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Random graphs induced by Catalan pairs

Daniël Kroes and Sam Spiro

We consider Catalan-pair graphs, a family of graphs that can be
viewed as representing certain interactions between pairs of objects
which are enumerated by the Catalan numbers. In this paper we
study random Catalan-pair graphs and deduce various properties
of these random graphs. In particular, we asymptotically determine
the expected number of edges and isolated vertices, and more gen-
erally we determine the expected number of (induced) subgraphs
isomorphic to a given connected graph.
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1. Introduction

A large body of work has been devoted to studying the Catalan numbers,
as well as the many objects that these numbers enumerate. Such objects
include polygon triangulations, binary trees, plane trees, and Dyck paths.
For a thorough treatment of Catalan numbers and their history we refer the
reader to [9] and [11]. In this paper we are interested in examining pairs of
objects enumerated by the Catalan numbers, as opposed to looking at just
a single such object. In particular, we will be interested in studying how
the objects in these pairs interact with one another, and we represent this
interaction as a graph.

To this end, recall that the Catalan numbers count the number of ways
one can place n non-intersecting semi-circular arcs on 2n given collinear
points. We will refer to such a placement of arcs as a Catalan-arc matching
(of size n). For example, below one can see all 5 Catalan-arc matchings of
size 3.

Definition 1.1. Let n be a positive integer. A Catalan-pair graph on n
vertices is a graph G that can be obtained by the following procedure. Start
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with 2n collinear points, of which we color 2k points red for some 0 ≤ k ≤ n
and color the remaining points blue. Then, choose Catalan-arc matchings of
sizes k and n−k and place them on the red and blue points, respectively, with
the latter being faced downwards rather than upwards. Finally, construct a
graph G with one vertex for each of the n arcs, where two vertices are
adjacent if and only if the endpoints of the corresponding arcs alternate.

As an example, we have the following Catalan-pair graph on 9 vertices,
where we colored the arcs according to the color of the points they connect.
We say that the pair of Catalan-arc matchings on the left is a representative
for the graph on the right, or alternatively that it represents the graph on
the right.

As a first observation, note that all of the arcs on the top are chosen to be
non-intersecting, and similarly for all of the arcs on the bottom. Therefore,
if the endpoints of two arcs alternate (and hence correspond to an edge in
G) these arcs necessarily come from different sides. Thus every Catalan-pair
graph is bipartite.

Catalan-pair graphs were recently introduced in [3] where they were
called paperclip graphs. This paper primarily studied partial characteriza-
tions of Catalan-pair graphs, as well as bounds on the number of Catalan-
pair graphs on a given number of vertices. We note that Catalan-pair graphs
can also equivalently be defined as bipartite circle graphs. A circle graph is
any graph whose vertices can be associated to a set of chords of a circle with
two vertices being made adjacent if and only if their corresponding chords
intersect. The equivalence between Catalan-pair graphs and bipartite cir-
cle graphs follows, similarly to the equivalence between Catalan-arc objects
and sets of non-intersecting chords on a circle, by wrapping around the line
containing the points and connecting it.

Circle graphs have been extensively studied, mainly from an algorithmic
viewpoint. For example, Spinrad [10] produced an O(n2)-time algorithm for
identifying whether a given graph is a circle graph. Many problems that are
know to be NP-complete for general graphs turn out to have polynomial
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time algorithms when restricted to circle graphs. Recently Tiskin showed
that a maximum clique of a circle graph can be found in O(n(log n)2) time
[12], and Gregg and Nash have shown that a maximum independent set can
be found in time O(αn), where α denotes the independence number of the
circle graph [8].

The main purpose of this paper is to introduce a model to randomly
generate a Catalan-pair graph on n vertices, which we denote by CPn, and
to establish various properties about this random graph. Before we precisely
define our random graph model, we briefly summarize our main results.

Theorem 1.2. The expected number of edges of the random Catalan-pair
graph CPn satisfies

E[e(CPn)] ∼
1

π
n logn.

Moreover, for any ε > 0 we asymptotically almost surely have |e(CPn) −
1
πn logn| < εn logn.

We also obtain an asymptotic formula for the expected number of iso-
lated vertices in CPn.

Theorem 1.3. Let In denote the number of isolated vertices in CPn. Then

E[In] ∼ γn,

where γ is the constant defined by

γ = 4

∞∑
m=1

16−m
m−1∑
b=0

(
2m− 2

2b

)
Cm−1−bCb = 0.3023 . . . .

Moreover, for any ε > 0 we asymptotically almost surely have |In−γn| < εn.

In addition to this, we deduce the order of magnitude for the expected
number of (induced) subgraphs of any connected Catalan-pair graph with at
least three vertices. To this end, Let NH(G) denote the number of subgraphs
of G that are isomorphic to H and let N∗

H(G) denote the number of induced
subgraphs of G that are isomorphic to H.

Theorem 1.4. Let H be a connected Catalan-pair graph on v ≥ 3 ver-
tices. The expected number of (induced) subgraphs of the random Catalan-
pair graph CPn isomorphic to H satisfies

E[NH(CPn)] = Θ(nv/2).

E[N∗
H(CPn)] = Θ(nv/2).
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The outline of the paper is as follows. In Section 2 we will define our
model to randomly generate Catalan-pair graphs. This model requires us
to randomly select a Catalan-arc matching, and in Section 3 we will derive
some technical lemmas related to this step. In Section 4 we will determine
the asymptotic behavior of the expected number of edges, and in Section 5
we will determine the expected number of isolated vertices. Additionally,
we will show the desired concentration result by bounding the variance of
the number of isolated vertices. In Section 6 we will similarly bound the
variance of the number of edges, with a large part of the proof deferred to
Appendix A. Section 7 will focus on proving Theorem 1.4, and along the
way we will prove a more general lower bound for unconnected Catalan-
pair graphs. We will end that section with a general result on the connected
components of CPn. In Section 8 we will discuss experimental data obtained
by randomly generating Catalan-pair graphs of various sizes, after which we
will end with some final remarks and possible future problems in Section 9.

We collect some notation and definitions that we will use throughout the
text. For 1 ≤ a < b ≤ 2n, we say that (a, b) match if the ath and bth point
have the same color and if there is an arc connecting these two points. In
the earlier example, the matching pairs are (1, 7), (2, 4), (3, 5), (6, 12), (8, 9),
(10, 16), (11, 14), (13, 18) and (15, 17). We similarly say that (a, b) match in
a single Catalan-arc matching of size n if there is an arc connecting these two
points. For 1 ≤ a < b < c < d ≤ 2n we say that (a, b, c, d) is an edge if (a, c)
and (b, d) match. For example, in the the graph from before (6, 10, 12, 16) is
an edge, and it corresponds to the edge between u4 and v2. We say that an
arc in a single Catalan-pair matching has length k if it covers k − 1 smaller
arcs, or equivalently if the two points it connects have 2k−2 points between
them.

2. Random Catalan-pair graphs

In this section we define a model to generate a random Catalan-pair graphs
on n vertices. Consider the following procedure, starting with 2n collinear
points.

1. For each of the first 2n− 1 points, uniformly and independently color
each of these points either red or blue. Then color the last point red
or blue, whichever makes it so that the total number of points of each
color is even.

2. Suppose that we have 2k red points, and consequently 2(n − k) blue
points. Independently and uniformly pick Catalan-arc matchings of



Random graphs induced by Catalan pairs 667

size k and n − k from the set of all possible Catalan-arc matchings
of that size, and place these above and below the red and blue points
respectively.

3. Create a graph according to Definition 1.1, and denote this (random)
graph by CPn.

One of the advantages of this model is that with high probability roughly
half of the points (or any large enough subset of the points for that mat-
ter) will be colored red. This is an immediate consequence of the following
concentration result, which can be found in a slightly different form in [1,
Cor. A.1.2.]. For 1 ≤ i ≤ n, let Xi denote mutually independent random
variables with P[Xi = 1] = P[Xi = 0] = 1

2 , and define Sn =
∑n

i=1Xi. For
a > 0,

(2.1) P[|Sn − n/2| > a] < 2e−2a2/n.

Note that because of the forced choice of the color of the last point, our
setting is not completely identical to that of the above result. However, it
does apply for any proper subset of the points, and the concentration result
for the total number of points of a given color is almost unaffected.

3. Random Catalan matchings

To generate CPn we must choose a random Catalan-arc matching from all
such matchings of a given size. In this section we compute the probability
of having a given set of arcs connecting a given set of points within this
randomly chosen Catalan-arc matching. We note that studying the structure
of a random object enumerated by the Catalan numbers is of independent
interest, and other work in this direction has been done in, for example, [4]
and [6].

Let Cn denote the set of Catalan-arc matchings of size n, and let Cn =
|Cn| = 1

n+1

(
2n
n

)
be the nth Catalan number. We recall the asymptotic formula

(3.1) Cn ∼ 4n√
πn3/2

,

which can be derived, for example, by Stirling’s formula.
Throughout this section, let C be a Catalan-arc matching chosen uni-

formly from Cn. As mentioned, we are interested in the probability of having
a given set of arcs connecting a given set of points within C. It is clear that
in order for this to be able to happen, the points and arcs have to satisfy
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some conditions. First of all the endpoints of any given arc must have an

even number of points between them, since any arc connecting at least one

of these points must connect two of these points. Additionally, it is clear

that none of the given arcs are allowed to intersect.

This leads to the following definition, where one should think of having

specified arcs connecting points xi and xi + 2ki − 1 for all i.

Definition 3.1. Let x = (x1, . . . , xs) and k = (k1, . . . , ks) be s-tuples of

positive integers with x1 < . . . < xs. We say that (x,k) is a valid pair if

1. For all i we have 1 ≤ xi < xi + 2ki − 1 ≤ 2n.

2. The integers x1, x1 + 2k1 − 1, . . . , xs, xs + 2ks − 1 are all distinct.

3. There are no i �= j with xi < xj < xi + 2ki − 1 < xj + 2kj − 1.

As an example, for n = 8, we have the valid pair ((2, 4), (5, 2)) which we

think of as having specified arcs connecting points 2 and 11 and 4 and 7.

As mentioned before, the conditions imposed on (x,k) are necessary for

there to be a Catalan-arc matching with arcs on these specified positions.

In this case, it is not so hard to see that we can indeed extend this to a

Catalan-arc matching, for example as follows.

Below we will see that the condition of (x,k) being a valid pair is also a

sufficient condition to have a Catalan-arc matching with arcs connecting xi
and xi+2ki−1. In fact, we will determine the explicit probability of having

arcs on these given positions. To this end, let A(x,k) denote the event that

(xi, xi + 2ki − 1) match in C for all i.
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Before we can determine the probability of this happening we need some
notation. In the above example, we see that in order to extend to a Catalan-
arc matching, we have to connect the two points within the smaller arc, we
have to connect the four points within the larger arc (but outside of the
smaller arc), and finally we have to connect the six points outside of the
larger arc. Below we define integers that are analogues of the two, four, and
six above.

For a valid pair (x,k) and 1 ≤ i ≤ s, let Mi be the set of x such
that xi < x < xi + 2ki − 1 and such that there exists no j �= i with
xj ≤ x ≤ xj + 2kj − 1. We let M0 be the set of x such that 1 ≤ x ≤ 2n and
such that there exists no i with xi ≤ x ≤ xi + 2ki − 1. Observe that every
x with 1 ≤ x ≤ 2n is either of the form xi or xi + 2ki − 1 for some i, or
else belongs to a unique Mi. Furthermore, it is easy to see that each Mi has
an even (possibly 0) number of elements, so the numbers mi = |Mi|/2 are
nonnegative integers, and from the definition it follows that these numbers
sum to n− s.

We can now explicitly compute the probability that (xi, xi + 2ki − 1)
match in C for all i.

Lemma 3.2. If (x,k) is a valid pair, then

P[A(x,k)] =
1

Cn
·

s∏
i=0

Cmi
.

Proof. Since each Catalan-arc matching is chosen with probability 1
Cn

, it
suffices to show that there are

∏s
i=0Cmi

Catalan-arc matchings for which
(xi, xi + 2ki − 1) match for all i. We show that a Catalan-arc matching
satisfies this condition if and only if points in some Mi are only connected
to points in that Mi and the set of arcs on the points in Mi is a Catalan-arc
matching.

First, assume for contradiction that there exists i �= j such that there is
a Catalan-arc matching that connects a point x in Mi to a point y in Mj .
Without loss of generality we may assume that j �= 0 and that we do not
have xj < xi < xi+2ki−1 < xj+2kj−1 (if the latter happens, simply switch
i and j). This implies that xj < y < xj + 2kj − 1 and x �∈ [xj , xj + 2kj − 1],
but then the arc connecting x and y would intersect the arc connecting xj
and xj + 2kj − 1, a contradiction. Furthermore, it is clear that the induced
set of arcs on the points in Mi still has no intersecting arcs.

Conversely, suppose we choose Catalan-arc matchings to go on the points
of each Mi. By definition, there do not exist points a < b < c < d with
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a, c ∈ Mi and b, d ∈ Mj for i �= j, so arcs in Mi and Mj will not intersect
when i �= j, and clearly also not for i = j. Lastly, points in Mi either lie
completely inside an interval [xj , xj +2kj −1] or lie completely outside of it,
so arcs on the Mi will also not intersect arcs of the form (xj , xj + 2kj − 1).

Therefore, since a Catalan-arc matching on the points of Mi has mi arcs,
there are Cmi

choices for this matching. Since these choices can be made
independently, the total number of desired Catalan-arc matchings equals∏s

i=0Cmi
, as desired.

By combining (3.1) and Lemma 3.2 we can obtain bounds for this prob-
ability.

Corollary 3.3. Let (x,k) be a valid pair. There exist positive real numbers
αs, βs such that

αs
n3/2∏′m3/2

i

≤ P[A(x,k)] ≤ βs
n3/2∏′m3/2

i

,

where
∏′ indicates the product over all 0 ≤ i ≤ s with mi �= 0.

Proof. Let us prove the lower bound, the proof for the upper bound is analo-
gous. Because of the asymptotic formula in (3.1) there exist positive numbers
a < 1 < A such that

(3.2) a
4n√
πn3/2

≤ Cn ≤ A
4n√
πn3/2

for all n ≥ 1. Since C0 = 1 we find

P[A(x,k)] =
1

Cn
·

s∏
i=0

Cmi
=

1

Cn
·
∏′

Cmi

≥
√
πn3/2

A · 4n ·
∏′ a · 4mi

√
πm

3/2
i

≥ 4
∑′ mi−n · as+1

A · πs/2

n3/2∏′m3/2
i

= αs
n3/2∏′m3/2

i

,

where we use that
∑′mi =

∑s
i=0mi = n− s.

4. The expected number of edges

In this section we will determine the asymptotic behavior of the expected
number of edges of CPn. To this end, we start by establishing a general
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upper bound on the probability that CPn contains a given structure on a
given set of points.

We consider two analogues of the valid pairs introduced in Section 3.
Let x = (x1, . . . , xs), k = (k1, . . . , ks), y = (y1, . . . , yt), l = (�1, . . . , �t) be
tuples of positive integers with x1 < . . . < xs and y1 < . . . < yt. We say
that this quadruple is valid if for all 1 ≤ i ≤ s and 1 ≤ j ≤ t we have
1 ≤ xi < xi + ki ≤ 2n and 1 ≤ yj < yj + �j ≤ 2n, and if there exists
at least one representative for a Catalan-pair graph on n vertices for which
(xi, xi + ki) and (yj , yj + �j) match for all i, j.

