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We provide a lower bound for the spectral radius of the universal
cover of irregular graphs in the presence of symmetric edge weights.
We use this bound to derive an Alon-Boppana type bound for the
second eigenvalue of the normalized Laplacian.
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1. Introduction

Let G = (V,E) be a simple, connected, n vertex graph and let λ1 ≥ λ2 ≥
· · · ≥ λn be the eigenvalues of its adjacency matrix. Letting λ(G) = λ2 one

of the versions of the famous Alon-Boppana theorem states that

Alon-Boppana Theorem ([14]). For any sequence of simple connected d-

regular graphs Gi with increasing diameter, we have that lim infi→∞ λ(Gi) ≥
2
√
d− 1. Furthermore, for any particular d-regular graph with two edges of

distance at least 2k + 2, λ(G) ≥ 2
√
d− 1− 2

√
d−1−1
k+1 .

Since the spectrum of the adjacency matrix of a regular graph is closely

related to the expansion properties of the graph (see [1], for example), the

Alon-Boppana result may be thought of as upper bound on the quality

of the expansion in a d-regular graph. Recently, Friedman has confirmed a

conjecture of Alon and shown that for any ε > 0 a sufficiently large d-regular

random graph has λ(G) ≤ 2
√
d− 1+ ε with high probability, and thus may

be thought of as extremal with respect to λ(·) [4, 5].
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Given the wide ranging practical and theoretical applications of ex-
panders (see [8]), it is natural to consider what an analogous statement of the
Alon-Boppana theorem would be for irregular graphs. To that end, we say
a graph has r-robust average degree d if for every vertex v, G[V \Br(v)] has
average degree at least d, where G[S] is the graph induced by S and Br(v)
consists of all vertices at distance most r from v. Now, with this definition
Hoory generalized the Alon-Boppana results as follows.

Theorem 1 ([7]). Let Gi be a sequence of graphs such that Gi has ri-robust
average degree d ≥ 2. If ri → ∞, then lim inf i→∞max{|λ2(Gi)| , |λn(Gi)|} ≥
2
√
d− 1.

Jiang has recently improved this result [9] by relaxing the requirements
on the r-robust average degree and improving the rate at which the bound
converges to 2

√
d− 1

Theorem 2 ([9]). Let G be a sequence of graphs such that G has r-robust
average degree d ≥ 1, then

λ(G) ≥ 2
√
d− 1 cos

(
π

r + 1

)
.

At this point is also worth mentioning Mohar’s recent work on a mul-
tipartite generalization of the Alon-Boppana theorem [12] which provides a
clean description of the spectrum of the t-partite regular graph in terms of
the spectrum of a t×t matrix. By introducing the concept of a sub-universal
cover Mohar is able to lift this result to general results about graphs that
are not necessarily multipartite, for instance:

Theorem 3 ([12]). Let d1 ≤ d2 ≤ d be positive integers, and let Gd
d1,d2

be
the set of all graphs whose maximum vertex degree is at most d and whose
vertex set is the union of (not necessarily disjoint) subsets U1, U2, such that
every vertex in Ui has at least di neighbors in U3−i for i = 1, 2. For every
ε > 0, every n-vertex graph G ∈ Gd

d1,d2
has Ωε(n) eigenvalues larger than√

d1 − 1 +
√
d2 − 1− ε.

We note that the results of Mohar are stronger than Theorem 3, in that
they imply a family of bounds along the same lines that are significantly
harder state compactly.

It is relatively easy to find examples where the bound given by Mohar is
an improvement on the bound given by Hoory and Jiang, for example, con-
sider the graphs G on 4n vertices where A, A′, B, are n vertex independent
sets and C is a n vertex 8-regular graph. The vertices in B are connected to
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A, A′, and C by (10, 10), (3, 3), and (2, 2)-regular bipartite graphs, and A′

and C are connected by a (7, 7)-regular graph. These graphs have a average

degree 11, and so asymptotically Theorem 1 gives an asymptotic lower-

bound of 2
√
10. Letting U1 = A ∪ A′ ∪ C and U2 = B ∪ C, gives two sets

where every vertex in U1 has degree 10 into U2 and every vertex in U2 has

degree 15 into U1. Thus Theorem 3 gives a bound of
√
9+

√
14 > 2

√
10. We

note that this improvement comes at a cost as there is not an immediately

obvious way to quickly verify that the conditions of Theorem 3, whereas it is

clear that in a class of graphs of bounded degree (or even families of graphs

where the maximum degree grows sufficiently slowly with n) the conditions

of Theorem 1 are satisfied asymptotically.

We note that by passing to the irregular case the tight relationship with

the expansion of the graph is lost, and so neither Hoory’s nor Mohar’s gen-

eralizations can not be thought of as a bound on the expansion properties

of a family of graphs with specified properties. In order to maintain the

connection between expansion and the spectrum of an irregular graph, we

consider instead the normalized Laplacian L = I − D−1/2AD−1/2 where D

is the diagonal matrix of degrees. Note that if a graph is regular, then the

spectrum of the normalized Laplacian can be found by applying an affine

transformation of the spectrum of the adjacency matrix. However, if the

graph is irregular the structure of the two spectra can differ significantly.

