolutely the same as that of State-
ment (1). In particular, for the properly colored k-vertex path P = (ui, . . . ,

uj) linking ui ∈ Ugood
i and uj ∈ Uj whose ui-edge is not cui

-colored, the
proof above allows the segment (uj , vj+1, . . . , vj+K−k−1, ui−1) of R̃K−k−1

to be rainbow, cui
-free, and to be free of the colors from P . Thus, CK =

(ui, . . . , uj , vj+1, . . . , vj+K−k−1, ui−1) is a strong properly colored K-cycle.

Statements (3) and (4) now follow immediately from Statements (1)
and (2). Indeed, let Ck = (u1, . . . , uk) be a strong rainbow or properly

colored k-cycle where u1 ∈ Ugood
i and uk ∈ N typ(u1, Ui−1) for some i ∈ Z3.

Ignoring the edge {u1, uk}, the path Pk = (u1, . . . , uk) is rainbow or properly
colored, where uk ∈ Ui−1 assumes j = i−1. TakingK ≡ k+(i−1)−(i−1) ≡ k
(mod 3) and K ≤ �, Statements (1) or (2) extend Pk to a strong rainbow or
properly colored K-cycle CK .

It will be convenient to have the following corollary of Proposition 7.1
in the case � ≡ 2 (mod 3).

Corollary 7.2. Let � ≡ 2 (mod 3) and fix i ∈ Z3. The following statements
hold:
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1. Each ui ∈ Ugood
i satisfies N spec

G (ui, Ui−1) = ∅;
2. Let R = (ui, v, wi) be a rainbow path with ui ∈ Ugood

i and wi ∈ Ui.
Then cui

appears on R. In particular, c({ui, v}) = cui
or (G, c) admits

a properly colored �-cycle C�;
3. Let R = (ui, v, ui−1) be a rainbow path with ui ∈ Ugood

i and ui−1 ∈
Ugood
i−1 . Then cui

= cui−1
or cui

or cui−1
appears on R. As well, if

c({ui, v}) �= cui
and c({ui−1, v}) �= cui−1

, then (G, c) admits a properly
colored �-cycle C�;

4. Let � �= 5, and let ui, vi ∈ Ugood
i and wi, xi ∈ Ui span disjoint edges

{ui, wi}, {vi, xi} ∈ E(G). Then cui
, cvi

, c({ui, wi}), and c({vi, xi})
can’t all be distinct.

5. Let � �= 5, and let Ti ⊆ Ugood
i be a set with the property that for all

ui ∈ Ti, there exist vi �= wi ∈ NG(ui, Ui) so that c({ui, vi}), c({ui, wi}),
and cui

are all distinct. Then |Ti| ≤ 5.

Proof of Corollary 7.2. Let � ≡ 2 (mod 3) and fix i ∈ Z3. For Statement (1),

fix ui ∈ Ugood
i . If ui−1 ∈ N spec

G (ui, Ui−1), then {ui, ui−1} is a cui
-free rainbow

path which Proposition 7.1 guarantees can be extended to a strong rainbow
�-cycle C� (by setting j = i− 1 and k = 2, and with � ≡ 2 (mod 3)), which
contradicts (66).

For Statement (2), let R = (ui, v, wi) be a rainbow path with ui ∈ Ugood
i

and wi ∈ Ui. If R is cui
-free, then Proposition 7.1 guarantees that R can

be extended to a strong rainbow �-cycle C� (by setting j = i and k = 3,
and with � ≡ 2 (mod 3)), which again contradicts (66). In particular, if
c({ui, v}) �= cui

, then Proposition 7.1 guarantees that R can be extended to
a strong properly colored �-cycle C�.

For Statement (3), let R = (ui, v, ui−1) be a rainbow path with ui ∈
Ugood
i and ui−1 ∈ Ugood

i−1 . Assume for contradiction that R avoids both cui
�=

cui−1
. Since ui−1 ∈ Ugood

i−1 is a good vertex, Proposition 6.2 guarantees a

vertex ui−2 ∈ NG(ui−1, U
good
i−2 ) distinct from v for which c({ui−1, ui−2}) =

cui−1
. Then the path S = (ui, v, ui−1, ui−2) is rainbow (because R is rainbow

and avoids cui−1
), and the path S avoids cui

(because R does and because
cui

�= cui−1
). As such, Proposition 7.1 guarantees that S can be extended to

a strong rainbow �-cycle C� (by setting j = i− 2 and k = 4, and with � ≡ 2
(mod 3)), which contradicts (66). In particular, assume c({ui, v}) �= cui

and
c({ui−1, v}) �= cui−1

. Then S = (ui, v, ui−1, ui−2) is proper (because R is
rainbow and c({ui−1, v}) �= cui−1

). Since c({ui, v}) �= cui
, Proposition 7.1

guarantees that S can be extended to a strong properly colored �-cycle C�.
For Statement (4), let � �= 5, and let ui, vi ∈ Ugood

i and wi, xi ∈ Ui

span disjoint edges {ui, wi}, {vi, xi} ∈ E(G). Assume, on the contrary, that
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C = {cui
, cvi

, c({ui, wi}), c({vi, xi})} is a set of four distinct colors. Fix any

ui+1 ∈ NG(wi, U
good
i+1 ) where the edge {wi, ui+1} ∈ E(G) is C-free (which is

possible by the argument in (81)). Now, fix any

ui−1 ∈ NG(ui+1, Ui−1) ∩N typ
G (vi, Ui−1)

where the edge {ui−1, ui+1} ∈ E(G) is (C ∪ c({wi, ui+1}))-free (which is
possible by the argument in (82)). Now, (ui, wi, ui+1, ui−1, vi, xi) is a rainbow
path avoiding cui

, which Proposition 7.1 guarantees can be extended to a
strong rainbow �-cycle C� (by setting j = i and k = 6, and with � ≡ 2 (mod
3)), which again contradicts (66).

For Statement (5), let Ti ⊆ Ugood
i be a set with the property so described,

but assume for contradiction that |Ti| ≥ 6. Fix ui ∈ Ti, where we take cui

to be blue, and let vi �= wi ∈ NG(ui, Ui) be guaranteed by the definition of
Ti, where we take c({ui, vi}) to be red and c({ui, wi}) to be yellow. Since
|Ti| ≥ 6, there exists xi ∈ Ti \ {ui, vi, wi} where cxi

is neither red nor yellow.
Since xi �= ui, Corollary 6.3 guarantees that cxi

�= cui
can’t be blue, so

we take cxi
to be green. Let yi �= zi ∈ NG(xi, Ui) be guaranteed by the

definition of Ti. We now distinguish the extent to which {ui, vi, wi} and
{xi, yi, zi} overlap.

Case 1 ({ui, vi, wi} ∩ {xi, yi, zi} = ∅). If c({xi, yi}) is yellow, then {ui, vi}
and {xi, yi} violate Statement (4) above. Similarly, if c({xi, yi}) is red, then
{ui, wi} and {xi, yi} violate the same. Assume neither {xi, yi} nor {xi, zi} is
red or yellow, where the definition of Ti ensures neither is green. At most one
of these pairs can be blue, so assume {xi, yi} is neither red, yellow, green,
nor blue. Now, {ui, vi} and {xi, yi} violate Statement (4) above. �

Case 2 (ui ∈ {yi, zi}). Assume w.l.o.g. that ui = zi. If c({ui, xi}) is yellow,
then (xi, ui, vi) violates Statement (2) above. If c({ui, xi}) is not yellow,
then it is also not green by the definition of Ti, and so (xi, ui, wi) violates
the same Statement (2). �

Remark. Since xi ∈ Ugood
i \ {ui, vi, wi}, we do not have the case xi ∈

{vi, wi}. �

Case 3 (ui �∈ {yi, zi}; {vi, wi} ∩ {yi, zi} �= ∅). Assume w.l.o.g. that wi =
yi. If c({xi, yi}) is yellow, then {ui, vi} and {xi, yi} violate Statement (4)
above. If c({xi, yi}) is red, then (ui, wi = yi, xi) violates Statement (2) above.
If c({xi, yi}) is blue, then (xi, yi = wi, ui) violates Statement (2) above.
Otherwise, c({xi, yi}) isn’t green by the definition of Ti, so {ui, vi} and
{xi, yi} violate Statement (4) above.
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7.2. Proof of Lemma 2.9: Statement (1) when � ≡ 2 (mod 3)

Let � ≡ 2 (mod 3), where � �= 5. The hypothesis of Statement (1) of
Lemma 2.9 gives that δc(G) ≥ (n+ 5)/3. Assume w.l.o.g. that

(83) |U2| ≤ |U1| ≤ |U0|, in which case |U2| ≤
⌊
n
3

⌋
≤

⌈
n
3

⌉
≤ |U0|.

In the immediate sequel, we motivate the main approach of the proof.

7.2.1. Main idea of proof We shall make repeated use of Statement (5)
of Corollary 7.2, for which we establish the following notation. Fix i ∈ Z3

and ui ∈ Ugood
i , and define

(84) cspec(ui, Ui) =
{
c({ui, vi}) �= cui

: vi ∈ NG(ui, Ui)
}

for the set of special (non-primary) colors on edges {ui, vi} ∈ EG(ui, Ui)
incident to ui in Ui. By Statement (1) of Corollary 7.2, all edges {ui, ui−1} ∈
EG(ui, Ui−1) are colored by cui

, and so

(85)
∣∣cspec(ui, Ui)

∣∣ ≥ degcG(ui)− degcG(ui, Ui−1)− degcG(ui, Ui+1)

= degcG(ui)− 1− degcG(ui, Ui+1) ≥ δc(G)− 1− |Ui+1|
≥ n+5

3 − 1− |Ui+1| = n+2
3 − |Ui+1|.

In particular, when i = 1 ∈ Z3, we infer that every u1 ∈ Ugood
1 satisfies

(86)
∣∣cspec(u1, U1)

∣∣ ≥ n+2
3 − |U2|

(83)

≥ n+2
3 −

⌊
n
3

⌋
.

As such, if n ≡ 2 (mod 3), then (86) gives |cspec(u1, U1)| ≥ 2 for every u1 ∈
Ugood
1 , and so T1 = Ugood

1 readily contradicts Statement (5) of Corollary 7.2

(because |Ugood
1 | from (74) is much too large). Similarly, if |U2| ≤ �n/3�− 1,

then (86) gives |cspec(u1, U1)| ≥ 2 for every u1 ∈ Ugood
1 , giving the same

contradiction. The main idea of the current proof exploits a similar theme
to the instances n ≡ 2 (mod 3) or |U2| ≤ �n/3� − 1, which we announce as
our goal:

(87) we seek to determine a large set Ti ⊆ Ugood
i , for some i ∈ Z3,

where every ui ∈ Ti satisfies |cspec(ui, Ui)| ≥ 2.