Similarly, we say that such a quadruple (x,k,y, l) is good if

1. 1 ≤ xi < xi + ki ≤ 2n and 1 ≤ yj < yj + �j ≤ 2n for all 1 ≤ i ≤ s and
1 ≤ j ≤ t.

2. Any two numbers of the form xi, xi + ki, yj or yj + kj differ by at
least 2.

3. There exists no i �= j such that xi < xj < xi + ki < xj + kj or
yi < yj < yi + �i < yj + �j .

In the proof of Lemma 7.1 we will see that these conditions imply that there
exists a representative for a Catalan-pair graph G such that (xi, xi+ki) and
(yi, yi + �i) match for all 1 ≤ i ≤ s and all 1 ≤ j ≤ t. Therefore, any good
quadruple is also a valid quadruple.

Given a valid quadruple (x,k,y, l), we would like to have an analogue of
the integers mi defined in Section 3. To this end, for 1 ≤ i ≤ s, set fi to be
the number of xi < x < xi+ki such that there is no i′ with xi′ ≤ x ≤ xi′+ki′

and such that x is not of the form yj or yj + �j for any j. Set f0 to be the
number of 1 ≤ x ≤ 2n that do not belong to any interval [xi, xi + ki], nor
are of the form yj or yj + �j . Similarly define g0, g1, . . . , gt.

Let (x,k,y, l) be a valid quadruple where x and y have length s and t
respectively. Let A(x,k,y, l) denote the intersection of the following events.

1. The points xi and xi+ki are colored red and the points yj and yj + �j
are colored blue for all i, j.

2. For all i and j the number of red points x with xi < x < xi + ki and
the number of blue points y with yj < y < yj + �j is even.

3. For all i and j we have that (xi, xi + ki) and (yj , yj + �j) match in
CPn.

We would like to point out that the second condition is necessary for
(xi, xi + ki) and (yj , yj + �j) to match for all i and j. Therefore, we could
technically omit this condition, but we have included it to improve the read-
ability of our proofs.
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We have the following upper bound for the probability that A(x,k,y, l)
occurs.

Lemma 4.1. There exists a positive real number βs,t such that for suffi-
ciently large n, and for any valid quadruple (x,k,y, l) (with x and y of
length s and t respectively) we have

P[A(x,k,y, l)] ≤ βs,tn
3 ·

∏̃
i

f
−3/2
i ·

∏̃
j

g
−3/2
j ,

where
∏̃

indicates the product over all i and j for which fi, gj ≥ 16(s +
t) logn.

Proof. Let v = (s + t). Note that with probability 2−2(s+t) = 4−v all of
xi, xi + ki, yj , yj + �j have the correct color. From now on we condition on
this event happening. For each 0 ≤ i ≤ s, let 2ri denote the number of points
counted by fi which are colored red, where we note that ri may not be an
integer. For each i with fi ≥ 16v log n, we use (2.1) to conclude that

P[|2ri − fi/2| >
√

vfi log n] < 2n−2v.

Note that if |2ri − fi/2| ≤
√
vfi log n, then in particular we have 2ri ≥

fi/2 −
√
vfi log n ≥ fi/4, where we used fi ≥ 16v log n in the last step.

Therefore, with probability at most 2(v + 2)n−2v we have ri < fi/8 or
bj < gj/8 for some i or j for which fi, gj ≥ 16v log n.

Let Bn and Rn be the total number of blue and red points respectively.
We condition on the event that ri ≥ fi/4 and bj ≥ gj/4 for all i and j for
which fi, gj ≥ 16v log n. If any of the numbers ri, bj is not an integer, or
equivalently if the number of red/blue points in some appropriate region is
not even, the probability that all of (xi, xi + ki) and (yj , yj + �j) match is
0, which definitely agrees with the proposed upper bound. If all the ri and
bj are integers we can apply Corollary 3.3 to show that the probability that
all of the (xi, xi + ki) and (yj , yj + �j) match is at most

βsR
3/2
n ·

∏̃
i

r
−3/2
i · βtB3/2

n ·
∏̃
j

b
−3/2
j

≤ βs · (2n)3/2 ·
∏̃
i

(fi/8)
−3/2 · βt(2n)3/2 ·

∏̃
j

(gj/8)
−3/2

= O

⎛⎝n3 ·
∏̃
i

f
−3/2
i ·

∏̃
j

g
−3/2
j

⎞⎠ ,
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where in the first expression we ignored all i for which fi < 16v log n since
in the formula of Corollary 3.3 these terms either do not appear, or they
contribute a multiplicative factor of the form x−3/2 for some x ≥ 1, hence
leaving it out will still yield an upper bound.

Therefore, we know that

P[A(x,k,y, l)] ≤ 4−v ·

⎛⎝2(v + 2)n−2v +O

⎛⎝n3 ·
∏̃
i

f
−3/2
i ·

∏̃
j

g
−3/2
j

⎞⎠⎞⎠ .

Since fi ≤ 2n, gi ≤ 2n, and since the above products contain at most s+ 1
and t+ 1 terms respectively, we find

n3 ·
∏̃
i

f
−3/2
i ·

∏̃
j

g
−3/2
j ≥n3(2n)−3/2(s+1+t+1)=2−3/2(v+2) ·n3−3/2(v+2)�n−2v

for sufficiently large n, and hence the n3 ·
∏̃

if
−3/2
i ·

∏̃
jg

−3/2
j term dominates

this expression.

Using similar ideas, we can deduce an upper bound on the expected
number of arcs in CPn whose lengths lie in a specific range.

Lemma 4.2. For any 1 ≤ α ≤ β ≤ 2n, let Aα,β denote the number of
matching arcs in CPn of the form (i, i+ k) with α ≤ k ≤ β. Then

E[Aα,β] = O(α−1/2n+ βne−α/16).

In particular, if 32 log n ≤ α we have

E[Aα,β] = O(α−1/2n).

Proof. We first consider some reductions of the problem. If α = O(1) the
bound is trivial, so we will assume that α = ω(1). For any α ≥ n the proposed
bound is O(

√
n), so in this range it suffices to prove the result for α = n

and thus we can assume without loss of generality that α ≤ n. Also, for any
k ≥ 2n−32 log n, CPn contains at most two non-intersecting arcs of length k
(one for each color) since k > n. Thus we can assume that β ≤ 2n−32 log n,
which will cause E[Aα,β] to decrease by at most 2 · 32 log n = O(α−1/2n)
when α ≤ n.

For α ≤ k ≤ β, let A(i, k) denote the event that (i, i+k) matches in CPn.
Let 2r1 denote the number of points x in i < x < i+ k colored red and let
2r2 denote the number of points x with x < i or x > i+k colored red, where
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as before we note that r1 or r2 may not be an integer. The probability that
either |2r1− (k−1)/2| > (k−1)/4 or |2r2− (2n−k−1)/2| > (2n−k−1)/4
is at most e−(k−1)/8 + e−(2n−k−1)/8. Conditional on neither of these events
occurring, we can proceed as in Lemma 4.1 and find that the probability of
(i, i + k) matching is at most cn3/2(k − 1)−3/2(2n − (k + 1))−3/2 for some
absolute constant c. Combining all this we see that

P[A(i, k)] ≤ cn3/2(k − 1)−3/2(2n− (k + 1))−3/2 + e−(k−1)/8 + e−(2n−k−1)/8.

Moreover, we have that P[A(i, k)] = 0 for i > 2n− k. Because

E[Aα,β] =

β∑
k=α

2n∑
i=1

P[A(i, k)],

we have that

E[Aα,β] ≤
β∑

k=α

(2n− k)(cn3/2(k − 1)−3/2(2n− (k + 1))−3/2 + e−(k−1)/8

(4.1)

+ e−(2n−k−1)/8).

Let γ = min(β, n). For α ≤ k ≤ γ and n sufficiently large, we have that
(2n− (k + 1)) ≥ 1

2n and (k − 1) ≥ 1
2k. Thus the terms in (4.1) are at most

2n(2−3ck−3/2 + 2e−α/16 + 2e−n/16) ≤ 2−2cnk−3/2 + 4ne−α/16.

Thus (4.1) restricted to this range is at most

γ∑
k=α

2−2cnk−3/2 + 4ne−α/16 ≤ 2−2n

∫ ∞

α−1
cx−3/2dx+ 4γne−α/16

= O(α−1/2n+ βne−α/16).

If β ≤ n then this completes the proof. Otherwise we can assume β =
2n−32 logn. Using similar logic as before, for n ≤ k ≤ 2n−32 log n we have
that the terms of (4.1) are at most

2−2c(2n− k)−1/2 + 4ne−2 logn = 2−2c(2n− k)−1/2 + 4n−1.
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Again summing over the relevant range and bounding our sum with an
integral gives an upper bound for (4.1) in this range of

2n−32 logn∑
k=n

(2n− k)−1/2 + 4n−1 = O(
√
n) = O(α−1/2n).

Summing the contributions from these ranges gives the desired result.

4.1. The expected number of edges

We are now ready to prove the first part of Theorem 1.2. We will do so by
showing that for any ε > 0 we have

(4.2) (1−ε)
1

π
n log n+o(n log n) ≤ E[e(CPn)] ≤ (1+ε)

1

π
n logn+o(n log n).

It is clear that

(4.3) E[e(CPn)] =
∑

P[A(x, k, y, �)],

where the sum is over all valid quadruples (x, k, y, �) of positive integers such
that 1 ≤ x < y < x+ k < y + � ≤ 2n or 1 ≤ y < x < y + � < x+ k ≤ 2n.

We break up this sum into various parts, and we will show that all but
one will contribute o(n logn), and that the remaining part will contribute
between (1 − ε) 1πn log n and (1 + ε) 1πn log n. Let c < 1 be a positive real
number and d be a positive integer, where eventually we will pick c small
and d large to get our bounds within the desired (1± ε) region.

Proposition 4.3. Consider the contribution to (4.3) coming from each of
the following subsets of the quadruples.

(i) Valid quadruples (x, k, y, �) with k < d log n or � < d log n.
(ii) Valid quadruples (x, k, y, �) with k > 2n− d log n or � > 2n− d log n.
(iii) Quadruples (x, k, y, �) with d log n ≤ k, � ≤ 2n − d log n that are valid

but not good.
(iv) Good quadruples (x, k, y, �) with d log n ≤ k ≤ cn < � ≤ 2n−d log n or

d log n ≤ � ≤ cn < k ≤ 2n− d log n.
(v) Good quadruples (x, k, y, �) with cn < k, � ≤ 2n− d log n.

Each of these contributions is o(n logn).
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Proof. (i) This contribution counts the expected number of edges that
come from pairs of arcs with at least one arc of length at most d log n.
We first show that the number of such edges with at least one arc of
length at most

√
log n is of order o(n log n) in any Catalan-pair graph,

and therefore also in expectation. Indeed, any arc of length at most√
log n has degree at most

√
log n since every interlacing arc must have

one of its endpoints within the given arc. Since we have at most n arcs
of length at most

√
log n, the total number of such edges is at most

n
√
log n = o(n logn).

Now consider the edges involving an arc of length between
√
logn

and d log n. By Lemma 4.2 there are at most O(n(log n)−1/4 + logn ·
ne−

√
logn/16) = o(n) such arcs in expectation. Since each such arc

can be involved in at most d log n edges, we conclude that the total
expected number of edges involving vertices of this type is at most
o(n logn).

(ii) This contribution counts the expected number of edges that come from
a pair of arcs where at least one of the arcs has length larger than
2n − d log n. We show that the number of such arcs is O((log n)2) =
o(n logn) for any Catalan-pair graph, which implies the same bound
for the expected number of such edges. First, note that for n large
enough and each N > 2n − d log n there is at most one arc of length
N on either side. Indeed, since 2n − d log n > n for n large enough,
if we had two arcs of length N on one side this would contradict the
condition that the arcs do not intersect. Therefore, there are at most
2d log n arcs of length at least 2n−d log n. Furthermore, each such arc
interlaces with at most d log n arcs on the opposite side. Indeed, any
such interlacing arc must have one of its endpoints outside the arc in
question, and there are at most d log n such points. Therefore, we have
at most 2d log n · d log n = O((log n)2) such edges, as desired.

(iii) We assume d > 32 in order to apply Lemma 4.1.
We know that for any (x, k, y, �) in this range we have

P(A(x, k, y, �)) = O(n3(2n− (k + 2))−3/2k−3/2(2n− (�+ 2)−3/2�−3/2).

Furthermore, given k and � we claim that there are at most 16n
quadruples (x, k, y, �) that are valid but not good. This follows since
there are at most 2n possibilities for x, and given x we must have that
y or y + � belongs to {x± 1, x+ k ± 1}.
Therefore, the total contribution is at most of the order of

n4
∑
k,�

(2n− (k + 2))−3/2k−3/2(2n− (�+ 2))−3/2�−3/2
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= n4

(∑
k

(2n− (k + 2))−3/2k−3/2

)2

.

We can break up
∑

k(2n− (k+2))−3/2k−3/2 in the regions k ≤ n and
k > n. When k ≤ n we have (2n − (k + 2))−3/2 ≤ (n − 2)−3/2, hence
the contribution is at most (n− 2)−3/2

∑
k k

−3/2 = O(n−3/2) since the
sum of k−3/2 is bounded. By similar reasoning the other contribution
is O(n−3/2), so

n4

(∑
k

(2n− (k + 2))−3/2k−3/2

)2

=n4O(n−3/2)2=O(n)=o(n log n),

as was to be shown.
(iv) Again we assume d > 32. Also, we only consider the case d log n ≤ k ≤

cn < � ≤ 2n− d log n, the other case being analogous.
We claim that for given k and � there are at most (2n − �) · 2k good
quadruples (x, k, y, �). This holds since y has to satisfy y+ � ≤ 2n, and
after choosing y we must have that y − k ≤ x ≤ y − 1 or y + �− k ≤
x ≤ y + �− 1, leaving at most 2k choices for x. Therefore, this region
contributes at most

cn∑
k=d logn

2n−d logn∑
�=cn

(2n−�)·2k·n3(2n−(k+2))−3/2k−3/2(2n−(�+2))−3/2�−3/2.

Note that this sum breaks up as

2n3

⎛⎝ cn∑
k=d logn

k−1/2(2n− (k + 2))−3/2

⎞⎠
·
(

2n−d logn∑
�=cn

�−3/2(2n− �)(2n− (�+ 2))−3/2

)
.

Using (2n− (k + 2))−3/2 ≤ 23/2n−3/2 we find that

cn∑
k=d logn

k−1/2(2n− (k + 2))−3/2 = O(n−3/2) ·
cn∑

d logn+2

k−1/2

= O(n−3/2) ·O(n1/2) = O(n−1)
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where the second equality follows from comparison of the sum with an

integral. An analogous computation shows that

2n−d logn∑
�=cn

�−3/2(2n− �) · (2n− (�+ 2))−3/2 = O(n−1),

and therefore this range of k and � contributes at most 2n3 ·O(n−1) ·
O(n−1) = O(n), which is in particular o(n logn) as desired.

(v) Again we estimate the number of good quadruples (x, k, y, �) for given

k, �. Similar to above we have at most (2n−k) and (2n−�) choices for

x and y respectively, and therefore we have at most (2n − k)(2n − �)

good quadruples in total. Thus this part of the sum contributes at

most

2n−d logn∑
k,�=cn

(2n−k)(2n−�)·n3(2n−(k+2))−3/2k−3/2(2n−(�+2))−3/2�−3/2.

As in case (iv), this factors as

n3

(
2n−d logn∑

k=cn

k−3/2(2n− k)(2n− (k + 2))−3/2

)

·
(

2n−d logn∑
�=cn

�−3/2(2n− �) · (2n− (�+ 2))−3/2

)
.

