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Common and Sidorenko equations in Abelian
groups∗

Leo Versteegen

A linear configuration is said to be common in a finite Abelian
group G if for every 2-coloring of G the number of monochromatic
instances of the configuration is at least as large as for a randomly
chosen coloring. Saad and Wolf conjectured that if a configuration
is defined as the solution set of a single homogeneous equation in
an even number of variables over G, then it is common in Fn

p if
and only if the equation’s coefficients can be partitioned into pairs
that sum to zero mod p. This was proven by Fox, Pham and Zhao
for sufficiently large n. We generalize their result to all sufficiently
large Abelian groups G for which the equation’s coefficients are
coprime to |G|.
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1. Introduction

Let G be a finite Abelian group. For a pair of integers k ≤ d, we consider
matrices L ∈ Zk×d that have full rank in G, in the sense that the maps
Gd → Gk the matrices induce are surjective. The (linear) configuration
given by L, denoted by C(L), is the kernel of this map in Gd. We refer to
the elements of C(L) as the instances of the configuration. For a function
f : G → R we define the arithmetic multiplicity as1

tL(f) = E
v∈C(L)

d∏
i=1

f(vi) =
1

|C(L)|
∑

v∈C(L)

d∏
i=1

f(vi).
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1Here and throughout the paper we write for a set X and a function f : X → C

the average of f over X as E(f) = Ex∈X f(x) = 1
|X|

∑
x∈X f(x).
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For a set A ⊂ G we denote by 1A the indicator function of A and write tL(A)

to mean tL(1A). In analogy to graph-theoretical concepts, Saad and Wolf [4]

introduced the notions of a configuration being Sidorenko or common (see

the references in the introduction of [4]). We define commonness in a slightly

different way here, which we believe is better suited to general finite Abelian

groups instead of the specific classes of groups, which were the primary focus

of Saad and Wolf.

Definition 1.1. We call L fully Sidorenko in G if for all f : G → [0, 1]

tL(f) ≥ E(f)
d.

Furthermore, L is simply called Sidorenko in G if for all A ⊂ G

tL(A) ≥
(
|A|
|G|

)d

.

We say that L is fully common in G if for all f : G → [0, 1]

tL(f) + tL(1− f) ≥
(
1

2

)k−1

.

Finally, L is said to be common in G if for all A ⊂ G

tL(A) + tL(A
C) ≥

(
1

2

)k−1

.

Clearly, if a configuration is fully common or fully Sidorenko, then it

is also common or Sidorenko, respectively. Conversely, if the group G is

sufficiently large and L is non-degenerate, a standard argument allows us to

convert functions f : G → [0, 1] into sets A ⊂ G such that tC(f) ≈ tC(1A).

As a first step towards a general characterization of Sidorenko and com-

mon configurations, Saad and Wolf laid out in [4] some initial results, con-

jectures and questions about necessary and sufficient conditions for a con-

figuration to be Sidorenko or common. Among these was the following.

Conjecture 1.2. Let d ≥ 2 even. A linear configuration defined by a single

equation in d variables, i.e., as the kernel of a matrix L ∈ Z1×d, is common

in Fn
p if and only if the set [d] := {1, . . . , d} can be partitioned into pairs

such that for each pair {i, j} we have L1i ≡ −L1j mod p.
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Saad and Wolf remarked that one direction is easy: from the assump-
tion about the coefficients of L, it follows by an application of the Cauchy-
Schwarz inequality that the configuration is in fact Sidorenko. In [2], Fox,
Pham and Zhao went on to show the reverse direction, thus proving the

conjecture. In this paper, we generalize these results from Fn
p to all finite

Abelian groups G in which the coefficients of L are coprime to |G|. First we
need to make precise how the condition L1i ≡ −L1j mod p translates to
general finite Abelian groups.

