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On the asymptotic behavior of the q-analog of
Kostant’s partition function

Pamela E. Harris, Margaret Rahmoeller, and Lisa Schneider

Kostant’s partition function counts the number of distinct ways to
express a weight of a classical Lie algebra g as a sum of positive
roots of g. We refer to each of these expressions as decompositions
of a weight. Our main result considers an infinite family of weights,
irrespective of Lie type, for which we establish a closed formula for
the q-analog of Kostant’s partition function and then prove that
the (normalized) distribution of the number of positive roots in
the decomposition of any of these weights converges to a Gaussian
distribution as the rank of the Lie algebra goes to infinity. We also
extend these results to the highest root of the classical Lie algebras
and we end our analysis with some directions for future research.
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1. Introduction

A classical problem in analytic number theory is to determine the behavior
of certain distributions associated to the decompositions of positive integers,
as sums of positive integers. For example, define the Fibonacci numbers as
Fn = Fn−1 + Fn−2, whenever n ≥ 3 and F1 = 1, F2 = 2. Then Zeckendorf’s
Theorem [21] states that the positive integers can be uniquely expressed as
a sum of nonconsecutive Fibonacci numbers and such an expression is called
a decomposition. Lekkerkerker [19] later established that if m ∈ [Fn, Fn+1],
then the number of summands needed in the decomposition of m is asymp-

totic to
(
1
2(1−

1√
5
)
)
n as n → ∞. From this work, it was found that the

distribution of the number of summands in decompositions of positive inte-
gers actually converges to a Gaussian [18]. These results have been extended
to numerous other sequences of integers which allow unique decompositions
of the positive integers as a sum of elements in the sequence [6, 5, 10, 9, 7, 2].
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In our work, we bring the tools of analytic number theory to the study
of vector partitions, a more general setting as these decompositions are not
unique. In particular, we study Kostant’s partition function which counts
the number of ways of expressing a weight (vector) of a simple Lie algebra
g as a linear combination of the positive roots of g (a finite set of vectors).
As is standard in analytic number theory, we refer to such expressions as
decompositions.

We recall that Lusztig [20] defined the q-analog of Kostant’s partition
function [17] as the polynomial valued function

℘q (ξ) = c0 + c1q + c2q
2 + · · ·+ ckq

k

where ci denotes the number of ways the weight ξ can be expressed as a
sum of i positive roots. Hence, evaluating ℘q(ξ)|q=1 yields the total number
of decompositions of the weight ξ as a sum of positive roots. However, the
q-analog gives us more detailed information as it keeps track of the number
of positive roots used in the decompositions and plays a key role in our
analysis.

Our first main result considers an infinite family of weights of a classical
Lie algebra of rank r, irrespective of Lie type, for which we establish a
closed formula for the q-analog of Kostant’s partition function and then
prove that the (normalized) distribution of the number of positive roots in
the decomposition of these weights converges to a Gaussian distribution as
r → ∞.

Theorem 1. Let g be a classical Lie algebra of rank r, with {α1, α2, . . . , αr}
a set of simple roots of g. If

λ =

(
r∑

i=1

αi

)
+
∑
i∈I

ciαi

where I = {i1, i2, . . . , i�} is a set of nonconsecutive integers satisfying
1 < i1 < i2 < · · · < i� < r − 2, and ci1 , ci2 , . . . , ci� ∈ Z>0, then

℘q(λ) = qm+1(1 + q)r−1−2�(2 + 2q + q2)�.

Morever, if Yr is the random variable denoting the total number of positive
roots used in the decompositions of λ, normalize Yr to Y ′

r = (Yr − μr) /σr
where μr and σ2

r are the mean and variance of Yr, respectively, then

μr =
r + 1

2
− 1

5
�+

�∑
i=1

ci and σ2
r =

r − 1

4
+

3

50
�,
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and Y ′
r converges in distribution to the standard normal distribution as

r → ∞ for every classical Lie algebra g of rank r.

In Lie type A, note that when ci = 0 for all 1 ≤ i ≤ r, then the
weight λ defined in Theorem 1 is the highest root. This motivates extending
Theorem 1 by considering the case when λ is the highest root of a classical
Lie algebra. Harris, Insko, and Omar gave closed formulas for the value of
the q-analog of Kostant’s partition function on the highest root of a classical
Lie algebra in [13]. Our second main result follows.

Theorem 2. Let Pgr
(q) denote ℘q(α̃) for a classical Lie algebra g of rank r.

Then Pgr
(q) is asymptotically Gaussian with mean and variance given by:

Type Ar (r ≥ 1):

μr =
r + 1

2
and σ2

r =
r − 1

4

Type Br (r ≥ 2):

μr =

(
5−

√
5 +

(
25− 13

√
5
)
r
) (

5−
√
5
)r

5
[(
5− 3

√
5
) (

5−
√
5
)r

+
(
5 + 3

√
5
) (

5 +
√
5
)r]

+

(
5 +

√
5 +

(
25 + 13

√
5
)
r
) (

5 +
√
5
)r

5
[(
5− 3

√
5
) (

5−
√
5
)r

+
(
5 + 3

√
5
) (

5 +
√
5
)r]

and

σ2
r =

20r+1r2

−5
[(
5−

√
3
) (

5−
√
5
)r

+
(
5 + 3

√
5
) (

5 +
√
5
)r]2

+

[
26

(
3
√
5− 7

) (
5−

√
5
)2r−26

(
3
√
5 + 7

) (
5 +

√
5
)2r

+ 36 · 20r+1

5

]
r

−5
[(
5−

√
3
) (

5−
√
5
)r

+
(
5 + 3

√
5
) (

5 +
√
5
)r]2

+
2
(
73− 25

√
5
) (

5−
√
5
)2r

+ 2
(
73 + 25

√
5
) (

5 +
√
5
)2r − 63 · 20r+1

5

−5
[(
5−

√
3
) (

5−
√
5
)r

+
(
5 + 3

√
5
) (

5 +
√
5
)r]2

Type Cr (r ≥ 3):

μr =

((
1−

√
5
)
+
(
7−

√
5
)
r
) (

5−
√
5
)r

10
((

5−
√
5
)r

+
(
5 +

√
5
)r)
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+

((
1 +

√
5
)
+
(
7 +

√
5
)
r
) (

5 +
√
5
)r

10
((

5−
√
5
)r

+
(
5 +

√
5
)r)

and

σ2
r =

20r+1

4 r2 +
[
13

((
5−

√
5
)2r

+
(
5 +

√
5
)2r)

+ 9 · 20r+1

5

]
r

25
((

5−
√
5
)r

+
(
5 +

√
5
)r)2

+

(
−21 + 4

√
5
) (

5 +
√
5
)2r − (

21 + 4
√
5
) (

5−
√
5
)2r − 37 · 20r

25
((

5−
√
5
)r

+
(
5 +

√
5
)r)2

Type Dr (r ≥ 4):

μr =

(
15−

√
5 + r

(
−5 + 7

√
5
)) (

5−
√
5
)r

10
√
5
((

5−
√
5
)r − (

5 +
√
5
)r)

+

(
15 +

√
5− r

(
5 + 7

√
5
)) (

5 +
√
5
)r

10
√
5
((

5−
√
5
)r − (

5 +
√
5
)r)

and

σ2
r =

20r+1

4 r2 −
[
13

((
5 +

√
5
)2r

+
(
5−

√
5
)2r)

+ 20r+1

5

]
r

−25
[(
5 +

√
5
)r − (

5−
√
5
)r]2

+

(
34− 3

√
5
) (

5 +
√
5
)2r

+
(
34 + 3

√
5
) (

5−
√
5
)2r − 23 · 20r

−25
[(
5 +

√
5
)r − (

5−
√
5
)r]2 .