Each of the above sums will beO(n−1) by the same argument as before.

We conclude that the total contribution of these terms to the original

sum is at most n3 · O(n−1) · O(n−1) = O(n) = o(n logn), completing

the proof.

We point out that using Lemma 4.1 and similar arguments to the ones

used in cases (iv) and (v) can be used to show that the region d log n ≤ k, � ≤
cn will contribute O(n log n) to the expected number of edges. In fact, using

a later result, Lemma 7.1, we can also show a lower bound of Ω(n logn)

for this contribution. However, with a little bit more care it is possible to

determine the exact constant. We first require a probability lemma.

Lemma 4.4. Let X1, X2, . . . be independent random variables with P(Xi =

0) = P(Xi = 1) = 1/2, and set Sj =
∑j

i=1Xi. For ε > 0, d ≥ 20/ε2 and
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j > d log n we have

P (|Sj − j/2| < εj/2) < 2n−10.

Proof. By (2.1), the desired probability is at most

2 exp(−2(εj/2)2/j) = 2 exp(−ε2j/2) ≤ 2 exp(−ε2d log n/2)

= 2n−ε2d/2 ≤ 2n−10

since d ≥ 20/ε2.

By Proposition 4.3, in order to show (4.2) it suffices to prove that for
suitably small c and sufficiently large d the contribution from good quadru-
ples with d log n ≤ k, � ≤ cn is between

(1− ε)
1

π
n logn and (1 + ε)

1

π
n logn.

To this end we introduce the following notation, which intuitively means that
two expression asymptotically gets arbitrarily close for n → ∞, independent
of all other variables, provided one picks a suitably small c and a suitably
large d.

Definition 4.5. Let f and g be two functions with the same domain taking
positive values, and whose inputs depend on some positive integer n and
some other integer variables, some of which are restricted to the interval
[d log n, cn]. We say that f ∼ac g if for any ε > 0 there exist suitable c, d
and N with

(1− ε)f(x) ≤ g(x) ≤ (1 + ε)f(x)

for any input x with n ≥ N .

Here the subscript ac denotes that we do not have the exact asymptotic
behavior, but that we get arbitrary close asymptotic behavior by choosing
suitable c and d.

We now want to show that∑
(x,k,y,�)

P[A(x, k, y, �)] ∼ac
1

π
n logn

where the sum is over all good quadruples (x, k, y, �) with d log n ≤ k, � ≤ cn.
The desired result follows by the steps in the proposition below.
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Proposition 4.6. We have the following statements.

(i) P[A(x, k, y, �)] ∼ac
1

16πk
−3/2�−3/2.

(ii) Let g(k, �) be the number of pairs (x, y) such that (x, k, y, �) is a good
quadruple. Then g(k, �) ∼ac 4n ·min{k, �}.

(iii) We have

n

4π

∑
d logn≤k,�≤cn

k−3/2�−3/2 ·min{k, �} ∼ac
1

π
n logn.

Before proving this proposition, we first show that this implies the
asymptotic result of Theorem 1.2.

Corollary 4.7. The expected number of edges of CPn satisfies

E[e(CPn)] ∼
1

π
n logn.

Proof. Given Proposition 4.6, for any ε > 0 there are some c, d and N such
that for all n ≥ N we have

P[A(x, k, y, �)] ≤ (1 + ε)
1

16π
k−3/2�−3/2

g(k, �) ≤ (1 + ε)4nmin{k, �}
n

4π

∑
d logn≤k,�≤cn

k−3/2�−3/2 ·min{k, �} ≤ (1 + ε)
1

π
n log n.

This implies∑
(x,k,y,�)

P[A(x, k, y, �)] ≤ (1 + ε)
∑

(x,k,y,�)

1

16π
k−3/2�−3/2

= (1 + ε)
∑
k,�

g(k, �) · 1

16π
k−3/2�−3/2

≤ (1 + ε)2
n

4π

∑
k,�

k−3/2�−3/2min{k, �}

≤ (1 + ε)3
1

π
n logn,

and similarly for the lower bound.

We now prove this proposition.
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Proof of Proposition 4.6. (i) It is clear that with probability 2−4 all of x,
x+ k, y, y+ � have the correct color. We now claim that, conditioning
on the event that this happens, with probability 2−2 there is an even
number of red points between x and x+k and an even number of blue
points between y and y + �. Indeed, consider the case where x < y <
x + k < y + �. Then for any possible coloring of x + 2, . . . , y − 1, y +
1, . . . , x+k−1, x+k+1, . . . , y+�−2 there is a unique choice of colors
for x+ 1 and y + �− 1 that makes the number of red and blue points
in the respective regions even, and with probability 2−2 these points
will receive this color (here we used our assumption that y ≥ x + 2
and y + � ≥ x+ k + 2).
Condition on the event that all of this happens. Let r1 and r2 be
defined such that there are 2r1 red dots between x and x+ k and 2r2
red dots outside, and similarly define b1 and b2. Then, conditional on
the aforementioned event, the probability of having arcs between x
and x+ k and y and y + � is given by

Cr1 · Cr2

Cr1+r2+1
· Cb1 · Cb2

Cb1+b2+1
.

By Lemma 4.4, with probability at least 1−8n−10 we have r1 ∼ac k/4,
r2 ∼ac n/2− k/4, b1 ∼ac �/4 and b2 ∼ac n/2− �/4. Furthermore, since
k, � ≥ d log n and d log n → ∞ we may replace all Catalan numbers by
their asymptotic expressions, which yields that the probability of hav-
ing arcs on the desired positions is (asymptotically arbitrary closely)
given by

1

16π
·
(
r1 + r2 + 1

r2

)3/2

r
−3/2
1 ·

(
b1 + b2 + 1

b2

)3/2

b
−3/2
1 .

Since r1 + r2 + 1 ∼ac n/2 − k/4 + k/4 + 1 ∼ac n/2 and r2 ∼ac n/2 −
k/4 ∼ac n/2 (the latter since n/2 ≥ n/2− k/4 ≥ n/2− cn/4), we find
r1+r2+1

r1
∼ac 1, and hence

1

16π
·
(
r1 + r2 + 1

r2

)3/2

r
−3/2
1 ·

(
b1 + b2 + 1

b2

)3/2

b
−3/2
1

∼ac
1

16π
(k/4)−3/2(�/4)−3/2 = 26

1

16π
k−3/2�−3/2.

Therefore, for any ε, and suitable c, d and large enough n we have

(1− 8n−10)(1− ε)
1

16π
k−3/2�−3/2
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≤ P[A(x, k, y, �)]

≤ (1− 8n−10)(1 + ε)
1

16π
k−3/2�−3/2 + 8n−10.

Since 1 − 8n−10 → 1 for n → ∞, and since k−3/2�−3/2 ≥ n−3 we
have n−10 = o(k−3/2�−3/2) (uniformly in n). Hence this shows that
P[A(x, k, y, �)] ∼ac

1
16πk

−3/2�−3/2.
(ii) Without loss of generality we may assume that k ≤ �. We show that

(4 − 6c)n(k − 3) ≤ g(k, �) ≤ 4nk. Since k ≥ d log n and d log n → ∞
we have k − 3 ∼ac k, and the result follows.
For the upper bound, note that we have at most 2n choices for x.
Furthermore, given x, either y or y + � must be among {x + 1, x +
2, . . . , x+ k − 1}, hence we have at most 2 · (k − 1) ≤ 2k choices for y
afterwards. Therefore, g(k, �) ≤ 2n · 2k = 4nk.
For the lower bound, let cn ≤ x ≤ (2 − 2c)n. We claim that for any
such x there are at least 2(k−3) good quadruples with that x. Indeed,
let y ∈ {x + 2, . . . , x + k − 2} or y ∈ {x + 2 − �, . . . , x + k − 2 − �},
and we claim that any such y works. Since � ≥ k these two sets are
disjoint, giving us 2(k − 3) good quadruples.
First suppose that y = x + j for 2 ≤ j ≤ k − 2. Then we clearly
have 1 ≤ x < y < x + k < y + �, y ≥ x + 2 and x + k ≥ y + 2.
Furthermore, y + � ≥ x + 2 + � ≥ x + 2 + k = (x + k) + 2. Lastly,
y+ � ≤ x+k−2+ � ≤ 2n−2cn+k+ � ≤ 2n, since k, � ≤ cn. A similar
argument holds in the case y = x+ j − �.

(iii) We consider the contribution to the sum coming from k < �, the
analysis for the contribution coming from k ≥ � is analogous. First,
note that

∑
k<�

k−1/2�−3/2 =

cn∑
�=d logn

�−3/2
�−1∑

k=d logn

k−1/2 ≤
∑
�

�−3/2

∫ �

1
x−1/2dx

=
∑
�

�−3/2(2�1/2 − 2) ≤
cn∑

�=d log n

2�−1

≤ 2

∫ cn

d logn−1
x−1dx ≤ 2 log(cn) ≤ 2 log n.

In the other direction, note that we have a lower bound of

cn∑
�=(logn)2

�−3/2
�−1∑

k=d logn

k−1/2 ≥
cn∑

�=(logn)2

�−3/2�−3/2

∫ �

d logn
x−1/2dx
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=

cn∑
�=(logn)2

�−3/2(2�1/2 − 2(d log n)1/2).

For any ε we have (d log n) ≤ ε2(log n)2 ≤ ε2�2 for n large enough,
hence 2�1/2−2(d logn)1/2 ≥ 2(1−ε)�−1/2 for n large enough. Therefore,
we get a lower bound of

2(1− ε)

cn∑
�=log(n)2

�−1 ≥ 2(1− ε)
(
log(cn+ 1)− log((logn)2)

)
by again comparing the sum with an integral. The desired result now
follows from the fact that

log(cn+ 1)− log(log(n)2) ≥ log n+ log c− log(log(n)2) ∼ log n,

hence we have log(cn + 1) − log(log(n)2) ≥ (1 − ε) log n for n large
enough.

5. The number of isolated vertices

In this section we will determine the asymptotic behavior of the number
of isolated vertices, as stated in Theorem 1.3. Recall that In denotes the
number of isolated vertices of CPn and that we defined

γ = 4

∞∑
m=1

16−m
m−1∑
b=0

(
2m− 2

2b

)
Cm−1−bCb.

Before proving Theorem 1.3, let us first show why the sum defining γ is a
convergent sum. Let γm = 4 ·16−m

∑m−1
b=0

(
2m−2
2b

)
Cm−1−bCb, then as noted in

[3, Section 5] we have γm ≤ 1
4(m−1)2 for m ≥ 2, from which the convergence

follows since the sum of the reciprocals of the squares converges. In fact, this
gives us an error bound on how quickly the finite sums

∑M
m=1 γm converge

to γ. Indeed

γ =

∞∑
m=1

γm =

M∑
m=1

γm +

∞∑
m=M+1

γm ≤
M∑

m=1

γm +

∞∑
m=M+1

1

4(m− 1)2

≤
M∑

m=1

γm +

∫ ∞

x=M

1

4(x− 1)2
dx =

M∑
m=1

γm +
1

4(M − 1)
.
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Using the trivial lower bound γ ≥
∑M

m=1 γm and taking M = 104 one can

compute that

0.30234 ≤ γ ≤ 0.30238.

We first show that E[In] is asymptotically at least γn. As a first obser-

vation we note that any arc yielding an isolated vertex must have an even

number of points between its endpoints, as otherwise there would be an arc

connecting a point between its endpoints with a point outside. Such an arc

would necessarily be on the other side and would yield an edge involving

the arc in question. Therefore, In =
∑n

m=1 In,m where In,m is the number

of isolated vertices induced by an arc connecting two points with 2m − 2
points between them.

The following result will suffice to prove the lower bound for E[In].

Proposition 5.1. For m a fixed positive integer we have E[In,m] ∼ γmn.

As a result of this proposition, we can see that

E[In] ≥
M∑

m=1

E[In,m] ∼
M∑

m=1

γmn,

which gets arbitrarily close (in the multiplicative sense) to γn by picking M

large enough. However, this approach does not immediately yield the upper
bound, since each E[In,m] will converge to γmn at its own rate, hence a bit

more care is needed to handle the full sum E[In] =
∑n

m=1 E[In,m].

Proof of Proposition 5.1. We count the expected number of such arcs that

come from the top, and by symmetry we can multiply this quantity by two to

get our final answer. As mentioned above, an arc connecting x and x+2m−1

is isolated if and only if the 2m− 2 intermediate points are only connected

to themselves. The total number of ways to connect those points is given by

m−1∑
b=0

(
2m− 2

2b

)
Cm−1−bCb,

where b is the number of arcs on the bottom,
(
2m−2
2b

)
counts the number of

ways to select the 2b points for these arcs, and Cm−1−b and Cb count the

number of ways to choose the arcs on the top and the bottom.

Now fix one such configuration with b arcs on the bottom and a arcs

on top (including the arc between x and x + 2m − 1). We claim that the
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expected number of such configurations in CPn is given by

(2n− 2m+ 1)2−2m
n−m∑
r=0

pr
Cr

Cr+a
· Cn−m−r

Cn−m−r+b
,

where pr = pr(n, a, b) is the probability that 2r of the points not among the
2m specified points are colored red.

This formula follows from the fact that there are 2n − 2m + 1 possi-
bilities for x, namely 1 ≤ x ≤ 2n − 2m + 1, and that for each such x the
probability of the points x, x + 1, . . . , x + 2m − 1 colored exactly as in our
configuration is given by 2−2m. After that, given x and conditioning on these
points having the correct colors and conditioning on there being 2r other
red points, the probability that the top Catalan-arc matching (which has
size r + a) has exactly the desired configuration on our given 2a red points
is exactly Cr

Cr+a
by Lemma 3.2, and a similar result holds for the probability

of the bottom Catalan-arc matching coinciding with our given configuration
on the 2b points.

To complete the proof it suffices to show that

n−m∑
r=0

pr
Cr

Cr+a
· Cn−m−r

Cn−m−r+b
∼ 4−m,

since then

E[In,m] ∼ 2

(
m−1∑
b=0

(
2m− 2

2b

)
Cm−1−bCb

)
(2n− 2m+ 1)2−2m · 4−m ∼ γmn.

Using (2.1) with exponential small probability we have r ≤ n/4 or n−m−r ≤
n/4. As a trivial lower bound we have

n−m∑
r=0

pr
Cr

Cr+a
· Cn−m−r

Cn−m−r+b
≥

n−m−n/4∑
r=n/4

pr
Cr

Cr+a
· Cn−m−r

Cn−m−r+b
.

Now in this region, since r, r+ a, n−m− r, n−m− r+ b ≥ n/4 we can use
the approximation for the Catalan numbers from (3.1) and find the lower
bound

n−m−n/4∑
r=n/4

pr
Cr

Cr+a
· Cn−m−r

Cn−m−r+b
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∼
n−m−n/4∑
r=n/4

pr
4r

4r+a

(
r + a

r

)3/2

· 4n−m−r

4n−m−r+b

(
n−m− r

n−m− r + b

)3/2

∼
n−m−n/4∑
r=n/4

pr4
−(a+b) = 4−m

n−m−n/4∑
r=n/4

pr ∼ 4−m,

where the last step follows from the fact that r < n/4 or r > n −m − n/4

holds with exponentially small probability.

Similarly, we have

n−m∑
r=0

pr
Cr

Cr+a
· Cn−m−r

Cn−m−r+b

≤
n−m−n/4∑
r=n/4

pr
Cr

Cr+a
· Cn−m−r

Cn−m−r+b
+ P(r ≤ n/4 or n−m− r ≤ n/4)

∼ 4−m + P(r ≤ n/4 or n−m− r ≤ n/4) ∼ 4−m,

completing the proof.