We make the standard observations that all of the eigenvalues of L are

in [0, 2] and that there is an eigenvector with eigenvalue 0, namely
√

deg(vi)
Vol(G) ,

where Vol(G) =
∑n

i=1 deg(vi). Thus for a given graph G define λL(G) as

the second smallest eigenvalue of the normalized Laplacian. It is well known

that λL(G) is tightly connected with expansion and algorithmic properties

of G (see [3] for an overview of such results).

In the context of the normalized Laplacian, the Alon-Boppana theorem

says that for a d-regular graph G, λL(G) ≤ 1 − 2
√
d−1
d + o(1). Thus, one

might naturally conjecture that in the case of the normalized Laplacian of

irregular graphs, this would generalize to λL(G) ≤ 1− 2
√
d−1
d +o(1) where d

is the average degree of G. However, as we will show in Section 3 there exists

a fixed ε > 0 and an infinite family of graphs G with common average de-

gree d and increasing diameters, such that λL(G)−
(
1− 2

√
d−1
d

)
> ε for all

G ∈ G. Thus, our main result is that if Gi is a sequence of graphs with aver-

age degree at least 2 and increasing “robustness” with respect to the average

degree d, then there is a constant δ, dependent on the degree sequence, such

that λL(Gi) ≤ 1− 2
√
d−1
δ +o(1). We note that if the Gi’s are regular then this
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bound will agree exactly with the Alon-Boppana result, however for irregular
graphs this yields a higher upper bound than the natural conjecture.

2. Alon-Boppana for the normalized Laplacian

Rather than attack the normalized Laplacian directly, we adapt the work of
Hoory [7] and provide a lower bound for the spectral radius of the universal
cover graph with appropriate weights. Recall that the universal cover of a
connected graph G is the unique (up to isomorphism) infinite graph that is a
universal cover of G as a topological space. This graph may be constructed
explicitly by fixing a root vertex r and considering all non-backtracking
walks in G starting at r. Two such walks are adjacent if one can be extend
to the other by a single step in the walk.

Noting that a weight function w : E → R
+ on G lifts in a natural way

to a weight function w̃ on the universal cover G = (V, E), for any v ∈ V we

define t
(w)
2k (v) as the total weight of all closed walks of length 2k from v to

itself in G, where the weight of a walk is the product of all the edge weights
in the walk. By well known results (see [13]) the weighted spectral radius of

G is ρw(G) = lim supk→∞
2k

√
t
(w)
2k (v) for any v ∈ V.

Theorem 4. Let G = (V,E) be any graph with minimum degree 2 and let
f : V → R

+. Define a weight function w : E → R
+ by w(u, v) = f(u)f(v),

then the weighted spectral radius of the universal cover G = (V, E) is at least

2
∏

v∈V

(
f(v)2

√
(deg(v)− 1)

) deg(v)

Vol(G)

.

Proof. In order to provide a lower bound on the spectral radius of G, we
will show that t

(w)
2k (v) is bounded below by the expected weight of certain

class of random walks on G. Specifically, we will consider sampling from
what we term stack based walks uniformly at random. A stack based walk
starts at a vertex v with some neighbor of v, say v′, at the top of a stack.
If the stack based walk is currently at vertex v with v′ (a neighbor of v)
on the top of the stack, on a forward step some neighbor v′′ of v is chosen
such that v′ 
= v′′ and the walk moves to vertex v′′ and v is pushed onto the
stack. If a backwards step is taken, v′ is popped off the stack and the walk
moves to v′. Note that at no point in the progress of a stack based walk
is the stack allowed to be empty, in particular, when the stack has a single
element a backwards step is forbidden. We will refer to a stack based walk
that returns to its initial state (including the state of the stack) as a closed
stack based walk. We will denote by Ω2k(v, v

′) the set of closed stack based
walks of length 2k that start at the vertex v and with v′ in the stack.
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Notice that the number of elements in a stack during a closed stack based
walk is a Dyck path with 1 as the baseline. Thus letting T2k be the collection
of Dyck paths of length 2k (with baseline 1), we can further parameterize
Ω2k(v, v

′) by τ ∈ T2k. That is, Ω2k,τ (v, v
′) is those walks in Ω2k(v, v

′) where
the size of the stack agrees with τ at every step. It is obvious that for every
ω ∈ Ω2k(v, v

′) there is a unique τ ∈ T2k such that ω ∈ Ω2k,τ (v, v
′).

Now any stack based walk ω ∈ Ω2k(v, v
′) can be immediately lifted

to a closed walk of length 2k in G, and further, the Dyck path associated
with the ω corresponds to the current distance from the initial vertex v.

