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Semi-transitivity of directed split graphs generated
by morphisms

Kittitat Iamthong and Sergey Kitaev

A directed graph is semi-transitive if and only if it is acyclic and
for any directed path u1 → u2 → · · · → ut, t ≥ 2, either there is
no edge from u1 to ut or all edges ui → uj exist for 1 ≤ i < j ≤ t.

In this paper, we study semi-transitivity of families of directed
split graphs obtained by iterations of morphisms applied to the
adjacency matrices and giving in the limit infinite directed split
graphs. A split graph is a graph in which the vertices can be par-
titioned into a clique and an independent set. We fully classify
semi-transitive infinite directed split graphs when a morphism in
question can involve any n × m matrices over {−1, 0, 1} with a
single natural condition.
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1. Introduction

The notion of a semi-transitive orientation of a graph was introduced by
Halldórsson et al. in [4] (also see [5]) as means to completely characterize so-
called word-representable graphs [7, 8]: A graph is word-representable if and
only if it admits a semi-transitive orientation. Word-representable graphs,
and thus semi-transitive graphs (i.e. semi-transitively orientable graphs),
generalize several important classes of graphs, e.g. circle graphs, 3-colorable
graphs and comparability graphs. Semi-transitive orientations are also in-
teresting in their own right as a generalization of transitive orientations.

Split graphs [3] are graphs in which the vertices can be partitioned into
a clique and an independent set. The study of split graphs attracted much
attention in the literature (e.g. see [2] and references therein). Related to
our context, the study of semi-transitive orientability of split graphs was
initiated in [1, 9], where certain subclasses of semi-transitive split graphs
were characterized in terms of forbidden subgraphs. Also, split graphs were
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instrumental in [1] to solve a 10 year old open problem in the theory of

word-representable graphs.

In a recent work [6], the first author of this paper extended the studies in

[1, 9] by characterizing semi-transitive split graphs in terms of permutations

of columns of the adjacency matrices. Moreover, [6] studies semi-transitivity

of split graphs obtained by iterations of morphisms applied to the adjacency

matrices, and thus giving yet another link to combinatorics on words [10]

(the original link comes from the definition of a word-representable graph). A

number of general theorems and a complete classification of semi-transitive

orientability in the case of morphisms defined by 2× 2 matrices are given in

[6].

In this paper, we study families of directed split graphs obtained by

iterations of morphisms (involving three matrices A,B,C) applied to the

adjacency matrices and giving as the limit infinite directed split graphs. For

each of such a family we ask the question on whether all graphs in the family

are oriented semi-transitively (i.e. are semi-transitive) or a finite iteration k

of the morphism produces a non-semi-transitive orientation (which will stay

non-semi-transitive for all iterations > k). In the former case, we say that the

infinite split graph’s index of semi-transitivity is∞ (denoted IST(A,B,C) =

∞; see Definition 20), and in the latter case it is k (assuming k is minimal

possible).

The novelty of our paper is in the study of directed graphs in connec-

tion to semi-transitive orientations (as opposed to undirected graphs in the

long list of relevant research papers cited in [7, 8]), and in that we offer a

way to generate interesting (from semi-transitivity point of view) families

of directed split graphs using adjacency matrices and iterations of mor-

phisms. Our research will contribute to improving further known algorithms

to recognise semi-transitive orientations (on directed split graphs and be-

yond). It comes somewhat as a surprise that we were able to completely

classify infinite directed split graphs with the index of semi-transitivity ∞,

where morphisms in question involve almost arbitrary n×m matrices over

{−1, 0, 1} as opposed to, say, 2 × 2 matrices in [6] (in a different context

though); the only natural condition, to ensure that our definitions work,

is that A has a 0. Our classification is done via several results depending

on the structures of matrices A,B,C in question, and it is summarised in

the diagram in Figure 1. Following the diagram, one can easily determine

whether IST(A,B,C) = ∞ for any given A,B,C.
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Figure 1: A guide to the classification results where A is assumed to have
a 0 (a natural condition to ensure that our definitions work). For example,
if none of A,B,C is a layered matrix then Theorem 25 is to be applied; see
Definition 14 for the notion of a layered matrix.

2. Preliminaries

2.1. Semi-transitive orientations and split graphs

Graphs in this paper have no loops or multiple edges. Any split graph Sn on
n vertices can be partitioned into a maximal clique Km and an independent
set En−m, and we write Sn = (En−m,Km).

A directed graph is oriented semi-transitively if and only if it is acyclic
and for any directed path u1 → u2 → · · · → ut, t ≥ 2, either there is no edge
from u1 to ut or all edges ui → uj exist for 1 ≤ i < j ≤ t. Graphs admitting
semi-transitive orientations are semi-transitive.

In this paper, we will need the following results on semi-transitive orien-
tations and split graphs, where a source (resp., sink) is a vertex of in-degree
(resp., out-degree) 0.

Lemma 1 ([9]). Let Km be a clique in a graph G. Then any acyclic orien-
tation of G induces a transitive orientation on Km (where the presence of
edges u → v and v → z implies the presence of the edge u → z). In particu-
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type A type B

source

sink

type C

Figure 2: Three types of vertices in En−m in a semi-transitive orientation of
(En−m,Km). The vertical oriented paths are a schematic way to show (parts
of) �P .

lar, any semi-transitive orientation of G induces a transitive orientation on
Km. In either case, the orientation induced on Km contains a single source
and a single sink.

Theorem 2 ([9]). Any semi-transitive orientation of a split graph Sn =
(En−m,Km) subdivides the set of all vertices in En−m into three, possi-
bly empty, groups corresponding to each of the following types (also shown
schematically in Figure 2), where �P = p1 → · · · → pm is the longest directed
path in Km:

• A vertex in En−m is of type A if it is a source and is connected to all
vertices in {pi, pi+1, . . . , pj} for some 1 ≤ i ≤ j ≤ m;

• A vertex in En−m is of type B if it is a sink and is connected to all
vertices in {pi, pi+1, . . . , pj} for some 1 ≤ i ≤ j ≤ m;

• A vertex v ∈ En−m is of type C if there is an edge x → v for each
x ∈ Iv = {p1, p2, . . . , pi} and there is an edge v → y for each y ∈ Ov =
{pj , pj+1, . . . , pm} for some 1 ≤ i < j ≤ m.

Theorem 3 ([9]). Let Sn = (En−m,Km) be oriented semi-transitively with
�P = p1 → · · · → pm. For a vertex x ∈ En−m of type C, there is no vertex
y ∈ En−m of type A or B, which is connected to both p|Ix| and pm−|Ox|+1.
Also, there is no vertex y ∈ En−m of type C such that either Iy, or Oy

contains both p|Ix| and pm−|Ox|+1.