This paper is organized as follows. Section 3 contains the proof of The-

orem 1. We give two proofs of Theorem 2: the first in Section 4 uses the

formulas of Harris, Insko, and Omar [13] along with Bender’s Theorem [3]

and moment generating functions, while the second uses the classical ap-

proach via moment generating functions and formulas of Harris, Insko, and

Omar [13] only. This second proof is lengthy; hence we present it in Ap-

pendix A. We end with Section 5 where we present directions for further

study.
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2. Background

We begin by recalling the positive roots of each Lie type.

Type Ar: If r ≥ 1, the set of simple roots is given by Δ = {α1, · · · , αr},
and the set of positive roots is given by

Φ+ = Δ ∪ {αi + αi+1 + · · ·+ αj : 1 ≤ i < j ≤ r}.

The highest root is given by α̃ = α1 + · · ·+ αr.
Type Br: If r ≥ 2, the set of simple roots is given by Δ = {α1, . . . , αr} and

the set of positive roots is given by

Φ+ = Δ ∪ {αi + · · ·+ αj : 1 ≤ i < j ≤ r}
∪ {αi + · · ·+ αj−1 + 2αj + · · ·+ 2αr : 1 ≤ i < j ≤ r},

where α̃Br
= α1 + 2α2 + · · ·+ 2αr is the highest root.

Type Cr: If r ≥ 3, the set of simple roots is given by Δ = {α1, . . . , αr} and
the set of positive roots is given by

Φ+ = Δ ∪ {αi + · · ·+ αj−1 + 2αj + · · ·+ 2αr−1 + αr :

1 ≤ i < j ≤ r − 1}
∪ {α̃Cr

} ∪ {αi + · · ·+ αj : 1 ≤ i < j ≤ r},

where α̃Cr
= 2α1 + 2α2 + · · ·+ 2αr−1 + αr is the highest root.

Type Dr: If r ≥ 4, the set of simple roots is given by Δ = {α1, . . . , αr} and
the set of positive roots is given by

Φ+ = Δ ∪ {αi + · · ·+ αj−1 : 1 ≤ i < j ≤ r}
∪ {αi + · · ·+ αr−2 + αr : 1 ≤ i ≤ r − 2}
∪ {αi + · · ·+ αj−1 + 2αj + · · ·+ 2αr−2 + αr−1 + αr :

1 ≤ i < j ≤ r − 2} ,

where α̃Dr
= α1 + 2α2 + · · · + 2αr−2 + αr−1 + αr is the highest

root.

Let the random variable Yr denote the total number of positive roots
used in the decompositions of the highest root of a chosen classical Lie
algebra of rank r as sums of positive roots, and let pr,k denote the number
of decompositions of the highest root as a sum of exactly k positive roots.
We use the following result in our analysis.



172 Pamela E. Harris et al.

Proposition 1 ([8], Propositions 4.7, 4.8). Let F (x, y) =
∑

r,k≥0 pr,kx
ryk

be the generating function of pr,k, and let gr (y) =
∑r

k=0 pr,ky
k be the coef-

ficient of xr in F (x, y). Then the mean of Yr is

μr =
g′r (1)

gr (1)

and the variance of Yr is

σ2
r =

d
dy (yg

′
r (y)) |y=1

gr (1)
− μ2

r .

3. Proof of Theorem 1

We begin with the following type A result.

Proposition 2. Let r ≥ 3. If I ⊂ {2, . . . , r − 1} is a set of nonconsecutive
integers and β =

∑r
i=1 αi +

∑
i∈I αi is a weight of the Lie algebra of type

Ar, then

℘q(β) = q|I|+1(1 + q)r−1−2|I|(2 + 2q + q2)|I|.

Proof. If I = ∅, then the result follows from the fact that
℘q(

∑r
i=1 αi) = q(1 + q)r−1 (see [12]).

Suppose the formula holds for any indexing set with cardinality n, which
is a subset of {2, . . . , r−1} consisting of nonconsecutive integers. Consider I
where |I| = n+1 and j = max(I). Let I ′ = I−{j} and note max(I ′) ≤ j−2.
First consider the case where the additional αj appears as a simple root in
a decomposition of β. The number of such decompositions of β is

q · qn+1(1 + q)r−1−2n(2 + 2q + q2)n = qn+2(1 + q)r−1−2n(2 + 2q + q2)n,

(1)

where the factor of q on the left hand side accounts for the αj appearing as
a simple root, and, by the induction hypothesis, the remaining factors are
associated with taking I ′ as the indexing set.

Next, consider the case where αj does not appear as a simple root in a
decomposition of β. We treat the roots α′ = αj−1+αj and α′′ = αj+αj+1 as
quasi-simple roots. In other words, they cannot be separated for this count
of the decompositions. Thus it suffices to find the number of ways to write∑j−2

i=1 αi +
∑

i∈I′ αi + (α′) and
∑r

i=j+2 αi + (α′′) as sums of positive roots,
and take the product of the results.
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For
∑j−2

i=1 αi +
∑

i∈I′ αi + (α′), we use the inductive hypothesis (acting
like in type Aj−1 and treating α′ as αj−1) to get

qn+1(1 + q)j−1−1−2n(2 + 2q + q2)n.(2)

For
∑r

i=j+2 αi + (α′′), we use the base case (acting like in type Ar−j and
treating α′′ as αj+1) to get

q(1 + q)r−j−1.(3)

Then, the number of ways that αj does not appear as a simple root in
the decompositions of β is obtained by taking the product of Equations (2)
and (3) which yields

qn+2(1 + q)r−3−2n(2 + 2q + q2)n.(4)

Thus the number of decompositions of β must account for the cases where
αj appears as a simple root and where it does not appear as a simple root.
This is given by taking the sum of Equations (1) and (4) which yields

℘q(β) = qn+2(1 + q)r−1−2n(2 + 2q + q2)n+qn+2(1 + q)r−3−2n(2 + 2q + q2)n

= qn+2(1 + q)r−3−2n(2 + 2q + q2)n
[
(1 + q)2 + 1

]
= qn+2(1 + q)r−3−2n(2 + 2q + q2)n+1

= q(n+1)+1(1 + q)r−1−2(n+1)(2 + 2q + q2)n+1

as desired.

We now give a more general result.

Proposition 3. Let r ≥ 3 and let I = {i1, i2, . . . , i�} be a set of nonconsecu-
tive integers satisfying 1 < i1 < i2 < · · · < i� < r, and ci1 , ci2 , . . . , ci� ∈ Z>0.
If

ξ =

r∑
i=1

αi +

�∑
j=1

cijαij

is a weight of the Lie algebra of type Ar, then

℘q(ξ) = qm+1(1 + q)r−1−2�(2 + 2q + q2)�

where m =
∑�

j=1 cij .
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Proof. The result follows from taking the formula in Proposition 2 and mul-
tiplying by q

∑�
i=1(ci−1), which accounts for the additional simple roots that

we must use to decompose ξ than what we needed to decompose β. Hence

℘q(ξ) = q
∑�

i=1(ci−1) · q�+1(1 + q)r−1−2�(2 + 2q + q2)�

= qm−� · q�+1(1 + q)r−1−2�(2 + 2q + q2)�

= qm+1(1 + q)r−1−2�(2 + 2q + q2)�.

By further restricting the set I we can give a general result for all Lie
types.