Thus we have that t
(w)
2k (v) > w(Ω2k(v, v

′)), where w(S) is the sum of the
weights of all walks in S. The strict inequality comes from the fact that all

walks whose first step is to vertex v′ are counted in t
(w)
2k (v) but missing from

Ω2k(v, v
′). Furthermore, by averaging over the choice of v′, we have that

t
(w)
2k (v) ≥

∑
v′∼v

1
deg(v)w(Ω2k(v, v

′) =
∑

τ∈T2k

∑
v′∼v

1
deg(v)w(Ω2k,τ (v, v

′)). As

a consequence of this observation, and the independence of the spectral
radius from the choice of v, we have that

ρw(G) = lim sup
k

2k

√∑
v

deg(v)

Vol(G)
t
(w)
2k (v)

= lim sup
k

2k

√√√√∑
v

deg(v)

Vol(G)

∑
τ∈T2k

∑
v′∼v

1

deg(v)
w(Ω2k,τ (v, v′)).

For simplicity of notation we will let

S
(w)
2k =

∑
v

deg(v)

Vol(G)

∑
τ∈T2k

∑
v′∼v

1

deg(v)
w(Ω2k,τ (v, v

′)).

In order to complete the proof it will suffice to place a lower bound

on S
(w)
2k . To that end, we will define a probability measure on elements

of Ω2k,τ (v, v
′), specifically the uniform random walk measure. That is, for

every forward step in the stack based walk we choose uniformly from the
set of all allowable neighbors, that is, the neighbors that are not the top
element of the stack. Specifically, consider a fixed walk ω ∈ Ω2k,τ (v, v

′)
and let (v1, u1), . . . , (vk, uk) be the forward edges of the walk w. Define
p(ω) =

∏k
i=1

1
deg(vi)−1 , which is the probability of choosing the walk ω at

random, given that the vertex v′ is not the first step. Thus we may rewrite

S
(w)
2k =

∑
τ∈T2k

∑
v∈V

∑
v′∼v

∑
ω∈Ω2k,τ (v,v′)

p(ω)

Vol(G)

w(ω)

p(ω)
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and observe that
∑

ω∈Ω2k,τ (v,v′) p(ω) = 1 and thus

∑
v∈V

∑
v′∼v

∑
ω∈Ω2k,τ (v,v′)

p(ω)

Vol(G)
= 1

and hence, by the (weighted) arithmetic-geometric mean inequality

S
(w)
2k ≥

∑
τ∈T2k

∏
v∈V (G)

∏
v′∼v

∏
ω∈Ω2k,τ (v,v′)

(
w(ω)

p(ω)

) p(ω)

Vol(G)

.

Since every forward edges is traversed in the backtracking direction as well,

the weight of the walk w(ω) =
∏k

i=1(f(vi)f(ui))
2. Thus we have that w(ω)

p(ω) =∏k
i=1(deg(vi)− 1)f(vi)

2f(ui)
2. Hence, it suffices to understand, for any or-

dered edge (v, v′), the number of times (weighted by p(ω)
Vol(G)) any stack based

walk governed by τ crosses (v, v′) on a forward step. To that end, for any or-
dered edge (v, v′) let δv,v′(ω) be the number of times the walk ω goes from v
to v′ on a forward step and let Ω2k,τ =

⋃
v∈V

⋃
v′∼v Ω2k,τ (v, v

′). We note that
by the stack based description we have that Ω2k,τ (v, v

′)∩Ω2k,τ (v, v
′′) = ∅ if

v′ 
= v′′ as the initial stack differs even for the same walk in G. Hence we
have that

S
(w)
2k ≥

∑
τ∈T2k

∏
v∈V

∏
v′∼v

∏
ω∈Ω2k,τ (v,v′)

(
w(ω)

p(ω)

) p(ω)

Vol(G)

=
∑
τ∈T2k

∏
v∈V

∏
v′∼v

(
(deg(v)− 1)f(v)2f(v′)2

) 1

Vol(G)

∑
ω∈Ω2k,τ

p(ω)δv,v′(ω)
.

Thus we are interested in

1

Vol(G)

∑
ω∈Ω2k,τ

p(ω)δv,v′(ω),

for any ordered edge (v, v′) and all τ and k. But this is just the expected
number of times a random stack based walk crosses (v, v′) on a forward step
given an initial state chosen uniformly at random. It is easy to see that
uniform distribution on directed edges is stationary for the random stack
based walk, and thus

1

Vol(G)

∑
ω∈Ω2k,τ

p(ω)δv,v′(ω) =
k

Vol(G)
.
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Furthermore, we have that

S
(w)
2k ≥

∑
τ∈T2k

∏
v∈V (G)

∏
v′∼v

(
f(v)2f(v′)2(deg(v)− 1)

) k

Vol(G)

= |T2k|
∏

v∈V (G)

(
(deg(v)− 1)f(v)4

) deg(v)k

Vol(G) ,

which proves the result as

ρw(G̃) ≥ lim sup
k→∞

2k

√
S
(w)
2k ≥ 2

∏
v∈V (G)

(
f(v)2

√
(deg(v)− 1)

) deg(v)

Vol(G)

Corollary 5. For any graph G with minimum degree at least 2 with weight

function w(u, v) = (deg(v) deg(u))−
1/2, the weighted spectral radius of the

universal cover is at least 2

√∏
v∈V

(
deg(v)−1
deg(v)2

) deg(v)

Vol(G)

.