Theorem 4 ([9]). An orientation of a split graph Sn = (En−m,Km) is
semi-transitive if and only if

(i) Km is oriented transitively;
(ii) each vertex in En−m is of one of the three types in Theorem 2;
(iii) the restrictions in Theorem 3 are satisfied.



Semi-transitivity of directed split graphs generated by morphisms 115

2.2. Directed split graphs

A directed graph is semi-transitive if its orientation is semi-transitive. The
adjacency matrix A = [aij ] of a directed graph on n vertices is a binary
matrix such that aij = 1 if j → i is an edge, and aij = 0 otherwise. Let
L(A) = [�ij ] be the n× n lower triangular matrix such that, for any i > j,

�ij =

⎧⎪⎨
⎪⎩
1 if aij = 1,

−1 if aji = 1,

0 otherwise

and �ij = 0 for any i ≤ j.
Clearly, there is a one-to-one correspondence between directed graphs of

order n and n×n lower triangular matrices over {−1, 0, 1} with the diagonal
elements equal 0. Thus, L(A) can play the role of the adjacency matrix of a
directed graph. For i > j, the connectivity between vertices i and j is j → i
if �ij = 1, and is i → j if �ij = −1, and there is no edge if �ij = 0.

Example 5. If A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 1 0
1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 1
0 0 0 0 0 0
1 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

is an adjacency matrix of a

directed graph G, then L(A) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
1 0 0 0 0 0
−1 0 0 0 0 0
0 1 −1 0 0 0
−1 0 0 0 0 0
1 0 0 −1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

and the set of

edges of G (on 6 vertices) is {1 → 2, 2 → 4, 1 → 6, 5 → 6, 3 → 1, 5 → 1,
4 → 3, 6 → 4}.

Our interest is in acyclically (without directed cycles) oriented split
graphs since only such graphs have a chance to be semi-transitive. For any
acyclically oriented split graph G, by Lemma 1, we know that the induced
orientation of the maximal clique in G is transitive, so the following notion
can be introduced.

Definition 6. An acyclically oriented split graph G with a maximal clique
of order n is well-labelled if the vertex set of G is V (G) = {1, 2, . . . , |V (G)|}
and the longest directed path in the maximal clique is 1 → 2 → · · · → n.
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Note that the adjacency matrix A of a well-labelled split graph S =

(Em,Kn) (where Kn is maximal) of order m+ n satisfies

L(A) =

[
Ln On,m

M Om

]

for some m × n matrix M with each row having a 0, where On,m and Om

are n×m and m×m zero matrices, respectively, and Ln is the n×n matrix

such that all entries strictly below the main diagonal are 1’s, and all other

entries are 0’s. Hence, every directed split graph with a maximal clique of

order n and an independent set of order m can be represented by an m× n

matrix M appearing in L(A) and recording directed edges between Kn and

Em. Thus, generating a matrix M with entries in {−1, 0, 1}, we generate an
acyclically oriented split graph. Note that in the ways we will be generating

M in this paper, sometimes we will obtain rows with no 0. In that case,

we will apply Lemma 10 or Remark 11 to bring the problem to the case of

well-labelled split graphs.

Definition 7. Let M = [mij ] be an m×n matrix such that mij ∈ {−1, 0, 1}
for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Define

So(M) =

[
Ln On,m

M Om

]

where the subscript o stands for “oriented” and S stands for “split”. We

denote the directed split graph corresponding to So(M) by Go(M).

Example 8. If M =

⎡
⎣ 0 1 0 1

−1 0 −1 −1
0 0 0 1

⎤
⎦ then

So(M) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 0 0 0 0
0 1 0 1 0 0 0
−1 0 −1 −1 0 0 0
0 0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

is the adjacency matrix of the directed graph G0(M) shown in Figure 3.
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Figure 3: The directed split graph Go(M) given by So(M) in Example 8.

For convenience, we will represent rows of an m×n matrix M by strings

of length n. For example, we will represent the three rows of
[
1 −1 0 1
0 1 −1 0
0 0 0 1

]
by 1(−1)01, 01(−1)0 and 0001.

Note that in Definition 7, the maximal clique of Go(M) is of order n+1
if there is a row of the form 11 · · · 1 or (−1)(−1) · · · (−1) in M , and the
maximal clique is of order n otherwise. In the former case, Go(M) may not
be well-labelled. In the case of n = 1, the graph Go(M) is a tree which is
always semi-transitive. Thus, throughout this paper, we can assume that
n ≥ 2.

Remark 9. If M is a zero matrix, then Go(M) is semi-transitive as it is a
disjoint union of a transitively oriented clique and isolated vertices.

In what follows, xr denotes xx · · ·x, where x ∈ {−1, 0, 1} is repeated r
times.

Lemma 10. Let M := [mij ]m×n be an m × n matrix over {−1, 0, 1} such
that mp1 = mp2 = · · · = mpr = 1 and mp(r+1) = mp(r+2) = · · · = mpn = −1
for some p ∈ {1, 2, . . . ,m} and r ∈ {0, 1, . . . , n}. If

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m11 m12 · · · m1r 0 m1(r+1) · · · m1n

m21 m22 · · · m2r 0 m2(r+1) · · · m2n
...

...
...

...
...

...
m(p−1)1 m(p−1)2 · · · m(p−1)r 0 m(p−1)(r+1) · · · m(p−1)n

m(p+1)1 m(p+1)2 · · · m(p+1)r 0 m(p+1)(r+1) · · · m(p+1)n
...

...
...

...
...

...
mm1 mm2 · · · mmr 0 mm(r+1) · · · mmn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is an (m− 1)× (n+ 1) matrix, then Go(M) is isomorphic to Go(N).

Proof. The p-th row in M , which is 1r(−1)n−r, represents the vertex n+ p
in the independent set connected to all vertices in Kn = {1, 2, . . . , n}. So Kn
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is not the maximal clique in Go(M), but Kn∪{n+p} is the maximal clique.
Note that � → n+ p for every vertex � ∈ {1, 2, . . . , r} and n+ p → � for all
vertex � ∈ {r + 1, r + 2, . . . , n}. We relabel the vertex n+ p to be r + 1 and
relabel a vertex � to be �+ 1 for each � ∈ {r + 1, r + 2, . . . , n+ p− 1}. The
relabelling gives the graph that can be represented by the matrix So(N).
Hence, Go(M) is isomorphic to Go(N).

Remark 11. Let M be an m × n matrix over {−1, 0, 1}. If a1a2 · · · an is
the p-th row in M such that aq = −1 and ar = 1 for some 1 ≤ q < r ≤ n,
then q → r → n + p → q forms a cycle in Go(M). Hence, Go(M) is not
semi-transitive if there is a 1 occurring to the right of a −1 in a row in M .
Consequently, if there is a row in M such that it has no 0 and it is not of
the form 11 · · · 1(−1)(−1) · · · (−1), then Go(M) is not semi-transitive.