We now prove the desired asymptotics for the number of isolated vertices.

Proposition 5.2. Let γ be the constant defined by

γ = 4

∞∑
m=1

16−m
m−1∑
b=0

(
2m− 2

2b

)
Cm−1−bCb = 0.3023 . . . .

Let In denote the number of isolated vertices of CPn. Then E[In] ∼ γn.

Proof. As mentioned after the statement of Proposition 5.1 we have shown

an asymptotic lower bound of γn on the number of isolated vertices. For

the upper bound, note that using the notation of Lemma 4.2 we have that

In,m ≤ A2m−1,2m−1, since the number of isolated vertices coming from arcs

of length 2m−1 is clearly at most the the total number of arcs of this length.

By this observation, the fact that
∑n

m=16 logn+1A2m−1,2m−1 ≤ A32 logn+1,2n,

and Lemma 4.2, we have

n∑
m=16 logn+1

E[In,m] ≤ E[A32 log n+1,2n] = o(n),
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which shows that

E[In] =

16 logn∑
m=1

E[In,m] + o(n).

Using the argument from Proposition 5.1 we see that

16 logn∑
m=1

E[In,m]

≤4n

16 logn∑
m=1

4−m
m−1∑
b=0

(
2m− 2

2b

)
Cm−1−bCb

n−m∑
r=0

pr(n, a, b)
Cr

Cr+a
· Cn−m−r

Cn−m−r+b
.

We now see that for any m, a and b we have that there are at least n points
outside of the configuration, hence 2r is the sum of at least n independent
0 − 1 Bernoulli p = 1/2 variables. This means that with at most some
exponentially small probability c−n we have r, n−m− r ≤ n/10.

Therefore, for all cases where r, n−m−r ≥ n/10 we can again (uniformly

over all summands) replace Cr

Cr+a
by 4−a

(
r+a
r

)3/2
. Since r+a

r = 1 + a
r ≤

1+ 16 logn
n/10 we can asymptotically replace r+a

r by 1 over all summands. Using

this and the approach as in Proposition 5.1 we have an asymptotic upper
bound

∑n−m
r=0 pr(n, a, b)

Cr

Cr+a
· Cn−m−r

Cn−m−r+b
≤ 4−m + c−n, hence (asymptotically

up to arbitrarily small multiplicative factors) we have

16 logn∑
m=1

E[In,m] ≤ 4n

16 logn∑
m=1

4−m
m−1∑
b=0

(
2m− 2

2b

)
Cm−1−bCb

(
4−m + c−n

)
≤ γn+ 4n

(
16 logn∑
m=1

4−m
m−1∑
b=0

(
2m− 2

2b

)
Cm−1−bCb

)
c−n

≤ γn+ 4n

(
16 logn∑
m=1

4−m16m

)
c−n ≤ γn+ 4nc−n

16 logn∑
m=1

4m

≤ γn+ 4nc−n · 16 log n416 logn

= γn+ 64nc−n · log n · n16 log 4 = γn+ o(1),

since c−n goes to zero faster than n1+16 log 4 log n grows to infinity.

We can use a similar proof to bound the variance of In.

Proposition 5.3. The variance of the number of isolated vertices in CPn

satisfies Var[In] = o(n2).
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Before giving this proof, let us point out that using Chebyshev’s inequal-
ity we can use this result to complete the proof of Theorem 1.3.

Proof of Theorem 1.3. The asymptotic result for the expected number of
isolated vertices follows from Proposition 5.2. From this we know |E[In] −
γn| < ε/2 · n for n large enough. Hence, for sufficiently large n we have,

P[|In − γn| > εn] ≤ P[|In − E[In]| > ε/2 · n].

Now, applying Chebyshev’s inequality we find

P[|In − E[In]| > ε/2 · n] ≤ Var[In]

(ε/2 · n)2 =
o(n2)

(ε/2 · n)2 = o(1),

as desired.

We will now prove the result on the variance.

Proof of Proposition 5.3. By definition we have Var[In] = E[I2n] − E[In]
2,

where E[In]
2 = (γn)2 + o(n2) by the first part of Theorem 1.3. Therefore,

since variance is nonnegative, it suffices to show that

E[I2n] ≤ (γn)2 + o(n2).

Observe that I2n is the number of ordered pairs of isolated vertices.
Just as above we show that we can restrict ourselves to the isolated

vertices induced by arcs of length at most 32 logn. Indeed, let Aα,β be as
in Lemma 4.2. Then the number of pairs where at least one vertex comes
from an arc of length at least 32 log n is at most 2 ·A32 log n,2n · n, where the
factor 2 represents the choice of the vertex coming from a long arc being
the first or second vertex in the pair, A32 log n,2n is the number of ways to
pick this long arc, and n is the number of ways to pick the remaining vertex.
Therefore, this contribution to E[I2n] is at most E[2 · A32 log n,2n · n] = o(n2)
by Lemma 4.2.

Additionally, the number of pairs of isolated vertices coming from two
arcs of length at most 32 log n, where one arc is contained in the other arc
(possibly facing the other way) is deterministically at most O(n log n), since
one can pick the outer arc in at most n ways and then there are at most
32 log n ways to pick the smaller arc. Therefore, these pairs contribute o(n2)
to E[I2n] as well. Furthermore, the number of pairs where both arcs are the
same are at most n, so these will also contribute o(n2) to E[I2n].

Therefore, we can restrict our attention to pairs of isolated vertices com-
ing from different arcs of length at most 32 log n such that neither arc is
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contained in the other. Note that since the arcs yield isolated vertices their
endpoints cannot interlace, so the sets of points covered by this arc are
disjoint.

Suppose we want to calculate the probability of having a pair of isolated
vertices, one of them induced by an arc connecting (x, x+ 2m− 1) and the
other connecting an arc connecting (y, y + 2k − 1), where m, k ≤ 16 log n.
By a similar argument as in Proposition 5.1, after specifying configurations
for {x + 1, . . . , x + 2m − 2} and {y + 1, . . . , y + 2k − 2} the probability is
(asymptotically up to arbitrarily small multiplicative factors) at most

4−(m+k) · (4−(m+k) + c−n),

where 4−(m+k) is the probability that all of {x, x + 1, . . . , x + 2m − 1} and
{y, y + 1, . . . , y + 2k − 1} receive the correct color, and c−n is once again
an upper bound on the probability of not having at least n/10 more blue
and red points, and the 4−(m+k) is once again the factor that shows up by
considering the asymptotic behavior of the appropriate quotient of Catalan
numbers. Also, by the same argument we can do these asymptotics for all
possible x, y, k, m and choice of configurations simultaneously.

Taking into account that there are at most (2n)2 ways to choose x and y,
and 4 ways to choose the side (top or bottom) for the arcs, and considering
the possible configurations for {x+1, . . . , x+2k−2} and {y+1, . . . , y+2k−2}
we find an asymptotic upper bound for the desired contribution of

16 logn∑
k,m=1

16n2

(
m−1∑
b1=0

(
2m− 2

2b1

)
Cm−1−b1Cb1

)

·
(

k−1∑
b2=0

(
2k − 2

2b2

)
Ck−1−b2Cb2

)
4−(m+k)

(
4−(m+k) + c−n

)
.

Using 4−(m+k) + c−n ≤ (4−m + c−n/2)(4−k + c−n/2), we can separate the
sums over k and m. Thus the contribution is at most(

16 logn∑
m=1

4n·
m−1∑
b1=0

(
2m− 2

2b1

)
Cm−1−b1Cb1 ·4−m(4−m+c−n/2)

)2

≤(γn)2+o(n2),

where the last inequality once again follows from the proof of Theorem 1.3.

We note that essentially the same proof can be used to show that E[Imn ] ∼
γmnm for all m ≥ 2.
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6. The variance of the number of edges

This section will be devoted to bounding the variance of the random variable
e(CPn). We will prove the following result, which with a proof similar to
that of Theorem 1.3 will imply the concentration result of Theorem 1.2.

Proposition 6.1. The variance of the number of edges in CPn satisfies

Var[e(CPn)] = o(n2 log2 n).

Similar to the case of isolated vertices, we will prove this statement by
showing that for any ε > 0 and n large enough we have

E[(e(CPn))
2] ≤ (1 + ε)

1

π2
n2 log2 n+ o(n2 log2 n).

In other words, we want to count the expected number of pairs of edges
in CPn. Just as when we determined the expected number of edges, we
first have to handle some exceptional cases and show that all of these cases
contribute of order o(n2 log2 n). This requires a few more cases than before,
and each of the proofs will be a bit longer since there are more things to
take care of. Since the general approach of all of the proofs are similar to
Proposition 4.3 and Proposition 5.3, we will only state the lemmas here and
defer the proofs to Appendix A.

As mentioned, e(CPn)
2 is the number of pairs of edges in CPn. Typically,

such a pair of edges will be induced by four arcs in the representative for
CPn. The first step will be to show that these pairs are indeed the main
contribution to E[(e(CPn))

2].

Lemma 6.2. The expected number of pairs of edges in CPn induced by at
most three arcs in its representative is at most o(n2 log2 n).

Therefore, we can restrict to valid quadruples

q = (x,k,y, l) = ((x1, x2), (k1, k2), (y1, y2), (�1, �2)),

where (xi, ki, yi, �i) is a possible edge for i = 1, 2. Our goal is now to show
that ∑

q

P[A(x,k,y, l)] ≤ (1 + ε)
1

π2
n2 log2 n+ o(n2 log2 n),

where the sum is over all valid quadruples q = (x,k,y, l). We use the no-
tation for f0, f1, f2, g0, g1, g2 as in Section 4. Similar to the proof for the
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expected number of edges, the first step will be to show that the main con-
tribution comes from quadruples with fi, gj ≥ d log n. That is we will show
that if Q1 is the set of quadruples for which at least one of fi, gj is less than
d log n, then ∑

q∈Q1

P[A(x,k,y, l)] = o(n2 log2 n).

Without loss of generality we can consider the case where one of the fi is
less than d log n. Then the result follows from the two lemmas below, the
first one of which deals with the case that the two arcs on top are nested,
and the second one deals with the unnested case.

Lemma 6.3. Let Q1,1 be the set of all valid quadruples q for which x1 <
x2 < x2 + k2 < x1 + k1 and for which k2, k1 − k2 or 2n − k1 is less than
d log n. Then ∑

q∈Q1,1

P[A(x,k,y, l)] = o(n2 log2 n).

Lemma 6.4. Let Q1,2 be the set of all valid quadruples q for which neither
x1 < x2 < x2 + k2 < x1 + k1 nor x2 < x1 < x1 + k1 < x2 + k2 holds, and for
which k1, k2 or 2n− (k1 + k2) is less than d log n. Then∑

q∈Q1,2

P[A(x,k,y, l)] = o(n2 log2 n).

In order to complete the proof of Proposition 6.1 we can now assume
that all fi, gj are at least d log n. The first step will be to deal with the case
that some of the arcs are nested.

Lemma 6.5. Let Q2 be the set of quadruples with x1 < x2 < x2+k2 < x1+k1
and fi, gj ≥ d log n. Then∑

q∈Q2

P[A(x,k,y, l)] = o(n2 log2 n)

For the remainder of this section on we will assume that any quadruple
has no nested arcs. First we take care of the quadruples where one of the
arcs is too large.

Lemma 6.6. Let Q3 be the set of quadruples with max{k1, k2, �1, �2} > cn.
Then ∑

q∈Q3

P[A(x,k,y, l)] = o(n2 log2 n)
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We lastly rule out all of the remaining quadruples that are valid but not
good.

Lemma 6.7. Let Q4 be the set of valid quadruples that are not good and
have d log n ≤ k1, k2, �1, �2 ≤ cn. Then∑

q∈Q4

P[A(x,k,y, l)] = o(n2 log2 n).

Before we give the proof of Proposition 6.1 we recall a definition from
Proposition 4.6. For positive integers k, �, we defined g(k, �) as the number
of pairs (x, y) such that (x, k, y, �) is a good quadruple. We are now ready
to prove our desired result on the variance.

Proof of Proposition 6.1. By Lemmas 6.2 through 6.7 we only have to con-
sider quadruples (x,k,y, l) that are good, have no nested arcs, and which
have d log n ≤ k1, k2, �1, �2 ≤ cn. In this case, given k1, k2, �1, �2 there are
g(k1, �1) ways to pick x1, y1 and after that at most g(k2, �2) ways to pick
x2, y2.

Therefore, it suffices to show that for d large enough and c small enough
we have

(6.1) P[A(x,k,y, l)] ≤ (1 + ε) · 1

16π
k
−3/2
1 �

−3/2
1 · 1

16π
k
−3/2
2 · �−3/2

2 ,

as this implies that the desired contribution is at most∑
k1,k2,�1,�2

g(k1, �1) · g(k2, �2) · (1 + ε) · 1

16π
k
−3/2
1 �

−3/2
1 · 1

16π
k
−3/2
2 · �−3/2

2 ,

which factors as

(1 + ε)

⎛⎝∑
k1,�1

g(k1, �1)
1

16π
k
−3/2
1 �

−3/2
1

⎞⎠ ·

⎛⎝∑
k2,�2

g(k2, �2)
1

16π
k
−3/2
2 �

−3/2
2

⎞⎠ ,

which by Proposition 4.6 is at most (1 + ε)3 · ( 1πn logn)2 for d large enough
and c small enough.

In order to show (6.1) we follow the same approach as the proof of part
1 of Proposition 4.6. First, with probability 2−8 all of xi, xi + ki, yi, yi + �i
receive the correct color and with probability 2−4 the number of red points
between xi and xi+ki and the number of blue points between yj and yj+ �j
are all even. This follows immediately from the aforementioned proof when
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neither (x1, x1 + k1) and (y2, y2 + �2) nor (x2, x2 + k2) and (y1, y1 + �1)
intersect. Otherwise, we may without loss of generality assume that x1 <
y1 < x1+k1 < x2 < y1+�1 < y2 < x2+k2 < y2+�2. In this case, color all the
remaining points between x1 and y2+�2 except for x1+1, y1+1, x2+1, y2+1.
Then, given any such coloring there is a unique choice for the remaining four
colors that makes the number of red/blue in the desired regions even, as first
y2 + 1 is uniquely determined, then x2 + 1, then y1 + 1 and lastly x1 + 1.

Now suppose that ri is half the number of red points between xi and
xi + ki for i = 1, 2, r0 is half the number of red points outside of the arcs,
and b0, b1, b2 are defined similarly. Conditioned on the values of ri and bj we
can write the desired probability as

Cr0Cr1Cr2

Cr0+r1+r2+2
· Cb0Cb1Cb2

Cb0+b1+b2+2
.

Again by Lemma 4.4, with high enough probability we can approximate ri
with ki/4 (i = 1, 2) and r0 with n/4− k1/4− k2/4, and similarly for the bi,
and the same asymptotic considerations as in Proposition 4.6 will now yield
the desired result.

With all this we can conclude the results of Theorem 1.2.

Proof of Theorem 1.2. The asymptotic formula for the expected number
of edges follows from Corollary 4.7. The concentration result follows from
Proposition 6.1 and essentially the same proof used in the proof of Theo-
rem 1.3.

7. Induced subgraphs and connected components

In this section we prove results on the number of induced subgraphs of CPn

isomorphic to a given Catalan-pair graph H on at least 3 vertices, and we
will use this to prove Theorem 1.4. At the end of the section we will also
discuss a result about the connected components of CPn.