When so, we contradict Statement (5) of Corollary 7.2.



634 Andrzej Czygrinow et al.

7.2.2. Supporting details From the discussion above, it suffices to con-
sider the case n �≡ 2 (mod 3) and |U2| = �n/3�. As such, |U2| = |U1| = �n/3�
and |U0| = �n/3�. Now, for u1 ∈ Ugood

1 , we define

S(u1) =
{
v1 ∈ NG(u1, U1) : c({u1, v1}) �= cu1

}
.

We refine the partition U1 = Ugood
1 ∪ Ubad

1 from (74) by subdividing Ugood
1

into

(88) A1 =
{
u1 ∈ Ugood

1 : S(u1) ∩ Ubad
1 �= ∅

}
and B1 = Ugood

1 \A1.

We will observe the following fact.

Fact 7.3. Every u1 ∈ B1 satisfies S(u1) ⊆ A1.

Proof of Fact 7.3. Fix u1 ∈ B1, but assume for contradiction that there
exists v1 ∈ S(u1) ∩ B1. Since both u1 �= v1 ∈ Ugood

1 are good vertices,
Corollary 6.3 guarantees that cu1

�= cv1
, where we will take cu1

to be red and
cv1

to be blue. From v1 ∈ S(u1), we infer that c({u1, v1}) is not cu1
= red.

We distinguish two cases.

Case 1 (c({u1, v1}) �= cv1
). Here, we will take c({u1, v1}) to be yellow.

Proposition 6.2 and Corollary 6.3 guarantee a vertex u0 ∈ N typ
G (v1, U

good
0 )

so that c({u0, v1}) = cv1
is blue but cu0

is neither red, blue, nor yellow.
We take cu0

to be green. Now, R = (u1, v1, u0) is a rainbow path where

u1 ∈ Ugood
1 , where u0 ∈ Ugood

0 , but where neither cu1
�= cu0

(red nor green)
appear on R, which contradicts Statement (3) of Corollary 7.2. �

Case 2 (c({u1, v1}) = cv1
). From (86), we infer that |S(v1)| ≥ 1, where

u1 �∈ S(v1) on account that c({u1, v1}) = cv1
is blue. From v1 ∈ B1, we

infer that S(v1) ∩ Ubad
1 = ∅, and so there exists u1 �= w1 ∈ S(v1) ⊆ Ugood

1 .
From w1 ∈ S(v1), we infer that c({v1, w1}) �= cv1

is not blue. So the path
(u1, v1, w1) is rainbow, and Statement (2) of Corollary 7.2 implies that

c({v1, w1}) is cu1
(red). Since u1, v1, w1 ∈ Ugood

1 are good and distinct, Corol-
lary 6.3 guarantees that the primary colors cu1

(red), cv1
(blue), and cw1

are

distinct, where we take cw1
to be green. Since w1 ∈ Ugood

1 is good, Proposi-

tion 6.2 and Corollary 6.3 guarantee a vertex u0 ∈ N typ
G (w1, U

good
0 ) so that

cu0
is neither cv1

(blue), c({u0, w1}) (green), nor c({v1, w1}) (red). Now,
(v1, w1, u0) contradicts Statement (3) of Corollary 7.2.

Fact 7.3 admits the following corollary.
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Corollary 7.4. There exist distinct u1, v1, w1 ∈ Ugood
1 satisfying S(u1) ∩

S(v1) ∩ S(w1) �= ∅.
Proof of Corollary 7.4. Define the auxiliary directed graph �Γ = (U1, �E) by
the rule that for each (u1, v1) ∈ U1 × U1, we put (u1, v1) ∈ �E if, and only
if, v1 ∈ S(u1). In this notation, S(u1) = N+

�Γ
(u1). We now distinguish two

cases.

Case 1 (|B1| > 2|A1|). For the bipartition A1 ∪B1 (cf. (88)), we infer

∑
a1∈A1

∣∣N−
�Γ
(a1) ∩B1

∣∣ = ∑
b1∈B1

∣∣N+
�Γ
(b1) ∩A1

∣∣
=

∑
b1∈B1

|S(b1) ∩A1| Fct. 7.3=
∑
b1∈B1

|S(b1)|
(86)

≥ |B1| > 2|A1|.

By averaging, there exists ā1 ∈ A1 which satisfies |N−
�Γ
(ā1) ∩B1| ≥ 3, so let

b1, b
′
1, b

′′
1 ∈ N−

�Γ
(ā1). Then

ā1 ∈ N+
Γ (b1) ∩N+

Γ

(
b′1
)
∩N+

Γ

(
b′′1
)
= S(b1) ∩ S

(
b′1
)
∩ S

(
b′′1
)
,

and so S(b1) ∩ S(b′1) ∩ S(b′′1) �= ∅. �

Case 2 (|B1| ≤ 2|A1|). For the bipartition A1 ∪ Ubad
1 (recall A1 ⊆ Ugood

1 ),
we infer

(89)
∑

u1∈Ubad
1

∣∣N−
�Γ
(u1) ∩A1

∣∣ = ∑
a1∈A1

∣∣N+
�Γ
(a1) ∩ Ubad

1

∣∣
=

∑
a1∈A1

∣∣S(a1) ∩ Ubad
1

∣∣ def
≥ |A1|,

where we used the definition of A1 from (88). Moreover, from the bipartition

Ugood
1 = A1 ∪B1, we infer

(90) 3|A1| ≥ |A1|+ |B1| =
∣∣Ugood

1

∣∣ (74)

≥
(
1
3 − 75λ1/4

)
n

(64)

≥ 648λ1/4n
(74)

≥ 9
∣∣Ubad

1

∣∣ =⇒ |A1| ≥ 3
∣∣Ubad

1

∣∣.
Combining (89) and (90) yields

∑
u1∈Ubad

1
|N−

�Γ
(u1) ∩ A1| ≥ 3|Ubad

1 |, and so

an average vertex ū1 ∈ Ubad
1 satisfies |N−

�Γ
(ū1) ∩ A1| ≥ 3. Let a1, a

′
1, a

′′
1 ∈
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N−
�Γ
(ū1), in which case

ū1 ∈ N+
Γ (a1) ∩N+

Γ

(
a′1
)
∩N+

Γ

(
a′′1
)
= S(a1) ∩ S

(
a′1
)
∩ S

(
a′′1
)
,

and so S(a1) ∩ S(a′1) ∩ S(a′′1) �= ∅.

For the remainder of the proof, we fix distinct u1, v1, w1 ∈ Ugood
1 guar-

anteed by Corollary 7.4. We also fix an element x1 ∈ S(u1)∩S(v1)∩S(w1).
We garner the following useful corollary.

Corollary 7.5. The coloring c is constant on the edges EG(x1, U1).

Proof of Corollary 7.5. We first show that

(91) c({u1, x1}) = c({v1, x1}) = c({w1, x1}).

For that, since u1, v1, w1 ∈ Ugood
1 are distinct good vertices, Corollary 6.3

guarantees that cu1
, cv1

, and cw1
are distinct, so we take cu1

to be red, cv1
to

be blue, and cw1
to be yellow. Assume, on the contrary, that c({u1, x1}) �=

c({v1, x1}). Then (u1, x1, v1) is a rainbow U1-path where u1 ∈ Ugood
1 is a good

vertex, so Statement (2) of Corollary 7.2 guarantees that c({x1, v1}) is cu1
=

red. Applying the same argument to (v1, x1, u1), we infer that c({u1, x1}) is
cv1

= blue. Now, cw1
= yellow appears on neither (w1, x1, u1) nor (w1, x1, v1)

(since x1 ∈ S(w1) guarantees that c({w1, x1}) is not cw1
= yellow). Since

w1 ∈ Ugood
1 is a good vertex, Statement (2) of Corollary 7.2 guarantees that

both (w1, x1, u1) and (w1, x1, v1) are monochromatic, and so c({w1, x1}) is
both red and blue, a contradiction.

Corollary 7.5 now easily follows from (91), where we take that common
color to be green. By the argument above, any edge {x1, y1} ∈ EG(x1, U1)
that isn’t colored green must be colored each of red, blue, and yellow, which
isn’t possible.

7.2.3. Finale We return to our goal in (87). Let u1, v1, w1 ∈ Ugood
1 and

x1 ∈ S(u1)∩ S(v1)∩ S(w1) be fixed from the previous subsection, where all
of EG(x1, U1) is colored green, which is the only color from before which we
now need to reference. Then EG(x1, U1∪U2) admits at most |U2|+1 colors,
the set of which we call C = C(x1, U1, U2). As such, the number of non-C
colors on EG(x1, U0) is at least

degcG(x1)− degcG(x1, U1)− degcG(x1, U2) ≥ δc(G)− 1− |U2|

≥ n+5
3 − 1− |U2| = n+2

3 − |U2|
(83)

≥ n+2
3 −

⌊
n
3

⌋
,
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which is positive. Fix u0 ∈ NG(x1, U0) where c({u0, x1}) �∈ C. In particular,

c({u0, x1}) is not green, and we take c({u0, x1}) to be purple. (It won’t mat-

ter if c({u0, x1}) appeared in the previous subsection, so long as c({u0, x1})
is not green.) Define

(92)

T0 =
{
v0 ∈ Ugood

0 : v0 �= u0, cv0
�= c({u0, x1}) = purple, cv0

�= green
}
,

where Corollary 6.3 guarantees

(93) |T0| ≥
∣∣Ugood

0

∣∣− 3
(74)

≥
(
1
3 − 75λ1/4

)
n− 3 = Ω(n).

We make the following critical observation.

Observation 7.6. An edge {v0, x1} ∈ EG(x1, T0) must be colored cv0
.

Proof of Observation 7.6. For a fixed {v0, x1} ∈ EG(x1, T0), we distinguish

two cases.