Let M be an m×n matrix over {−1, 0, 1}. We can see that the maximal
clique of Go(M) is of order n or n + 1. Moreover, the maximal clique of
Go(M) is the clique of order n+1 if there is a row in M containing no 0. In
this case, the matrix M does not represent only edges between vertices in
the maximal clique and vertices in the independent set, but also a vertex in
the maximal clique. By Remark 11, we can assume that M does not contain
a row which has no 0 and is not of the form 1r(−1)n−r for some 0 ≤ r ≤ n.
Hence, if a row of M has no 0, it must be 1r(−1)n−r for some 1 ≤ r ≤ n for
graph Go(M) to have a chance to be semi-transitive. Further, if 1r(−1)n−r

is a row of M for some 0 ≤ r ≤ n, by Lemma 10, we can consider the
(m − 1) × (n + 1) matrix N in the statement of the lemma instead of M ,
and every row of N has a 0.

Theorem 12. Let M be an m × n matrix over {−1, 0, 1}. The directed
split graph Go(M) is semi-transitive if and only if M satisfies the following
conditions:

(i) every row of M is of the form 0r1s0t or 0r(−1)s0t or 1r0s(−1)t for
r, s, t ≥ 0;

(ii) for each row of M of the form 1a0b(−1)c where a, b, c > 0, there is no
other row having 1’s in all positions from a to a+ b+ 1;

(iii) for each row of M of the form 1a0b(−1)c where a, b, c > 0, there is no
other row having (−1)’s in all positions from a to a+ b+ 1.

Proof. “⇐” Firstly, suppose that every row of M has a 0. Note that the
vertices in the independent set will then be of types A, B and C, and taking
into account conditions (ii) and (iii), Theorem 4 can be applied to see that
Go(M) is semi-transitive.
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For the remaining case, suppose that there is a row p of M of the form
1r(−1)n−r where 1 ≤ p ≤ m and 0 ≤ r ≤ n. Then, {1, 2, . . . , n, n+ p} is the
maximal clique in the directed graph Go(M). By Lemma 10, we have that
Go(M) is isomorphic to Go(N), where N is the matrix obtained from M by
deleting row p and adding a zero-column between columns r and r + 1 (in
the cases of r = 0 and r = n, the zero-column will be the first column and
the last column, respectively). Note that N still satisfies conditions (i), (ii)
and (iii) and every row of N has a 0, so the first case can be applied to see
that Go(N) and Go(M) are semi-transitive.

“⇒” Firstly, suppose that every row of M has a 0. One can see that Go(M)
is well-labelled, so the clique is oriented transitively and its longest path is
1 → 2 → · · · → n. Moreover, conditions (ii) and (iii) in Theorem 4 give
conditions (i), (ii) and (iii) in this theorem.

For the remaining case, suppose that there is a row p of M of the form
1r(−1)n−r, where 1 ≤ p ≤ m and 0 ≤ r ≤ n. Then, {1, 2, . . . , n, n+p} is the
maximal clique in the directed graph Go(M). By Lemma 10, we have that
Go(M) is isomorphic to Go(N), where N is the matrix obtained from M
by deleting row p and adding a zero-column between columns r and r + 1
(in the cases of r = 0 and r = n, the zero-column will be the first column
and the last column, respectively). Since Go(M) is word-representable, then
Go(N) is also word-representable. So N satisfies conditions (i), (ii) and (iii)
in this theorem as every row of N has a 0. Therefore, every row of M , except
for row p, satisfies (i), (ii) and (iii). For row p of M , if there is row q having
1’s in r and r + 1 position, then the row in N obtained from adding a 0
to row q of M does not satisfy the condition (i), which is a contradiction.
Similarly, the occurrence of row q having (−1)’s in columns r and r + 1
implies a contradiction. Hence, M satisfies conditions (i), (ii) and (iii).

In this paper, Theorem 12 plays an important role to determine if Go(M)
is word-representable for a given matrix M . The next result is a straightfor-
ward corollary of Theorem 12.

Corollary 13. Let M be an m × n matrix over {−1, 0, 1}. If every row of
M is of the form 0r1s0t or 0r(−1)s0t for r, s, t ≥ 0, then the graph Go(M)
is semi-transitive.

Definition 14. A matrix M is said to be a layered matrix if all entries in
the same row of M are identical.

The next result is a straightforward corollary of Corollary 13.

Corollary 15. Let M be an m×n matrix over {−1, 0, 1}. If M is a layered
matrix, then Go(M) is semi-transitive.
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3. Directed split graphs generated by iterations of
morphisms

Definition 16. Let A,B,C be m× n matrices over {−1, 0, 1}. The matrix
Mk(A,B,C) is the kth-iteration of the 2-dimensional morphism applied to
the 1× 1 matrix [0] which maps [0] → A, [1] → B and [−1] → C. Moreover,
we write Sk

o (A,B,C) for the matrix So(M
k(A,B,C)) and Gk

o(A,B,C) for
the graph with the adjacency matrix Sk

o (A,B,C).

Example 17. Let A =

[
0 1
0 −1

]
, B =

[
−1 −1
1 0

]
and C =

[
1 1
−1 −1

]
. Then

we have M0(A,B,C) =
[
0
]
, M1(A,B,C) =

[
0 1
0 −1

]
and

M2(A,B,C) =

⎡
⎢⎢⎣
0 1 −1 −1
0 −1 1 0
0 1 1 1
0 −1 −1 −1

⎤
⎥⎥⎦. Hence, S2

o(A,B,C) is the matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0
0 1 −1 −1 0 0 0 0
0 −1 1 0 0 0 0 0
0 1 1 1 0 0 0 0
0 −1 −1 −1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and G2
o(A,B,C) is shown in Figure 4.

Remark 18. If A is a zero matrix, then Mk(A,B,C) is always a zero
matrix for any m × n matrices B and C and k ≥ 0. Thus, by Remark 9,
Gk

o(A,B,C) is semi-transitive in this case.

Proposition 19. If A,B and C are layered matrices over {−1, 0, 1}, then
Gk

o(A,B,C) is semi-transitive for any k ≥ 0.

Proof. Let A, B and C be m × n matrices. Since every row in A,B and C
is either 0n or 1n or (−1)n, we have that every row in Mk(A,B,C) is either
0n

k

or 1n
k

or (−1)n
k

, so by Corollary 15, Gk
o(A,B,C) is semi-transitive.