7.1. A lower bound for the number of induced subgraphs

Recall that N∗
H(G) denotes the number of induced subgraphs of G isomor-

phic to H, and that A(x,k,y, l) denotes the intersection of the following
events.

1. The points xi and xi+ki are colored red and the points yj and yj + �j
are colored blue for all i, j.
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2. For all i and j the number of red points x with xi < x < xi + ki and

the number of blue points y with yj < y < yj + �j is even.

3. For all i and j we have that (xi, xi + ki) and (yj , yj + �j) match in

CPn.

The following lemma will be a key step to proving the general lower

bound. Note that this lemma can be seen as a converse to Lemma 4.1.

Lemma 7.1. There exists a positive real number αs,t with

P[A(x,k,y, l)] ≥ αs,t

s∏
i=1

k
−3/2
i

t∏
j=1

�
−3/2
j

for all good quadruples (x,k,y, l) where x and y have length s and t respec-

tively.

Proof. We first show that with probability 2−3(s+t) the first two conditions

are satisfied. It is clear that with probability 1/2 all of the points xi, xi +

ki, yj , yj+�j receive the correct color, so with probability 2−2(s+t) all of these

points have the correct color. Now conditioned on all of these points having

the correct color, we show that with probability 2−(s+t) the second condition

is satisfied. Consider all the points of the form xi + 1 and yj + 1, and note

that by assumption of (x,k,y, l) being a good quadruple all of these points

are different and not equal to any of the xi, xi + ki, yj and yj + �j . Consider

the rightmost of these points, and suppose that it is equal to xi + 1 for

some i. Since all of the points to the right have been colored, we have that

in particular all of the points x with xi < x < xi+ki except for this one have

been colored. Therefore there is a unique choice for the color of xi + 1 that

makes the number of red points x with xi < x < xi + ki even. Inductively

apply this argument for the remaining points, always taking the rightmost

uncolored point.

Now suppose the first two conditions are satisfied. We apply Lemma 3.2

to determine a lower bound for the probability that the third condition is

met. To this end, for each 1 ≤ i ≤ s, let 2ri be the number of red points x

with xi < x < xi+ ki that do not satisfy xj ≤ x ≤ xj + kj for any j �= i. Let

2r0 be the number of red points that have not been counted for any of the

ri and that are not of the form xi or xi + ki. Define b0, b1, . . . , bt similarly.

Let Rn and Bn denote the total number of red and blue points respectively.

Note that for any 1 ≤ i ≤ s we have 2ri ≤ ki, hence in particular ri ≤ ki.
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Applying the aforementioned lemma we find that

P[A(x,k,y, l)] ≥ 2−3(s+t) · αs

∏′ R3/2
n

r
3/2
i

· αt

∏′ B3/2
n

b
3/2
j

≥ αs,t

s∏
i=0

R
3/2
n

max(ri, 1)3/2
·

t∏
j=0

B
3/2
n

max(bj , 1)3/2

≥ αs,t

s∏
i=1

k
−3/2
i

t∏
j=1

�
−3/2
j ,

where we used that Rn ≥ max(r0, 1), Bn ≥ max(b0, 1), max(ri, 1) ≤ ki and

max(bj , 1) ≤ �j .

We are now ready to prove the lower bound of Theorem 1.4. In fact, we

will give a lower bound for any Catlan-pair graph regardless of whether it

is connected or not.

Proposition 7.2. Let H be a Catalan-pair graph on v vertices with i isolated

vertices and m isolated edges. Then

E[N∗
H(CPn)] = Ω(n

v+i

2 (log n)m).

Proof. We will prove this by first showing that the result holds form = i = 0,

then for i = 0, and finally for arbitrary m and i. We note that one can prove

the most general case without first going through the other two cases, but

this would decrease the readability of the proof.

First assume m = i = 0, and let qH be any quadruple representing H.

Our goal will be to find a large number of “blowups” of qH . Let c ≥ 4v be

a fixed constant, and let

Pj := {1 + (j − 1)�n/c�, 2 + (j − 1)�n/c�, . . . ,−1 + j�n/c�},
P := P1 × · · · × P2v.

Given p = (p1, . . . , p2v) ∈ P , we will define a quadruple qc(p) as follows. If

in qH we have xj = a and xj + kj = b, then in qc(p) we let xj = pa and

xj + kj = pb, and we similarly define yj and yj + �j to correspond to the

bottom jth arc of qH . We note that the reason we force all the points of the

left of 2v�n/c� ≤ n/2 is to make sure that in the general case we have enough

space left to place or find arcs yielding the isolated edges and vertices.
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We claim that qc(p) is a good quadruple that represents H for any p ∈ P .
First observe that the points of qc(p) have the same relative order as the
points of qH , which shows that qc(p) satisfies the third condition for being a
good quadruple (since qH satisfies this condition), and moreover that qc(p)
represents H. The first condition for being a good quadruple follows since
the largest point we could choose for qc(p) is −1 + 2v�n/c� ≤ n/2 since
c ≥ 4v, and the second condition follows since |maxPj −minPk| ≥ 2 for all
j, k by the way we defined these sets. This proves our claim.

Now let QH(c) denote the set of all qc(p) with p ∈ P . Observe

|QH(c)| = (�n/c� − 1)2v ≥ (2c)−2vn2v

for n large. Also observe since kj , �j ≤ 2n for all j, Lemma 7.1 gives
that P[A(x,k,y, l)] ≥ αvn

−3v/2 for all (x,k,y, l) ∈ QH(c), where αv :=
2−3v/2maxs+t=v αs,t. In particular, we have that

E[N∗(H)] ≥
∑

(x,k,y,l)∈QH(4v)

P[A(x,k,y, l)]

≥ (8v)−2vn2v · αvn
−3v/2 = Ω(nv/2).

Now assume that i = 0 and let c = 4m+4v. We will say that two vectors
k, l each of length m are nice if we have 4 ≤ kj ≤ �j ≤ �n/c� for all j. Let
Qc(k, l) denote the set of all quadruples (x,k,y, l) such that

1 + (2j − 2 + 2v)�n/c� ≤ xj ≤ −1 + (2j − 1 + 2v)�n/c�,
xj + 2 ≤ yj ≤ xj + kj − 2,

We claim that each quadruple of Qc(k, l) is good whenever k, l is nice. The
first condition follows since the largest point we pick is ym + �m ≤ −1 +
(2m+ 2v)�n/c� ≤ n

2 since c = 4m+ 4v. Similarly one can verify that

xj ≤ yj − 2 ≤ xj + kj − 4 ≤ yj + �j − 6 ≤ xj+1 − 8,

where the first two inequalities follow from xj + 2 ≤ yj ≤ xj + kj − 2, the
third inequality from �j ≥ kj and yj ≥ xj + 2, and the last inequality from
yj + �j ≤ −1 + (2j + 2v)�n/c� ≤ xj+1 − 2. This shows that the second and
third conditions of being a good quadruple are satisfied, proving the claim.
We also note that, for n sufficiently large,

|Qc(k, l)| = (�n/c� − 1)m
m∏
j=1

(kj − 3) ≥ (8c)−mnm
m∏
j=1

kj ,

where we have used that kj − 3 ≥ 1
4kj for all j.
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Now let H ′ denote H after deleting its m isolated edges. For k, l nice,
let Q(k, l) be the set of all quadruples q which are obtained by taking the
union of the arcs of some q1 ∈ QH′(c) and some q2 ∈ Qc(k, l). We claim
that every such q is good. Indeed, the first condition holds since it holds
for both q1 and q2. The second condition holds since it holds restricted to
any two points of q1 or q2, and because the largest point of q1 is at most
−1+2v�n/c� while the smallest point of q2 is at least 1+2v�n/c�. This also
implies that the third condition is satisfied since it is satisfied for both q1
and q2, so the claim is proven.

Observe that each quadruple (x,k,y, l) ∈ Q(k, l) represents H and that

P[A(x,k,y, l)] ≥ αvn
−3(v−2m)/2

m∏
j=1

k
−3/2
j �

−3/2
j

by Lemma 7.1. Also observe that our previous work shows that

|Q(k, l)| = |QH′(c)| · |Qc(k, l)| ≥ βcn
2v−3e

m∏
j=1

kj

for some absolute constant βc. We conclude that

E[N∗(H)] ≥
∑

k,l nice

∑
(x,k,y,l)∈Q(k,l)

P[A(x,k,y, l)]

≥
∑

k,l nice

αvβcn
v/2

m∏
j=1

k
−1/2
j �

−3/2
j

= αvβcn
v/2

⎛⎝ ∑
4≤k≤�≤�n/c	

k−1/2�−3/2

⎞⎠m

= Ω(nv/2(log n)m),

where we use the fact that the above sum is of order Ω(logn).

Now let H be an arbitrary Catalan-pair graph. Let H ′′ be H with its
isolated vertices removed, and let N ′

∗(H) be the number of induced copies
of H ′′ in CPn which have all of its points in the interval [1, n/2]. Note that
implicitly our above argument shows that E[N ′

∗(H)] = Ω(n(v−i)/2(log n)m).

We claim that, deterministically, N∗(H) ≥ N ′
∗(H)·

(
n/4
i

)
. Indeed, observe

that there are at most n/2 arcs which have an endpoint in the interval
[1, n/2], and hence there exists at least n/2 arcs with both endpoints not in
this interval. Let AR denote the set of these arcs that are colored red, and
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similarly define AB. One of these sets must have size at least n/4, so let C
be such that |AC | ≥ n/4.

We claim that any induced copy of H ′′ contained in [1, n/2] together
with i arcs of AC is an induced copy of H. Indeed, by definition no arc in
AC can interlace with any arc of the H ′′, and none of the AC arcs interlace
with one another since they are all colored the same way. Thus the graph
that these arcs induce will be H ′′ together with i isolated vertices, which is
precisely H. We conclude that

N∗(H) ≥
(
|AC |
i

)
·N ′

∗(H
′′) ≥

(
n/4

i

)
N ′

∗(H
′′).

The result now follows by taking expectations of the above inequality and
using that E[N ′

∗(H)] = Ω(n(v−i)/2(log n)m).

7.2. An upper bound for the number of induced subgraphs

A key step in finding the expected number of edges was to bound the number
of good quadruples (x, k, y, �) for given k and �. Therefore, for general H
we would like to bound the number of valid quadruples (x,y,k, l) for given
k and l. One of the reasons this is more complicated in the general setting
is that H might have several different representatives. However, since there
are only finitely many representatives, it suffices to prove the desired bounds
for each of them separately.

In order to do this we introduce some new notation. Let H be a Catalan-
pair graph on v vertices and let q = (x̄, k̄, ȳ, l̄) be a quadruple with x̄ and ȳ
increasing such that the following conditions are satisfied.

• The lengths of x̄ and ȳ add to v.
• We have {x̄i} ∪ {x̄i + k̄i} ∪ {ȳj} ∪ {ȳj + �̄j} = {1, 2, . . . , 2v}.
• The quadruple q is valid and the resulting Catalan-pair graph is iso-
morphic to H.

We say that a valid quadruple (x,k,y, l) represents H by q if the relative
order of the xi, xi+ki, yj and yj + �j coincides with the relative order of x̄i,
x̄i + k̄i, ȳj and ȳj + �̄j . Note that the fi and gj as defined in the beginning
of Section 4 depend solely on k, l, and q, and are independent of the exact
values of x and y.

We wish to prove a lemma that upper bounds the number of valid
quadruples for given k, l, and representing quadruple q. From now on we
assume that H is a connected Catalan-pair graph on v ≥ 3 vertices that has
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s and t vertices in its bipartite components respectively. Additionally, let q
be a quadruple as above where x̄ and ȳ have length s and t respectively.

When k and l are known we denote by (xi) the arc (xi, xi + ki). For a
valid quadruple (x,k,y, l) we say that (xi) is a maximal arc if there is no
j with xj < xi < xi + ki < xj + kj . We say that arc (xi) covers arc (xj) if
we have xi < xj < xj + kj < xi + ki and there is no i′ with xi < xi′ < xj <
xj + kj < xi′ + ki′ < xi + ki. Note that each arc is either maximal, or has a
unique arc that covers it. However, a single arc can cover multiple arcs.

Lemma 7.3. Let k and l be s and t-tuples of positive integers for which
there exists a valid quadruple (x,k,y, l) representing H by q. The number
of such quadruples is at most

(min{f0, g0}+ 2v + 1) ·
∏
i≥1
i �=i0

(fi + 2v + 1) ·
∏
j≥1

(gj + 2v + 1)

for any i0 �= 0, and it also at most

(f0 + 2v + 1)(g0 + 2v + 1) ·
∏
i≥1
i �=i0

(fi + 2v + 1) ·
∏
j≥1
j �=j0

(gj + 2v + 1)

for any i0, j0 �= 0.

Proof. In order to prove the first bound we first consider the case that
f0 = min{f0, g0}. Let i0, i1, . . . , id be such that (xid) is maximal and such
that (xip) covers (xip−1

) for all 1 ≤ p ≤ d. We claim that there are at most

(f0 + 2v + 1) ·
d∏

p=1

(fip + 2v + 1)

ways to choose xid , xid−1
, . . . , xi1 , xi0 . Indeed, since we specified q, k, and

l (and hence the fi and gj), we know how many points m < xid are of the
form m = yj , m = yj + �j , or which satisfy xi′ ≤ m ≤ xi′ + ki′ for some i′.
By definition of f0, we know that there are at most f0 ≤ f0 + 2v points
outside of arc xid that are not of this form. We can choose amongst these
at most f0 + 2v points how many lie to the left of xid , and such a choice
uniquely determines xid (since we now know the total number of points
which lie to the left of xid). We conclude that we can place xid in at most
f0+2v+1 ways. A similar argument shows that there are at most fij +2v+1
ways to place each xij−1 given that xij has already been placed, where now
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fij plays the role of f0 by restricting our attention to points of the form
xij < m < xij + kij . This completes the proof of the claim.

Now suppose that we have inductively placed some (proper) subset of the
arcs. Let Z denote the set of arcs z which have not been placed and whose
endpoints alternate with some arc that has already been placed. Since H is
connected, Z �= ∅. Since Z is finite, let z ∈ Z be such that z covers no other
z′ ∈ Z. Without loss of generality, assume that z is of the form (yj). Then,
we are in one of the following situations.

1. The arc (yj) is minimal.
2. The arc (yj) is not minimal and all the arcs covered by (yj) have been

placed already.
3. The arc (yj) is not minimal, at least one arc covered by (yj) has not

been placed and any such arc does not alternate endpoints with any
of the arcs placed so far.

We claim that in all cases there are at most gj + 2v + 1 ways to choose yj .

1. Note that in this case there are at most gj +2v points between yj and
yj+�j . Indeed, there are gj points that are not of the form xi or xi+ki
and there are at most 2v points that are of this form. By assumption,
the endpoints of (yj) alternate with the endpoints of some (xi). Con-
sider the case where yj < xi < yj + �j . Then the number of points
between yj and xi is at most gj + 2v, else there would be too many
points between yj and yj + �j . Note that this number of intermediate
points uniquely determines yj since xi is known. Therefore we have at
most gj + 2v + 1 ways to choose yj .

2. In this case we can follow a similar argument as used when choosing
xid . Note that since the yj are increasing, yj+1 is the leftmost arc that
is covered by (yj). By definition of gj , there are at most gj +2v points
between yj and yj+1 and the value of yj is known, so we again have at
most gj + 2v + 1 ways to choose yj .