Following the notation of Chung, Lu, and Vu [2] we denote the average

degree of a graph by d and the second order average degree of a graph

G = (V,E) by d̃ =
∑

v∈V deg(v)2

Vol(G) =
∑

v∈V deg(v)2

d|V | . Using this notation, we can

reformulate the bound in Corollary 5 into a more natural one in terms of

global statistics of G. Specifically, since (x− 1)x is log-convex for x ≥ 2, we

have
∏

v∈V (deg(v) − 1)
deg(v)

Vol(G) ≥ (d − 1)
dn

Vol(G) = d − 1. Additionally, by the

arithmetic-geometric mean inequality,

∏
v∈V

deg(v)
deg(v)

Vol(G) ≤
∑

v∈V (G) deg(v)
2

Vol(G)
= d̃.

Building on this observation we have the following natural extension of

Corollary 5.

Corollary 6. If G = (V,E) is a graph with average degree d ≥ 2 and

w(u, v) = (deg(u) deg(v))−
1/2, then the spectral radius of the universal cover

is at least 2
√
d−1/d̃, where d̃ =

∑
v∈V deg(v)2

Vol(G) is the second order average degree.

Proof. Since the average degree of G is at least 2 and removing a degree

one vertex can not decrease the average degree, G has a non-empty 2-core,

G′ = (V ′, E′). Letting G denote the universal cover of G and G′ denote the
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universal cover of G′, we have have that

ρw(G) ≥ ρw(G′) ≥ 2

√√√√ ∏
v′∈V ′

(
degG′(v′)− 1

degG(v
′)2

) deg
G′ (v′)

Vol(G′)

by adapting the proof of Theorem 4. Specifically, note that the first inequal-
ity comes from the limiting of the closed walks to those entirely within G′

while preserving the weight of all those walks. Now since G′ has minimum
degree at least 2 by definition and deleting degree one vertices in G can not
decrease the average degree,

∏
v′∈V ′

(degG′(v′)− 1)
deg

G′ (v′)
Vol(G′) ≥ d′ − 1 ≥ d− 1.

We observe that if y ≥ 2x and α ∈ (0, 1], then α
x

y ≥ α
x+1

y+2 . Thus by sequen-
tially adding the vertices deleted to reach the 2-core, we have

∏
v′∈V ′

degG(v
′)
− deg

G′ (v′)
Vol(G′) ≥

∏
v∈V

degG(v)
− deg

G′ (v)

Vol(G′) ≥
∏
v∈

degG(v)
− degG(v)

Vol(G) ≥ 1

d̃
.

Combining these observations gives the desired result.

Let Br(v) be the set of vertices are distance at most r from v. If G is a
connected graph, let fP be the unit principle eigenvector of the normalized
Laplacian. We will say that a graph has normalized Laplacian eigenradius
r if for every vertex v,

∑
u∈Br(v)

fP (u)
2 ≤ 1

2 and there is some vertex v′

such that
∑

u∈Br+1(v)
fP (u)

2 > 1
2 . Using this notation we have the following

analogue of the Alon-Boppana theorem.

Theorem 7. If G = (V,E) is a connected graph with normalized Laplacian
eigenradius at least 2k + 1 ≥ 3, average degree d ≥ 2, then λL(G) ≤ 1 −
2
√
d−1/d̃

(
1− 3 ln(k+1)

4k (1 + o(1))
)
, where d̃ is the second order average degree

∑
v∈V deg(v)2

Vol(G) .

Proof. Let fP be the principle unit eigenvector of L, let M = I − L, and
let w(u, v) = (deg(u) deg(v))−

1/2. Now by Corollary 6, if G is the universal
cover of G, then

ρw(G) ≥ 2
∏
v∈V

(√
deg(v)− 1

deg(v)

) deg(v)

Vol(G)

.
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As there is a natural weight preserving injection from closed walks in G
to walks in G, there exists vertex v in G such that the total weight of all

closed walks of length 2k is at least Ck

(
(d−1)k

d̃2k

)
, where Ck is the kth Catalan

number.

Let R = V \Br(v), that is, the set of vertices of distance at least r + 1

from v. Let fR be the projection of fP onto the coordinates of R, we note

that ‖fR‖22 ≥ 1
2 , by the definition of eigenradius. Letting 1v be the indica-

tor vector for the vertex v, define f = ‖fR‖2 1v − fT
P 1v

‖fR‖2

fR. We first note

that

fT
P f = ‖fR‖2 fT

P 1v −
fT
P 1v

‖fR‖2
fT
P fR = 0.