If A = [aij ]m×n contains at least one 0, say aij = 0, then the entry in
row i and column j of M1(A,B,C) is 0. By mapping this 0 to A in the next
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Figure 4: The directed split graph G2
o(A,B,C) corresponding to the adja-

cency matrix S2
o(A,B,C) in Example 17.

iteration of morphism, we obtain A = M1(A,B,C) as them×n submatrix of
M2(A,B,C) given by intersection of rows (i−1)n+1, (i−1)n+2, . . . , in and
columns (j−1)m+1, (j−1)m+2, . . . , jm. More generally, the mk−1×nk−1

submatrix of Mk(A,B,C) given by intersection of rows (i− 1)nk−1+1, (i−
1)nk−1+2, . . . , ink−1 and columns (j−1)mk−1+1, (j−1)mk−1+2, . . . , jmk−1

is Mk−1(A,B,C). So, we can consider the bottommost, then leftmost zero in
A as the start of a chain of induced subgraphs generated by the morphism.
Thus, the limit limk→∞Mk(A,B,C), called a fixed point of the morphism,
is well-defined. So, we have that Gi

o(A,B,C) is an induced subgraph of
Gk

o(A,B,C) for i ≤ k, and the notion of the infinite split graph Go(A,B,C)
is well-defined in the case when A has a 0. Note that this is not a necessary
condition for Go(A,B,C) to be well-defined (for example, A,B,C could be
all one matrices). We are interested in the smallest integer � (possibly non-
existing) such that G�

o(A,B,C) is not semi-transitive for given A,B and C
(then Gi

o(A,B) is not semi-transitive for i ≥ �).

Definition 20. Let A,B,C be m × n matrices such that A has a 0 as an
entry. The index of semi-transitivity IST(A,B,C) of an infinite directed
split graph Go(A,B,C) is the smallest integer � such that G�

o(A,B,C) is
not semi-transitive. If such an � does not exist, that is, if G�

o(A,B,C) is
semi-transitive for all �, then � := ∞.

Note that since G0
o(A,B,C) is a graph with one vertex for any A,B,C,

we have IST(A,B,C) ≥ 1.

Remark 21. It follows from Proposition 19 that IST(A,B,C) = ∞ if A,B
and C are layered matrices.

The following three lemmas give sufficient conditions for A,B and C to
have IST(A,B,C) = ∞.
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Lemma 22. Let A,B and C be m×n matrices over {−1, 0, 1} such that A
has a 0 and IST(A,B,C) = ∞. Then,

• If A is not a layered matrix, then there is no row in Mk(A,B,C)
containing two 0’s for any k ≥ 0.

• If B is not a layered matrix, then there is no row in Mk(A,B,C)
containing two 1’s for any k ≥ 0.

• If C is not a layered matrix, then there is no row in Mk(A,B,C)
containing two (−1)’s for any k ≥ 0.

Proof. We will prove the first bullet point; the other bullet points can be
proved analogously.

Let A = [aij ] be an m × n matrix and air, ais be two entries in row i
of A such that air 
= ais where 1 ≤ r < s ≤ n. Denote μk(i, j) ∈ {−1, 0, 1}
the entry of Mk(A,B,C) in row i and column j. Suppose that row a of
Mk(A,B,C) contains at least two 0’s for some k, say μk(a, b) = μk(a, c) = 0
where b < c. Consider the intersection of rows (a − 1)m + 1, (a − 1)m +
2, . . . , am and columns (b− 1)n+ 1, (b− 1)n+ 2, . . . , bn in Mk+1(A,B,C),
which is the matrix A because μk(a, b) = 0. Similarly, the submatrix of
Mk+1(A,B,C) formed by rows (a − 1)m + 1, (a − 1)m + 2, . . . , am and
columns (c− 1)n+ 1, (c− 1)n+ 2, . . . , cn is A. Hence, we have

μk+1((a− 1)m+ i, (b− 1)n+ r) = μk+1((a− 1)m+ i, (c− 1)n+ r) = air

and

μk+1((a− 1)mi, (b− 1)n+ s) = μk+1((a− 1)m+ i, (c− 1)n+ s) = ais.

Thus, the submatrix of Mk+1(A,B,C) formed by row (a − 1)m + i and
columns (b−1)n+r, (b−1)n+s, (c−1)n+r, (c−1)n+s is

[
air, ais, air, ais

]
.

That is, row (a − 1)m + i of Mk+1(A,B,C) cannot be of the form 0r1s0t

or 0r(−1)s0t or 1r0s(−1)t. By Theorem 12, Gk+1
o (A,B,C) is not semi-

transitive, which is a contradiction with IST(A,B,C) = ∞.

Lemma 23. Let A,B and C be m×n matrices over {−1, 0, 1} such that A
has a 0 and IST(A,B,C) = ∞. Then,

• If A and B are not layered matrices, then every entry of C is (−1).
• If A and C are not layered matrices, then every entry of B is 1.

Proof. Both statements are proved by similar arguments, so we will prove
here only the first one. Suppose both A and B are not layered matrices. By
Lemma 22, every row of Mk(A,B,C) contains at most one 0 and at most
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one 1 for any k ≥ 2. Then, there are at least nk − 2 copies of (−1) in every
row of Mk(A,B,C). By Lemma 22, C is a layered matrix.

Suppose that there is no (−1) in A and B. Since every row of M1(A,B,
C) = A has at most one 0 and at most one 1 and no (−1), then n = 2 (recall
our assumption of n ≥ 2). Therefore, M2(A,B,C) has 4 columns with every
row having more than one 0 or more than one 1, which is a contradiction.

If (−1) is an entry of A, then M1(A,B,C) = A has (−1) as an entry.
So C is a submatrix of M2(A,B,C) as (−1) is mapped to C. Since every
row of C has the same entries, and there is no more than one 0 and one 1
in each row of M2(A,B,C), we have that each entry of C must be (−1).

Finally, if there is no (−1) in A, but B contains (−1) as an entry, then
M1(A,B,C) = A contains 1 as an entry. Since 1 maps to B, M2(A,B,C)
contains B as a submatrix. So there is an entry (−1) in M2(A,B,C), and
then C is a submatrix of M3(A,B,C). Since every row of C has entries
equal to each other, and there is no more than one 0 and one 1 in each row
of M2(A,B,C), then each entry of C is (−1).

Lemma 24. Let A,B and C be m×n matrices over {−1, 0, 1} such that A
has a 0 and IST(A,B,C) = ∞. If B and C are not layered matrices, then
all entries of A are 0.

Proof. Suppose B and C are not layered matrices. By Lemma 22, every
row of Mk(A,B,C) contains at most one 1 and at most one (−1) for any
k ≥ 2. Then there are at least nk − 2 zeroes in every row of Mk(A,B,C).
By Lemma 22, A is a layered matrix.

Assume that there is a row r in A := [aij ] = M1(A,B,C) of the form
11 · · · 1. Also, suppose that a row s in B := [bij ] has two distinct entries,
say bsp 
= bsq for some 1 ≤ p < q ≤ n. Note that the intersection of rows
(r−1)m+1, (r−1)m+2, . . . , rm and columns (�−1)n+1, (�−1)n+2, . . . , �n
in M2(A,B,C) is B for � = 1, 2, . . . ,m. Then the submatrix of M2(A,B,C)
formed by row (r − 1)m + s and columns p, q, n + p, n + q, 2n + p, 2n +
q, . . . , (m− 1)n+ p, (m− 1)n+ q is

[
bsp bsq bsp bsq · · · bsp bsq

]
.