3. In this case, suppose that (yj) intersects (xi) and that we have yj <
xi < yj + �j . We again count the possible number of points between
yj and xi. As before, there are between 0 and gj +2v such points that
do not lie below an arc covered by (yj). We claim that we know how
many of the other points lie between yj and xi, which again yields that
there are at most gj + 2v + 1 options for yj .
Indeed, consider an arc (yj′) that is covered by (yj). If (yj′) has not
been placed, then it does not alternate endpoints with (xi) by as-
sumption. Thus this arc either lies completely between yj and xi or
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completely between xi and yj + �j , and since we specified the quadru-
ple q representing H, we know which of these two cases happens. Thus
we know exactly how many such points lie between yj and xi. Now if
(yj′) has been placed, we know all of yj′ , yj′ + �j′ and xi, so clearly we
also know how many of the points between yj′ and yj′ + �j′ lie to the
left of xi.

Inductively, we can place the arcs one by one (in the order described above)
and note that in this process we get the product of all of the numbers of the
form fi + 2v + 1 and gj + 2v + 1 except for the numbers fi0 + 2v + 1 and
g0 + 2m+ 1, establishing the first bound when f0 = min{f0, g0}.

Now assume that g0 = min{f0, g0}. Since H is connected, there exists
some j0 �= 0 such that (yj0) and (xi0) interlace, and moreover we can choose
j0 such that it does not cover any (yj′) that also interlaces with (xi0). Let
j0, j1, . . . , je be such that (yje) is maximal and such that (yjp) covers (xjp−1

)
for all 1 ≤ p ≤ e. By the same reasoning as above, there are at most
(g0 + 2v + 1) ·

∏e
p=1(gip + 2v + 1) ways to choose yje , yje−1

, . . . , yj1 , yj0 . We
now place the remaining arcs Z as we did before. We use almost all of the
same bounds as before, except we now use the bound gj0 +2v+1 instead of
fi0 + 2v + 1 when we place (xi0). We are justified in using this bound since,
by assumption of (yj0) not covering any arc that interlaces with (xi0), one of
the endpoints of (xi0) must be one of the points counted by gj0 . Ultimately
this gives us the product of all of the numbers of the form fi + 2v + 1 and
gj + 2v + 1 except for the numbers fi0 + 2v + 1 and f0 + 2m+ 1 as desired.

To prove the final bound, let i0, i1, . . . , id be such that (xid) is maximal
and such that (xip) covers (xip−1

) for all 1 ≤ p ≤ d, and similarly define
j0, j1, . . . , je. By reasoning similar to that above, the number of ways we can
place all of these arcs down in at most

(f0 + 2v + 1)(g0 + 2v + 1) ·
d∏

p=1

(fip + 2v + 1) ·
e∏

p=1

(gip + 2v + 1).

We then place the remaining arcs and use the same bounds as we did before,
and this ultimately gives us a product of all of the terms except for fi0+2v+1
and gj0 + 2v + 1.

Proposition 7.4. Let k and l be s and t-tuples of positive integers for
which there exists a valid quadruple (x,k,y, l) representing H by q. Then
the number of such quadruples is at most

(h1 + 2v + 1) · (h2 + 2v + 1) · (h4 + 2v + 1) ·
v+2∏
i=6

(hi + 2v + 1),
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where h1 ≤ h2 ≤ . . . ≤ hv+1 ≤ hv+2 are f0, f1, . . . , fs and g0, g1, . . . , gt
written in increasing order.

Proof. Without loss of generality we may assume that fi0 = maxi,j �=0{fi, gj}.
Observe that fi0 ≥ h3 since we assume v ≥ 3, and further that fi0 ≥ h5
if max{f0, g0} ≤ h4. First assume that {f0, g0} �= {h1, h2}. In this case we

apply the first bound of Lemma 7.3 with our choice of i0. This bound consists

of the product of all the values hi + 2v+1 except for the terms fi0 + 2v+ 1

and max{f0, g0}+2v+1, and in this case we say that our bound “omits” the

values fi0 +2v+1 and max{f0, g0}+2v+1. If max{f0, g0} ≥ h5 then these

two terms are at least h3+2v+1 and h5+2v+1. If max{f0, g0} ≤ h4, then

we again omit at least h3 + 2v + 1 and h5 + 2v + 1 since {f0, g0} �= {h1, h2}
implies that max{f0, g0} ≥ h3. Thus in this case we achieve our desired

result.

Now assume that {f0, g0} = {h1, h2}. In this case we apply the second

bound of Lemma 7.3 to i0 and j0 = 1. Now we omit only fi0 +2v+1 (which

is at least h5 + 2v + 1) and g1 + 2v + 1 (which is at least h3 + 2v + 1). We

conclude the result.

With this proposition we can prove an upper bound on the expected

number of induced subgraphs.

Proposition 7.5. Let H be a connected Catalan-pair graph on v ≥ 3 ver-

tices. Then

E[N∗
H(CPn)] = O(nv/2).

Proof. First notice that there are only finitely many valid quadruples q =

(x̄, k̄, ȳ, l̄) for which {x̄i} ∪ {x̄i + k̄i} ∪ {ȳj} ∪ {ȳj + �̄j} = {1, 2, . . . , 2v} and

such that the resulting Catalan-pair graph is isomorphic to H. Therefore,

it suffices to show for each such q that the expected number of induced

Catalan-pair graphs of CPn that is represented by q is O(nv/2).

Consider 1 ≤ h1 ≤ h2 ≤ . . . ≤ hv+1 ≤ hv+2 ≤ 2n. We claim that

the number of pairs (k, l) such that there exist a valid quadruple (x,k,y, l)

representing H by q and for which {hi} = {fi} ∪ {gj} is at most (v + 2)!.

Indeed, note that since q defines the relative order of all the points, knowing

the values of fi and gj uniquely determines k and l. Since there are (v+2)!

ways to distribute the hi over the fi and gj , there are at most (v+2)! possible

pairs (k, l).
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Therefore, using Lemma 4.1 and Proposition 7.4 we find that the ex-
pected number of induced subgraphs isomorphic to H and represented by q
is at most

(v + 2)! ·
∑
h

(
(h1 + 2v + 1) · (h2 + 2v + 1) · (h4 + 2v + 1)

·
v+2∏
i=6

(hi + 2v + 1) · βs,tn3 ·
∏̃
i

h
−3/2
i

)

where the sum is over all possible sequences h = (h1, h2, . . . , hv+1, hv+2) and∏̃
indicates the product over all i with hi ≥ 16v log n. Note that implicitly

this sum is over all possible (k, l), and we will break up this sum into the
cases where {max fi,max gj} = {ha, hv+2} for all possible a. We will show
the desired upper bound of O(nv/2) in each of these cases. Note that

∑
fi =

2n−2v, so max fi is at least linear and is uniquely determined by the other fi.
We first consider v ≥ 5.

First, assume that a ≥ 6. In this case, we can take out the factors

(ha+2v+1) · (hv+2+2v+1) ·h−3/2
a ·h−3/2

v+2 and note that this is O(n−1), by
virtue of ha, hv+2 being linear in n. Therefore, the remaining part can (up
to some large constant) be estimated by

n2 ·
2n∑

hv+1=1

· · ·
ha+2∑

ha+1=1

ha+1∑
ha−1=1

· · ·
h2∑

h1=1

(h1 + 2v + 1) · (h2 + 2v + 1)(7.1)

· (h4 + 2v + 1) ·
v+1∏
i=6
i �=a

(hi + 2v + 1) ·
∏̃
i

h
−3/2
i ,

where the last product no longer involves ha nor hv+2. Note that this expres-
sion is actually independent of a, so for simplicity we assume that a = v+1.
Let b be the number of hi for which hi ≤ 16v log n. First consider the case
where b = 0. In this case, (7.1) is of the order

n2 ·
2n∑

hv=1

h−1/2
v

hv∑
hv−1=1

h
−1/2
v−1 · · ·

· · ·
h7∑

h6=1

h
−3/2
6

h6∑
h5=1

h
−3/2
5

h5∑
h4=1

h
−1/2
4

h4∑
h3=1

h
−3/2
3

h3∑
h2=1

h
−1/2
2

h2∑
h1=1

h
−1/2
1 .
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Once again estimating these sums by integrals we find that

h6∑
h5=1

h
−3/2
5

h5∑
h4=1

h
−1/2
4

h4∑
h3=1

h
−3/2
3

h3∑
h2=1

h
−1/2
2

h2∑
h1=1

h
−1/2
1

= O

(
h6∑

h5=1

h
−3/2
5

h5∑
h4=1

h
−1/2
4

h4∑
h3=1

h
−3/2
3

h3∑
h2=1

1

)

= O

(
h6∑

h5=1

h
−3/2
5

h5∑
h4=1

h
−1/2
4

h4∑
h3=1

h
−1/2
3

)

= O

(
h6∑

h5=1

h
−3/2
5

h5∑
h4=1

1

)

= O

(
h6∑

h5=1

h
−1/2
5

)
= O(h

1/2
6 ) = O(n1/2).

Furthermore, each of the remaining sums is at most
∑2n

x=1 x
−1/2 = O(n1/2),

so the total sum is O(n2 · (n1/2)v−5 · n1/2) = O(nv/2).
All of the cases b = 0 and 2 ≤ a ≤ 5 have essentially the same proof as

one another, so we will only explicitly go through one of these cases, namely

a = 3. In this case we take out the factors (hv+2 + 2v + 1)h
−3/2
3 h

−3/2
v+2 =

O(n−2) from (7.1), and we use the fact that hi ≥ h3 is linear for all i ≥ 3 to
conclude (7.1) is of the order of magnitude at most

n·
2n∑

hv+1=1

n−1/2 · · ·
2n∑

h6=1

n−1/2
2n∑

h5=1

n−3/2
2n∑

h4=1

n−1/2
2n∑

h2=1

h
−1/2
2

h2∑
h1=1

h
−1/2
1

= O

(
nv/2−1

2n∑
h2=1

h
−1/2
2

h2∑
h1=1

h
−1/2
1

)
= O(nv/2).

Now consider the case that a > b ≥ 5, and again we can assume for
simplicity that a = v + 1. Then (7.1) is at most of the order of

n2 ·
2n∑

hv=1

h−1/2
v

hv∑
hv−1=1

h
−1/2
v−1 · · ·

hb+2∑
hb+1=1

h
−1/2
b+1 ·

16v logn∑
hb=1

(hb + 2v + 1) · · ·

· · ·
16v logn∑
h6=1

(h6 + 2v + 1)

16v logn∑
h5=1

16v logn∑
h4=1

(h4 + 2v + 1)
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16v logn∑
h3=1

16m log n∑
h2=1

(h2 + 2v + 1)

16v logn∑
h1=1

(h1 + 2v + 1).

Note that each of the rightmost b sums will contribute at most O((log n)2)
each, and the remaining sums will contribute O(n(v−b)/2) by an argument
similar to the one above. Thus the total contribution will be of the order
O(n2 · n(v−b)/2 · (log n)2b) = o(nv/2).

Similar arguments give a bound of o(nv/2) when b ∈ {1, 2, 3, 4} and for
any a > b. Note that since ha is linear in n, we always have b < a for n
large enough, so these finitely many cases are all that need to be checked
for v = 5. The proofs for v = 3, 4 are essentially the same, and we note
that we did not deal with these cases earlier because we could not write, for
example, h6. We omit the details.

We note that the above proof shows the somewhat stronger result that
the only quadruples that contribute to the order of magnitude of nv/2 are
those which have all of their gap sizes at least 16v log n. With this we can
now prove Theorem 1.4.

Proof of Theorem 1.4. The statement for induced subgraphs follows from
Proposition 7.2 and 7.5. For any H we claim that

N∗
H(CPn) ≤ NH(CPn) ≤ v! ·

∑
H′

N∗
H′(CPn),

where the sum is over all Catalan-pair graphs H ′ on v vertices that contain
H as a subgraph. The lower bound is obvious. For the upper bound, note
that for any given subgraph of CPn isomorphic to H, the induced subgraph
on these vertices is isomorphic to some H ′ appearing in this sum, and for
given H ′ there are at most v! subgraphs of H ′ isomorphic to H. Taking the
expectation of both sides of this inequality and using the result for induced
subgraphs gives the desired conclusion.

7.3. The sizes of the connected components

Computational evidence suggest that a typical random Catalan-pair graph
on n vertices will have one large component with roughly n/2 vertices and
many smaller components. As we proved in Section 5, many of these com-
ponents will be isolated vertices, but a significant amount will have larger
size. In fact, we show that for any fixed Catalan-pair graph the number of
connected components of CPn isomorphic to this graph is linear in n.
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Proposition 7.6. Let H be a connected Catalan-pair graph on v vertices

and let n ≥ v + 2. There exists a constant C, independent of H, such that

the expected number of connected components of CPn isomorphic to H is at

least C · (n− v + 1/2) · 16−v.

Proof. Let a and A be as in (3.2) and take C =
(
a
A

)2
. Assume that H

has bipartite components of sizes s and t. We show that for any 1 ≤ x ≤
2n− 2v+1, we have probability at least 1/2 · (a/A)2 · 16−v that there are v

arcs connecting {x, x+1, . . . , x+2v−1} and that the resulting Catalan-pair

graph on these 2v points is isomorphic to H, which in particular yields a

connected component of CPn isomorphic to H.

Consider a fixed representative for H. With probability (1/2)2v the

points x, x+1, . . . , x+2v−1 are colored in the exact same order as the points

in the representative. Furthermore, since there are at least four other points,

with probability at least 1/2 the other points do not all have the same color.

Therefore, we have r > s and b > t red and blue points in total. Given r

and s, the probability that we the arcs on the points x, x+1, . . . , x+2v− 1

exactly match those in the representative for H is given by

1

2
· Cr−s

Cr
· Cb−t

Cb
≥ 1

2
· a · r3/2
4s ·A · (r − s)3/2

· a · b3/2
4t ·A · (b− t)3/2

≥ 1

2
·
( a

A

)2
· 1

4s+t
.

Since s+ t = v this implies that with probability at least 4−v · 12 · (a/A)2 ·4−v

we get such a connected component isomorphic to H starting at point x.

By linearity of expectation, the expected number of connected components

isomorphic to H is at least

(2n− 2v + 1) · 4−v · 1
2
·
( a

A

)2
· 4−v = (n− v + 1/2) ·

( a

A

)2
· 16−v.

In particular, we expect a typical Catalan-pair graph on n vertices to

have connected components of size at least logarithmic in n.

8. Computational experiments

We consider some data from computer simulations of random Catalan-pair

graphs. We do this both to provide visual evidence of some of the results

we have proven, as well as to motivate further questions to be studied. In

the first four graphs, each data point corresponds to averaging the given

statistic over 100 trials for n = 100, 200, . . . , 3000 respectively.
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The first graph shows the number edges of a random Catalan-pair graph
divided by n log n. Since π−1 ≈ .318, this data seems to suggest that the
expected number of edges increases somewhat slowly to its asymptotic limit
as proved in Theorem 1.2.

The following graph shows the number of isolated vertices of a random
Catalan-pair graph. The red plot corresponds to 0.3023n, in accordance with
Theorem 1.3.

The next two graphs show the sizes of the largest and second largest
connected component respectively. The red plot corresponds to 0.55n.
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The graph for the second largest component is still somewhat noisy,

so we have not included a plot that tries to fit this data. Note that in

Subsection 7.3 we suggest that the behavior should be at least logarithmic,

but we likely require more data for larger n to see if this is indeed the correct

order of magnitude.

We next look at four histograms of the distribution for 100 trials with

n = 3000. We would like to point out that most of the histograms have their

horizontal axis not starting at 0.