Definition 1.3 (Canceling partitions). A pair of integers (m,n) is canceling
in G if their sum acts trivially on the group, i.e., (m+n)x = 0 for all x ∈ G.
For a matrix L ∈ Zk×d, a canceling partition in G is a partition of [d] into

(distinct) pairs such that for each pair {i, j} and each h ∈ [k] the pair
(Lhi, Lhj) is canceling in G.

The following result settles which single equations are fully common
and which are fully Sidorenko under a straightforward condition on the
non-degeneracy of the equations.

Theorem 1.4. Let G be a finite Abelian group and let L ∈ Z1×d be such
that all coefficients in L are coprime to the order of G.

(i) If d is even and a canceling partition exists for L, then L is fully
Sidorenko2.

(ii) If d is odd, then L is fully common in G.
(iii) If d is odd, then L is not fully Sidorenko in G.
(iv) If d is even but no canceling partition exists for L, then L is not fully

common (and hence not fully Sidorenko) in G.

Part (i) was observed for G = Fn
p by Saad and Wolf and their proof car-

ries over directly. The commonness of a single equation in an odd number
of variables, part (ii) of the above theorem, was already proved in [1] by
Cameron, Cilleruelo and Serra, even for non-Abelian groups, but we include
a proof for completeness. The remaining two statements were proved in [2]

for G = Fn
p . Our proof resembles that in [2] in so far as we also construct

a suitable function f via its Fourier coefficients. However, in [2], all coef-
ficients are sampled essentially independently at random while we choose
all coefficients depending on a single one-dimensional random variable. The
advantage of our construction is that the lower bound obtained on the dif-
ference 21−d − tL(f) − tL(1 − f) does not depend on p (or, more generally

2It is easy to see that this holds also for k ≥ 1.
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speaking, the smallest size of a non-trivial subgroup). We will expand on
this in our concluding remarks.

As a corollary to Theorem 1.4 we obtain the following result in terms of
sets rather than functions.

Corollary 1.5. For all d ∈ N, there exists a constant C such that the
following is true. Let G be a group with |G| > C, and let L ∈ Z1×d be such
that all coefficients in L are coprime to the order of G. If d is odd, then L
is not Sidorenko in G. If d is even but L has no canceling partition in G,
then L is not common in G.

Conceivably, the restriction that the coefficients should be coprime to
the order of the group could be weakened in some situations. For the groups
Zp or Fn

p , this would mean that we allow (some) coefficients of the equation
to be zero. Doing so will not change whether the equation is Sidorenko, but it
might make it uncommon (see [2]). For other finite Abelian groups, the prob-
lem is even more delicate, but any formulation of a result seems to require
a large of number of case distinctions regarding the group decomposition,
rendering it of limited interest.

2. The proof of Theorem 1.4

Our proof of Theorem 1.4 relies heavily on the Fourier transform. For the
convenience of the reader, we recall briefly how it is defined in a discrete
setting and state without proof its most important properties.

For a finite Abelian group G, consider the set Ĝ of characters, i.e., group
homomorphisms γ : G → {z ∈ C : |z| = 1}. Equipped with pointwise mul-
tiplication as a binary operation between characters, Ĝ becomes a group
which is is isomorphic to G. For later use, we fix an arbitrary isomorphism
D : G → Ĝ. One reason characters are so useful to us is that they detect the
additive identity of a group by the following well-known identity.

∑
γ∈ ̂G

γ(x) =

{
|G| if x = 0,

0 otherwise.
(2.1)

The other benefit of characters is that we may use them to analyze functions
via their Fourier coefficients. Recall that for a function f : G → C the Fourier
transform of f is the function

f̂ : Ĝ → C γ 
→ f̂(γ) = E
x∈G

γ(x)f(x).
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The operator that maps a function to its Fourier transform is linear and a

scaled isometry in the sense that for all f1, f2 ∈ Map(G,C) it holds that

∑
γ∈ ̂G

f̂1(γ)f̂2(γ) = E
x∈G

f1(x)f2(x).

Furthermore, we have for all f the inversion formula

f(x) =
∑
γ∈ ̂G

f̂(γ)γ(−x).