Now consider the Raleigh quotient for f :

fTM2kf

‖f‖22
=

‖fR‖22 1T
v M

2k1v − 2fT
P 1v1vM

2kfR + (fT
P 1v)2

‖fR‖2
2

fT
RM

2kfR

‖fR‖22 + (fT
P 1v)2

=
‖fR‖22 1T

v M
2k1v−2fT

P 1v
∑

u fR(u)1
T
v M

2k1u+
(fT

P 1v)2

‖fR‖2
2

fT
RM

2kfR

‖fR‖22 + (fT
P 1v)2

=
‖fR‖22 1T

v M
2k1v +

(fT
P 1v)2

‖fR‖2
2

fT
RM

2kfR

‖fR‖22 + (fT
P 1v)2

≥ ‖fR‖22 1T
v M

2k1v

‖fR‖22 + (fT
P 1v)2

≥ 1

2
1T
v M

2k1v

≥ 1

2
Ck

(
(d− 1)k

d̃2k

)
,

where the third equality comes from the fact that 1T
v M

2k1u = 0 for all

u ∈ R, the second inequality from the definition of eigenradius, and the

final inequality by the choice of v. As a consequence the spectral norm of

M is at least

(
1

2
Ck

) 1

2k

√
d− 1

d̃
≥ 2

√
d− 1

d̃

(
1− 3 ln(k + 1)

4k
(1 + o(1))

)

yielding the desired bound on λL(G).
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It is worth noting that the o(1) term can be bounded by
ln(4π)+ 18k+1

72k2+3k

3 ln(k+1)

and so is at most 3
2 for all k. We note as well that this result can also be

rephrased in the r-robust average degree framework of Hoory except that
within that framework d is a lower bound on the r-robust average degree
and d̃ is an upper bound on the r-robust second order average degree. It
is also worth noting that the sole contribution of the 1

2 in the definition
of normalized Laplacian eigenradius is the leading term in this inequality,
and thus it can be replaced by any arbitrary constant ε. In fact, it suffices
for ε to tend towards zero sufficiently slowly with respect to the normalized

Laplacian eigenradius r, that is, it suffices for ε
1

r−1 = ε
1

2k → 1.

Corollary 8. Let Gn be a sequence graphs with average degrees dn ≥ 2,
second order average degrees d̃n, and maximum degrees Δn, satisfying that
log(Δn) ∈ o(log(Vol(Gn))). If limn→∞ 1− 2

√
dn−1/d̃n = L, then we have that

lim supn→∞ λL(Gn) ≤ L.

Proof. We first observe that if the maximum degree of Gn is Δn, then for any
vertex v, |Br(v)| ≤ Δn(Δn − 1)r−1 and thus Vol(Br(v)) ≤ Δ2

n(Δn − 1)r−1.
Thus, in order for Vol(Br(v)) ≥ 1

2 Vol(Gn), it must be the case that r ≥
1 + − ln(2Δ2

n)+ln(Vol(Gn))
ln(Δn−1) . As ln(Δn) ∈ o(ln(Vol(Gn))), this implies that the

normalized Laplacian eigenradius diverges to infinity with n. In combination
with Theorem 7, this gives the desired result.

We note that in general the natural conjectured bound on λL(G) ex-
tending Alon-Boppana result is 1− 2

√
d−1/d which is in general smaller than

1−2
√
d−1/d̃. In the following section, we show that this separation is essential

by providing a class of graphs such that λL(G) ≥ 1 − 2
√
d−1/d + ε for some

fixed positive ε.

3. Regular graphs are not extremal

We first observe that there is a trivial obstruction to regular graphs being
extremal with respect to λL. Specifically, if Gn is a sequence of d-regular,
n-vertex graphs which are sufficiently close to Ramanujan, then the graphs
G′

n formed by adding a dominating vertex have average degree approaching

d + 2, while lim supn→∞ λL(G′
n) = 1 − 2

√
d−1

d+1 > 1 − 2
√
d+1

d+2 . However, all
the graphs G′

n have diameter 2, in contrast to the proof of Nilli which uses
the diameter to control the error term [14]. Thus, one might suppose that
it suffices to impose a growing diameter condition to recover the natural
generalization of Alon-Boppana. However, in this section we will provide a



Alon-Boppana for the normalized Laplacian 33

means of constructing an infinite family of graphs {Gi}, with common aver-
age degree d and common maximum degree (and hence increasing diameter),

such that lim inf i→∞ λL(G) ≥ 1 − 2
√
d−1
d + ε for some fixed ε > 0. To this

end, given graphs H1 on n1 vertices, H2 on n2 vertices, and B a bipartite
graph on (n1, n2) vertices, we define G(H1, H2, B) to be any of the graphs
formed by gluing the vertices of H1 and H2 to the appropriate side of the
bipartition of B.