First, we consider the total number of edges. The binwidth for this plot

is 60.

Next we consider the sizes of the largest and second largest component,

respectively. We note that there are some outliers in the size of the second

largest component in this data set, and this was also the case for several other

data sets that we considered. We have also observed noticeable outliers in

the largest component in other data sets (on n = 1500 vertices), though

this could have been due to using too small a value of n. The first plot has
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binwidth 19 and the second has binwidth 3.

We show the histogram for the total number of isolated vertices. The

binwidth for this plot is 2.

We conclude this section with a look at the degree distribution of our

100 trials with n = 3000. The first plot shows the average number of vertices
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with a given degree that appeared during our 100 trials.

Our final plot is a log-log plot of this data where our log is base e.

We note that this plot appears to be mostly linear, which suggest that
the degree distribution follows some power law distribution. However, the
sharp turn at the end indicates that this behavior might only be valid for
vertices of small enough degree.

9. Conclusion and future problems

In this paper we introduced a model CPn for randomly generating Catalan-
pair graphs, and we deduced various results concerning its subgraphs and
connected components. There are many questions that remain to be ex-
plored. One such question is to investigate whether the lower bound in
Proposition 7.2 holds for disconnected graphs as well.

Problem 9.1. Determine the order of magnitude of E[N∗
H(CPn)] when H

is a disconnected graph on at least 3 vertices.

In addition to the expectation, it would be of interest to determine (or
at least bound) the second moments of random variables associated to CPn.
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For example, it would be interesting to improve on Proposition 5.3 and
Proposition 6.1.

Problem 9.2. Determine more explicit bounds on the variance of the num-
ber of isolated vertices and the number of edges of CPn.

Such a result would be of interest as it would give an explicit bound
on the concentration of these random variables around their mean by using
the Chernoff bound. In order to improve on the concentration results in
Theorem 1.2 and Theorem 1.3 the following question would need to be
answered as well.

Problem 9.3. Determine explicit bounds on the quantities |E[e(CPn) −
1
πn logn| and |E[In]− γn|.

While we have proven some results concerning the connected components
of CPn, there are many more questions that can be asked. In particular we
would like to know the following.

Problem 9.4. What are the expected sizes of the largest components of
CPn? Are the sizes of any of these components concentrated around their
mean?

Outliers in our computational evidence suggests that the second largest
component might not have very strong concentration. It is unclear whether
or not this will be the case for the largest component.

The expected degree distribution of CPn remains unknown, though The-
orem 7.6 does imply a lower bound for vertices of small degree.

Problem 9.5. Describe the expected degree distribution of CPn. In partic-
ular, does it exhibit a power law distribution, possibly only for sufficiently
small degrees?

Lastly, we consider two other models for randomly generating Catalan-
Pair graphs which could be of interest. These models are inspired by the
random graph model G(n, p), which is defined by including each possible
edge of an n vertex graph independently with probability p, as well as the
model Γ(n,m), defined by choosing uniformly at random a graph on n ver-
tices with exactly m edges. For more details and result of these random
models, see [7] for the model G(n, p) and [5] for the model Γ(n,m).

For 0 ≤ p ≤ 1, define CPn(p) the same way as we defined CPn, but
instead of coloring the first 2n − 1 colinear points red and blue with equal
probability, we instead color each point red with probability p and blue with
probability 1− p. Essentially all our proofs carry over to CPn(p) when p is
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a fixed constant, but it is not immediately clear how CPn(p) behaves when

p depends on n.

Problem 9.6. What can be said about CPn(p) when p depends on n? Does

CPn(p) exhibit evolutionary properties as p grows?

Another model to consider is CP ′
n(m), which is defined by coloring its

2n collinear points chosen uniformly from all colorings which have 2m red

points, and then proceeding as in the definition of CPn. Intuitively, CP ′
n(m)

and CPn(m/n) should behave in essentially the same way, at least when

m = Θ(n).

In particular, we would like to be able to say that most results in CPn =

CPn(1/2) continue to hold in CP ′
n(n/2) and vice versa. We believe that

all of the proofs we have given in this paper can be modified without too

much difficulty to work for CP ′
n(n/2) as well, though there will be technical

difficulties. For example, one should first prove that we have concentration

results in CP ′
n(n/2) similar to those in CPn. A more subtle issue is that the

probability that a given point is colored red or blue is not precisely 1/2 in

CP ′
n(n/2) once we have conditioned on other events occurring, so some care

is needed to handle this, especially when dealing with asymptotic results.

Again, while we believe that on a case by case basis our results here

carry over to CP ′
n(n/2), it would be nice if there was a more systematic way

to accomplish this. For example, we would like to say something analogous

to the following statement relating G(n, p) and Γ(n,m), [2, Thm. 7.6].

Theorem 9.7. Let 0 < p = p(n) < 1 be such that pn2 → ∞ and (1−p)n2 →
∞, let Q be a property of graphs, and let ε > 0 be fixed.

If (1−ε)
(
n
2

)
< m < (1+ε)p

(
N
2

)
and asymptotically almost surely Γ(n,m)

has property Q, then asymptotically almost surely G(n, p) has property Q.

Problem 9.8. Is there a systematic way to show that (reasonably nice)

properties of CPn hold in CP ′
n(n/2) and vice versa? More generally, can

one show this for CPn(m/n) and CP ′
n(m) for various values of m?
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Appendix A. Proofs of the edge variance

We will now provide the proofs of the lemmas in Section 6. First, we prove
the lemma that concerns all pairs of edges coming from at most three arcs.

Proof of Lemma 6.2. Since it is clear that at least two arcs must be involved,
there are two cases to consider. First, suppose that the total number of arcs
involved equals two. Then both edges in the pair are the same edge, so the
number of such pairs equals e(CPn) ≤ n2. On the other hand, if there are a
total of three arcs involved, there are at most n · e(CPn) pairs of such edges.
Indeed, there are e(CPn) ways to choose the first edge in the pair, which
yields two arcs, and then there are at most n ways to choose a third arc that
interlaces with either of the two arcs used already. Therefore, in expectation
there are at most

E[n · e(CPn)] =
1

π
n2 log n = o(n2 log2 n)

such pairs.

The next two lemmas are used to show that we may assume that each
of the gap sizes is of order at least log n. We define e′(CPn) as the number
of edges in CPn, at least one of whose arcs has size at most d log n or at
least cn. We refer to such edges as exceptional edges. In Proposition 4.3 we
showed that E[e′(CPn)] = o(n logn).

Proof of Lemma 6.3. First we consider the number of pairs with 2n− k1 <
d log n. We claim that there are at most (d log n)2 · e(CPn) such pairs. In-
deed, we can pick the edge (x2, k2, y2, �2) in at most e(CPn) ways, and the
edge (x1, k1, y1, �1) in at most (d log n)2 ways: we can pick k1 in d log n
ways, after which there is at most one x1 such that x1 and x1 + k1 are con-
nected (since k1 > n) and the vertex corresponding to this arc has degree
at most d log n (as each interlacing arc must have an endpoint less than x1
or larger than x1+ k1). By taking expectations we see that we have at most
(d log n)2E[e(CPn)] = o(n2 log2 n) such pairs.

Now suppose that k1 − k2 < d log n or k2 < d log n. First consider the
pairs with (x1, k1, y1, �1) an exceptional edge. We claim that the number of
such pairs is at most n · d log n · e′(CPn), from which taking expectations
will suffice. In order to prove this, note that there are at most e′(CPn) ways
to pick an exceptional edge. Then, in the case k1 − k2 < d log n, there are
at most d log n ways to pick x2, and the corresponding arc has degree at
most n. Similarly, if k2 < d log n, there are at most n ways to pick x2, and
the corresponding arc has degree at most d log n.
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Therefore, we may assume that (x1, k1, y1, �1) is not an exceptional edge.
Assume that k1 and �1 are given. By the same logic as the proof of Proposi-
tion 4.6, we know that there are at most 4nmin{k1, �1} options for x1 and
y1, and by Lemma 4.1 the probability of having arcs connecting (x1, x1+k1)

and (y1, y1 + �1) is O(k
−3/2
1 �

−3/2
1 ). Furthermore, given (x1, k1, y1, �1) there

are at most k1 ·d log n possible second edges by a similar argument as above,
where we now use k1 instead of n since we have fixed the size of the outer
arc. Hence, the expected number of such pairs of edges is given by

O

⎛⎝2n log n ·
∑
k1,�1

min{k1, �1}k−1/2
1 �

−3/2
1

⎞⎠
so it suffices to show that

∑
k1,�1

min{k1, �1}k−1/2
1 �

−3/2
1 = o(n logn). The

contribution from k1 ≤ �1 is at most∑
�1≤cn

�
−3/2
1

∑
k1≤�1

k
1/2
1 ≤

∑
�1≤cn

�
−3/2
1 O(�

3/2
1 ) = O(n),

and the contribution from �1 ≤ k1 is at most∑
k1≤cn

k
−1/2
1

∑
�1≤k1

�
−1/2
1 =

∑
k1≤cn

k
−1/2
1 O(k

1/2
1 ) = O(n)

completing the proof.

Proof of Lemma 6.4. We first consider the case that one of k1, k2 is less than
d log n. By symmetry we can assume that k1 < d log n. As in the previous
lemma, the number of pairs of edges with (x2, k2, y2, �2) an exceptional edge
is at most n ·d log n · e′(CPn) as there are at most n ·d log n edges where one
vertex has degree at most d log n, and there are at most e′(CPn) ways to
pick the second edge. Therefore, in expectation, there are at most O(n log n)·
E[e′(CPn)] = o(n2 log2 n) such pairs.

Thus we may assume that (x2, k2, y2, �2) is not an exceptional edge.
Consider all pairs of edges where k1 <

√
logn. The number of such pairs is

at most n ·
√
log n ·e(CPn), as one can pick the arc (x1, x1+k1) in at most n

ways, this vertex has degree at most
√
log n, and there are at most e(CPn)

ways to pick the second edge. In particular, the expected number of such
pairs is at most n ·

√
log n · E[e(CPn)] = O(n2(log n)3/2) = o(n2 log2 n).

Lastly we handle the case where
√
log n ≤ k1 ≤ d log n. We consider

the expected number of pairs of an arc and an edge ((x1, k1), (x2, k2, y2, �2))
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such that k1 is in the given range, and the arcs (x1, x1+k1) and (x2, x2+k2)
are not nested. If we can show that the expected number of such pairs is
o(n2 log n) the result follows. Indeed, any pair of edges of interest comes from
such an arc-edge pair together with an arc that interlaces with (x1, k1), and
there are at most O(log n) such arcs. Thus in total we will get at most
o(n2 log n) ·O(log n) = o(n2 log2 n) pairs of edges.

To accomplish this, we will show that for any valid quadruple q =
((x1, x2), (k1, k2), (y2), (�2)) giving an arc-edge pair as described above, we
have

(A.1) P[A(q)] = O
(
k
−3/2
2 �

−3/2
2 ·

(
k
−3/2
1 + e−

√
logn/16

))
.

Showing the above bound on the probability suffices because then the num-
ber of arc-edge pairs is at most

∑
q

P[A(q)] = O

⎛⎝⎛⎝∑
x1,k1

k
−3/2
1 + e−

√
logn/16

⎞⎠ ·

⎛⎝ ∑
x2,k2,y2,�2

k
−3/2
2 �

−3/2
2

⎞⎠⎞⎠
where we note that some combinations of some (x1, k1) used in the first
sum and some (x2, k2, y2, �2) used in the second sum will not give a desired
quadruple q, but this is no issue since we are only interested in an upper
bound. By Lemma 4.2 and Proposition 4.6 the first sum is o(n) and the
second sum is O(n logn), showing the desired result. We will deviate slightly
and assume that �2 is at least 2d log n, but we note that this change will not
affect our previous arguments.

To prove (A.1) we note that P[A(q)] can be written as

(A.2) P[A(q)] = 2−2n
∑
c

Cn0
Cn1

Cn2

Cn0+n1+n2+2
· Cm0

Cm2

Cm0+m2+1
,

where the sum is over all colorings c of the points such that all the points
coming from q receive the correct color and the number of points of the
desired color in each region is even. Here n0 and m0 are half the number of
red and blue points outside of the desired arcs, n1 is half the number of red
points within arc (x1, x1+ k1) and n2 and m2 are half the number of red an
blue points respectively in the arcs (x2, x2 + k2) and (y2, y2 + �2). Note that
�2 > 2d log n, hence the number of points between y2 and y2 + �2 that do
not lie between x1 and x1 + k1 is at least d log n.

Consider all the possible colorings of all the points except for the points
in the interval [x1, x1 + k1]. By using Lemma 4.4, for d large enough, we
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can say that with probability at least 1 − O(n−10) we have n0,m0 = Ω(n),
n2 = Ω(k2) and m2 = Ω(�2), where the bound on m2 follows by the above
remark that there are still at least d log n points that we are considering.
Since

n−10 = o
((

k
−3/2
1 + e−

√
log n/16

)
·
(
k
−3/2
2 �

−3/2
2

))
we can restrict our attention to all colorings where the above bounds are
satisfied. Now, for any such coloring, using the asymptotic formula for the
Catalan numbers, we have

Cm0
Cm2

Cm0+m2+1
= O(�

−3/2
2 ).

Furthermore, we can rewrite

Cn0
Cn1

Cn2

Cn0+n1+n2+2
=

Cn0+n2+1Cn1

Cn0+n1+n2+2
· Cn0

Cn2

Cn0+n2+1
,

then as in Lemma 4.2 we can show that
Cn0+n2+1Cn1

Cn0+n1+n2+2
, which is the probability

of an arc connecting x1 and x1 + k1, is given by O
(
k
−3/2
1 + e−

√
logn/16

)
,

where this case is even a bit easier since we already specified the number
of red points outside the arc. Furthermore, plugging in n0 = Ω(n) and

n2 = Ω(k2) we find
Cn0Cn2

Cn0+n2+1
= O(k

−3/2
2 ), and plugging all these results into

(A.2) yields

P[A(q)] = 2−2n
∑
c

O
((

k
−3/2
1 + e−

√
logn/16

)
·
(
k
−3/2
2 �

−3/2
2

))
,

which is O
((

k
−3/2
1 + e−

√
logn/16

)
·
(
k
−3/2
2 �

−3/2
2

))
since there are at most

22n valid colorings c. The finishes the case that one of k1, k2 is less than
d log n.

Secondly, consider the case that 2n − (k1 + k2) < d log n. By the above
we may assume that k1, k2 > d log n. For any d log n < k1 < 2n − d log n
there are at most O(log n) values of k2 for which 2n− (k1 + k2) is satisfied.
Furthermore, given k1 and k2 there are at most O((log n)2) ways to pick x1
and x2, as there are at most d log n dots outside of the arcs (x1, x1 + k1)
and (x2, x2 + k2). A variant of the proof of Lemma 4.1 shows that with

probability O(n3/2k
−3/2
1 k

−3/2
2 ) we have arcs connecting x1 and x1 + k1, and

x2 and x2 + k2.
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Given k1, k2, x1 and x2, and assuming that (x1, x1+k1) and (x2, x2+k2)
match there are at most k1 · k2 edges involving these two arcs. Therefore,
the expected number of pairs of edges is at most∑
k1,k2

O((log n)2) ·O(n3/2k
−3/2
1 k

−3/2
2 ) ·k1k2 = O(n3/2(log n)2)

∑
k1,k2

k
−1/2
1 k

−1/2
2 .