Since every row of Mk(A,B,C) has at most one 1 and at most one (−1) for
any k, we have bsp = bsq = 0, which is a contradiction. Thus, there is no row
in A of the form 11 · · · 1. Similarly, we can show that there is no row in A
of the form (−1)(−1) · · · (−1). Hence, A is an all 0 matrix.

From Lemmas 23 and 24 we have the following theorem.
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Theorem 25. Let A,B and C be m× n matrices over {−1, 0, 1} such that
A has a 0. If A, B and C are not layered, then IST(A,B,C) is finite.

Definition 26. Let A,B,C be m × n matrices over {−1, 0, 1}. The triple
(A,B,C) is said to be independent from B if there are no 1’s in A and C.
Similarly, the triple (A,B,C) is said to be independent from C if there are
no (−1)’s in A and B.

For convenience, we write R(M) for the set of strings representing rows
of M . Moreover, if A,B and C are m×n matrices over {−1, 0, 1}, then define
Rk(A,B,C) to be the set of strings representing rows of Mk(A,B,C). So,
every element of Rk(A,B,C) is a string over {−1, 0, 1} of length nk. Each
element of Rk(A,B,C) is called a row pattern of Mk(A,B,C).

Theorem 27. Let A,B and C be m× n matrices over {−1, 0, 1} such that
A has a 0 and (A,B,C) is independent from C. Then, IST(A,B,C) = ∞ if
and only if A and B satisfy one of the following conditions, where ai ∈ {0, 1}:

(1) A and B are layered matrices, or

(2) A =

⎡
⎢⎢⎢⎣
a1 1 1 · · · 1
a2 1 1 · · · 1
...

...
...

...
am 1 1 · · · 1

⎤
⎥⎥⎥⎦ and B =

⎡
⎢⎢⎢⎣
1 1 · · · 1
1 1 · · · 1
...

...
...

1 1 · · · 1

⎤
⎥⎥⎥⎦, or

(3) A =

⎡
⎢⎢⎢⎣
1 1 · · · 1 a1
1 1 · · · 1 a2
...

...
...

...
1 1 · · · 1 am

⎤
⎥⎥⎥⎦ and B =

⎡
⎢⎢⎢⎣
1 1 · · · 1
1 1 · · · 1
...

...
...

1 1 · · · 1

⎤
⎥⎥⎥⎦.

Proof. “⇐” There is no (−1) in A and B, and row patterns of Mk(A,B,C)
generated by A,B and C in (1), (2) and (3) are in the set

{1nk

, 0n
k

, 01n
k−1, 1n

k−10}.

By Corollary 13, Mk(A,B,C) is semi-transitive for all k ≥ 0.

“⇒” Since (A,B,C) is independent from C, every entry of Mk(A,B,C) is
either 0 or 1. Assume IST(A,B,C) = ∞ and let R(B) = {b1, b2, . . . , bp}
where bi is a binary string of length n. By Theorem 12, we have that every
row of Mk(A,B,C) is of the form 0r1s0t. If A is a layered matrix, then
R1(A,B,C) ⊆ {0n, 1n} and

R2(A,B,C) ⊆ {0n2

, 1n
2

, (b1)
n, (b2)

n, . . . , (bp)
n}.
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So, R(B) ⊆ {0n, 1n} as otherwise, some strings in R2(A,B,C) are not of the
form 0r1s0t. Thus, B is a layered matrix. Suppose A is not a layered matrix.
By Lemma 22, R1(A,B,C) ⊆ {01n−1, 1n−10, 1n}. If both 01n−1 and 1n−10
are rows in A, then 1n−10(bi)

n−1 is a row pattern in R2(A,B,C) for some
i. Since every row of Mk(A,B,C) contains at most one 0, bi must be 1n,
which contradicts 1n−10(bi)

n−1 not being of the form 0r1s0t. So, we have

A =

⎡
⎢⎢⎢⎣
a1 1 1 · · · 1
a2 1 1 · · · 1
...

...
...

...
am 1 1 · · · 1

⎤
⎥⎥⎥⎦ or A =

⎡
⎢⎢⎢⎣
1 1 · · · 1 a1
1 1 · · · 1 a2
...

...
...

...
1 1 · · · 1 am

⎤
⎥⎥⎥⎦

where ai ∈ {0, 1}. Note that each row of A is 1n, 01n−1 or 1n−10. If row i in
A is 1n, then row ((i− 1)m+ i) in M2(A,B,C) is xn, where x is row i in B.
Since xn cannot contain more than one 0, we have x = 1n. If row i in A is
01n−1, then row ((i− 1)m+ i) in M2(A,B,C) is 01n−1xn−1, where x is row
i in B. So, x = 1n because 01n−1xn−1 contains at most one 0. Similarly, if
row i in A is 1n−10, then row i in B is 1n. Hence, B is an all 1 matrix.

Next theorem can be proved similarly to Theorem 27.

Theorem 28. Let A,B and C be m× n matrices over {−1, 0, 1} such that
A has a 0 and (A,B,C) is independent from B. Then, IST(A,B,C) = ∞ if
and only if A and C satisfy one of the following conditions, where ai ∈ {0, 1}:
(1) A and C are layered matrices, or

(2) A =

⎡
⎢⎢⎢⎣
a1 −1 −1 · · · −1
a2 −1 −1 · · · −1
...

...
...

...
am −1 −1 · · · −1

⎤
⎥⎥⎥⎦ and C =

⎡
⎢⎢⎢⎣
−1 −1 · · · −1
−1 −1 · · · −1
...

...
...

−1 −1 · · · −1

⎤
⎥⎥⎥⎦, or

(3) A =

⎡
⎢⎢⎢⎣
−1 −1 · · · −1 a1
−1 −1 · · · −1 a2
...

...
...

...
−1 −1 · · · −1 am

⎤
⎥⎥⎥⎦ and C =

⎡
⎢⎢⎢⎣
−1 −1 · · · −1
−1 −1 · · · −1
...

...
...

−1 −1 · · · −1

⎤
⎥⎥⎥⎦.

Theorem 29. Let A, B and C be m× n matrices over {−1, 0, 1} such that
A has a 0 and (A,B,C) is not independent from B and C. Suppose A is a
layered matrix. Then, IST(A,B,C) = ∞ if and only if B and C are layered
matrices.