Lemma 9. If H1 is an n vertex d1-regular graph, H2 is a rn vertex d2-
regular graph, and B is a (n, rn) vertex (rk, k)-regular bipartite graph, then
G = G(H1, H2, B) is such that

max

{
ω,

λ(G1)

d1 + rk
,
λ(G2)

d2 + k

}
≤ 1− λL(G) ≤ max {ω, ρ}

where

ρ =

⎧⎨
⎩

1

4
λ(B)2−λ(G1)λ(G2)

ξλ(B)−(d2+k)λ(G1)−(d1+rk)λ(G2)
λ(G1)
d1+rk + λ(G2)

d2+k < λ(B)
ξ

max
{

λ(G1)
d1+rk ,

λ(G2)
d2+k

}
λ(G1)
d1+rk + λ(G2)

d2+k ≥ λ(B)
ξ

,

ξ =
√

(d1 + rk)(d2 + k), and

ω =
1

d

r

r + 1

(
(d2 + k)d1
d1 + rk

− 2k +
(d1 + rk)d2
(d2 + k)r2

)
.

Proof. Rather than dealing directly with the normalized Laplacian, L =
I − D−1/2AD−1/2, we will again deal with the matrix M = D−1/2AD−1/2.
Now the largest eigenvalue of M has value one (corresponding to the zero
eigenvalue of L) and has eigenvector D

1/21. For convenience of notation, let
1t be an appropriately sized vector whose first t entries are 1 and remaining
entries are zero, and similarly let 1′

s be an appropriately sized vector whose
last s entries are one and the remaining entries are zero. We fix an ordering
of vertices of G so that the n side of the bipartition appears first and thus
the primary eigenvector of M is

√
d1 + rk1n +

√
d2 + k1′

rn.
Let σ be the unit vector√

(d2 + k)r

Vol(G)
1n −

√
d1 + rk

rVol(G)
1′
rn.

Now any unit vector v orthogonal to the first eigenspace of M , can be
written in the form αf + βg + γσ where α2 + β2 + γ2 = 1, ‖f‖ = ‖g‖ = 1,
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fTσ = gTσ = fT g = 0, and f is only non-zero on the first n entries and g
is only non-zero on the last rn entries. Thus to understand vTMv it suffices
to understand fTMf , gTMg, fTMg, fTMσ, gTMσ, and σTMσ. The lower
bound comes immediately from considering fTMf , gTMg, and σTMσ and
the value of σTMσ which we calculate later.

It is easy to see that fTMf ≤ λ(H1)
d1+rk and gTMg ≤ λ(H2)

d2+k . Noting that
Mσ = η1n + ζ1′

rn for some η and ζ where

η =
d1

d1 + rk

√
(d2 + k)r

Vol(G)
− rk

ξ

√
d1 + rk

rVol(G)

ζ =
k

ξ

√
(d2 + k)r

Vol(G)
− d2

d2 + k

√
d1 + rk

rVol(G)
,

it is clear that fTMσ = gTMσ = 0. Furthermore, we have that

σTMσ = ηn

√
(d2 + k)r

Vol(G)
− ζrn

√
d1 + rk

rVol(G)

=
d2 + k

d1 + rk

d1rn

Vol(G)
− krn

Vol(G)
− krn

Vol(G)
+

d1 + rk

d2 + k

d2n

rVol(G)

=
1

d

r

r + 1

(
(d2 + k)d1
d1 + rk

− 2k +
(d1 + rk)d2
(d2 + k)r2

)

We now consider fTMg. If we let u = f + g, then fTMg + gTMf =
1
ξu

TABu, where AB is the adjacency matrix for the graph B. Furthermore,

the space of vector u that can be formed in this manner spans a (r+1)n−2
dimensional subspace. Further, the orthogonal complement of this spaces is
spanned by

√
rk1n+

√
k1′

rn and
√
rk1n−

√
k1′

rn. But since
√
rk1n+

√
k1′

rn

is the principle eigenvector for AB and

(√
rk1n −

√
k1′

rn

)T
AB

(√
rk1n −

√
k1′

rn

)
= −2

√
krkn < 0,

we have that uTABu ≤ λ(B). Thus fTMg ≤ λ(B)
2ξ .

Now since fTMσ = gTMσ, the second largest eigenvalue of M occurs
either when γ2 = 0 or when α2 + β2 = 0. Thus, optimizing for choice of α
when γ = 0, gives the result.

Corollary 10. If H1 is an n vertex d1-regular Ramanujan graph, H2 is a
rn vertex d2-regular Ramanujan graph, B is a (n, rn) vertex (rk, k)-regular
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bipartite Ramanujan graph, 3d2 > k + 4, and r is sufficiently large, then

G = G(H1, H2, B) is such that λL(G) = 1− 2
√
d2−1

d2+k .