Case 1 (c({v0, x1}) �= c({u0, x1}) = purple). Here, (v0, x1, u0) is a rainbow

path where v0 ∈ T0 ⊆ Ugood
0 is a good vertex. Statement (2) of Corollary 7.2

guarantees that cv0
appears on (v0, x1, u0), and since cv0

�= c({u0, x1}) =

purple holds by the definition of T0, we must have c({v0, x1}) = cv0
. �

Case 2 (c({v0, x1}) = c({u0, x1}) = purple). Among the fixed distinct

vertices u1, v1, w1 ∈ Ugood
1 above, Corollary 6.3 guarantees that at most one

of the distinct colors cu1
, cv1

, cw1
can equal c({u0, x1}) = c({v0, x1}) =

purple, and at most one of cu1
, cv1

, cw1
can equal cv0

. Assume w.l.o.g. that

cv0
�= cu1

�= c({u0, x1}) = c({v0, x1}) = purple.

Now, the path (u1, x1, v0) is a green-purple rainbow path where u1 ∈ Ugood
1

and v0 ∈ T0 ⊆ Ugood
0 are good vertices satisfying cu1

�= cv0
. Statement (3)

guarantees that one of cv0
�= cu1

appears on (u1, x1, v0), but neither do.

Indeed, cv0
is neither green nor purple by the definition of T0 (cf. (92)), and

cu1
is not green by x1 ∈ S(u1) and it is not purple by our choice above.

We now conclude the proof of Statement (1) of Lemma 2.9 when � ≡ 2

(mod 3). Fix a vertex v0 ∈ T0. By combining Statement (1) of Corollary 7.2

with Observation 7.6, we conclude that all edges EG(v0, U2 ∪ {x1}) are col-
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ored the single primary color cv0
. However distinctly the edges EG(v0, U1 \

{x1}) are colored, the edges EG(v0, U1 ∪ U2) are colored with at most 1 +

(|U1| − 1) = |U1| = �n/3� many colors, one of which is the primary color

cv0
. (Recall that it suffices to consider the case |U2| = |U1| = �n/3�.) All

remaining colors incident to v0 are special and are applied to EG(v0, U0), the

number of which is precisely given by the parameter |cspec(v0, U0)| from (84).

Altogether, we conclude

(94)
∣∣cspec(v0, U0)

∣∣ ≥ degcG(v0, U0)− |c(EG(v0, U1 ∪ U2)|
≥ δc(G)−

⌊
n
3

⌋
≥ n+5

3 −
⌊
n
3

⌋
≥ 5

3 ,

and therefore |cspec(v0, U0)| ≥ 2. Now, (93) and (94) together contradict

Statement (5) of Corollary 7.2.

7.3. Proof of Lemma 2.9: Statement (2) when � ≡ 2 (mod 3)

Let � ≡ 2 (mod 3). The hypothesis of Statement (2) of Lemma 2.9 gives that

δc(G) ≥ (n+4)/3 (cf. (129)). We again assume w.l.o.g. that (83) holds, and

we want to conclude that (G, c) admits a properly colored �-cycle C�.

(95) We assume, on the contrary, that (G, c) does not

admit a properly colored �-cycle C�.

We will show that our assumption in (95) guarantees vertices x1 ∈ Ugood
1 and

y1, z1 ∈ U1, where (x1, y1, z1) is a rainbow U1-path satisfying c({x1, y1}) �=
cx1

. Then (95) contradicts Statement (2) of Corollary 7.2.

We begin our work with an observation. Fix an auxiliary vertex u0 ∈
Ugood
0 , where Statement (1) of Corollary 7.2 guarantees that EG(u0, U2) is

colored only with cu0
. We observe that

(96) EG(u0, U0) is also colored only with cu0
.

To see (96), suppose v0 ∈ NG(u0, U0) admits c({u0, v0}) �= cu0
. Let u1 ∈

NG(v0, U
good
1 ) have color c({v0, u1}) �= c({u0, v0}), where we used degcG(v0,

Ugood
1 ) ≥ ((1/9)− 144λ1/4)n implicit in (74). Statement (1) of Corollary 7.2

guarantees that c({v0, u1}) = cu1
. As such, the number |cspec(u1, U1)| of
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special colors incident to u1 in U1 satisfies

(97)
∣∣cspec(u1, U1)

∣∣ ≥ degcG(u1)− degcG(u1, U0)− degcG(u1, U2)

≥ δc(G)− degcG(u1, U0)− degcG(u1, U2) = δc(G)− 1− degcG(u1, U2)

≥ n+4
3 − 1− |U2|

(83)

≥ n+1
3 −

⌊
n
3

⌋
≥ 1

3 ,

so fix v1 ∈ NG(u1, U1) where c({u1, v1}) �= cu1
. Now, P = (u0, v0, u1, v1) is

a properly colored path where c({u0, v0}) �= cu0
. Proposition 7.1 guarantees

(with i = 0, j = 1, k = 4, and � ≡ 2 (mod 3)) that P can be extended to a
strong rainbow �-cycle C�, contradicting (95). This proves (96).

We choose the first promised vertex x1 ∈ Ugood
1 arbitrarily, where the

auxiliary vertex u0 ∈Ugood
0 above is still fixed. To choose the second promised

vertex y1 ∈ U1, define

Au0
= {u1 ∈ NG(u0, U1) : c({u0, u1}) �= cu0

} and

Bx1
= {v1 ∈ NG(x1, U1) : c({x1, v1}) �= cx1

}.
(98)

(The set Bx1
is the same as S(x1) from the previous subsection.) Then

Au0
∪Bx1

⊆ U1, and so

(99) |Au0
∩Bx1

| = |Au0
|+ |Bx1

| − |Au0
∪Bx1

| ≥ |Au0
|+ |Bx1

| − |U1|.

From our observation above (cf. (96)), all of EG(u0, U0 ∪U2) is colored with

cu0
, and therefore |Au0

| ≥ degcG(u0)− 1. Since x1 ∈ Ugood
1 is a good vertex,

Statement (1) of Corollary 7.2 guarantees that all of EG(x1, U0) is colored
with cx1

, and therefore

|Bx1
| ≥ degcG(x1)− degcG(x1, U0)− degcG(x1, U2) ≥ degcG(x1)− 1− |U2|.

Returning to (99), we conclude

|Au0
∩Bx1

| ≥ |Au0
|+ |Bx1

| − |U1| ≥ degcG(u0) + degcG(x1)− 2− |U1| − |U2|
= degcG(u0) + degcG(x1)− 2− (n− |U0|) ≥ 2δc(G)− 2− n+ |U0|

≥ 2
(
n+4
3

)
− 2− n+ |U0| = 2n+2

3 − n+ |U0|
(83)

≥ 2n+2
3 − n+

⌈
n
3

⌉
≥ 2

3 .

Fix y1 ∈ Au0
∩Bx1

arbitrarily.
To choose the third promised vertex z1 ∈ U1, we make a couple observa-

tions. First, we observe that the path (x1, y1, u0) must be monochromatic.
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Indeed, since y1 ∈ Au0
∩ Bx1

, we infer from (98) that c({u0, y1}) �= cu0
and

c({x1, y1}) �= cx1
. Thus, if (x1, y1, u0) were rainbow, then Statement (3) of

Corollary 7.2 would guarantee that (G, c) admits a properly colored �-cycle
C�, contradicting (95). Henceforth, we take c({u0, y1}) = c({x1, y1}) to be
blue. Second, we observe that

(100) all of EG(y1, U0) is colored by c({u0, y1}) = c({x1, y1}) = blue.

Indeed, suppose {v0, y1} ∈ EG(y1, U0) admitted c({v0, y1}) �= c({u0, y1}) =
blue. Then (u0, y1, v0) is a rainbow path with c({u0, y1}) �= cu0

(because
y1 ∈ Au0

from (98)). Statement (2) of Corollary 7.2 then guarantees that
(G, c) admits a properly colored �-cycle C�, again contradicting (95). Now,
all of EG(y1, U0∪{x1}) is colored blue, and so the number of non-blue colors
of EG(y1, U1) is at least

degcG(y1)− degcG(y1, U0)− degcG(y1, U2) = degcG(y1)− 1− degcG(y1, U2)

≥ δc(G)− 1− |U2| ≥ n+4
3 − 1− |U2|

(83)

≥ n+1
3 −

⌊
n
3

⌋
≥ 1

3 .

Fix any z1 ∈ NG(y1, U1) for which c({y1, z1}) is not blue. Since c({x1, y1})
is blue, we infer that (x1, y1, z1) is a rainbow path where cx1

�= c({x1, y1}) =
blue is guaranteed by y1 ∈ Bx1

from (98). Thus, Statement (2) of Corol-
lary 7.2 guarantees from the rainbow U1-path (x1, y1, z1) (where cx1

�=
c({x1, y1}) = blue) that (G, c) admits a properly colored �-cycle C�, again
contradicting (95).

8. Proof of Lemma 2.9 – Part 3: strong or short cycles and
the case � ≡ 1 (mod 3)

Continuing from the previous sections, we prove Lemma 2.9 in the case � ≡ 1
(mod 3). For this, we will need a number of supporting details, where we
begin by establishing an analogue of Corollary 7.2 for � ≡ 1 (mod 3) (another
corollary of Proposition 7.1). We use the following terminology and notation.

For a fixed j ∈ Z3, recall the set Uj = Ugood
j ∪ Ubad

j (cf. (74)). We shall say

that a vertex uj ∈ Ubad
j is an internal (bad) vertex if degcG(uj , Uj) ≥ 3, and

that uj ∈ Ubad
j is an external (bad) vertex otherwise. We then define

Ibadj =
{
uj ∈ Ubad

j : degcG(uj , Uj) ≥ 3
}

and

Ebad
j =

{
uj ∈ Ubad

j : degcG(uj , Uj) ≤ 2
}
.

(101)
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Corollary 8.1. Let � ≡ 1 (mod 3). Fix an index j ∈ Z3, a vertex uj ∈ Ugood
j ,

and an edge {uj , v} ∈ E.

1. If v ∈ Uj or v ∈ Ibadj+1, then c({uj , v}) = cuj
is the primary color of uj.

2. The edges EG(uj , Uj−1) admit at least degcG(uj) − 1 − |Uj+1 \ Ibadj+1|
non-cuj

colors.

3. If v ∈ Ubad
j−1 and c({uj , v}) �= cuj

, then degcG(v, Uj) ≥ ((1/6)−37λ1/4)n.

4. If v ∈ Ebad
j−1 and c({uj , v}) �= cuj

, then degcG(v, Uj) ≥ degcG(v)− 3.

5. If v ∈ Ugood
j−1 and c({uj , v}) �= cuj

, then degcG(v, Uj \ Ibadj ) ≥ degcG(v)−
1.