Proof. Suppose IST(A,B,C) = ∞. Note that 1n or (−1)n is a row in A
because (A,B,C) is not independent from B and C. W.L.O.G., we suppose
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that 1n is a row in A = M1(A,B,C). By Lemma 22, we have B is a layered

matrix. If A also contains a row (−1)n, then C is a layered matrix with the

same reason. If A does not contain a row (−1)n, then (−1)n must be a row

of B because (A,B,C) is not independent from B and C. Since 1n is a row

of A, we have BB · · ·B are m consecutive rows in M2(A,B,C). As (−1)n

is a row in B, we have that (−1)n
2

is a row in M2(A,B,C). By Lemma 22,

C is a layered matrix.

For the converse direction, it is clear from Proposition 19 that if A, B

and C are layered matrices, then IST(A,B,C) = ∞.

Definition 30. Let A, B, C be m× n matrices over {−1, 0, 1}. The triple

(A,B,C) is said to be

• an all-but-leftmost-negative triple if R(A), R(B) ⊆ {0(−1)n−1,

1(−1)n−1} and C is an all (−1) matrix,

• an all-but-rightmost-negative triple if R(A), R(B) ⊆ {(−1)n−10,

(−1)n−11} and C is an all (−1) matrix,

• an all-but-leftmost-positive triple if R(A), R(B) ⊆ {01n−1, (−1)1n−1}
and C is an all 1 matrix,

• an all-but-rightmost-positive triple if R(A), R(B) ⊆ {1n−10, 1n−1(−1)}
and C is an all 1 matrix.

From Definition 30, we can easily see that

• If (A,B,C) is all-but-leftmost-negative, then

Rk(A,B,C) ⊆ {0(−1)n
k−1, 1(−1)n

k−1},
• If (A,B,C) is all-but-rightmost-negative, then

Rk(A,B,C) ⊆ {(−1)n
k−10, (−1)n

k−11},
• If (A,B,C) is all-but-leftmost-positive, then

Rk(A,B,C) ⊆ {01nk−1, (−1)1n
k−1},

• If (A,B,C) is all-but-rightmost-positive, then

Rk(A,B,C) ⊆ {1nk−10, 1n
k−1(−1)}.

With this observation, we can prove the following theorem.

Theorem 31. Let A, B, C be m× n matrices over {−1, 0, 1} such that A

has a 0 and (A,B,C) is not independent from B and C. Suppose A and B

are not layered matrices and C is a layered matrix. Then, IST(A,B,C) = ∞
if and only if (A,B,C) is an all-but-leftmost-negative triple.
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Proof. “⇐” Let (A,B,C) be all-but-leftmost-negative. Then, for any k ≥ 1,

Mk(A,B,C) =

⎡
⎢⎢⎢⎣

x1 −1 −1 · · · −1
x2 −1 −1 · · · −1
...

...
...

...
xmk −1 −1 · · · −1

⎤
⎥⎥⎥⎦

where xi ∈ {0, 1}. So Mk(A,B,C) satisfies both conditions in Theorem 12,

and hence IST(A,B,C) = ∞.

“⇒” Suppose IST(A,B,C) = ∞. From Lemma 23, we have that C is an

all (−1) matrix. By Lemma 22, every row of Mk(A,B,C) does not contain

more than one 0 and more than one 1. Note that every row of A must be

of the form 0r1s0t, 0r(−1)s0t or 1r0s(−1)t, where r, s, t ≥ 0. So, all possible

row patterns of A are in

{01, 10, 0(−1)n−1, (−1)n−10, (−1)n, 1(−1)n−1, 10(−1)n−2}.
Suppose that n = 2 and row i in A is 01. Then, the submatrix of

M2(A,B,C) formed by rows (i− 1)m+1, (i− 1)m+2, . . . , im and columns

1, 2, 3, 4 is AB. So, row (i− 1)m+ i in M2(A,B,C) is 01x, where x is row i

in B. Note that 01x must be of the form 0r1s0t, where r, s, t ≥ 0. Therefore,

x is 11 because M2(A,B,C) contains at most one 0. So, 01x contains more

than one 1, which contradicts Lemma 22. Hence, 01 cannot be a row in A.

Similarly, we obtain that 10 is also not a row in A. Hence, we have that 01

and 10 cannot be a row in A.

Suppose row i in A is 10(−1)n−2. Then there is m consecutive rows

in M2(A,B,C) built by BACC · · ·C. Note that row i in BACC · · ·C is

y10(−1)n−2zz · · · z, where y and z are rows i in B and C, respectively. Since

IST(A,B,C) = ∞, y10(−1)n−2zz · · · z must be of the form 1r0s(−1)t, where

r, s, t ≥ 0. Thus, y = 1n and z = (−1)n. This contradicts to the fact that

any row in M2(A,B,C) has at most one 1. Hence, 10(−1)n−2 cannot be a

row in A.

Now, all possible row patterns of A are in

{0(−1)n−1, (−1)n−10, (−1)n, 1(−1)n−1}.
If 1(−1)n−1 is not a row in A, then (A,B,C) is independent from B. Then

1(−1)n−1 must be a row in A. If (−1)n−10 or (−1)n is a row in A, then

condition (ii) of Theorem 12 is not satisfied. So, G1
o(A,B,C) is not semi-
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transitive. Therefore (−1)n−10 and (−1)n are not rows in A and we have

A =

⎡
⎢⎢⎢⎣
a1 −1 −1 · · · −1
a2 −1 −1 · · · −1
...

...
...

...
am −1 −1 · · · −1

⎤
⎥⎥⎥⎦ where ai ∈ {0, 1}.

Since both 0(−1)n−1 and 1(−1)n−1 are rows in A, there are m consecu-
tive rows of M2(A,B,C) built by ACC · · ·C and BCC · · ·C.
Then 1(−1)n

2−1 is a row in M2(A,B,C). Note that row i in BCC · · ·C
is bi1bi2 · · · bin(−1)n

2−n where bi1bi2 · · · bin is row i in B. Since M2(A,B,C)
is semi-transitive and bi1bi2 · · · bin(−1)n

2−n is a row in M2(A,B,C), we have
bi1bi2 · · · bin is 0r(−1)n−r or 10s(−1)n−s−1 for some 0 ≤ r ≤ n and 0 ≤ s ≤
n − 1. As M2(A,B,C) contains at most one 0, we obtain that bi1bi2 · · · bin
must be 1(−1)n−1 or 0(−1)n−1 or 10(−1)n−2 for any 1 ≤ i ≤ m. If 10(−1)n−2

is a row of B, then there are m consecutive rows in M3(A,B,C) such that
ABCC · · ·C is its prefix. So, x10(−1)n−2yy · · · y is a row in M3(A,B,C)
where x is a row in A and y is a row in C. That is, x = 1n, which is a
contradiction. So, 10(−1)n−2 cannot be a row in B. Hence,

B =

⎡
⎢⎢⎢⎣
b1 −1 −1 · · · −1
b2 −1 −1 · · · −1
...