Real-valued functions f do not generally have a real-valued Fourier trans-

form. If and only f is real, then f̂(γ−1) = f̂(γ) for every γ ∈ Ĝ.

The identity element of Ĝ is the character that always takes the value

1 and it plays a special role with respect to the Fourier transform. Namely,

for every function f : G → C we have that f̂(1) = E(f).

The Fourier transform allows us to express the number of solutions of

an equation in a concise manner.

Lemma 2.1. Let L ∈ Z1×d have full rank in G. Then we have for all

f : G → [0, 1]

tL(f) =
∑
γ∈ ̂G

d∏
i=1

f̂(γL1i) =
∑
x∈G

d∏
i=1

f̂ (D (L1ix)) .(2.2)

Proof. Equation (2.1) allows us to express the fact that a vector v ∈ Gd is

a solution of Lv = 0 via

∑
γ∈ ̂G

γ(Lv) =

{
|G| if Lv = 0,

0 otherwise.

Using that
∣∣{v ∈ Gd : Lv = 0}

∣∣ = |G|d−1, this means we can rewrite the

arithmetic multiplicity as

E
v∈Gd

Lv=0

d∏
i=1

f(vi) = E
v∈Gd

(
d∏

i=1

f(vi)

)⎛⎝∑
γ∈ ̂G

γ(Lv)

⎞⎠ =
∑
γ∈ ̂G

E
v∈Gd

d∏
i=1

f(vi)γ
L1i(vi).
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If we split the expectation into the different coordinates, we see that by
definition of the Fourier transform this is the same as

∑
γ∈ ̂G

d∏
i=1

f̂(γL1i),

as desired.

We are now ready to prove Theorem 1.4, which we restate here for the
convenience of the reader.

Theorem 1.4. Let G be a finite Abelian group and let L ∈ Z1×d be such
that all coefficients in L are coprime to the order of G.

(i) If d is even and a canceling partition exists for L, then L is fully
Sidorenko3.

(ii) If d is odd, then L is fully common in G.
(iii) If d is odd, then L is not fully Sidorenko in G.
(iv) If d is even but no canceling partition exists for L, then L is not fully

common (and hence not fully Sidorenko) in G.

Proof. It is easy to see that systems consisting of only one equation have
full rank if at least one coefficient of L is coprime to |G|. This is the case
here, so L has full rank and we may apply Lemma 2.1 to see

tL(f) = (E(f))
d +

∑
v∈G\{0}

d∏
i=1

f̂ (D(L1ix)) .(2.3)

Throughout the proof, we shall refer to the sum over the non-zero values of v
on the right-hand side as the deviation for f . If a canceling partition exists,
then the deviation is always positive because f̂ (D(L1ix)) f̂ (D(−L1ix)) =

|f̂ (D(L1ix)) |2, which proves (i). On the other hand, proving that L is not
fully Sidorenko is equivalent to finding f such that the deviation is negative.
Before constructing such a function f , we will ascertain what is needed to
prove or disprove commonness.

By linearity of the Fourier transform, for any f : G → C we have 1̂− f =
1̂− f̂ . It is easy to see by (2.1) that for x �= 0, we have 1̂(D(x)) = 0. Hence
̂(1− f)(D(x)) = −f̂(D(x)). Also, since all L1i are coprime to the order of

3It is easy to see that this holds also for k ≥ 1.
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the group, we can argue that L1ix can only be zero if x is zero. Hence,
̂(1− f)(D(L1ix)) = −f̂(D(L1ix)) for x �= 0. This gives

tL(f) + tL(1− f) = (E(f))
d + (1− E(f))

d

+
∑
x �=0

(
d∏

i=1

f̂ (D(L1ix)) +

d∏
i=1

(
−f̂ (D(L1ix))

))
.(2.4)