Proposition 4. Let g be a classical simple Lie algebra of rank r ≥ 5. Let
I = {i1, i2, . . . , i�} be a set of nonconsecutive integers satisfying
1 < i1 < i2 < · · · < i� < r − 2, and ci1 , ci2 , . . . , ci� ∈ Z>0. If

λ =

r∑
i=1

αi +

�∑
j=1

cijαij

is a weight of g, then

℘q(λ) = qm+1(1 + q)r−1−2�(2 + 2q + q2)�

where m =
∑�

j=1 cij .

Proof. The result follows from Proposition 3 and the fact that under this
restriction on the index set I, the only positive roots one can use in decom-
positions of λ are of type Ar.

We define ℘(λ) = ℘q(λ)|q=1. Setting q = 1 in Proposition 4 establishes
the following result.

Corollary 1. Let I and λ be defined as in Proposition 4. Then

℘(λ) = 2r−1
(
5
4

)�
= 2r−1−2�5�.

Proposition 5. Let λ be defined as in Proposition 4. If Yr denotes the
random variable for the total number of positive roots used in the decom-
positions of λ, then the mean and variance of Yr are given by

μr =
r + 1

2
− 1

5
�+m and σ2

r =
r − 1

4
+

3

50
�,

respectively.

Proof. The result follows from Proposition 1 and Corollary 1.
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Proposition 6. Let μr and σ2
r be defined as in Proposition 5 and λ be

defined as in Proposition 4. Then the random variable Y ′
r = (Yr − μr) /σr

converges in distribution to the standard normal distribution as r → ∞.

Proof. Let MY ′
r
be the moment generating function of Y ′

r . In this proof, we

establish that the moment generating function of Y ′
r converges to that of

the standard normal distribution, which is et
2/2.

By Proposition 4, we let gr(y) = ym+1(1+ y)r−1−2�(2+ 2y+ y2)�; hence

log[gr(e
n)] = log[(en)m+1(1 + en)r−1−2�(2 + 2en + e2n)�]

= (m+ 1) log(en) + (r − 1− 2�) log(1 + en) + � log(2+2en+e2n)

= (m+ 1) log(1 + n+ n2/2) + (r − 1− 2�) log(2 + n+ n2/2)(5)

+ � log(5 + 4n+ 3n2) +O(n3).

Using Taylor’s series expansion for log(x) we have

log(1 + n+ n2/2) = n+O(n3)(6)

log(2 + n+ n2/2) = log(2) +
1

2
n+

1

8
n2 +O(n3)(7)

log(5 + 4n+ 3n2) = log(5) +
4

5
n− 1

50
n2 +O(n3).(8)

Substituting Equations (6), (7), and (8), into Equation (5) yields

log[gr(e
n)] = n2

(
r − 1

8
− 27�

100

)
+ n

(
r + 1

2
− 1

5
�+m

)
(9)

+ � log

(
5

4

)
+ (r − 1) log(2) +O(n3).(10)

By Corollary 1 we know

log[gr(1)] = log

[
2r−1

(
5

4

)�
]
= � log

(
5

4

)
+ (r − 1) log(2).(11)

Hence, substituting Equations (9) and (11), μr = r+1
2 − 1

5� + m,

σr =
√

r−1
4 + 3

50�, and n = t
σr

yields

log(MY ′
r
(t)) = log[gr(e

n)]− log[gr(1)]−
tμr

σr
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=

(
25 + 54�− 25r

50− 12�− 50r

)
t2 +O

⎛
⎝
⎛
⎝ t√

r−1
4 + 3

50�

⎞
⎠

3⎞
⎠ .(12)

Taking the limit of Equation (12), as r → ∞, we have that log(MY ′
r
(t))

converges to 1
2 t

2. Thus Y ′
r converges to the standard normal distribution as

r → ∞.

Theorem 1 follows directly from Proposition 4 and Proposition 6.

4. Proof of Theorem 2

In type Ar we know

℘q (α̃) = q (1 + q)r−1 = q

r−1∑
i=0

(
r − 1

i

)
qi =

r∑
k=1

(
r − 1

k − 1

)
qk.(13)

It is well-known that the binomial distribution converges to a standard nor-
mal, see [1] for four distinct proofs of this result.

Let Pgr
(q) denote ℘q(α̃) for a classical Lie algebra g of rank r. Harris,

Insko, and Omar gave closed formulas for the generating functions for the
q-analog of Kostant’s partition function for Lie algebras of Type B, C, and
D in [13], which we restate below for ease of reference.

Theorem (Generating Functions [13]). The closed formulas for the gener-
ating functions

∑
r≥1 PBr

(q)xr,
∑

r≥1 PCr
(q)xr, and

∑
r≥4 PDr

(q)xr, are
given by

∑
r≥1

PBr
(q)xr =

qx+
(
−q − q2

)
x2 + q2x3

1− (2 + 2q + q2)x+ (1 + 2q + q2 + q3)x2
,(14)

∑
r≥1

PCr
(q)xr =

qx+
(
−q − q2

)
x2

1− (2 + 2q + q2)x+ (1 + 2q + q2 + q3)x2
,(15)

∑
r≥4

PDr
(q)xr =

(
q + 4q2 + 6q3 + 3q4 + q5

)
x4

1− (2 + 2q + q2)x+ (1 + 2q + q2 + q3)x2
(16)

−
(
q + 4q2 + 6q3 + 5q4 + 3q5 + q6

)
x5

1− (2 + 2q + q2)x+ (1 + 2q + q2 + q3)x2
.

We now use Bender’s Theorem (Theorem 1 from [3]) to show that each
of these generating functions have asymptotically Gaussian coefficients. For
reference, we restate a special case of Bender’s Theorem
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Theorem (Bender’s Theorem [3]). Suppose f(z, w) = g(z, w)/P (z, w)m+1.
If

(i) P (z, w) is a polynomial in z with coefficients continuous in w,
(ii) P (z, 1) has a simple root at r and all other roots have larger absolute

value,
(iii) g(z, w) is analytic for w near 1 and z < r + ε,
(iv) g(r, 1) �= 0,

then the coefficients of f(z, w) are asymptotically normal.

In order to match the notation in [3], we define fg(x, q)=
∑

r≥rg
Pg(q)x

r,
where

rg =

{
1, g = Br, Cr

4, g = Dr

.

Since these generating functions are rational functions in q and x, we need
only check conditions (ii) and (iv) of Bender’s Theorem for each Lie type.

Corollary 2. Let
∑

r≥1 PBr
(q)xr be the generating function for the q-

analog of Kostant’s partition function for Lie algebras of Type B. Then the
coefficients of this generating function are asymptotically Gaussian.

Proof. Let fBr
(x, q) = gBr

(x, q)/P (x, q) =
∑

r≥1 PBr
(q)xr as given in (14).

Then the roots of P (x, 1) = 1− 5x+ 5x2 are 1
10

(
5−

√
5
)
and 1

10

(
5 +

√
5
)
.

Hence, condition (ii) of Bender’s Theorem 1 is satisfied. And we have
gBr

(
1
10

(
5−

√
5
)
, 1
)
�= 0. Hence, condition (iv) of Bender’s Theorem is sat-

isfied.

Notice that the denominators for the generating functions for Types C
andD are the same as for Type B. Hence, condition (ii) of Bender’s Theorem
will be satisfied for all three Lie algebra types. So, for Types C and D, we
need only check condition (iv) of Bender’s Theorem.