We now claim that k2 ≥ 1
2(2n − k1). Indeed, if k1 ≥ 2n − 2d log n we have

1
2(2n − k1) ≤ d log n, whereas k2 ≥ d log n. Otherwise, we have k2 ≥ 2n −
k1 − d log n ≥ 1

2(2n − k1) since the last inequality is equivalent to k1 ≤
2n−2d log n. Using this, together with the earlier observation that there are
at most O(log n) choices for k2 given k1, we find

O(n3/2(log n)2)
∑
k1,k2

k
−1/2
1 k

−1/2
2 = O(n3/2(log n)2)

∑
k1,k2

k
−1/2
1 (2n− k1)

−1/2

= O(n3/2(log n)3)
∑
k1

k
−1/2
1 (2n− k1)

−1/2.

Using that x �→ (x(2n − x))−1/2 is decreasing on (0, n) and increasing on
(n, 2n) we can compare the last sum with an integral to find that

∑
k1

k
−1/2
1 (2n− k1)

−1/2 ≤
∫ 2n−1

1
(x(2n− x))−1/2 dx

= 2arctan

(√
x

2n− x

)∣∣∣∣2n−1

1

= 2arctan(
√
2n− 1)− 2 arctan

(√
1

2n− 1

)
≤ π.

Therefore, the expected number of pairs of these edges is O(n3/2(log n)3) =
o(n2 log2 n).

The next lemma takes care of the cases where the arcs on at least one
side are nested.

Proof of Lemma 6.5. There are three cases to consider, based on the relative
position of the arcs coming from the bottom:

1. These arcs are unnested.
2. We have y2 < y1 < y1 + �1 < y2 + �2.
3. We have y1 < y2 < y2 + �2 < y1 + �1.
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We will prove that in each case we have

P[A(x,k,y, l)] = O
(
n3k

−3/2
1 (2n− k1)

−3/2�
−3/2
1 (2n− �1)

−3/2k−3/2
m �−3/2

m

)
,

(A.3)

where km = min{k2 − k1, k2} and �m is defined based on which of the

three cases we are working in. Furthermore, in all cases we will show an

upper bound of O(g(k1, �1) · k1 ·min{km, �m}) on the number of choices for

x1, x2, y1, y2 given k1, k2, �1, �2. Here g(k, �) is the number of pairs (x, y) such

that (x, k, y, �) is a good quadruple, as defined in Proposition 4.6. We note

that given km and k1 there are only two possibilities for k2 and we will define

�m in such a way that the same thing holds for �2 given �m and �1. Therefore,

the desired contribution will be of the order∑
k1,�1,km,�m

g(k1, �1) · k1 ·min{km, �m} · n3k
−3/2
1 (2n− k1)

−3/2

· �−3/2
1 (2n− �1)

−3/2k−3/2
m �−3/2

m .

Simply allowing all the variables in this sum to run between d log n and

2n− d log n we can factor this as⎛⎝ ∑
km,�m

min{km, �m}k−3/2
m �−3/2

m

⎞⎠
·

⎛⎝∑
k1,�1

g(k1, �− 1) · k1 · n3k
−3/2
1 (2n− k1)

−3/2�
−3/2
1 (2n− �1)

−3/2

⎞⎠ .

Note that the first sum is of order O(log n). Now, if max{k1, �1} > cn we

can use the estimate k1 = O(n), to show that the total contribution is given

by

O(n logn) ·

⎛⎝∑
k1,�1

g(k1, �− 1) · n3k
−3/2
1 (2n− k1)

−3/2�
−3/2
1 (2n− �1)

−3/2

⎞⎠
= o(n2 log2 n),

as the last sum is of order o(n logn) by Proposition 4.3. Else, we can

use n3(2n − k1)
−3/2(2n − �1)

−3/2 = O(1) and the estimate g(k1, �1) ≤
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4nmin{k1, �1} ≤ 4n�1 to see that the total contribution is of the order

O(n log n) ·

⎛⎝∑
k1,�1

k
−1/2
1 �

−1/2
1

⎞⎠ = O(n2 logn) = o(n2 log2 n),

where we used that

∑
k1,�1

k
−1/2
1 �

−1/2
1 =

⎛⎝ ∑
d logn≤k1≤cn

k
−1/2
1

⎞⎠ ·

⎛⎝ ∑
d logn≤k1≤cn

k
−1/2
1

⎞⎠
= O(

√
n) ·O(

√
n).

We now show (A.3) and the desired bounds on the number of quadruples
for each of the cases. We handle the first case in full detail, the other two
cases are very similar so we only highlight the details.

1. We know from Lemma 4.1 that P[A(x,k,y, l)] =

O
(
n3(2n− k1)

−3/2(k1 − k2)
−3/2k

−3/2
2 (2n− �1 − �2)

−3/2�
−3/2
1 �

−3/2
2

)
.

In this case, we define �m = min{2n − �1 − �2, �2}. Now, since (k1 −
k2)+k2 = k1 we have max{k1−k2, k2} ≥ k1/2, so (k1−k2)

−3/2k
−3/2
2 =

O(k
−3/2
1 k

−3/2
m ) and similarly we find (2n−�1−�2)

−3/2�
−3/2
2 = O((2n−

�1)
−3/2�

−3/2
m ).

Furthermore, given k1, k2, �1, �2 there are at most g(k1, �1) + O(n) =
O(g(k1, �1)) ways to pick (x1, y1), where we have to add O(n) to ac-
count for the option that (x1, k1, y1, �1) is not a good quadruple. Now
suppose that (x1, y1) has been chosen.
If km < �m there are at most (k1 − k2) ways to pick x2 and after that
at most 2k2 ways to pick y2, so there are at most O((k1 − k2)k2) =
O(k1km) ways to pick (x2, y2) (where we used k1 − k2, k2 ≤ k1).
Similarly, if �m < km there are at most k1 ways to pick x2 and we claim
that there are at mostO(�m) ways to pick y2. Indeed, if �m = 2n−�1−�2
then there are at most two ways to pick the relative order of the arcs,
after which y1 is determined by how many of the 2n − �1 − �2 = �m
outside points are to the left of y2, whereas if �m = �2 the value of
y2 is determined by the relative order of x2 and y2 and by how many
points the arcs (x2, x2+ k2) and (y2, y2+ �2) have in common. For the
first option we have two choices and for the last one we have �2 = �m
choices.
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2. In this case we have Pr[A(x,k,y, l)] =

O
(
n3(2n−k1)

−3/2(k1−k2)
−3/2k

−3/2
2 (2n−�2)

−3/2�
−3/2
1 (�2−�1)

−3/2
)
,

so defining �m = min{2n− �2, �2 − �1} gives the desired bound on the
probability.
For the count of the number of options for (x1, y1, x2, y2) the only
thing that changes is the number of ways to pick (x2, y2) given (x1, y1)
and given �m ≤ km. Again, there are at most k1 ways to pick x2. If
�m = �2 − �1 then y2 is determined by the number of dots between
y1 and y2, whereas if �m = 2n − �2 the value of y2 is determined by
choosing how many of the outside points should be to the left of y2.

3. Here we have the bound P[A(x,k,y, l)] =

O
(
n3(2n−k1)

−3/2(k1−k2)
−3/2k

−3/2
2 (2n−�1)

−3/2�
−3/2
2 (�1 − �2)

−3/2
)
,

so we define �m = min{�1 − �2, �2}.
Again, the only thing that remains is to bound the number of ways
to pick y2 given (x1, y1, x2) in the case �m ≤ km. If �m = �1 − �2 then
y2 is determined by picking the distance between y1 and y2, whereas
if �m = �2 the value of y2 is determined by picking the relative order
of x2 and y2 and choosing the number of points that the two arcs
(x2, x2 + k2) and (y2, y2 + �2) have in common.

Next we handle the case where at least one of the arcs has size linear
in n.

Proof of Lemma 6.6. We assume k1 = max{k1, k2, �1, �2} without loss of
generality. Let k0 = 2n−k1−k2 and �0 = 2n−�1−�2 and setmi = min{ki, �i}
for i = 0, 1, 2. First assume that �1 �= max{�0, �1, �2}.

We claim that given k1, k2, �1, �2, the number of quadruples is at most
O(m2

0m1m2) = O(m2
0�1m2). Since there are only finitely many options for

the orderings of the endpoints of the arcs, it suffices to show the bounds
for each specific ordering. But, given the ordering of the arcs, we claim
that there are at most m0mi ways to pick (xi, yi). Indeed, consider the case
that k0 = min{k0, �0}. Then we can pick xi in at most k0 ways, as it is
determined by the number of points to the left of xi (if the arc (xi, xi + ki)
is the leftmost arc) or to the number of points to the right of xi + ki (if the
arc is the rightmost arc), so xi can be picked in at most k0 = m0 ways. After
that, yi is determined by the number of points that the arcs (xi, xi+ki) and
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(yi, yi+�i) have in common and this is at most mi. The case �0 = min{k0, �0}
is similar.

Now given a quadruple, by Lemma 4.1 the probability that that all the

desired arcs match is O(n3/2k
−3/2
0 �

−3/2
0 �

−3/2
1 k

−3/2
2 �

−3/2
2 ) where we used that

k1 ≥ cn. Therefore, the desired contribution is at most

(A.4) O(n3/2) ·
∑

m2
0�

−3/2
0 k

−3/2
0 · �−1/2

1 ·m2k
−3/2
2 �

−3/2
2 .

Since �0 + �1 + �2 = 2n we have max{�0, �1, �2} ≥ 2n/3. Since we assumed

that �1 is not the maximum we have two cases.

• �0 is the maximum. In this case n3/2�
−3/2
0 = O(1). Note that (as we did

in Proposition 7.5) �0 is determined by �1 and �2, and k1 is determined

by k0 and k2, so its contribution to (A.4) is

O(1) ·
∑

k0,k2,�1,�2

m2
0k

−3/2
0 �

−1/2
1 m2k

−3/2
2 �

−3/2
2 ,

where the sum is over some appropriate range. To find an upper bound

we can split this sum as

O(1) ·
(∑

k0

m2
0k

−3/2
0

)
·
(∑

�1

�
−1/2
1

)
·

⎛⎝∑
k2,�2

m2k
−3/2
2 �

−3/2
2

⎞⎠ ,

which after merging back involves more terms than before, but that

is fine as we are only interested in an upper bound. We will now es-

timate each individual sum. For the first one, if k0 ≤ �0 this con-

tributes
∑

k0
k
1/2
0 = O(n3/2), whereas if k0 ≥ �0 this sum is at most

O(n2)
∑

k
−3/2
0 = O(n2) · O(n−1/2) = O(n3/2) where we used that

k0 ≥ 2n/3 in this case. For the second sum we get a bound of O(n1/2).

For the last sum we may assume k2 ≤ �2 by symmetry and see that

this sum is

O

⎛⎝∑
�2

�
−3/2
2

∑
k2≤�2

k
−1/2
2

⎞⎠ = O

(∑
�2

�−1
2

)
= O(log n),

so all together we get O(n2 log n) in this case.
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• Now assume that �2 = max{�0, �1, �2}. Using the estimate O(n3/2) ·
�
−3/2
2 = O(1) the contribution to (A.4) is at most

O

⎛⎝⎛⎝∑
k0,�0

m2
0k

−3/2
0 �

−3/2
0

⎞⎠ ·
(∑

�1

�
−1/2
1

)
·
(∑

k2

m2k
−3/2
2

)⎞⎠ .

Similar arguments to above give that the first sum is O(n), the second
one is O(n1/2) and the last one is O(n1/2) where here one has to
distinguish cases based on whether k2 ≥ �2 or k2 ≤ �2 just as for the
first sum in the case above, so the total contribution will be O(n2) =
o(n2 log2 n), as desired.

It remains to handle the case �1 = max{�0, �1, �2}. In this setting, we claim
that (after being given an ordering of the endpoints of the arcs) we can
choose x1, x2, y1 and y2 in k0 · �0 · m0 · m2 ways. Indeed, we can still pick
x2, y2 in m0 ·m2 ways, whereas we have at most k0 ways to pick x1 and �0
ways to pick y1. In this case, we get a contribution of at most

O(n3/2) ·
∑

m0�
−1/2
0 k

−1/2
0 · �−3/2

1 ·m2k
−3/2
2 �

−3/2
2 .

Using O(n3/2) · �−3/2
1 = O(1) we have to evaluate⎛⎝∑
k0,�0

m0�
−1/2
0 k

−1/2
0

⎞⎠ ·

⎛⎝∑
k2,�2

m2k
−3/2
2 �

−3/2
2

⎞⎠ ,

where the second sum is O(log n) as before and by a similar argument we find
that the first sum is O(n2), showing that this contribution is O(n2 log n) =
o(n2 log2 n).

Lastly, we handle all quadruples that are valid but not good.

Proof of Lemma 6.7. By Lemma 4.1 we know

P[A(x,k,y, l)] = O(k
−3/2
1 k

−3/2
2 �

−3/2
1 �

−3/2
2 ).

Also, we know by Proposition 4.6 that
∑

ki,�i
g(ki, �i)k

−3/2
i �

−3/2
i = O(n log n)

and by Proposition 4.3 that
∑

ki,�i
nk

−3/2
i �

−3/2
i = o(n logn).

Our goal is to show given (k1, k2, �1, �2) there are at most O(g(k1, �1)n+
ng(k2, �2) +n2) quadruples q ∈ Q4, since then the desired contribution is at
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most

O

⎛⎝ ∑
k1,�1,k2,�2

(g(k1, �1)n+ ng(k2, �2) + n2)k
−3/2
1 �

−3/2
1 k

−3/2
2 �

−3/2
2

⎞⎠ ,

which is the sum of

O

⎛⎝⎛⎝∑
k1,�1

g(k1, �1)k
−3/2
1 �

−3/2
1

⎞⎠·

⎛⎝∑
k2,�2

nk
−3/2
2 �

−3/2
2

⎞⎠⎞⎠=O(n log n)·o(n logn)

O

⎛⎝⎛⎝∑
k1,�1

nk
−3/2
1 �

−3/2
1

⎞⎠·

⎛⎝∑
k2,�2

g(k2, �2)k
−3/2
2 �

−3/2
2

⎞⎠⎞⎠=o(n log n)·O(n logn)

O

⎛⎝⎛⎝∑
k1,�1

nk
−3/2
1 �

−3/2
1

⎞⎠·

⎛⎝∑
k2,�2

nk
−3/2
2 �

−3/2
2

⎞⎠⎞⎠=o(n log n)·o(n logn)

so the total contribution is o(n2 log2 n) as well.
Now, given (k1, k2, �1, �2) there are only a few ways in which we can have

a valid but not good quadruple.

• (x1, k1, y1, �1) is good, but (x2, k2, y2, �2) is not good. In this case we
can pick (x1, y1) in at most g(k1, �1) ways and (x2, y2) in O(n) ways,
so we are done.

• (x2, k2, y2, �2) is good, but (x1, k1, y1, �1) is not good. Similarly to the
previous case this will give a bound of O(ng(k2, �2)).

• Neither of the (xi, ki, yi, �i) are good. In this case we get a bound of
O(n2) as there are O(n) ways to pick any individual (xi, ki, yi, �i).

• Both of the (xi, ki, yi, �i) are good, but the endpoint of one arc of the
first four-tuple is adjacent to the endpoint of an arc of the second
four-tuple. Note that there are only finitely many possible orderings
of the endpoints of the arcs. Given an ordering, there are now at most
g(k1, �1) ways to pick (x1, y1), which determines either x2 or y2 since
one of {x2, x2 + k2, y2, y2 + �2} is adjacent to a now known point, and
after that there are at most 2n ways to pick the other of x2, y2, so
there are O(g(k1, �1) · n) possible quadruples in this case.
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