Clearly, if d is odd, then the two products in the sum on the right cancel.
The system is thereby shown to be common as the term (E(f))d+(1−E(f))d

is minimized by E(f) = 1
2 . This proves (ii). If d is even, (2.4) becomes

tL(f) + tL(1− f) = (E(f))
d + (1− E(f))

d + 2
∑
x �=0

d∏
i=1

f̂ (D(L1ix)) .(2.5)

The sum on the right is of course again the deviation from (2.3). Thus,
to prove both our remaining claims it suffices to construct, for a given L
that lacks a canceling partition (which is always the case when d is odd), a
function f : G → [0, 1] with E(f) = 1

2 such that the deviation is negative.
We will construct f as the Fourier-inverse of an appropriate function.

To this end, pick an element a ∈ G of maximal order. Observe that the
order of any other element in G divides that of a. Note that the order of a
cannot be 2, because if all elements had order two then every partition of the
coefficients of L into pairs would be cancelling. The order of a is also coprime
to every coefficient of L. Therefore, no element of U = {L11a, . . . , L1da} is
its own inverse, in particular 0 /∈ U . Let now S = {s1, . . . , sr} ⊂ U be such
that for each b ∈ U exactly one of b and −b is in S. For each ϕ ∈ R, define
a map

gϕ : G → C y 
→

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
4r e

(
ϕ

(2d)j

)
if y = sj ,

1
4r e

(
− ϕ

(2d)j

)
if y = −sj ,

1
2 if y = 0,

0 otherwise,

where we have written e(·) for exp(2πi·). This map is well defined by def-
inition of S and has support U ∪ {0}. We now define fϕ to be the Fourier
inverse of gϕ. To be precise, we define

fϕ : G → C x 
→
∑
γ∈ ̂G

gϕ(D
−1(γ))γ(−x).
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Because gϕ(D
−1(γ−1)) = gϕ(D−1(γ)) for all γ ∈ Ĝ, fϕ takes only real values.

Moreover, the image of fϕ is contained in [0, 1]. Indeed, for x ∈ G,

∣∣∣∣fϕ(x)− 1

2

∣∣∣∣ =
∣∣∣∣∣∣
∑
γ �=1

gϕ(D
−1(γ))γ(−x)

∣∣∣∣∣∣ ≤
r∑

i=1

|gϕ(si)|+ |gϕ(−si)| =
1

2
.

Furthermore, the average of fϕ is gϕ(0) =
1
2 and f̂ = gϕ ◦D−1. We now wish

to find ϕ such that the deviation for fϕ is negative.

Observe first that if a summand
∏d

i=1 f̂ϕ (D(L1iv)) is non-zero, it will

be
(

1
4r

)d
times a complex number on the unit circle. Let X ⊂ G \ {0} be

the set of v for which this is the case. Note that X is non-empty, as gϕ is
designed so that at least a ∈ X. Now, fix x ∈ X. We have L11x = ±L1ia for
some i ∈ [d]. Therefore, if mx = 0 for some m ∈ Z, we have mL1ia = 0. But
since L1i is coprime to the order of a, we get that ma = 0. Hence x is also
of maximal order in G and the order of every element in G divides that of
x.

Each factor f̂(L1ix) is non-zero, so that for each i ∈ [k] there are ji ∈ [r]

and σi ∈ {±1} such that L1ix = σi · sji . The summand
∏d

i=1 f̂ϕ (D(L1ix))
can therefore be written as

d∏
i=1

gϕ (L1ix) = (4r)−d e

(
ϕ

d∑
i=1

σi
1

(2d)ji

)
= (4r)−d e

⎛⎜⎜⎝ϕ

r∑
j=1

∑
i∈[d]
ji=j

σi
1

(2d)j

⎞⎟⎟⎠ .

We claim that there is an index j such that

|{i ∈ [d] : ji = j, σi = 1}| �= |{i ∈ [d] : ji = j, σi = −1}| ,

for otherwise we could partition [d] into pairs such that for every pair {i1, i2}
among them ji1 = ji2 and σi1 = −σi2 , implying that (L1i1 +L1i2)x = 0. But
because the order of every element in G divides the order of x, we would
have (L1i1 + L1i2)y = 0 for all y ∈ G, i.e., there would be a partition of [d]
into canceling pairs in G, which we have assumed not to be the case.