Corollary 3. Let
∑

r≥1 PCr
(q)xr be the generating function for the q-

analog of Kostant’s partition function for Lie algebras of Type C. Then the
coefficients of this generating function are asymptotically Gaussian.

Proof. Let fCr
(x, q) = gCr

(x, q)/P (x, q) =
∑

r≥1 PCr
(q)xr as given in (15).

Since gCr

(
1
10

(
5−

√
5
)
, 1
)
�= 0, condition (iv) of Bender’s Theorem is satis-

fied.

Corollary 4. Let
∑

r≥4 PDr
(q)xr be the generating function for the q-

analog of Kostant’s partition function for Lie algebras of Type D. Then the
coefficients of this generating function are asymptotically Gaussian.
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Proof. Let fDr
(x, q) = gDr

(x, q)/P (x, q) =
∑

r≥1 PDr
(q)xr as given in (16).

Since gDr

(
1
10

(
5−

√
5
)
, 1
)
�= 0, condition (iv) of Bender’s Theorem is satis-

fied.

We now compute the means and variances for these generating functions.

Harris, Insko, and Omar also gave closed formulas for the value of the q-

analog of Kostant’s partition function on the highest root of a classical Lie

algebra in [13], which we restate below for ease of reference.

Corollary 5 (Explicit formulas [13]). Let α̃ denote the highest root of a Lie

algebra. Let PAr
(q), PBr

(q), PCr
(q), and PDr

(q) denote ℘q (α̃), in the

Lie algebras of type Ar, Br, Cr, and Dr, respectively. Then explicit formulas

for the value of the q-analog of Kostant’s partition function on the highest

root of the classical Lie algebras are as follow:

Type Ar (r ≥ 1) : PAr
(q) = q (1 + q)r−1 ,

(17)

Type Br (r ≥ 2) : PBr
(q) = b+ (q) · (β+ (q))r−2 + b− (q) · (β− (q))r−2 ,

(18)

Type Cr (r ≥ 1) : PCr
(q) = c+ (q) · (β+ (q))r−1 + c− (q) · (β− (q))r−1 ,

(19)

Type Dr (r ≥ 4) : PDr
(q) = d+ (q) · (β+ (q))r−4 + d− (q) · (β− (q))r−4 ,

(20)

where

β± (q) =

(
q2 + 2q + 2

)
± q

√
q2 + 4

2

and

b± (q) =

(
q5 + q4 + 5q3 + 4q2 + 4q

)
±
(
q4 + q3 + 3q2 + 2q

)√
q2 + 4

2 (q2 + 4)
,

c± (q) =

(
q3 + 4q

)
± q2

√
q2 + 4

2 (q2 + 4)
,

d± (q) =
q7 + 3q6 + 10q5 + 16q4 + 25q3 + 16q2 + 4q

2 (q2 + 4)

±
(
q6 + 3q5 + 8q4 + 12q3 + 9q2 + 2q

)√
q2 + 4

2 (q2 + 4)
.
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For 1 ≤ k ≤ r, let pr,k denote the number of ways to write α̃ as a sum of

exactly k positive roots in type Ar. Hence pr,k is obtained by extracting the

coefficient of qk in Pg (q) and from Equation (13) we know that pr,k =
(
r−1
k−1

)
ways to write α̃ as a sum of exactly k positive roots. We note that pr,0 = 0

for all r, and p0,k = 0 for all k.

Proposition 7. Let F (x, y) =
∑
r≥0

∑
k≥0

pr,kx
ryk be the generating function

for the coefficients pr,k in type Ar. Then

F (x, y) =
xy

1− x− xy
.(21)

Proof. The result follows from the bivariate generating function of the bi-

nomial coefficients

∑
r≥0

∑
k≥0

(
r

k

)
xryk =

1

1− y − yx
.

Proposition 8. For r ≥ 1, the mean and variance of YAr
are given by

μr =
r+1
2 and σ2

r = r−1
4 , respectively.

Proof. By Equation (21) and use of the geometric sum formula, we note

F (x, y) = xy

(
1

1− (1 + y)x

)
=

∞∑
m=0

y (1 + y)m xm+1.

Hence gr (y) = y (1 + y)r−1. Now observe that by Proposition 1

μr =
g′r (1)

gr (1)
=

y (r − 1) (1 + y)r−2 + (1 + y)r−1 |y=1

2r−1
=

r + 1

2
.

The variance follows from a similar calculation.

Proposition 9. For r ≥ 2, the mean and variance of YBr
are given by

μr =

(
5−

√
5 +

(
25− 13

√
5
)
r
) (

5−
√
5
)r

5[
(
5− 3

√
5
) (

5−
√
5
)r

+
(
5 + 3

√
5
) (

5 +
√
5
)r
]

+

(
5 +

√
5 +

(
25 + 13

√
5
)
r
) (

5 +
√
5
)r

5[
(
5− 3

√
5
) (

5−
√
5
)r

+
(
5 + 3

√
5
) (

5 +
√
5
)r
]
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and

σ2
r =

20r+1r2

−5[
(
5−

√
3
) (

5−
√
5
)r

+
(
5 + 3

√
5
) (

5 +
√
5
)r
]2

+
[26

(
3
√
5− 7

) (
5−

√
5
)2r − 26

(
3
√
5 + 7

) (
5 +

√
5
)2r

+ 36 · 20r+1

5 ]r

−5[
(
5−

√
3
) (

5−
√
5
)r

+
(
5 + 3

√
5
) (

5 +
√
5
)r
]2

+
[2
(
73−25

√
5
) (

5−
√
5
)2r

+ 2
(
73 + 25

√
5
) (

5 +
√
5
)2r − 63 · 20r+1

5 ]

−5[
(
5−

√
3
) (

5−
√
5
)r

+
(
5 + 3

√
5
) (

5 +
√
5
)r
]2

,

respectively.

Proof. Applying the result in Proposition 1 to Equation (18) yields the de-
sired result, albeit after some straightforward, but lengthy calculations.

Proposition 10. For r ≥ 3, the mean and variance of YCr
are given by

μr =

((
1−

√
5
)
+
(
7−

√
5
)
r
) (

5−
√
5
)r

10
((

5−
√
5
)r

+
(
5 +

√
5
)r)

+

((
1 +

√
5
)
+
(
7 +

√
5
)
r
) (

5 +
√
5
)r

10
((

5−
√
5
)r

+
(
5 +

√
5
)r)

and

σ2
r =

20r+1

4 r2 +
[
13

((
5−

√
5
)2r

+
(
5 +

√
5
)2r)

+ 9 · 20r+1

5

]
r

25
((

5−
√
5
)r

+
(
5 +

√
5
)r)2

+

(
−21 + 4

√
5
) (

5 +
√
5
)2r − (

21 + 4
√
5
) (

5−
√
5
)2r − 37 · 20r

25
((

5−
√
5
)r

+
(
5 +

√
5
)r)2 ,

respectively.

Proof. Applying the result in Proposition 1 to Equation (19) yields the
desired result, albeit after some straightforward, but lengthy, calculations.

Proposition 11. The mean and variance of YDr
are given by

μr =

(
15−

√
5 + r

(
−5 + 7

√
5
)) (

5−
√
5
)r

10
√
5
((

5−
√
5
)r − (

5 +
√
5
)r)
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+

(
15 +

√
5− r

(
5 + 7

√
5
)) (

5 +
√
5
)r

10
√
5
((

5−
√
5
)r − (

5 +
√
5
)r)

and

σ2
r =

20r+1

4 r2 −
[
13

((
5 +

√
5
)2r

+
(
5−

√
5
)2r)

+ 20r+1

5

]
r

−25
[(
5 +

√
5
)r − (

5−
√
5
)r]2

+

(
34− 3

√
5
) (

5 +
√
5
)2r

+
(
34 + 3

√
5
) (

5−
√
5
)2r − 23 · 20r

−25
[(
5 +

√
5
)r − (

5−
√
5
)r]2 ,

respectively.