...
...

...
bm −1 −1 · · · −1

⎤
⎥⎥⎥⎦ where bi ∈ {0, 1}.

Using similar arguments, we can prove the following theorem.

Theorem 32. Let A, B, C be m× n matrices over {−1, 0, 1} such that A
has a 0 and (A,B,C) is not independent from B and C. Suppose A and C
are not layered matrices and B is a layered matrix. Then, IST(A,B,C) = ∞
if and only if (A,B,C) is all-but-rightmost-positive.

By now, we already have a classification for triples (A,B,C) with the
index of semi-transitivity infinity except for the case when A is not a layered
matrix and B and C are layered matrices and (A,B,C) is not independent
from B and C. To solve the remaining cases, we begin with a definition of
a type of a triple (A,B,C).

Definition 33. Let A,B,C be m × n matrices over {−1, 0, 1}. A triple
(A,B,C) is left-0-invariant if A, B, C satisfy the following properties:

• every row in A is in {01n−1, 1n, 0(−1)n−1, (−1)n};
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• every row in B and C is in {1n, (−1)n};
• if 01n−1 appears as a row in A, then

– row i in A is 01n−1 implies row i in B is 1n;

– row i in A is 1n implies row i in B is 1n;

– row i in A is 0(−1)n−1 implies row i in B is (−1)n;

– row i in A is (−1)n implies row i in B is (−1)n;

• if 0(−1)n−1 appears as a row in A, then

– row i in A is 01n−1 implies row i in C is 1n;

– row i in A is 1n implies row i in C is 1n;

– row i in A is 0(−1)n−1 implies row i in C is (−1)n;

– row i in A is (−1)n implies row i in C is (−1)n.

Definition 34. Let A, B, C be m × n matrices over {−1, 0, 1}. A triple
(A,B,C) is right-0-invariant if A, B, C satisfy the following properties:

• every row in A is in {1n−10, 1n, (−1)n−10, (−1)n};
• every row of B and C is in {1n, (−1)n};
• if 1n−10 appears as a row in A, then

– row i in A is 1n−10 implies row i in B is 1n;

– row i in A is 1n implies row i in B is 1n;

– row i in A is (−1)n−10 implies row iin B is (−1)n;

– row i in A is (−1)n implies row i in B is (−1)n;

• if (−1)n−10 appears as a row in A, then

– row i in A is 1n−10 implies row i in C is 1n;

– row i in A is 1n implies row i in C is 1n;

– row i in A is (−1)n−10 implies row i in C is (−1)n;

– row i in A is (−1)n implies row i in C is (−1)n.

To classify the triples (A,B,C) with the index of semi-transitivity in-
finity, where A is not a layered matrix and B and C are layered matrices
and (A,B,C) is not independent from B, we need the following four lem-
mas.

Lemma 35. Let A, B, C be m×n matrices over {−1, 0, 1} such that A has
a 0 and (A,B,C) is not independent from B and C. Then,

(1) if both 01n−1 and 1n−10 are rows in A, then IST(A,B,C) is finite;
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(2) if both 0(−1)n−1 and (−1)n−10 are rows in A, then IST(A,B,C) is
finite;

(3) if both 01n−1 and (−1)n−10 are rows in A, then IST(A,B,C) is finite;
(4) if both 0(−1)n−1 and 1n−10 are rows in A, then IST(A,B,C) is finite;
(5) if both 1p0(−1)n−p−1 and 1q0(−1)n−q−1 are rows in A, where 0 ≤ p <

q ≤ n− 1, then IST(A,B,C) is finite.

Proof.

(1) Suppose that IST(A,B,C) = ∞ and row i and row j in A are 01n−1

and 1n−10, respectively. Note that Bn−1A gives m consecutive rows in
M2(A,B,C) obtained by applying the morphism to 1n−10. Row i in
Bn−1A is xn−101n−1, where x is row i in B. Since A is not a layered
matrix, by Lemma 22, there is no 0 in x. So xn−101n−1 cannot be of the
form 0r1s0t, 0r(−1)s0t or 1r0s(−1)t. This contradicts to Theorem 12.

(2) Suppose that IST(A,B,C) = ∞ and row i and row j in A are 0(−1)n−1

and (−1)n−10, respectively. Note that ACn−1 givesm consecutive rows
in M2(A,B,C) obtained by applying the morphism to 0(−1)n−1. Row
j in ACn−1 is (−1)n−10xn−1, where x is row j in B. Since A is not
a layered matrix, by Lemma 22, there is no 0 in x. So (−1)n−10xn−1

cannot be of the form 0r1s0t, 0r(−1)s0t or 1r0s(−1)t. This contradicts
to Theorem 12.

(3) Suppose that IST(A,B,C) = ∞ and row i and row j in A are 01n−1

and (−1)n−10, respectively. Note that ABn−1 gives m consecutive
rows in M2(A,B,C) obtained by applying the morphism to 01n−1.
Row j in ABn−1 is (−1)n−10xn−1, where x is row j in B. Note that
(−1)n−10xn−1 must be of the form 0r(−1)s0t, and so x = 0n. Thus,
(−1)n−10xn−1 = (−1)n−10(n

2−n−1) is a row in M2(A,B,C) having
more than one 0, which contradicts to Lemma 22.

(4) Suppose that IST(A,B,C) = ∞ and row i and row j in A are 0(−1)n−1

and 1n−10, respectively. Note that ACn−1 gives m consecutive rows in
M2(A,B,C) obtained by applying the morphism to 0(−1)n−1. Row j
in ACn−1 is 1n−10xn−1, where x is row j in C. Since A is not a layered
matrix, by Lemma 22, there is no 0 in x. Therefore, 1n−10xn−1 is of
the form 1r0s(−1)t. So x = (−1)n and 1n−10xn−1 = 1n−10(−1)n

2−n is
a row in M2(A,B,C). Note that Bn−1A gives m consecutive rows in
M2(A,B,C) obtained by application of the morphism to 1n−10. Row
j in Bn−1A is yn−11n−10, where y is row j in B. Since A is not a
layered matrix, by Lemma 22, there is no 0 in y. Therefore, yn−11n−10
is of the form 0r1s0t. So y = 1n and yn−11n−10 = 1n

2−10 is a row in
M2(A,B,C). Note that 1n−10(−1)n

2−n−1 and 1n
2−10 break the second
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condition of Theorem 12. Hence,G2
o(A,B,C) is not semi-transitive and

this leads to a contradiction.
(5) Suppose that IST(A,B,C) = ∞ and row i and row j in A are