Choose the minimal index j with this property and denote it by j∗. We
have ∣∣∣∣∣∣∣∣

r∑
j=1

∑
i∈[d]
ji=j

σi
1

(2d)j

∣∣∣∣∣∣∣∣ ≥
∣∣∣∣∣∣∣∣
∑
i∈[d]
ji=j∗

σi
1

(2d)j∗

∣∣∣∣∣∣∣∣−
r∑

j=j∗+1

∑
i∈[d]
ji=j

1

(2d)j
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≥ 1

(2d)j∗
− 1

2j∗+1dj∗
,

which is greater than 0. Let

cx :=

d∑
i=1

σi
1

(2d)ji
=

r∑
j=1

∑
i∈[d]
ji=j

σi
1

(2d)j
.

Since for each j ∈ [d] the summand on the right-hand side is an integer

multiple of (2d)−r, cx will be a multiple of (2d)−r also. Because cx �= 0,

cx must have modulus at least (2d)−r. On the other hand, the triangle

inequality gives |cx| ≤ 1
2 .

Consider now the function ψ that maps a phase ϕ to (4r)d times the

deviation of fϕ, i.e.,

ψ : [0, (2d)r] → C ϕ 
→ (4r)d
∑
x �=0

d∏
i=1

gϕ (L1ix) =
∑
x∈X

e (cxϕ) .

Note that |ψ| is bounded from above by |X|. If ϕ is sufficiently close to the

boundaries of the interval [0, (2d)r], ψ(ϕ) will have positive real part. To be

precise, if ϕ ≤ 1
4 or ϕ ≥ (2d)r − 1

4 , then

Re (ψ(ϕ)) =
∑
x∈X

cos(2πcxϕ) ≥
|X|√
2
.

On the other hand, the average of ψ is 0 in the sense that

∫ (2d)r

0
ψ(ϕ) dϕ =

1

2πi

∑
x∈X

1

cx
[e(cxϕ)]

(2d)r

0 = 0.

Now let

A =

{
ϕ ∈ [0, (2d)r] : Re(ψ(ϕ)) ≤ − |X|

2
√
2(2d)r

}
,

B =

{
ϕ ∈ [0, (2d)r] : − |X|

2
√
2(2d)r

< Re(ψ(ϕ)) ≤ 0

}
.
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Denoting by λ the Lebesgue measure on [0, (2d)r] we obtain

Re

(∫ (2d)r

0
ψ(ϕ) dϕ

)
≥ 1

2
· |X|√

2
− λ(A) · |X| − λ(B) · |X|

2
√
2(2d)r

> |X|
(

1

2
√
2
− λ(A)− (2d)r

2
√
2(2d)r

)
= −λ(A) · |X|.

Because we had already established that the integral on the left-hand side is

0, A must have positive measure, meaning that A is not empty. But by the

definitions of ψ and A, fϕ has negative deviation for any ϕ ∈ A, completing

the proof.

Note that the proof in fact yields an explicit upper bound on the minimal

deviation in (2.3) over all f : G → [0, 1] with E(f) = 1/2. Namely, using

that r ≤ d, we have for at least one value of ϕ

∑
x �=0

d∏
i=1

f̂ϕ (D(L1ix)) ≤ − 1

(4r)d
· 1

2
√
2(2d)r

≤ − 1

23d+1
√
2d2d

.(2.6)

3. Deriving Corollary 1.5 from Theorem 1.4

There are different ways to deduce Corollary 1.5 from Theorem 1.4, but all

of them will require that the set

C#(L) = {v ∈ C(L) ⊂ Gd : ∃i, j ∈ [d] : i �= j ∧ vi = vj}

of non-injective instances is not too large. The following lemma, which is

inspired by Lemma 2.1 in [3], makes the dependence on the size of C#(L)

very explicit.