Proof. Applying the result in Proposition 1 to Equation (20) yields the de-

sired result, albeit after some straightforward, but lengthy, calculations.

5. Future work

In this section we provide some directions for future study.

1. Recall that for a fixed r, we let pr,k denote the number of ways to

express the highest root as a sum of exactly k positive roots. In our

work in type Ar the sequence pr,0, pr,1, . . . , pr,r is unimodal as it is a

sequence of binomial coefficients. In other Lie types (for fixed r) we

ask: Do the coefficients pr,k also form a unimodal sequence?

2. We established that the distribution of the number of positive roots

used in the decompositions of certain weights, including the highest

root, of the classical Lie algebras converges to a Gaussian. One po-

tential problem would be to give a uniform proof of the second main

result in this paper.

3. Additionally, we provide some computational experiments for 2α̃ and

2ρ where 2ρ is the sum of all positive roots of the classical simple

Lie algebras. The results are provided in Figure 1. In light of the

these experiments, we pose the following: Give necessary and sufficient

conditions on the weight μ of a Lie algebra of rank r, such that the

(normalized) distribution of the number of positive roots used in the

decompositions of μ as a sum of positive roots converges to a Gaussian

distribution as r → ∞.
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Figure 1: Distributions of the number of positive roots used in the decom-
positions of 2α̃ and 2ρ in the classical simple Lie algebras.
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4. Although our experimentations seem to support an affirmative solu-
tion to the above problem, we would also welcome an example of a
weight μ whose associated distribution does not converge to a Gaus-
sian distribution as r → ∞. Hence, determining for what weight such a
distribution converges to a Gaussian remains an open problem worthy
of study.

Appendix A. Alternate Proof of Theorem 2

To prove Theorem 2, we proceed via a case-by-case analysis and establish
that the moment generating function of Y ′

g,r converges to that of the stan-

dard normal, which is et
2/2.

A.1. Type A

First we prove Theorem 2 for the Lie algebra of type Ar.

Theorem 2 (Type Ar). Let μr and σ2
r be defined as in Proposition 8. Then

the random variable Y ′
r = (Yr − μr) /σ

2
r converges to the standard Gaussian

distribution as r → ∞.

Proof. Recall gr (y) = y (1 + y)r−1, hence

log[gr (e
n)] = log[en (1 + en)r−1]

= log (en) + (r − 1) log (1 + en)

= log

(
1 + n+

n2

2

)
+ (r − 1) log

(
2 + n+

n2

2

)
+O

(
n3

)
.(22)

Using Taylor’s series expansion for log (x) we have

log

(
1 + n+

n2

2

)
= log (1) +

1

1

(
1 + n+

n2

2
− 1

)

− 1

1

(
1 + n+ n2

2 − 1
)2

2
+O

(
n3

)
= n+

n2

2
− 1

2

(
n+

n2

2

)2

+O
(
n3

)
= n+

n2

2
− 1

2

(
n2 + n3 +

n4

4

)
+O

(
n3

)
= n+O

(
n3

)
(23)
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and

log

(
2 + n+

n2

2

)
= log (2) +

1

2

(
2 + n+

n2

2
− 2

)

− 1

4

(
2 + n+ n2

2 − 2
)2

2
+O

(
n3

)
= log (2) +

1

2

(
n+

n2

2

)
− 1

8

(
n+

n2

2

)2

+O
(
n3

)
= log (2) +

1

2
n+

1

8
n2 +O

(
n3

)
.(24)

Substituting Equations (23) and (24) into Equation (22) yields

log[gr (e
n)] = [n+O

(
n3

)
] + (r − 1) [log (2) +

1

2
n+

1

8
n2 +O

(
n3

)
] +O

(
n3

)
= n+ (r − 1) log (2) +

1

2
n (r − 1) +

1

8
n2 (r − 1) +O

(
n3

)
= n+

1

2
n (r − 1) +

1

8
n2 (r − 1) +O

(
n3

)
+ log (gr (1)) .(25)

Recall

log
(
MY ′

r
(t)

)
= log[gr (e

n)]− log[gr (1)]−
tμr

σr
(26)

where μr = r+1
2 , σr =

√
r−1
4 , and n = t

σr
= t√

r−1

4

= 2t√
r−1

. Substituting

Equation (25) and n = 2t√
r−1

into Equation (26) yields

log[MY ′
r
(t)] =

2t√
r − 1

+
t√

r − 1
(r − 1) +

1

8

(
2t√
r − 1

)2

(r − 1)

−
t
(
r+1
2

)
√
r−1
2

+O

((
2t√
r − 1

)3
)

=
1

2
t2 +O

((
2t√
r − 1

)3
)
.(27)

Taking the limit of Equation (27) as r → ∞, we have that log(MY ′
r
(t))

converges to 1
2 t

2. Thus Y ′
r converges to the standard normal distribution as

r → ∞.
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A.2. Technical results for other Lie types

For Types B, C, and D, we also show that log
[
MY ′

g,r(t)

]
converges to 1

2 t
2 as

r → ∞, thus proving that Y ′
g,r converges to the standard normal distribution

as r → ∞. In this section, we work through simplifying the equation for

log
[
MY ′

g,r(t)

]
, as many terms overlap for the various Lie types.

Recall from Corollary 5 that ℘q (α̃) = g+ (q) · (β+(q))r−ig + g− (q) ·
(β−(q))

r−ig , where g± ∈ {b±, c±, d±} and

ig =

⎧⎪⎨
⎪⎩
2, g = Br

1, g = Cr

4, g = Dr

.

Hence, if we let the random variable Yg,r denote the total number of posi-
tive roots used in the decompositions of the highest root of the Lie algebra
of type g as sums of positive roots, we can write gr(y) = ℘q(α̃)|q=y and

log
[
MY ′

g,r(t)

]
= log[gr(e

n)]− log[gr(1)]− tμg,r

σg,r
. Let

M = g+ (en) · (β+(en))r−ig ,(28)

A = g− (en) · (β−(en))r−ig , and(29)

S = A/M =
g−(en)

g+(en)

(
β−(en)

β+(en)

)r−ig

.(30)

Then

log
[
MY ′

g,r(t)

]
= log[M ] + log[1 + S]− log[gr(1)]−

tμg,r

σg,r
.(31)

We first evaluate

β±(e
n) =

(e2n + 2en + 2)± en
√
e2n + 4

2
.

Then, using Taylor expansion of y = ex about x = 0, we replace en with
1 + n+ 1

2n
2 +O(n3) and obtain

β±(e
n) =

1

2
(5 + 4n+ 3n2 +O(n3))

± 1

2
(1 + n+

1

2
n2 +O(n3))

√
5 + 2n+ 2n2 +O(n3).
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By Taylor expanding y =
√
x about x = 5 and then replacing x =

5 + 2n+ 2n2 and simplifying, we get

β+(e
n) =

5

2
+

√
5

2
+

(
2 +

3√
5

)
n+

(
3

2
+

11

5
√
5

)
n2 +O(n3) and(32)

β−(e
n) =

5

2
−

√
5

2
+

(
2− 3√

5

)
n+

(
3

2
− 11

5
√
5

)
n2 +O(n3).(33)

Using Equation (32), we can rewrite

log[M ] = log [g+(e
n)]

+ (r − ig) log

[
5

2
+

√
5

2
+

(
2 +

3√
5

)
n+

(
3

2
+

11

5
√
5

)
n2 +O(n3)

]
.