Proof of Corollary 8.1. Let � ≡ 1 (mod 3). Fix an index j ∈ Z3, and

w.l.o.g. let j = 0 ∈ Z3. Fix a good vertex u0 ∈ Ugood
0 , and fix an edge

{u0, v} ∈ E.
For Statement (1), assume first that v ∈ U0. If c({u0, v}) �= cu0

, then
P = (u0, v) is a cu0

-free rainbow path which Proposition 7.1 extends to a
strong rainbow �-cycle C� (using i = j = 0, k = 2, and K = � ≡ 1 (mod 3)),
contradicting (66). Assume next that v ∈ Ibad1 , in which case v sees at least
three colors in U1. If c({u0, v}) �= cu0

, then v admits a neighbor w1 ∈ U1

where c({v, w1}) is neither cu0
nor c({u0, v}). Now, P = (u0, v, w1) is a

cu0
-free rainbow path which Proposition 7.1 extends to a strong rainbow

�-cycle C� (using i = 0, j = 1, k = 3, and K = � ≡ 1 (mod 3)), again
contradicting (66).

Statement (2) is an easy consequence of Statement (1). For u0 ∈ Ugood
0

satisfies

(102) degcG(u0) = degcG(u0, U0) + degcG(u0, U1) + degcG(u0, U2),

where Statement (1) guarantees that all edges of EG(u0, U0∪Ibad1 ) are colored
cu0

. However colors are assigned to EG(u0, U1 \Ibad1 ), at least degcG(u0)−1−
|U1 \ Ibad1 | many non-cu0

colors remain, and these must occur on the edges
of EG(u0, U2).

For Statement (3), we prepare an observation used multiple times below.
For an edge {u0, u2} ∈ EG(u0, U2) satisfying c({u0, u2}) �= cu0

, we observe
that

(103) every edge {u2, u1} ∈ EG(u2, U1)

must be colored either c({u0, u2}) or cu0
,

lest (u0, u2, u1) is a cu0
-free rainbow path which Proposition 7.1 extends to

a strong rainbow �-cycle C� (using i = 0, j = 1, k = 3, and K = � ≡ 1
(mod 3)), contradicting (66). Now, as in Statement (3), assume v ∈ Ubad

2
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where c({u0, v}) �= cu0
. Then (103) gives degcG(v, U

good
1 ) ≤ 2, where (72)

and (73) add that v ∈ Ubad
2 satisfies

degcG
(
v, Ugood

0

)
≥ max

{
degcG

(
v, Ugood

1

)
, degcG

(
v, Ugood

2

)}
≥ degcG

(
v, Ugood

2

)
.

Since V = Ugood
1 ∪ Ugood

2 ∪ Ugood
3 ∪ V bad is a partition,

(104)

degcG(v) = degcG
(
v, Ugood

0

)
+ degcG

(
v, Ugood

1

)
+degcG

(
v, Ugood

2

)
+ degcG

(
v, V bad

)
≤ degcG

(
v, Ugood

0

)
+ degcG

(
v, Ugood

1

)
+degcG

(
v, Ugood

2

)
+
∣∣V bad

∣∣
(103)

≤ degcG
(
v, Ugood

0

)
+ 2 + degcG

(
v, Ugood

2

)
+
∣∣V bad

∣∣
(73)

≤ 2 degcG
(
v, Ugood

0

)
+ 2 +

∣∣V bad
∣∣

(74)

≤ 2 degcG
(
v, Ugood

0

)
+ 2 + 72λ1/4n

≤ 2 degcG
(
v, Ugood

0

)
+ 73λ1/4n.

Thus, we conclude Statement (3) from

degcG(v, U0) ≥ degcG
(
v, Ugood

0

) (104)

≥ 1
2

(
degcG(v)− 73λ1/4n

)
≥ 1

2

(
δc(G)− 73λ1/4n

)
≥ 1

2

(
n+4
3 − 73λ1/4n

)
≥

(
1
6 − 37λ1/4

)
n.

For Statement (4), assume that v ∈ Ebad
2 and that c({u0, v}) �= cu0

. As
before with (102), we have

degcG(v) = degcG(v, U0) + degcG(v, U1) + degcG(v, U2).

By the definition of Ebad
2 in (101), we have degcG(v, U2) ≤ 2. Moreover,

(103) gives degG(v, U1) ≤ 2, where these colors can only be c({u0, v}) and
cu0

. Since c({u0, v}) is used on EG(v, U0), Statement (4) follows.

For Statement (5), assume that v ∈ Ugood
2 and that c({u0, v}) �= cu0

. As
before with (102), we have

degcG(v) = degcG(v, U0) + degcG(v, U1) + degcG(v, U2).

Statement (1) ensures that all edges of EG(v, U2 ∪ Ibad0 ) are assigned the
primary color cv. Moreover, (103) gives all edges of EG(v, U1) are assigned
c({u0, v}) and cu0

, which must include cv. Now, all non-{cu0
, cv} colors in-
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cident to v must be on the edges EG(v, U0 \ Ibad0 ), where c({u0, v}) is one
such color used. In either case of cv ∈ {cu0

, c({u0, v})}, only cu0
is possibly

not used on EG(v, U0 \ Ibad0 ).

8.1. On 4-cycles C4 in (G, c) when � ≡ 1 (mod 3)

Since 4 ≡ 1 (mod 3), which is the modular case of Lemma 2.9 we seek to
prove, we study 4-cycles C4 in (G, c) from the point of view of Proposition 7.1
and Corollary 8.1. We begin with the following notation and terminology. For
j ∈ Z3 and uj ∈ Uj , recall from (77) that an edge {uj , uj−1} ∈ EG(uj , Uj−1)
is said to be typical when c({uj , uj−1}) = cuj

is the primary color of uj , and
is said to be special otherwise. In the reverse of (77), we write

N typ
G

(
uj−1, U

good
j

)
=

{
uj ∈ NG

(
uj−1, U

good
j

)
: c({uj−1, uj}) = cuj

}
,

N spec
G

(
uj−1, U

good
j

)
=

{
uj ∈ NG

(
uj−1, U

good
j

)
: c({uj−1, uj}) �= cuj

}
,

degtypG

(
uj−1, U

good
j

)
=

∣∣∣N typ
G

(
uj−1, U

good
j

)∣∣∣, and

degspecG

(
uj−1, U

good
j

)
=

∣∣∣N spec
G

(
uj−1, U

good
j

)∣∣∣.
We proceed with an initial observation.

Observation 8.2. Let � ≡ 1 (mod 3). Fix j ∈ Z3, uj−1 ∈ Uj−1, and

uj �= vj ∈ N spec
G (uj−1, U

good
j ). Then c({uj−1, uj}), c({uj−1, vj}), cuj

, and
cvj

can’t all be distinct.

Proof of Observation 8.2. Let � ≡ 1 (mod 3). Fix j ∈ Z3, and w.l.o.g. let j =

0. Fix u2 ∈ U2 and fix u0 �= v0 ∈ N spec
G (u2, U

good
0 ). We apply Proposition 6.2

and Corollary 6.3 to each of u0 �= v0 ∈ Ugood
0 to determine at least

∣∣Ugood
2

∣∣− 482λ1/4n
(74)

≥
(
1

3
− 557λ1/4

)
n

(64)
> 0

many vertices w2 ∈ Ugood
2 for which {u0, w2}, {v0, w2} ∈ E and

c({u0, w2}) = cu0
�= cv0

= c({v0, w2}).

If Observation 8.2 is false, then (u0, w2, v0, u2) is a strong rainbow 4-cycle
which Statement (3) of Proposition 7.1 extends to a strong rainbow �-cycle
C�, contradicting (66).

We continue with a second observation, which is a corollary of the one
above.
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Corollary 8.3. Let � ≡ 1 (mod 3). Fix j ∈ Z3 and uj−1 ∈ Uj−1. If

degspecG (uj−1, U
good
j ) ≥ 4, then all but at most one of the edges {uj−1, uj} ∈

E, where uj ∈ N spec
G (uj−1, U

good
j ) are monochromatic. Thus,

degtypG

(
uj−1, U

good
j

)
≥ degcG

(
uj−1, U

good
j

)
− 3,

where in particular

degtypG

(
uj−1, U

good
j

)
≥

{ (
1
6 − 110λ1/4

)
n if degspecG (uj−1, U

good
j ) ≥ 1,(

1
9 − 144λ1/4

)
n otherwise.

Proof of Corollary 8.3. Let � ≡ 1 (mod 3). Fix j ∈ Z3 and w.l.o.g. assume

j = 0. Fix u2 ∈ U2 and assume that degspecG (u2, U
good
0 ) ≥ 4. For sake of

argument,

(105) we assume the special edges {u2, u0} ∈ E,

where u0 ∈ N spec
G (u2, U

good
0 ), are not entirely monochromatic.

We consider two cases.

Case 1 (∃ u0 �= v0 ∈ N spec
G (u2, U

good
0 ): c({u2, u0}) = c({u2, v0})). Fix

u0 �= v0 ∈ N spec
G (u2, U

good
0 ) with c({u2, u0}) = c({u2, v0}). Using (105), we

infer the existence of an edge {u2, w0} ∈ E, where w0 ∈ N spec
G (u2, U

good
0 ),

for which c({u2, w0}) �= c({u2, u0}) = c({u2, v0}). We claim that

(106) c({u2, u0}) = c({u2, v0}) = cw0
.

Indeed, pivoting {u2, u0} against {u2, w0}, Observation 8.2 ensures
c({u2, u0}) = cw0

or c({u2, w0}) = cu0
. In the former case, (106) holds

by the hypothesis of Case 1. In the latter case, we pivot {u2, v0} against
{u2, w0}, where Observation 8.2 gives c({u2, v0}) = cw0

or c({u2, w0}) = cv0
.