Proof. We note that for large enough r, we have that ω < 0. Additionally,
2
√
d1−1

d1+rk → 0 and
√
k−1+

√
rk−1√

(d1+rk)(d2+k)
→ 1√

d2+k
as r → ∞. Now since 3d2 > k+ 4,

it follows that 2
√
d2−1

d2+k > 1√
d2+k

and by Lemma 9 the result follows.

In fact, it suffices that graphs H1, H2, and B be sufficiently close to
Ramanujan. That is, it suffices for H1, H2, and B to be such that λ(H1) ≤
2
√
d1 − 1+o(1), λ(H2) ≤ 2

√
d2 − 1+o(1), and λ(B) ≤

√
k − 1+

√
rk − 1+

o(1) where the o(1) is in terms of n. We will refer to sequences of graphs
satisfying these conditions as nearly Ramanujan.

Theorem 11. For any fixed choice of integers d1 ≥ 3, d2 ≥ 8, there is an
infinite family of graphs {Gi}i∈I with common average degree d, such that

λL(Gi) ≥ 1− 2
√
d−1
d + ε for some fixed ε > 0.

Proof. First we observe that since (d2+3)d1

d1+3r + (d1+3r)d2

(d2+3)r2 → 0 as r → ∞ and

there is a choice of r so that (d2+3)d1

d1+3r + (d1+3r)d2

(d2+3)r2 < 6 and d1 < (r+1)(d2+6).

Now let {Hn} be a sequence of d1-regular nearly Ramanujan graphs on n
vertices, and let {Ĥn} be a sequence of d2-regular nearly Ramanujan graphs
on rn vertices, and let {Bn} be a sequence of random (3r, 3)-regular bipar-
tite graphs on (n, rn) vertices. We note that by the work of Friedman [5], the
classes {Hn} and {Ĥn} exist. Define Gn = G(Hn, Ĥn, Bn). Now the average
degree for each Gn is r

r+1(d2+6)+ d1

r+1 < d2+6 by the choice of r. Further-

more, the choice of r and the observation that 2
√
d2−1

d2+3 > 3
√
r√

(d1+3r)(d2+3)
,

together with Corollary 10, gives that 1 − λL(Gn) = 2
√
d2−1+o(1)
d2+3 . Since

2
√
x−1
x is a decreasing function for x ≥ 2 and d ≤ d2 + 6, it suffices to

show that there is an ε > 0 such that 2
√
d2−1

d2+3 < 2
√
d2+5

d2+6 . Rearranging, this

is equivalent to d2+6
d2+3 <

√
d2+5
d2−1 . Since both sides are positive, it suffices to

show that 1 + 6
d2+3 + 9

(d2+3)2 < 1 + 6
d2−1 . Alternatively we may show that

6d22 + 21d2 − 27 = (6(d2 + 3) + 9)(d2 − 1) < 6(d2 + 3)2 = 6d22 + 36d2 + 54,
which clearly holds. Thus there is an ε > 0 such that for a sufficiently large

n, λL(Gn) ≥ 1− 2
√
d−1
d + ε.

It is worth noting that the this construction could be extended to larger
class of degrees if the existence of a larger class of nearly Ramanujan bireg-
ular bipartite graphs were known. Although it is clear that by subdivision
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any k-regular nearly Ramanujan graph gives rise to a (2, k)-regular nearly
Ramanujan bipartite graph [6] and Li and Solé have provided a construction
of a limited class of biregular bipartite graphs based generalized n-gons [10],
neither of these constructions yields a sufficient diversity of bipartite near
Ramanujan graphs to meaningfully expand the range of degrees chosen.
Since the initial submission of this work, Marcus, Spielman, and Srivastava
have provided a construction of (c, d)-biregular bipartite Ramanujan graphs
for all c, d ≥ 3 via 2-lifts of the complete bipartite graph [11].

4. Spectral bounds for the normalized Laplacian of bipartite
graphs

In order to deal with bipartite graphs, we need the following result which
appears in [7]. First, let T2k be the collection of length 2k Dyck paths and
for τ ∈ T2k let odd(τ) be the number of positive steps on τ starting from an
odd height. Similarly, define even(τ) and note that odd(τ) + even(τ) = k.

Lemma 12. For any positive constants a, b > 0,

lim
k→∞

2k

√ ∑
τ∈T2k

aeven(τ)bodd(τ) =
√
a+

√
b.

For the sake of completeness we provide this alternative proof.

Proof. Let C
(a,b)
k =

∑
τ∈T2k

aeven(τ)bodd(τ) and let C(a, b, x) =
∑∞

k=0C
(a,b)
k xk.