Now we Taylor expand y = log(x) about x = 5
2 +

√
5
2 and replace x =

β+(e
n) as in Equation (32) to get

log[M ] = log [g+(e
n)]

+ (r − ig)

[
(13 + 5

√
5)n

5(3 +
√
5)

+
13n2

50
+ log

(
1

2
(5 +

√
5)

)
+O(n3)

]
.(34)

To simplify Equation (30), we denote N =
(
β−(en)
β+(en)

)r−ig
, which we can

simplify by Taylor expanding y = 1/x about x = 5
2 +

√
5
2 and then replacing

x = β+(e
n) as in Equation (32) and multiplying this Taylor expansion to

Equation (33). We obtain

N =

(
1

(5 +
√
5)3

)r−ig

[(
20(5 +

√
5)
)
+ n

(
−20(1 +

√
5) + 2(5 +

√
5)n

)]r−ig
.

Using the Binomial Theorem, we have

N =

(
1

(5 +
√
5)3

)r−ig [(
20(5 +

√
5)
)r−ig

(35)

+(r − ig)
(
20(5 +

√
5)
)r−ig−1 (

n
(
−20(1 +

√
5) + 2(5 +

√
5)n

))
+
(r − ig)(r − ig − 1)

2

(
20(5 +

√
5)
)r−ig−2



On the asymptotic behavior of the q-analog 187

(
n
(
−20(1 +

√
5) + 2(5 +

√
5)n

))2
+O(n3)

]
.

In order to completely describe Equation (31), we need to work through

each Lie algebra type separately.

A.2.1. Type C Next we prove Theorem 2 for the Lie algebra of type Cr.

Theorem 2 (Type Cr). Let μr and σ2
r be defined as in Proposition 11.

Then the random variable Y ′
Cr

= (YCr
− μr) /σ

2
r converges to the standard

Gaussian distribution as r → ∞.

Proof. Recall

c± (q) =

(
q3 + 4q

)
± q2

√
q2 + 4

2 (q2 + 4)
.(36)

Replacing en with 1 + n+ 1
2n

2 +O(n3) gives

c± (en) =

(
5 + 7n+ 13n2

2 +O(n3)
)

10 + 4n+ 4n2 +O(n3)

±
(
1 + 2n+ 2n2 +O(n3)

)√
5 + 2n+ 2n2 +O(n3)

10 + 4n+ 4n2 +O(n3)
.

Now, Taylor expanding y =
√
x about x = 5 and z = 1/x about x = 10,

and replacing x = 5 + 2n+ 2n2 and x = 10 + 4n+ 4n2, respectively, gives

c+ (en) =

((
5 + 7n+

13n2

2

)
+
(
1 + 2n+ 2n2

)(√
5 +

n√
5
+

9n2

10
√
5

))
(

1

10
− n

25
− 3n2

125

)
+O(n3)

=
1

500

(
50(5 +

√
5) + 10(25 + 9

√
5)n+ (125 + 73

√
5)n2

)
+O(n3).(37)

Similarly,

c− (en) =
1

500

(
50(5−

√
5) + 10(25− 9

√
5)n+ (125− 73

√
5)n2

)
+O(n3).

(38)
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Taylor expanding y = 1/x about x = 1
500(50(5+

√
5)), replacing x = C+(e

n)
as in Equation (37), and multiplying the resulting expression to Equation
(38) gives

c−(en)

c+(en)
=

1

(5+
√
5)3

[
20(5 +

√
5)− 40(1 +

√
5)n− 8(−3 +

√
5)n2

]
+O(n3).

(39)

Taylor expanding y = log(x) about x = 1
500(50(5 +

√
5)) and replacing

x = C+(e
n) as in Equation (37) gives

log (c+(e
n)) =

1

25(3 +
√
5)

[
(85 + 35

√
5)n+ 2(−1 +

√
5)n2

]
(40)

− log(2)− log(5) + log(5 +
√
5) +O(n3).

Now, we can substitute Equation (40) into Equation (34), where ig = 1, to
get

log[M ] =
(4 + 2

√
5 + 13r + 5

√
5r)n

5(3 +
√
5)

+
(−43− 9

√
5 + 13(3 +

√
5)r)n2

50(3 +
√
5)

(41)

− r log(2)− log(5) + r log(5 +
√
5) +O(n3).

Substituting Equations (39) and (35) (with ig = 1) into Equation (30), we
get an equation for 1 + S:

1 + S = 1 + 41+r5r−1/2(5 +
√
5)−3−2r

[
50(2 +

√
5)− 10(5 + 2

√
5)n(1 + r)

(42)

+n2(−30− 11
√
5 + 10(2 +

√
5)r + 5(2 +

√
5)r2)

]
+O(n3).

Next, we can Taylor expand y = log(x) about x = 1 + 41+r5r−1/2(5 +√
5)−3−2r50(2 +

√
5) and replace x = 1 + S as in Equation (42) to obtain

log(1 + S) = log
[
1 + 20r(5 +

√
5)−2r

]
− 22r−15r−2n

(20r + (5 +
√
5)2r)2)

(43) [
10
√
5(20r + (5 +

√
5)2r)(1 + r)

+ n
(
23+2r51/2+r + (5 +

√
5)2r(−5 + 8

√
5)
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−10(5 +
√
5)2rr − 5(5 +

√
5)2rr2

)]
+O(n3).

Given Equations (41) and (43), gr(1) =
1
5

(
5+

√
5

2

)r
+ 1

5

(
5−

√
5

2

)r
, n = t/σr,

and μr and σr as in Proposition 10, we find that

log
(
MY ′

r (t)

)
= log[gr(e

n)]− log[gr(1)]−
tμr

σr

= k0 + k1t+ k2t
2 +O

((
t

σr

)3
)
,

where k0 = 0, k1 = 0, and

k2 =

(
(5−

√
5)r + (5−

√
5)r

)2
2(3 +

√
5)

(
20r + (5 +

√
5)2r

)2[
−37 · 20r + (4

√
5− 21)(5 +

√
5)2r − (5−

√
5)2r(21 + 4

√
5)

+r
(
36 · 20r + 13(5−

√
5)2r + 13(5 +

√
5)2r

)
+ 5 · 20rr2

]−1

[
−37 · 20r(3 +

√
5)(5 +

√
5)2r − (5 +

√
5)4r(43 + 9

√
5)

− 400r(83 + 33
√
5) + r(3 +

√
5)

(
13 · 400r + 36 · 20r(5 +

√
5)2r

+13(5 +
√
5)4r

)
+ r25r+1(3 +

√
5)

(
2(5 +

√
5)
)2r

]
.

Lastly, note lim
r→∞

log (MY ′
r (t)

) =
1

2
t2. Thus Y ′

r converges to the standard

normal as r → ∞.

A.2.2. Type B Our first result is as follows.

Theorem 2 (Type Br). Let μr and σ2
r be defined as in Proposition 9. Then

the random variable Y ′
Br

= (YBr
− μr) /σ

2
r converges to the standard Gaus-

sian distribution as r → ∞.

Proof. Recall

b± (q) =

(
q5 + q4 + 5q3 + 4q2 + 4q

)
±
(
q4 + q3 + 3q2 + 2q

)√
q2 + 4

2 (q2 + 4)
.