If c({u2, w0}) = cu0
, then Corollary 6.3 gives c({u2, w0}) �= cv0

, and so
c({u2, v0}) = cw0

and again (106) holds.
If the first conclusion of Corollary 8.3 does not hold, we ignore the

edge {u2, w0} to infer the existence of an edge {u2, x0} ∈ E, where x0 ∈
N spec

G (u2, U
good
0 ), for which c({u2, x0}) �= c({u2, u0}). By (106),

cx0
= c({u2, u0}) = c({u2, v0}) = cw0

,

and x0 �= w0 ∈ Ugood
0 contradicts Corollary 6.3. �
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Case 2 (∀ u0 �= v0 ∈ N spec
G (u2, U

good
0 ), c({u2, u0}) �= c({u2, v0})). Since

degspecG (u2, U
good
0 ) ≥ 4, fix distinct u0, v0, w0, x0 ∈ N spec

G (u2, U
good
0 ). Using

Observation 8.2, we take w.l.o.g. c({u2, u0}) = cv0
. Observation 8.2 then

ensures that c({u2, w0}) = cu0
(since cv0

�= cw0
from Corollary 6.3) and

c({u2, x0}) = cu0
, which contradicts the hypothesis of Case 2. �

The remaining assertions of Corollary 8.3 are now easy to establish.
When degspecG (u2, U

good
0 ) = 0, all edges of EG(u2, U

good
0 ) are typical, and so

degtypG

(
u2, U

good
0

)
≥ degcG

(
u2, U

good
0

)
(74)

≥
(
1
9 − 72λ1/4

)
n− 72λ1/4n =

(
1
9 − 144λ1/4

)
n.

When degspecG (u2, U
good
0 ) ≥ 1, the first assertion of Corollary 8.3 guarantees

that edges {u2, u0} ∈ E with u0 ∈ N spec
G (u2, U

good
0 ) are colored with at most

three colors. Thus,

degtypG

(
u2, U

good
0

)
≥ degcG

(
u2, U

good
0

)
−3

Cor. 8.1
≥

(
1
6−37λ1/4

)
n−72λ1/4n−3

=
(
1
6 − 109λ1/4

)
n− 3 ≥

(
1
6 − 110λ1/4

)
n,

as promised.

Definition 8.4 (j-special). A 4-cycle (uj , uj−1, vj , vj−1) is j-special for some

j ∈ Z3 if uj , vj ∈ Ugood
j , uj−1, vj−1 ∈ Uj−1, {uj , uj−1}, {vj , vj−1} ∈ E are

typical, and {uj , vj−1}, {vj , uj−1} ∈ E are special.

Observation 8.5. Let � ≡ 1 (mod 3), and fix j ∈ Z3. A j-special 4-
cycle (uj , uj−1, vj , vj−1) receives precisely three colors, where in particular
c({uj , vj−1}) = c({vj , uj−1}).
Proof of Observation 8.5. Let � ≡ 1 (mod 3). Fix j ∈ Z3, and w.l.o.g. let
j = 0. Fix a 0-special 4-cycle (u0, u2, v0, v2). By its definition, we infer
c({u2, u0}) = cu0

and c({v2, v0}) = cv0
are primary, which Corollary 6.3

ensures are distinct. By its definition, c({u0, v2}) �= cu0
and c({v0, u2}) �=

cv0
are special. Observe that c({u0, v2}) �= cv0

since otherwise Proposi-
tion 6.2 guarantees that G − {v0, v2} (here denoting edge-removal) con-
tradicts (67). Similarly, c({v0, u2}) �= cu0

. Thus, if c({u0, v2}) �= c({v0, u2}),
then (u0, u2, v0, v2) is a strong rainbow 4-cycle which Statement (3) of Propo-
sition 7.1 extends to a strong rainbow �-cycle C�, contradicting (66).

We conclude this subsection with a corollary of the preceding observa-
tion.
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Corollary 8.6. Let � ≡ 1 (mod 3). Fix j ∈ Z3, uj−1 �= vj−1 ∈ Uj−1, and a
color α from c. Set

A = Aα(uj−1) =
{
uj ∈ N spec

G (uj−1, Uj) : c({uj , uj−1}) = α
}

and

B = Bα(vj−1) =
{
vj ∈ N spec

G (vj−1, Uj) : c({vj , vj−1}) �= α
}
.

Then |A ∪B| < ((1/6) + 258λ1/4)n.

Proof of Corollary 8.6. Let � ≡ 1 (mod 3). Fix j ∈ Z3, and w.l.o.g. let j = 0.
Fix u2 �= v2 ∈ U2 and fix a color α of c. Let A = A(u2) and B = B(v2) be
defined as above, but assume for contradiction that

(107) |A ∪B| ≥
(
1
6 + 258λ1/4

)
n.

We will use (107) to guarantee distinct vertices

(108) N typ
G

(
u2, U

good
0

)
∩ (A ∪B) � u0 �= v0 ∈ N typ

G

(
v2, U

good
0

)
∩ (A ∪B).

If (108) holds, then it will conclude our proof, because (u2, u0, v2, v0) would
be a rainbow 0-special 4-cycle, contradicting Observation 8.5. To see this,
we first note from (108) that u0 �= v0 ∈ Ugood

0 are good vertices, where u0 ∈
N typ

G (u2, U
good
0 ) guarantees c({u0, u2}) = cu0

and v0 ∈ N typ
G (v2, U

good
0 ) guar-

antees c({v0, v2}) = cv0
, and where cu0

�= cv0
is guaranteed by Corollary 6.3.

Since u0 ∈ A ∪B happens only from u0 ∈ B \ A (because c({u0, u2}) = cu0

is not special for u0), we infer c({u0, v2}) �= α is some non-α special color for
u0. Since v0 ∈ A∪B happens only from v0 ∈ A\B (because c({v0, v2}) = cv0

is not special for v0), we infer c({v0, u2}) = α is special for v0. (Note: the
existence of vertices u0 and v0 in (108) implies they are necessarily distinct.)
Thus, (u2, u0, v2, v0) is a rainbow 0-special 4-cycle, as claimed.

To prove (108) (from (107)), define

Agood = A ∩ Ugood
0 and Bgood = B ∩ Ugood

0 .

Then

(109)
∣∣Agood ∪Bgood

∣∣ (74)

≥ |A ∪B| − 72λ1/4n
(107)

≥
(
1
6 + 186λ1/4

)
n,

and so one of |Agood| or |Bgood| is large. Our proof will ultimately show that
both are large, and so we begin by assuming the former is non-empty. We
therefore infer that degspecG (u2, U

good
0 ) ≥ |Agood| > 0, and so Corollary 8.3
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gives

(110) degtypG

(
u2, U

good
0

)
≥

(
1
6 − 110λ1/4

)
n.

If N typ
G (u2, U

good
0 ) and A ∪B were disjoint, we would have

(111) |U0| ≥ degtypG

(
u2, U

good
0

)
+ |A ∪B|

(110)

≥
(
1
6 − 110λ1/4

)
n+ |A ∪B|

(107)

≥
(
1
6 − 110λ1/4

)
n+

(
1
6 + 258λ1/4

)
n =

(
1
3 + 148λ1/4

)
n

(74)
> |U0|,

a contradiction. This guarantees the existence of the vertex u0 in (108).
To guarantee the existence of the vertex v0 in (108), we argue similarly.

For that, N typ
G (u2, U

good
0 ) and Agood are disjoint subsets of Ugood

0 , and so

(112)
∣∣Agood

∣∣+ (
1
6 − 110λ1/4

)
n

(110)

≤
∣∣Agood

∣∣+ degtypG

(
u2, U

good
0

)
≤

∣∣Ugood
0

∣∣ (74)

≤
(
1
3 + 75λ1/4

)
n =⇒

∣∣Agood
∣∣ ≤ (

1
6 + 185λ1/4

)
n.

Thus,

degspecG

(
v2, U

good
0

)
≥

∣∣Bgood \Agood
∣∣ = ∣∣Agood ∪Bgood

∣∣− ∣∣Agood
∣∣

(109)

≥
(
1
6 + 186λ1/4

)
n−

∣∣Agood
∣∣ (112)

≥ λ1/4n > 0,

and so Corollary 8.3 gives

degtypG

(
v2, U

good
0

)
≥

(
1
6 − 110λ1/4

)
n.

We now proceed identically to before with (110)–(111).

8.2. Amenable elements of Z3

Recall the partition V (G) = U0∪U1∪U2 of (G, c) from (74). For each j ∈ Z3,
recall the (so-called internal and external) sets of bad vertices

Ibadj = {uj ∈ Ubad
j : degcG(uj , Uj) ≥ 3} and

Ebad
j = {uj ∈ Ubad

j : degcG(uj , Uj) ≤ 2}

from (101). In particular, Ubad
j = Ibadj ∪ Ebad

j is a partition, and so

(113) Uj = Ugood
j ∪ Ubad

j = Ugood
j ∪ Ibadj ∪ Ebad

j
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are partitions. We set

(114) Ûj = Ugood
j ∪ Ebad

j and Δj = m−
∣∣Ûj

∣∣,
wherem = �n/3� from (68). The following observation follows by elementary
means (independent from � (mod 3)), and plays an important role in our
proof of Lemma 2.9.

Observation 8.7. There exists j ∈ Z3 so that

1. Δj ≥ 0;
2. |Ibadj+1| ≤ 2Δj;
3. |Uj+2| ≤ m+ 2Δj + 2.

We say that an element j ∈ Z3 satisfying Conclusions (1)–(3) of Obser-
vation 8.7 is amenable.

Proof of Observation 8.7. Without loss of generality, let

(115) Δ0 = max{Δ0,Δ1,Δ2}.

Conclusion (1) now holds with j = 0 (cf. 115), lest Δ1,Δ2 ≤ Δ0 ≤ −1
and m = �n/3� ≥ (n− 2)/3 give

3m−
∣∣Û0

∣∣− ∣∣Û1

∣∣− ∣∣Û2

∣∣ (114)
= Δ0 +Δ1 +Δ2 ≤ −3

=⇒ 3m+3 ≤
∣∣Û0

∣∣+∣∣Û1

∣∣+∣∣Û2

∣∣ (113),(114)

≤ |U0|+|U1|+|U2| = n ≤ 3m+2,

a contradiction. Conclusion (3) also holds with j = 0 (cf. 115), since

|U2| = n−|U0|−|U1|
(113),(114)

= n−
∣∣Ibad0

∣∣−∣∣Û0

∣∣−∣∣Ibad1

∣∣−∣∣Û1

∣∣ ≤ n−
∣∣Û0

∣∣−∣∣Û1

∣∣
≤ m+2+

(
m−

∣∣Û0

∣∣)+(
m−

∣∣Û1

∣∣) (114)
= m+2+Δ0+Δ1

(115)

≤ m+2Δ0+2.

For sake of argument, we assume that Conclusion (2) fails with j = 0
(cf. 115):

(116)
∣∣Ibad1

∣∣ ≥ 2Δ0 + 1.