Lemma 3.1 (Conversion of maps to sets). Let G be an Abelian group,

L ∈ Zk×d a system of equations and f : G → [0, 1].

(i) There exists a set A ⊂ G with |A| ≥ E(f) · |G| − 1 and

tL(A) ≤ tL(f) +
|C#(L) ∩Ad|

|C(L)| .
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(ii) There exists a set A ⊂ G with

tL(A) + tL(A
C) ≤ tL(f) + tL(1− f) +

|C#(L) ∩Ad|+ |C#(L) ∩ (AC)d|
|C(L)| .

Proof. We prove only (i) since (ii) can be shown by an argument that is
almost identical. Let Cinj = C(L) \ C#(L). The map

ψ : Map(G, [0, 1]) → R g 
→
∑
v∈Cinj

k∏
i=1

g(vi)

attains its minimum on the compact and non-empty set {g ∈ [0, 1]G : E(g) =

E(f)}. Of all the maps g achieving this minimum, we denote by g0 one for
which also the set R = {x ∈ G : g(x) /∈ {0, 1}} is smallest. We show that
R can contain at most one element. Assume to the contrary that there are
two different elements a, b ∈ R. For η ∈ R, consider

gη : G → R x 
→

⎧⎪⎨⎪⎩
g0(a) + η if x = a,

g0(b)− η if x = b,

g0(x) otherwise.

Clearly, E(gη) = E(f) and because a, b ∈ R we have im (gη) ⊂ [0, 1] for small
enough η. It is easy to see that η 
→ ψ(gη) is a quadratic polynomial with
constant term ψ(g0) and a non-positive quadratic coefficient. By minimality
of ψ(g0), this function must then be constant. But then we may choose η so
that at least one of a and b takes a value in {0, 1} under gη. This contradicts
the minimality of the set R.

Now let A = g−1
0 (1). Then 1A(x) = g0(x) for x /∈ R and because |R| ≤ 1,

we have that |A| > E(f) · |G| − 1. On the other hand, the monotonicity of ψ
gives ψ(1A) ≤ ψ(g0), and ψ(g0) in turn is less than ψ(f) by the minimality
of g0 under ψ among the functions with average E(f). All in all, we get

tL(A) =
1

|C(L)|

⎛⎝ψ(1A) +
∑

v∈C#(L)

k∏
i=1

1A(vi)

⎞⎠ ≤ tL(f) +
|C# ∩Ad|
|C(L)| .

Unfortunately, there exist configurations in which all instances are non-
injective. Having said that, the following lemma provides a useful bound on
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the size of C#(L) for all matrices L consisting of a single row under a rather
weak assumption about the coefficients of the equation.

Lemma 3.2. Let G be any finite Abelian group, d ≥ 3 and L ∈ Z1×d. If at
least three coefficients of L are coprime to |G|, then

|C#(L)| ≤
(
d

2

)
|C(L)|
|G| .

Proof. The matrix L describes a surjective linear map. Indeed, if L1i is
coprime to |G| for some i ∈ [d], then fixing all but the ith coordinate of v 
→
Lv defines an automorphism of G. This means |C(L)| = |kerL| = |G|d−1.
It is now enough to show that for any pair {i, j} ∈ [d](2) the number of
solutions where vi = vj can be bounded by |G|d−2. Indeed, for each such

pair there is, by assumption, a third index m such that L1m is coprime to
|G|. Then, if we choose all coordinates except vj and vm freely from G and
set vj = vi, there is exactly one vm ∈ G such that Lv = 0.

Since in Theorem 1.4 we assume that all coefficients are coprime to the

order of the group, we may apply Lemma 3.2 to deduce Corollary 1.5. We
recall its statement here.