(44)



190 Pamela E. Harris et al.

As with Type C, replacing en with 1+n+ 1
2n

2+O(n3), Taylor expanding y =√
x about x = 5 and z = 1/x about x = 10, and replacing x = 5+ 2n+ 2n2

and x = 10 + 4n+ 4n2, respectively, gives

b+ (en) =
3

2
+

7

2
√
5
+

(
3 +

34

5
√
5

)
n+

(
7

2
+

194

25
√
5

)
n2 +O(n3)(45)

Similarly,

b− (en) =
3

2
− 7

2
√
5
+

(
3− 34

5
√
5

)
n+

(
7

2
− 194

25
√
5

)
n2 +O(n3).(46)

Taylor expanding y = 1/x about x = 3
2 + 7

2
√
5
, replacing x = b+(e

n) as

in Equation (45), and multiplying the resulting expression to Equation (46)
gives

b−(en)

b+(en)
=

1

(15 + 7
√
5)3

[
−20(15 + 7

√
5)(47)

+60(7 + 3
√
5)n+ (38 + 6

√
5)n2

]
+O(n3).

Taylor expanding y = log(x) about x = 3
2 + 7

2
√
5
and replacing x = b+(e

n)

as in Equation (45) gives

log (b+(e
n)) =

1

5(15 + 7
√
5)2

[
10(463 + 207

√
5)n+ (779 + 349

√
5)n2

]
(48)

− log(2)− log(5) + log(15 + 7
√
5) +O(n3).

Now, we can substitute Equation (48) into Equation (34), where ig = 2,
to get

log[M ] =

(
76 + 34

√
5 + (568 + 254

√
5)r

)
n

5(123 + 55
√
5)

(49)

+

(
−1157− 517

√
5 + (1599 + 715

√
5)r

)
n2

50(123 + 55
√
5)

+ (r − 2) log(5 +
√
5)− (r − 1) log(2)

− log(5) + log(15 + 7
√
5) +O(n3).

Substituting Equations (47) and (35) (with ig = 2) into Equation (30),
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we get an equation for 1 + S:

1 + S = 1− 4r+35r+2(5 +
√
5)−2(2+r)

(15 + 7
√
5)3

[
3600 + 1610

√
5(50)

− 10(161 + 72
√
5)n(r + 1) + n2

(
−3182− 14123

√
5

+(720 + 322
√
5)r + (360 + 161

√
5)r2

)]
+O(n3).

Next, we can Taylor expand y = log(x) about

x = 1− 4r+35r+2(5 +
√
5)−2(2+r)

(15 + 7
√
5)3

(
3600 + 1610

√
5
)

and replace x = 1 + S as in Equation (50) to obtain

log (1 + S) = log

[
(15 + 7

√
5)3 − 4 · 20r+2(5 +

√
5)−4−2r(3600 + 1610

√
5)

(15 + 7
√
5)3

](51)

−
[

1

(5 +
√
5)8(15 + 7

√
5)6

]
[

1

2 · 20r
(
360 + 161

√
5)− (5 +

√
5)2r(4935 + 2207

√
5)
)3
]

[
2 · 20r+7n

((
10 · 400r(162614600673847

+ 72723460248141
√
5)− 40 · 20r(5 +

√
5)2r(557288527109761

+ 249227005939632
√
5)10(5 +

√
5)4r(7639424778862807

+3416454622906707
√
5)
)
(1 + r)

)
+ n2

(
22 · 202r(162614600673847 + 72723460248141

√
5

− 2 · 20r(5 +
√
5)2r(23274560163131324

+ 10408699734234047
√
5) + (5 +

√
5)4r(150985072020448219

+ 67522576925084747
√
5) + 4 · 20r(5 +

√
5)2r

(1246135029698160 + 557288527109761
√
5)r − 2(5 +

√
5)4r

(217082273114533535 + 7639424778862807
√
5)r

+ 2 · 20r(5 +
√
5)2r(1246135029698160
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+ 557288527109761
√
5)r2 − 2(5 +

√
5)4r

(217082273114533535 + 7639424778862807
√
5)r2

)]
+O(n3).

Given Equations (49) and (51), n = t/σr, μr and σr as in Proposition 9, and

gr(1) = − 5.12 · 1011(16692641 + 7465176
√
5)

(5 +
√
5)12(15 + 7

√
5)6(

r log

(
2

5 +
√
5

)
+ 4 log (5 +

√
5)− log

[
8(15 + 7

√
5)
]

− log
[
320000(5 +

√
5)−2(r+3)(6460 + 2889

√
5)
]

− log
[
−20r + (5 +

√
5)2r

]
+ log

[
(15 + 7

√
5)3

])
,

we find that

log
(
MY ′

r (t)

)
= log[gr(e

n)]− log[gr(1)]−
tμr

σr

= k0 + k1t+ k2t
2 +O

((
t

σr

)3
)

where k0 and k1 simplify to 0 and

k2 = −
(
(779 + 349

√
5)

(
(5−

√
5)4(−5 + 3

√
5)− (5 +

√
5)r(5 + 3

√
5)
)2

)
[
2(15 + 7

√
5)2

(
− 126 · 20r + (73− 25

√
5)(5−

√
5)2r

+ (73 + 25
√
5)(5 +

√
5)2r +

(
72 · 20r + 13

(
(5−

√
5)2r(−7 + 3

√
5)

−(5 +
√
5)2r(7 + 3

√
5)
))

r + 10 · 20rr2
]−1

−
(
13

(
(5−

√
5)2r(−5 + 3

√
5)− (5 +

√
5)r(5 + 3

√
5)
)2

(r − 2)

)

·
[
20(−126 · 20r + (73− 25

√
5)(5−

√
5)2r + (73 + 25

√
5)(5 +

√
5)2r

+ (72 · 20r + 13((5−
√
5)2r(−7 + 3

√
5)

−(5 +
√
5)2r(7 + 3

√
5)))r + 10 · 20rr2

)]−1

+

[
5 · 20r+7

(
(5−

√
5)r(−5 + 3

√
5)− (5 +

√
5)r(5 + 3

√
5)
)2
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·
(
22 · 202r(162614600673847 + 72723460248141

√
5)

−2 · 20r(5 +
√
5)2r(23274560163131324 + 10408699734234047

√
5)

+(5 +
√
5)4r(150985072020448219 + 67522576925084747

√
5)

+4 · 20r(5 +
√
5)2r(1246135029698160 + 557288527109761

√
5)r

−2(5 +
√
5)4r(17082273114533535 + 7639424778862807

√
5)r

+(5 +
√
5)2r

(
2 · 20r(1246135029698160 + 557288527109761

√
5)
)
r2

−(5 +
√
5)4r(17082273114533535 + 7639424778862807

√
5)r2

)]
[
(5 +

√
5)8(15 + 7

√
5)6(2 · 20r(360 + 161

√
5)

− (5 +
√
5)2r(4935 + 2207

√
5))3(

−126 · 20r + (73− 25
√
5)(5−

√
5)2r + (73 + 25

√
5)(5 +

√
5)2r

+ (72 · 20r + 13((5−
√
5)2r(−7 + 3

√
5)

−(5 +
√
5)2r(7 + 3

√
5))r + 10 · 20rr2

)]−1
.

Finally, note lim
r→∞

log (MY ′
r (t)

) =
1

2
t2. Thus, Y ′

r converges to the standard

normal distribution as r → ∞.

A.2.3. Type D Next we prove Theorem 2 for the Lie algebra of type Dr.

Theorem 2 (Type Dr). Let μr and σ2
r be defined as in Proposition 11.