Observe that

(117)
∣∣Ibad0

∣∣+ ∣∣Ibad1

∣∣ ≤ ∣∣Ibad0

∣∣+ ∣∣Ibad1

∣∣+ ∣∣Ibad2

∣∣
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(113),(114)
= n−

∣∣Û0

∣∣− ∣∣Û1

∣∣− ∣∣Û2

∣∣
≤ 2 +

(
m−

∣∣Û0

∣∣)+
(
m−

∣∣Û1

∣∣)+
(
m−

∣∣Û2

∣∣) (114)
= 2 +Δ0 +Δ1 +Δ2,

=⇒ 0 ≤
∣∣Ibad0

∣∣ ≤ 2+Δ0 +Δ1 +Δ2 −
∣∣Ibad1

∣∣ (116)

≤ 1+Δ1 +Δ2 −Δ0.

We claim that, when Δ1 ≤ −1 holds, j = 2 satisfies Observation 8.7. Indeed,

0 ≤
∣∣Ibad0

∣∣ (117)

≤ 1 + Δ1 +Δ2 −Δ0 ≤ 0

follows from (115) and our current assumption Δ1 ≤ −1. Necessarily then,
Ibad0 = ∅, Δ1 = −1, and Δ2 = Δ0 ≥ 0 also achieves the maximum in (115).
In particular, j = 2 satisfies Conclusion (2) of Observation 8.7 by |Ibad0 | =
0 ≤ 2Δ2, and it satisfies Conclusions (1) and (3) of Observation 8.7 by
Δ2 = max{Δ0,Δ1,Δ2} (see our work between (115) and (116)).

For sake of argument, we assume that

(118) Δ1 ≥ 0.

Note that (118) says Conclusion (1) holds with j = 1. Conclusion (3) also
holds with j = 1, since

|U0|
(113),(114)

=
∣∣Û0

∣∣+ ∣∣Ibad0

∣∣ (117)

≤
∣∣Û0

∣∣+ 1 +Δ1 +Δ2 −Δ0

(115)

≤
∣∣Û0

∣∣+1+Δ1
(114)
= m−Δ0+1+Δ1

(115)

≤ m+1+Δ1

(118)

≤ m+2Δ1+2,

where we used Δ0 ≥ 0. For sake of argument, we assume Conclusion (2)
fails with j = 1:

(119)
∣∣Ibad2

∣∣ ≥ 2Δ1 + 1.

We conclude that Observation 8.7 holds with j = 2. For that, observe
that

∣∣Ibad0

∣∣+2Δ0+2Δ1+2
(116),(119)

≤
∣∣Ibad0

∣∣+∣∣Ibad1

∣∣+∣∣Ibad2

∣∣ (117)

≤ 2+Δ0+Δ1+Δ2

=⇒ 0 ≤
∣∣Ibad0

∣∣ ≤ Δ2 −Δ0 −Δ1

(115)

≤ −Δ1

(118)

≤ 0.

Thus, Ibad0 = ∅, Δ1 = 0, and Δ2 = Δ0 is the maximum from (115). As Δ2 =
Δ0 is the maximum from (115), we already observed that Conclusion (1)
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holds, i.e., Δ2 ≥ 0, and that Conclusion (3) holds, i.e., |U1| ≤ m+ 2Δ2 + 2.
Since Δ1 = 0 and Ibad0 = ∅, Conclusion (2) also holds, i.e., |Ibad0 | = 0 ≤ 2Δ2,
which completes the proof of Observation 8.7.

Observation 8.7 guarantees at least one amenable element j ∈ Z3, i.e.,
one where Conclusions (1)–(3) of Observation 8.7 hold. We next consider
properties of an amenable j ∈ Z3 when � ≡ 1 (mod 3).

Fact 8.8. Let � ≡ 1 (mod 3). Let j ∈ Z3 be amenable, and fix uj+1 ∈ Uj+1.
Then

degspecG (uj+1, U
good
j+2 ) ≤

{
2Δj + 5 if uj+1 ∈ Ûj+1 (cf. (114)),
n/(10) if uj+1 ∈ Ibadj+1 (cf. (101) and (114)).

Proof of Fact 8.8. Let �≡ 1 (mod 3). Fix an amenable j ∈Z3, and w.l.o.g. let
j = 0. Note first that

(120) degcG(v, U2) ≥ degcG(v)− 3

for every v ∈ Û1 with degspecG (v, Ugood
2 ) > 0,

since u2 ∈ N spec
G (v, Ugood

2 ) gives u2 ∈ Ugood
2 and c({u2, v}) �= cu2

, and v ∈
Û1 = Ugood

1 ∪Ebad
1 allows us to apply Statement (4) or (5) of Corollary 8.1.

Fix a vertex u1 ∈ U1, and first let u1 ∈ Û1. Assume, on the contrary,
that

(121) degspecG (u1, U
good
2 ) ≥ 2Δ0 + 6

Obs. 8.7
≥ 6.

Now, the edges EG(u1, U2) consist of degcG(u1, U2) many distinctly col-
ored edges together with some number of edges of repeated colors. By
Corollary 8.3, the special edges Espec

G (u1, U
good
2 ), i.e., those of the form

{u1, u2} ∈ E for u2 ∈ N spec
G (u1, U

good
2 ), come in at most two colors, so

we have

|U2| ≥ degG(u1, U2) ≥ degcG(u1, U2) + degspecG

(
u1, U

good
2

)
− 2

(120)

≥ degcG(u1)+degspecG

(
u1, U

good
2

)
−5

(121)

≥ degcG(u1)+2Δ0+1
(68)

≥ m+2Δ0+3,

which contradicts Conclusion (3) of Observation 8.7.
Now let u1 ∈ Ibad1 . Assume, on the contrary, that

(122) degspecG

(
u1, U

good
2

)
> n

10 .
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By Corollary 8.3, all but one of the edges Espec
G (u1, U

good
2 ) are monochro-

matic, and in some color α of c. To prepare an upcoming application of

Corollary 8.6, we define

(123) A2 = A2(u1) =
{
v2 ∈ N spec

G

(
u1, U

good
2

)
: c({u1, v2}) = α

}
,

where |A2|
Cor. 8.3
≥ degspecG

(
u1, U

good
2

)
− 1

(122)
> n

10 − 1 ≥ n
11 .

For Corollary 8.6, we will identify a set B2 ⊆ Ugood
2 corresponding to A2

above3. For that, we first consider the following superset B2 ⊇ B2, from

which we will later extract B2:

(124) B2 = N typ
G

(
u1, U

good
2

)
, where

∣∣B2

∣∣ Cor. 8.3
≥

(
1
6 − 110λ1/4

)
n.

We claim that for fixed u2 ∈ B2,

(125) degtypG (v1, A2) > 0 for every v1 ∈ N spec
G (u2, Û1),

since then degspecG (v1, U
good
2 ) > 0 (with u2 ∈ N spec

G (v1, U
good
2 )) and inclusion-

exclusion gives

Ugood
2 ⊇ A2 ∪N typ

G

(
v1, U

good
2

)
=⇒

∣∣Ugood
2

∣∣ ≥ |A2|+ degtypG

(
v1, U

good
2

)
− degtypG (v1, A2)

=⇒ degtypG (v1, A2) ≥ |A2|+ degtypG

(
v1, U

good
2

)
−
∣∣Ugood

2

∣∣
(123)
> n

11 + degtypG

(
v1, U

good
2

)
−
∣∣Ugood

2

∣∣
(74)

≥ n
11 + degtypG

(
v1, U

good
2

)
−
(
1
3 + 75λ1/4

)
n

Cor. 8.3
≥ n

11 + degcG
(
v1, U

good
2

)
− 3−

(
1
3 + 75λ1/4

)
n

(74)

≥ n
11 + degcG(v1, U2)− 3−

(
1
3 + 147λ1/4

)
n

(120)

≥ n
11 +degcG(v1)− 6−

(
1
3 +147λ1/4

)
n ≥ n

11 + δc(G)− 6−
(
1
3 +147λ1/4

)
n

(65)

≥ n
11 − 6− 147λ1/4n ≥ n

11 − 148λ1/4n
(64)
> 0.

3Strictly speaking, the set B2 we will define below will be a subset of that in the
hypothesis of Corollary 8.6.
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We can now show that

(126) c({u2, v1}) = α for every v1 ∈ N spec
G (u2, Û1).

Indeed, by (125), there exists v2 ∈ N typ
G (v1, A2). Note that v2 ∈ A2 im-

plies that {u1, v2} is a special edge with color α. Furthemore, both u2 ∈
B2 and v2 ∈ A2 are good vertices, both {u2, u1} and {v2, v1} are typical

edges, and both {u2, v1} and {v2, u1} are special edges. Thus, the 4-cycle

(u1, u2, v1, v2) is 2-special (cf. Definition 8.4), so Observation 8.5 guarantees

that c({u2, v1}) = c({v2, u1}) = α.

To extract the desired subset B2 ⊆ B2 from (124), we double-count

Z =
{
{u2, v1} ∈ E : u2 ∈ B2, v1 ∈ N spec

G (u2, I
bad
1 ), and c({v1, u2}) �= α

}
.

For each u2 ∈ B2, Statement (2) of Corollary 8.1 ensures that EG(u2, U1)

admits at least

degcG(u2)− 1−
∣∣U0 \ Ibad0

∣∣ (114)
= degcG(u2)− 1−

∣∣Û0

∣∣
many special colors for u2. By (126), every special edge {u2, v1} ∈ EG(u2, Û1)

is colored c({u2, v1}) = α, which is forbidden in Z. Thus,

|Z| ≥
∑

u2∈B2

(
degcG(u2)− 2−

∣∣Û0

∣∣) (68)

≥
∑

u2∈B2

(
m−

∣∣Û0

∣∣)

(114)
=

∑
u2∈B2

Δ0 = Δ0

∣∣B2

∣∣ Obs. 8.7
≥ 1

2

∣∣Ibad1

∣∣∣∣B2

∣∣.
Averaging |Z| over Ibad1 , we infer the existence of a vertex v1 ∈ Ibad1 where

(127) B2 = B2(v1) =
{
u2 ∈ N spec

G

(
v1, B2

)
: c({u2, v1}) �= α

}
satisfies

(128) |B2| ≥ 1
2

∣∣B2

∣∣ (124)

≥ 1
2

(
1
6 − 110λ1/4

)
n.

Consider the sets A2 = A2(u1) and B2 = B2(v1) from (123) and (127).

Since B2 ⊆ B2 where A2 ∩ B2 = ∅ from (124), we infer that A2 ∪ B2 is a
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disjoint union of size

|A2 ∪B2| = |A2|+ |B2|
(123)

≥ n
11 + |B2|

(128)

≥ n
11 + 1

2

(
1
6 − 110λ1/4

)
n

=
(

23
132 − 55λ1/4

)
n

(64)
>

(
1
6 + 258λ1/4

)
n,

which contradicts Corollary 8.6, and concludes the proof of Fact 8.8.