Making the standard observation that for any Dyck path of length 2k which
first returns to height 0 at step 2t, the subpath from step 1 to step 2t − 1

is also a Dyck path, we have that C
(a,b)
k+1 =

∑k
i=0 aC

(b,a)
i C

(a,b)
k−i , where the

interchange in (a, b) occurs because the sub-Dyck path starts at an odd value.
Thus we have that C(a, b, x) = 1 + axC(b, a, x)C(a, b, x) and C(b, a, x) =
1 + bxC(a, b, x)C(b, a, x). Letting C∗({a, b} , x) = C(a, b, x)C(b, a, x) and
combining these relationships we get C∗ = 1+ (a+ b)xC∗ + abx2C∗2. Thus

C∗({a, b} , x) = 1− (a+ b)x−
√

(1− (a+ b)x)2 − 4abx2

2abx2
,

where the negative square root is chosen to eliminate the pole at x = 0.
Thus

C(a, b, x) = 1 + ax
1− (a+ b)x−

√
(1− (a+ b)x)2 − 4abx2

2abx2
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=
1 + (b− a)x−

√
1− 2(a+ b)x+ (b− a)2x2

2bx
.

Note that this has poles at x = 1
(
√
a+

√
b)2

and x = 1
(
√
a−

√
b)2

(if a 
= b), and

thus C
(a,b)
k ∼

(√
a+

√
b
)2k

as desired.

With this lemma in hand, we now have the following normalized Lapla-

cian analogue of the bounds on the spectral radius of the universal cover of

irregular bipartite graphs [7].

Theorem 13. For any bipartite graph B = (L,R,E) with minimum degree

at least 2 and weight function w(u, v) = f(u)f(v), the weighted spectral

radius of the universal cover is at least

(√
dL − 1 +

√
dR − 1

)√ ∏
v∈L∪R

f(v)
2 deg(v)

|E| ,

where dL and dR are the average degrees of the L and R sides of the partition,

respectively.

Proof. We will consider the same class of walks as in the proof of Theorem 4,

except the starting vertex will be restricted to vertices in L. Specifically,

using the same notation, we have

ρw(B̃) ≥ lim sup
k→∞

2k

√√√√∑
v∈L

deg(v)

|E|
∑
v′∼v

1

deg(v)

∑
τ∈T2k

w(Ωv,v′,τ,2k)

= lim sup
k→∞

2k

√
1

|E|
∑
v∈L

∑
v′∼v

∑
τ∈T2k

w(Ωv,v′,τ,2k).

Thus we consider

∑
τ∈T2k

∑
v∈L

∑
v′∼v

∑
ω∈Ωv,v′,τ,2k

w(ω)

|E|
p(ω)

p(ω)
≥

∑
τ∈T2k

∏
v∈L

∏
v′∼v

∏
ω∈Ωv,v′,τ,2k

(
w(ω)

p(ω)

) p(ω)

|E|

.

Now since w(ω)
p(ω) =

∏k
i=1(deg(vi) − 1)f(vi)

2f(ui)
2 it suffices to understand

for any edge how many times the ordered edge (v, v′) is crossed in a non-

backtracking walk by a forward step (weighted by p(ω)
|E| ). That is, we are
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interested in ∑
u∈L

∑
u′∼u

∑
ω∈Ωu,u′,τ,2k

δv,v′(ω).

If v ∈ L, this is even(τ) while if v ∈ R, this is odd(τ). Thus

∑
v∈L

∑
v′∼v

∑
ω∈Ωv,v′,τ,2k

w(ω)

|E|
p(ω)

p(ω)
=

∏
v∈L

(deg(v)− 1)
deg(v) even(τ)

|E|

×
∏
v∈R

(deg(v)− 1)
deg(v) odd(τ)

|E|

×
∏

v∈L∪R
f(v)

4 deg(v)k

|E|

≥ (dL − 1) odd(τ)(dR − 1) even(τ)

×
∏

v∈L∪R
f(v)

2 deg(v)(even(τ)+odd(τ))

|E| .

Thus ρw(B̃) ≥
(√

dL − 1 +
√
dR − 1

)√∏
v∈L∪R f(v)

2 deg(v)

|E| .

Applying the weighting from the normalized Laplacian, we have the
following result.

Corollary 14. For any bipartite graph B = (L,R,E) with minimum degree
at least 2 and weight function w(u, v) = 1√

deg(v) deg(u)
, the weighted spectral

radius of the universal cover is at least

(√
dL − 1 +

√
dR − 1

)(
d̃Ld̃R

)−1/2
,

where dL and dR are the average degrees of the sides and d̃L =
∑

v∈L deg(v)2
∑

v∈L deg(v)

and d̃R =
∑

v∈R deg(v)2
∑

v∈R deg(v) are the second order average degrees of the sides.

It is worth noting that the term
(
d̃Ld̃R

)−1/2
can be replaced by(

d̂Ld̂R

)−1/2
where d̂L and d̂R are the averages of the 3/2 powers of the de-

grees in L and R, respectively. It is also worth noting that unlike Theorem 4,
this theorem can not be extended to the case where the average degree is at
least 2, as the average degree on each side of the partition could decreased
by deleting a vertex of degree 1.
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