Then the random variable Y ′
Dr

= (YDr
− μr) /σ

2
r converges to the standard

Gaussian distribution as r → ∞.

Proof. Recall

d± (q) =

(
q7 + 3q6 + 10q5 + 16q4 + 25q3 + 16q2 + 4q

)
2 (q2 + 4)

(52)

±
(
q6 + 3q5 + 8q4 + 12q3 + 9q2 + 2q

)√
q2 + 4

2 (q2 + 4)
.

As with Types B and C, replacing en with 1 + n+ 1
2n

2 +O(n3), Taylor
expanding y =

√
x about x = 5 and z = 1/x about x = 10, and replacing

x = 5 + 2n+ 2n2 and x = 10 + 4n+ 4n2, respectively, gives

d+ (en) =
15

2
+

7
√
5

2
+

(
22 +

51√
5

)
n+

(
36 +

829

10
√
5

)
n2 +O(n3)(53)
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Similarly,

d− (en) =
15

2
− 7

√
5

2
+

(
22− 51√

5

)
n+

(
36− 829

10
√
5

)
n2 +O(n3)(54)

Taylor expanding y = 1/x about x = 15
2 + 7

√
5

2 , replacing x = d+(e
n) as

in Equation (53), and multiplying the resulting expression to Equation (54)
gives

d−(en)

d+(en)
=

1

(15 + 7
√
5)3

[
−20(15 + 7

√
5) + 20(7 + 3

√
5)n(55)

+(54 + 22
√
5)n2

]
+O(n3).

Taylor Expanding y = log(x) about x = 15
2 + 7

√
5

2 and replacing x = d+(e
n)

as in Equation (53) gives

log (d+(e
n)) =

1

5(15 + 7
√
5)2

[
10(687 + 307

√
5)n+ 3(387 + 173

√
5)n2

](56)

− log(2) + log(15 + 7
√
5) +O(n3).

Now, we can substitute Equation (56) into Equation (34), where ig = 4,
to get

log[M ] =
20n

(
−237− 106

√
5 + (284 + 127

√
5)r

)
50(123 + 55

√
5)

(57)

+
n2

(
−3357− 1501

√
5 + 13(123 + 55

√
5)r)

)
50(123 + 55

√
5)

+ 3 log 2− 4 log (5 +
√
5) + log (15 + 7

√
5)

+ r
(
log (5 +

√
5)− log 2

)
+O(n3).

Substituting Equations (55) and (35) (with ig = 4) into Equation (30),
we get an equation for 1 + S:

1 + S = 1− 4r+45r+3(5 +
√
5)−2(3+r)

(15 + 7
√
5)3

[
64600 + 28890

√
5(58)

− 10(2889 + 1292
√
5)n(r − 3) + n2

(
40806 + 18249

√
5
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−6(6460 + 2889
√
5)r + (6460 + 2889

√
5)r2

)]
+O(n3).

Next, we can Taylor expand y = log(x) about

x = 1− 4r+45r+3(5 +
√
5)−2(3+r)

(15 + 7
√
5)3

(
64600 + 28890

√
5
)

and replace x = 1 + S as in Equation (58) to obtain

log (1 + S) =
1

(5 +
√
5)12(15 + 7

√
5)6

(59)

(
5.12 · 1011

(
−1292 +

2889√
5

)
(215668928180 + 96450076809

√
5)

log
[
320000(5 +

√
5)−2(r+3)(6460 + 2889

√
5)
]

+ log
[
−20r + (5 +

√
5)2r

]
− log

[
(15 + 7

√
5)3

]

−
22r+185r+9

(
−1292 + 2889√

5

)
(5 +

√
5)12(15 + 7

√
5)6

(
20r − (5 +

√
5)2r

)
− (96450076809 + 43133785636

√
5)(r − 3)n

(5 +
√
5)12(15 + 7

√
5)6

(
20r − (5 +

√
5)2r

)
−

3 · 22r+175r+8
(
−1292 + 2889√

5

)
n2

(5 +
√
5)12(15 + 7

√
5)6

(
20r − (5 +

√
5)2r

)2(
22r+15r(96450076809 + 43133785636

√
5)

+ (5 +
√
5)2r(454106630922 + 203082659155

√
5)

−2(5 +
√
5)2r(215668928180 + 96450076809

√
5)r

)
+O(n3).

Given Equations (57) and (59), n = t/σr, μr and σr as in Proposition 11,

and

gr(1) = − 5.12 · 1011(16692641 + 7465176
√
5)

(5 +
√
5)12(15 + 7

√
5)6



196 Pamela E. Harris et al.

(
r log

[
2

5 +
√
5

]
+ 4 log [5 +

√
5]− log [8(15 + 7

√
5)]

− log
[
320000(5 +

√
5)−2(r+3)(6460 + 2889

√
5)
]

− log
[
−20r + (5 +

√
5)2r

]
+ log

[
(15 + 7

√
5)3

])
,

we find that

log
(
MY ′

r (t)

)
= log[gr(e

n)]− log[gr(1)]−
tμr

σr

= k0 + k1t+ k2t
2 +O

((
t

σr

)3
)
,

where k0 and k1 simplify to 0 and

k2 =
2.56 · 1011

(5 +
√
5)12(15 + 7

√
5)6

(
20r − (5 +

√
5)2r

)2[
23 · 20r + (3

√
5− 34)(5 +

√
5)2r − (5−

√
5)2r(34 + 3

√
5)

+
(
4 · 20r + 13

(
(5−

√
5)2r + (5 +

√
5)2r

))
r − 5 · 20rr2

]−1

[
389743431 · 26r+153r+1/2 + 1742985611 · 8000r

− 339763717 · 24r+1
(
(25− 5

√
5)2r + (5(5 +

√
5))2r

)
− 303893907 · 52r+1/216r

(
(5−

√
5)2r + (5 +

√
5)2r

)
+ 383930743(5 +

√
5)3r

(
20r(5 +

√
5)r − 22r+1(25− 5

√
5)r

)
+ 21462381 · 5r+1/2(5 +

√
5)3r2(2r+3)

(
2(5 +

√
5)r − 2(5−

√
5)r

)
− 455572154(5 +

√
5)4r

(
(5−

√
5)2r + (5 +

√
5)2r

)
+ 911144308(5−

√
5)r(5 +

√
5)5r

+ 407476122
√
5(5−

√
5)r(5 +

√
5)5r

−203738061
√
5(5 +

√
5)4r

(
(5 +

√
5)2r + (5−

√
5)2r

)]
+ r

[
−10264617 · 43r+253r+1/2 − 183619051 · 26r+1125r

+ 12130911 · 24r+352r+1/2(5 +
√
5)2r
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+ 217004333 ·
(
400r

(
(5−

√
5)2r + (5 +

√
5)2r

)
+ (5 +

√
5)6r

)
+ 16692641 · 22r+25r(5 +

√
5)3r

(
(5 +

√
5)r − 2(5−

√
5)r

)
+ 933147 · 22r+55r+1/2(5 +

√
5)4r + 97047288

√
5(5 +

√
5)6r

− 2(5−
√
5)r(5 +

√
5)3r

(
93314722r+55r+1/2

+13(5 +
√
5)2r(16692641 + 7465176

√
5)
)

+ 13(5−
√
5)2r

(
933147 · 24r+352r+1/2

+(5 +
√
5)4r(16692641 + 7465176

√
5)
)]

.

Finally, note lim
r→∞

log (MY ′
r (t)

) =
1

2
t2. Thus, Y ′

r converges to the standard

normal distribution as r → ∞.
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