Fact 8.8 admits the following easy but useful corollary.

Corollary 8.9. Let � ≡ 1 (mod 3), and fix an amenable element j ∈ Z3. Fix
an integer Δ ≥ max{1,Δj}, and fix Wj+1 ⊆ Uj+1 of size |Wj+1| < n/(100).
Then ∣∣∣Espec

G

(
Wj+1, U

good
j+2

)∣∣∣ ≤ 3
10Δn,

where Espec
G (Wj+1, U

good
j+2 ) includes all {wj+1, uj+2} ∈ E with wj+1 ∈ Wj+1

and uj+2 ∈ N spec
G (wj+1, U

good
j+2 ).

Proof of Corollary 8.9. Let � ≡ 1 (mod 3). Fix an amenable element j ∈ Z3,
and w.l.o.g. let j = 0. Fix an integer Δ ≥ max{1,Δ0}, and fix W1 ⊆ U1 of
size |W1| < n/(100). Then

∣∣∣Espec
G

(
W1, U

good
2

)∣∣∣ = ∑
w1∈W1

degspecG

(
w1, U

good
2

)
=

∑
w1∈W1∩Û1

degspecG

(
w1, U

good
2

)
+

∑
w1∈W1∩Ibad

1

degspecG

(
w1, U

good
2

)
Fct. 8.8
≤

∣∣W1 ∩ Û1

∣∣(2Δ0 + 5) +
∣∣W1 ∩ Ibad1

∣∣ n
10

≤ |W1|(2Δ0 + 5) +
∣∣Ibad1

∣∣ n
10

Obs. 8.7
≤ |W1|(2Δ0 + 5) + n

5Δ0 ≤ n
100(2Δ + 5) + n

5Δ,

and the quantity above is at most 27Δn/100.

8.3. Proof of Lemma 2.9 in the case � ≡ 1 (mod 3)

We now prove Lemma 2.9 in the case � ≡ 1 (mod 3). For this case, recall
from (65) that the hypotheses of Lemma 2.9 assume

(129) δc(G) ≥
{

(n+ 5)/3 in Statement (1) with � ≡ 1 (mod 3),
(n+ 4)/3 in Statement (2) with � ≡ 1 (mod 3).
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We begin our work with Statement (2).

8.3.1. Statement (2) of Lemma 2.9 Statement (2) of Lemma 2.9 seeks
to conclude that (G, c) admits a properly colored �-cycle C�. To prove this,
we proceed by fixing an amenable element j ∈ Z3 from Observation 8.7. We
first claim that

(130) Espec
G (Ugood

j+1 , Ugood
j+2 ) �= ∅.

To prove (130), we consider the identity

(131)
∣∣Espec

G

(
Uj+1, U

good
j+2

)∣∣ = ∣∣Espec
G

(
Ubad
j+1, U

good
j+2

)∣∣+∣∣Espec
G

(
Ugood
j+1 , Ugood

j+2

)∣∣.
We will use Corollary 8.9 to bound |Espec

G (Ubad
j+1, U

good
j+2 )|, and we will use

Corollary 8.1 to bound |Espec
G (Uj+1, U

good
j+2 )|. First, in the context of Corol-

lary 8.9, we set Δ = 1 +Δj ≥ max{1,Δj}, where we used Δj ≥ 0 from the
amenability of j ∈ Z3. We also set Wj+1 = Ubad

j+1, where

|Wj+1| =
∣∣Ubad

j+1

∣∣ (74)

≤ 72λ1/4n
(64)
< n

100 .

Consequently, Corollary 8.9 guarantees

(132)
∣∣Espec

G

(
Ubad
j+1, U

good
j+2

)∣∣ ≤ 3
10Δn.

Second, Statement (2) of Corollary 8.1 guarantees that every uj+2 ∈ Ugood
j+2

satisfies

(133)
∣∣Espec

G (uj+2, Uj+1)
∣∣ ≥ degcG(uj+2)− 1−

∣∣Uj \ Ibadj

∣∣
(114)
= degcG(uj+2)− 1−

∣∣Ûj

∣∣ (68)

≥ m+ 1−
∣∣Ûj

∣∣ (114)
= 1 +Δj = Δ,

and so

(134)
∣∣Espec

G

(
Uj+1, U

good
j+2

)∣∣ = ∑
uj+2∈Ugood

j+2

degspecG (uj+2, Uj+1) ≥ Δ
∣∣Ugood

j+2

∣∣.
Applying (132) and (134) to (131) yields

Δ
∣∣Ugood

j+2

∣∣ ≤ ∣∣Espec
G

(
Uj+1, U

good
j+2

)∣∣ ≤ 3
10Δn+

∣∣Espec
G

(
Ugood
j+1 , Ugood

j+2

)∣∣,
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and so

∣∣Espec
G

(
Ugood
j+1 , Ugood

j+2

)∣∣ ≥ Δ
(∣∣Ugood

j+2

∣∣− 3
10n

)
(74)

≥ Δn
(
1
3 − 75λ1/4 − 3

10

)
> Δn

(
3

100 − 75λ1/4
) (64)

> 0,

where we used Δ = 1 + Δj ≥ 1 from the amenability of j ∈ Z3. This
proves (130).

To prove Statement (2) of Lemma 2.9, fix an edge {uj+1, uj+2} ∈
Espec

G (Ugood
j+1 , Ugood

j+2 ) from (130), where uj+1 ∈ Ugood
j+1 and uj+2 ∈ Ugood

j+2 . We
claim that

(135) Espec
G

(
N typ

G (uj+2, Uj+1), N
typ
G

(
uj+1, U

good
j+2

))
�= ∅.

If (135) holds, then it concludes our proof, as follows. Fix {vj+1, vj+2} ∈ E

of (135), where vj+1 ∈ N typ
G (uj+2, Uj+1) and vj+2 ∈ N typ

G (uj+1, U
good
j+2 ).

We first observe that (uj+2, vj+1, vj+2, uj+1) is a (j + 2)-special 4-cycle

(cf. Definition 8.4). Indeed, uj+2 ∈ Ugood
j+2 is good from (130) and vj+2 ∈

Ugood
j+2 is good from (135). The edge {uj+2, vj+1} ∈ E is typical because

vj+1 ∈ N typ
G (uj+2, Uj+1) from (135), and the edge {vj+2, uj+1} ∈ E is typ-

ical because vj+2 ∈ N typ
G (uj+1, U

good
j+2 ) from (135). The edge {uj+2, uj+1} ∈

E is special from from (130), and the edge {vj+2, vj+1} ∈ E is special
from (135). Since the 4-cycle (uj+2, vj+1, vj+2, uj+1) is (j + 2)-special, Ob-
servation 8.5 guarantees that its edges receive precisely 3-colors, where the
special edges ({uj+2, uj+1}) and {vj+2, vj+1} match in color and the typical
edges {uj+2, vj+1} and {vj+2, uj+1} do not. Thus, (uj+2, vj+1, vj+2, uj+1) is
a properly colored 4-cycle. Equivalently, (uj+2, uj+1, vj+2, vj+1) is a strong
properly colored 4-cycle which Proposition 7.1 extends to a strong properly
colored �-cycle C�, as promised by Statement (2) of Lemma 2.9.

To prove (135), we proceed similarly to (130), and begin by considering
the identity

(136)
∣∣Espec

G

(
Uj+1, N

typ
G

(
uj+1, U

good
j+2

))∣∣
=

∣∣Espec
G

(
Uj+1 \N typ

G (uj+2, Uj+1), N
typ
G

(
uj+1, U

good
j+2

))∣∣
+
∣∣Espec

G

(
N typ

G (uj+2, Uj+1), N
typ
G

(
uj+1, U

good
j+2

))∣∣.
As before, Corollary 8.9 will bound the first summand of (136), and Corol-
lary 8.1 will bound the left hand side of (136). First, we again set Δ = 1 +
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Δj ≥ 0, but we now set Wj+1 = Uj+1\N typ
G (uj+2, Uj+1). Since uj+2 ∈ Ugood

j+2

is a good vertex, Proposition 6.2 guarantees

|Wj+1| =
∣∣Uj+1 \N typ

G (uj+2, Uj+1)
∣∣ ≤ 313λ1/4n

(64)
< n

100 .

Consequently, Corollary 8.9 guarantees

(137)
∣∣Espec

G

(
Uj+1 \N typ

G (uj+2, Uj+1), N
typ
G

(
uj+1, U

good
j+2

))∣∣
≤

∣∣Espec
G

(
Uj+1 \N typ

G (uj+2, Uj+1), U
good
j+2

))∣∣ ≤ 3
10Δn.

Second, and identically to (133) and (134),

(138)
∣∣Espec

G

(
Uj+1, N

typ
G

(
uj+1, U

good
j+2

))∣∣
=

∑
vj+2∈N typ

G (uj+1,U
good
j+2 )

degspecG (vj+2, Uj+1) ≥ Δ
∣∣N typ

G

(
uj+1, U

good
j+2

)∣∣.

Applying (137) and (138) to (136) yields

(139)
∣∣Espec

G

(
N typ

G (uj+2, Uj+1), N
typ
G

(
uj+1, U

good
j+2

))∣∣
≥ Δ

(∣∣N typ
G

(
uj+1, U

good
j+2

)∣∣− 3
10n

) Cor. 8.3
≥ Δ

(
degcG

(
uj+1, U

good
j+2

)
− 3− 3

10n
)

(74)

≥ Δ
((

1
3 − 76λ1/4

)
n− 3− 3

10n
)
> Δn

(
3

100 − 76λ1/4
) (64)

> 0,

where we used that Δ = 1 + Δj ≥ 1 and that n is sufficiently large. This

proves (135), and completes the proof of Statement (2) of Lemma 2.9.

8.3.2. Statement (1) of Lemma 2.9 Statement (1) of Lemma 2.9 as-

sumes that δc(G) ≥ (n + 5)/3 and seeks to conclude that (G, c) admits4

a rainbow �-cycle C�. The argument here is similar to that of the previ-

ous subsection, where in fact we build upon that same argument. For that,

note that δc(G) ≥ (n + 5)/3 ≥ (n + 4)/3 allows all conclusions of the pre-

vious subsection to hold for the amenable element j ∈ Z3. As before, let

4Throughout our proof, we have assumed in (66) that (G, c) avoids rainbow

�-cycles C�. Finding one now shows that our assumption (66) is flawed.