Corollary 1.5. For all d ∈ N, there exists a constant C such that the

following is true. Let G be a group with |G| > C, and let L ∈ Z1×d be such
that all coefficients in L are coprime to the order of G. If d is odd, then L
is not Sidorenko in G. If d is even but L has no canceling partition in G,

then L is not common in G.

Proof. We denote by Δ the modulus of the deviation achieved in (2.6), i.e.,

Δ =
1

23d+1
√
2d2d

.

Choose C = d2/Δ and let G and L be as in the statement of Corollary 1.5.
The proof of Theorem 1.4 yields a function f with E(f) = 1/2, tL(f) ≤
1/2d −Δ and tL(1 − f) ≤ 1/2d −Δ. Now apply Lemma 3.1 to obtain sets
A1, A2 such that

|A1| ≥ E(f)|G| − 1

tL(A1) ≤ tL(f) +
|C#(L)|
|C(L)|
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tL(A2) + tL(A
C
2 ) ≤ tL(f) + tL(1− f) +

2|C#(L)|
|C(L)| .

Recall Lemma 3.2, which stated that matrices L ∈ Z1×d with at least 3
coefficients that are coprime to |G| satisfy

|C#(L)| ≤
(
d

2

)
|C(L)|
|G| .

Since a matrix without a canceling partition must have at least three coef-
ficients and the coefficients are coprime to |G| by assumption, the lemma
applies. We have

tL(A2) + tL(A
C
2 ) ≤

(
1

2

)d−1

− 2Δ +
d2

C
≤

(
1

2

)d−1

−Δ,

showing that L is not common. In order to show that for odd d, L is not
Sidorenko in G, we need to deal with the fact that |A1|/|G| could be slightly
less than 1/2. We apply the mean value theorem to the monomial xd to
obtain the lower bound(

|A1|
|G|

)d

≥
(
1

2
− 1

|G|

)d

≥
(
1

2

)d

− d

|G| ≥
(
1

2

)d

− d

C
,

whence

tL(A1) ≤
(
1

2

)d

−Δ+
d2

2C
≤

(
|A1|
|G|

)d

−Δ+
d2 + 2d

2C
.

Since the latter is strictly less than (|A1| / |G|)d, we have shown that L is
not Sidorenko.

4. Concluding remarks

We conclude the article with a brief comparison between our proof and that
given in [2] for the special case G = Fn

p , which can easily be reduced to
the case G = Fp. There, the witness function f is also constructed via an
inverse Fourier transform. But instead of taking just a few Fourier coeffi-
cients to be non-zero, the authors sample for n = 1 every f̂(γ) identically
and (essentially) independently for γ �= 1 and precompose with a projection
to the first coordinate for larger n. To ensure that the resulting function f
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takes values in [0, 1], the values f̂(γ) have to be scaled appropriately; just
as we had to scale by (4r)−1. The key difference is that their scaling factor
depends on p, which leads to a much smaller deviation for large p. Although
we still arrive at a valid proof of Theorem 1.4, there are two problems with
a deviation that approaches zero as the order of the group grows.

Firstly, the conversion of f into a set we require to deduce Corollary 1.5
involves an error term that might move us back above the threshold E(f)d

if the deviation is too small. If the deviation does not decrease too quickly,
a careful conversion might still be possible, but the bound from the proof in
[2] in combination with Lemma 3.1 would be insufficient.

Secondly, and perhaps more importantly, a vanishing deviation would
not be in the spirit of Conjecture 1.2. We have mentioned earlier that our
definition of commonness differs slightly from that of Saad and Wolf [4]. By
their definition, an equation L ∈ Z1×d is common in Zp if

lim inf
p→∞

min
A⊂Zp

tL(A) + tL(A
C) ≥

(
1

2

)d−1

.

It is therefore a slightly weaker property to be common in Zp in the sense
of [4] than to be common in Zp for all sufficiently large p in our sense.
Conversely, it is a stronger property to be uncommon in the sense of Saad
and Wolf. By giving a lower bound on the deviation independent of p when
d is even and L has no canceling partition, we have proved this stronger
property.
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