On even rainbow or nontriangular directed cycles 657

{uj+1, uj+2} ∈ Espec
G (Ugood

j+1 , Ugood
j+2 ) be fixed. We first observe that

(140) Δj+2 ≤ −1,

since

∣∣Ûj+2

∣∣ ≥ degcG
(
uj+1, Ûj+2

)
= degcG

(
uj+1, Uj+2 \ Ibadj+2

) Cor. 8.1
≥ degcG(uj+1)− 1

(68)

≥ m+ 1

=⇒ −1 ≥ m−
∣∣Ûj+2

∣∣ (114)
= Δj+2.

Second, we observe that

(141) n ≡ 2 (mod 3) or Δj ≥ 1.

To argue (141),

(142) we assume, on the contrary, that n �≡ 2 (mod 3) and Δj = 0.

From (142), we will conclude that j+1 ∈ Z3 is also amenable, whence (140)
also holds for j + 1 ∈ Z3, in which case Δj+1+2 = Δj ≤ −1 contradicts
Δj = 0 of (142). To see that j + 1 ∈ Z3 is amenable, we note from (114)
that

(143)
∣∣Ûj

∣∣ (142)
= m, and

∣∣Ûj+2

∣∣ (140)

≥ m+ 1 =⇒
∣∣Ûj+1

∣∣ ≤ m,

lest 3m + 2 ≤ |Û0| + |Û1| + |Û2| ≤ n contradicts (142) (recall m = �n/3�
from (68)). Thus,

(144) Δj+1
(114)
= m−

∣∣Ûj+1

∣∣ ≥ 0

satisfies the first condition of amenability in Observation 8.7. Moreover,

(145)
∣∣Ibadj

∣∣, ∣∣Ibadj+2

∣∣ ≤ ∑
k∈Z3

∣∣Ibadk

∣∣ (113),(114)
= n−

∑
k∈Z3

∣∣Ûk

∣∣
(142)

≤ 1 +
∑
k∈Z3

(
m−

∣∣Ûk

∣∣) (114)
= 1 +

∑
k∈Z3

Δk = 1 +Δj +Δj+1 +Δj+2

(140)

≤ Δj +Δj+1
(142)
= Δj+1

(144)

≤ 2Δj+1,
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and so |Ibadj+2| ≤ 2Δj+1 satisfies the second condition of amenability in Ob-
servation 8.7. Finally,

|Uj+3| = |Uj |
(113),(114)

=
∣∣Ûj

∣∣+ ∣∣Ibadj

∣∣ (142)
= m+

∣∣Ibadj

∣∣
(145)

≤ m+ 2Δj+1 ≤ m+ 2Δj+1 + 2,

and so |Uj+3| ≤ m + 2Δj+1 + 2 satisfies the third condition of amenability
in Observation 8.7.

The remainder of our proof for Statement (1) of Lemma 2.9 splits into the

two cases of (141). For these, recall that {uj+1, uj+2} ∈ Espec
G (Ugood

j+1 , Ugood
j+2 )

was fixed at the start of this proof, where we now set c({uj+1, uj+2}) = α
for α �= cuj+2

on account that {uj+1, uj+2} is a special edge.

Case 1 (n ≡ 2 (mod 3)). We revisit (135) by confirming that

∅ �= Espec
G,¬α

(
N typ

G (uj+2, Uj+1), N
typ
G

(
uj+1, U

good
j+2

))
=

{
{vj+1, vj+2} ∈

Espec
G

(
N typ

G (uj+2, Uj+1), N
typ
G

(
uj+1, U

good
j+2

))
: c({vj+1, vj+2}) �= α

}
,

(146)

where the set above consists of those edges of (135) which are not colored
α. If true, then any {vj+1, vj+2} ∈ E of (146) gives a strong rainbow 4-
cycle (uj+2, uj+1, vj+2, vj+1) (recall Observation 8.5) which Proposition 7.1
extends to a strong rainbow �-cycle C�, as promised by Statement (1) of
Lemma 2.9. To see (146), we replay the details of (136)–(139) with the
added hypothesis n = 3m+ 2. We again have

(147)
∣∣Espec

G,¬α
(
Uj+1, N

typ
G

(
uj+1, U

good
j+2

))∣∣
=

∣∣Espec
G,¬α

(
Uj+1 \N typ

G (uj+2, Uj+1), N
typ
G

(
uj+1, U

good
j+2

))∣∣
+
∣∣Espec

G,¬α
(
N typ

G (uj+2, Uj+1), N
typ
G

(
uj+1, U

good
j+2

))∣∣,
where the left hand side and first summand of (147) are defined analogously
to (146). Setting Δ = Δj + 1 ≥ max{Δj , 1}, we clearly have

(148)
∣∣Espec

G,¬α
(
Uj+1 \N typ

G (uj+2, Uj+1), N
typ
G

(
uj+1, U

good
j+2

))∣∣
≤

∣∣Espec
G

(
Uj+1 \N typ

G (uj+2, Uj+1), N
typ
G

(
uj+1, U

good
j+2

))∣∣ (137)

≤ 3
10Δn.
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Moreover, δc(G) ≥ (n + 5)/3 for n ≡ 2 (mod 3) ensures δc(G) ≥ m + 3,

and so Statement (2) of Corollary 8.1 guarantees that every vj+2 ∈ Ugood
j+2

satisfies

(149)
∣∣Espec

G (vj+2, Uj+1)
∣∣ ≥ degcG(vj+2)− 1−

∣∣Uj \ Ibadj

∣∣
(114)
= degcG(vj+2)− 1−

∣∣Ûj

∣∣ ≥ m+ 2−
∣∣Ûj

∣∣ (114)
= 2 +Δj = 1 +Δ.

Consequently, those edges Espec
G,¬α(vj+2, Uj+1) above not colored α satisfy

|Espec
G,¬α(vj+2, Uj+1)| ≥ Δ, and so similarly to (138), we have

(150)
∣∣Espec

G,¬α
(
N typ

G (uj+2, Uj+1), N
typ
G

(
uj+1, U

good
j+2

))∣∣
≥ Δ

∣∣N typ
G

(
uj+1, U

good
j+2

)∣∣.
Similarly to (139), we apply (148) and (150) to (147) to infer

(151)
∣∣Espec

G,¬α
(
N typ

G (uj+2, Uj+1), N
typ
G

(
uj+1, U

good
j+2

))∣∣
≥ Δ

(∣∣N typ
G

(
uj+1, U

good
j+2

)∣∣− 3
10n

) (139)
> 0,

which proves (146).

Case 2 (Δj ≥ 1). We again confirm (146), in which case any {vj+1, vj+2} ∈
E(G) of (146) gives a strong rainbow 4-cycle (uj+2, uj+1, vj+2, vj+1) which

Proposition 7.1 extends to a strong rainbow �-cycle C�, as promised by

Statement (1) of Lemma 2.9. We again replay the details of (147)–(151),

only this time we set Δ = Δj ≥ 1 (as opposed to before, when Δ = 1+Δj).

Then (148) is updated to say that

(152)
∣∣Espec

G,¬α
(
Uj+1 \N typ

G (uj+2, Uj+1), N
typ
G

(
uj+1, U

good
j+2

))∣∣
≤

∣∣Espec
G

(
Uj+1 \N typ

G (uj+2, Uj+1), N
typ
G

(
uj+1, U

good
j+2

))∣∣ (137)

≤ 3
10Δjn,

while (149) is updated to say that each vj+2 ∈ Ugood
j+2 satisfies

∣∣Espec
G (vj+2, Uj+1)

∣∣ ≥ degcG(vj+2)− 1−
∣∣Ûj

∣∣ (68)

≥ m+ 1−
∣∣Ûj

∣∣ = 1 +Δj .
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Consequently, (150) is updated to say

(153)
∣∣Espec

G,¬α
(
N typ

G (uj+2, Uj+1), N
typ
G

(
uj+1, U

good
j+2

))∣∣
≥ Δj

∣∣N typ
G

(
uj+1, U

good
j+2

)∣∣.
We apply (152) and (153) to (147) to infer

∣∣Espec
G,¬α

(
N typ

G (uj+2, Uj+1), N
typ
G

(
uj+1, U

good
j+2

))∣∣
≥ Δj

(∣∣N typ
G

(
uj+1, U

good
j+2

)∣∣− 3
10n

) (139)
> 0,

where we used Δj ≥ 1 from Case 2. This confirms (146), and concludes our
proof of Lemma 2.9.

Appendix: Proof-sketch for case 3 from the introduction

Recall the partition V = U0∪U1∪U2∪{x}∪{y} from Case 3 of Section 1.1.
Let �G1 = (V, �E1) be the oriented graph whereby (u, v) ∈ �E1 if, and only if,
(u, v) is an element of one of the following sets:

U0×U1, U1×U2, U2×U0, (U0∪U2)×{x}, {x}×({y}∪U1), {y}×U2.

Let �G2 = (V, �E2) satisfy (u, v) ∈ �E2 if, and only if, (u, v) is an element of
one of the following sets:

U0 × U1, U1 × U2, U2 × U0, {x} × U1, U1 × {y}, {y} × ({x} ∪ U2).

One can see that neither �G1 = (V, �E1) nor �G2 = (V, �E2) admit directed
�-cycles �C� when � ≡ 2 (mod 3). Recalling (Ĝ, ĉ) from (5), construct Ĝ1 ⊆ Ĝ
by removing all edges between U1 and y, and set ĉ1 = ĉ|E(Ĝ1)

. Construct

Ĝ2 ⊆ Ĝ by removing all edges between U0 ∪U2 and x, and set ĉ2 = ĉ|E(Ĝ2)
.

Then E(Ĝ) = E(Ĝ1) ∪ E(Ĝ2), and (Ĝi, ĉi), i = 1, 2, is isomorphic to the
edge-colored graph determined by �Gi. Therefore, a rainbow �-cycle of (Ĝ, ĉ)
can coincide entirely with neither Ĝ1 nor Ĝ2, and must admit an edge from
E(Ĝ1) \E(Ĝ2) and an edge from E(Ĝ2) \E(Ĝ1). But this is impossible, be-
cause (5) ensures that every edge in the symmetric difference E(Ĝ1)�E(Ĝ2)
is assigned the color �.
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Figure 1: Neither �G1 nor �G2 admit directed �-cycles when � ≡ 2 (mod 3).
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