1p0(−1)n−p−1 and 1q0(−1)n−q−1, respectively, where 0 ≤ p < q ≤
n−1. Note that BpACn−p−1 gives m consecutive rows in M2(A,B,C)
obtained by applying the morphism to 1p0(−1)n−p−1. Row i in
BpACn−p−1 is xp1p0(−1)n−p−1yn−p−1 where x is row i in B and y
is row i in C. Since A is not a layered matrix, by Lemma 22, there is
no more than one 0 in any row of M2(A,B,C). By Theorem 12, we
obtain xp1p0(−1)n−p−1yn−p−1 equals 1np+p0(−1)n

2−np−p−1. Note that
BqACn−q−1 gives m consecutive rows in M2(A,B,C) obtained by ap-
plication of the morphism to 1q0(−1)n−q−1, and xq1q0(−1)n−q−1yn−q−1

is its row i. Similarly to the above, we have xq1q0(−1)n−q−1yn−q−1 =
1nq+q0(−1)n

2−nq−q−1. That is, both 1np+p0(−1)n
2−np−p−1 and

1nq+q0(−1)n
2−nq−q−1 are rows of M2(A,B,C). If p = 0 and q = n−1,

then 0(−1)n−1 and 1n−10 are rows in A which is a contradiction by
(4). So, one of 1np+p0(−1)n

2−np−p−1 and 1nq+q0(−1)n
2−nq−q−1 is of

the form 1r0s(−1)t for some r, s, t > 0.
Note that G2

o(A,B,C) is not semi-transitive because the second con-
dition of Theorem 12 is not satisfied, and this is a contradiction.

Lemma 36. Let A, B, C be m×n matrices over {−1, 0, 1} such that A has
a 0 and (A,B,C) is not independent from B and C. Then,

(1) if 1p0(−1)n−p−1 and 01n−1 are rows in A, where 1 ≤ p ≤ n− 2, then
IST(A,B,C) is finite;

(2) if 1p0(−1)n−p−1 and 0(−1)n−1 are rows in A, where 1 ≤ p ≤ n − 2,
then IST(A,B,C) is finite;

(3) if 1p0(−1)n−p−1 and 1n−10 are rows in A, where 1 ≤ p ≤ n− 2, then
IST(A,B,C) is finite;

(4) if 1p0(−1)n−p−1 and (−1)n−10 are rows in A, where 1 ≤ p ≤ n − 2,
then IST(A,B,C) is finite.

Proof.

(1) Suppose that 1p0(−1)n−p−1 and 01n−1 are rows i and j in A, respec-
tively, and IST(A,B,C) = ∞. Note that BpACn−p−1 gives m con-
secutive rows in M2(A,B,C) obtained by applying the morphism to
1p0(−1)n−p−1 inM1(A,B,C). Row j in BpACn−p−1 is bp01n−1cn−p−1,
where b and c are row j in B and C, respectively. So bp01n−1cn−p−1

must be 0r1s0t for some r, s, t ≥ 0. Hence, b = 0n and c = 1n. As A is
not a layered matrix, every row in M2(A,B,C) contains at most one
0, which is a contradiction. Therefore, IST(A,B,C) < ∞.
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(2) This is given by (5) in Lemma 35.
(3) This is given by (5) in Lemma 35.
(4) Suppose that 1p0(−1)n−p−1 and (−1)n−10 are rows i and j in A,

respectively, and IST(A,B,C) = ∞. Note that BpACn−p−1 gives
m consecutive rows in M2(A,B,C) obtained by applying the mor-
phism to 1p0(−1)n−p−1 in M1(A,B,C). Row j in BpACn−p−1 is
bp(−1)n−10cn−p−1, where b and c are row j in B and C, respectively.
So, bp(−1)n−10cn−p−1 must be 0r(−1)s0t for some r, s, t ≥ 0. Hence,
b = (−1)n and c = 0n. As A is not a layered matrix, every row in
M2(A,B,C) contains at most one 0, which is a contradiction. There-
fore, IST(A,B,C) < ∞.

Lemma 37. Let A, B, C be m×n matrices over {−1, 0, 1} such that A has
a 0. Then,

(1) If (A,B,C) is left-0-invariant and 01n−1 /∈ R(A),
then 01n

k−1 /∈ Rk(A,B,C) for any k ≥ 0.
(2) If (A,B,C) is left-0-invariant and 0(−1)n−1 /∈ R(A),

then 0(−1)n
k−1 /∈ Rk(A,B,C) for any k > 0.

(3) If (A,B,C) is right-0-invariant and 1n−10 /∈ R(A),
then 1n

k−10 /∈ Rk(A,B,C) for any k > 0.
(4) If (A,B,C) is right-0-invariant and (−1)n−10 /∈ R(A),

then (−1)n
k−10 /∈ Rk(A,B,C) for any k > 0.

Proof. As all of the statements are proved in similar ways, we will only prove
(1). Assume (A,B,C) is left-0-invariant and 01n−1 /∈ R(A). For k = 1,
it is obvious that M1(A,B,C) = A and then 01n−1 /∈ R1(A,B,C). Sup-
pose k ≥ 2 and 01n

k−1 ∈ Rk(A,B,C). Let 0x1x2 · · ·xnk−1−1 be a row in
Mk−1(A,B,C) such that applying to it the morphism creates row 01n

k−1.
That is, 01n

k−1 is a row in the matrix AX1X2 · · ·Xnk−1−1, where Xi ∈
{A,B,C}, obtained from 0x1x2 · · ·xnk−1−1 by application of the morphism.
This is a contradiction because 01n−1 /∈ R(A). Hence, 01n

k−1 /∈ Rk(A,B,C).

Lemma 38. Let A, B, C be m × n matrices over {−1, 0, 1} such that
A has a 0. If (A,B,C) is left-0-invariant (resp., right-0-invariant), then
IST(A,B,C) = ∞.

Proof. Suppose that (A,B,C) is left-0-invariant. We will prove that for any
k > 0, Rk(A,B,C) ⊆ {01nk−1, 1n

k

, 0(−1)n
k−1, (−1)n

k} by induction on k.
From the definition of a left-0-invariant triple, we have that R1(A,B,C) =
R(A) ⊆ {01n−1, 1n, 0(−1)n−1, (−1)n}. Suppose Rk(A,B,C) ⊆ {01nk−1, 1n

k

,
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0(−1)n
k−1, (−1)n

k} for some k. If 01n−1 /∈ R(A), then 0(−1)n−1 ∈ R(A) and,
by Lemma 37, 01n

k−1 /∈ Rk(A,B,C). So, every row in Mk(A,B,C) is 1n
k

,
0(−1)n

k−1 or (−1)n
k

. As every row in Mk+1(A,B,C) is a row in an m×nk+1

matrix obtained by applying the morphism to a row inMk(A,B,C), we have
that

Rk+1(A,B,C) = R(Bnk

) ∪R(ACnk−1) ∪R(Cnk

).

We can see that R(Bnk

) and R(Cnk

) are subset of {1nk+1

, (−1)n
k+1}. Row

i in ACnk−1 is 1n
k+1

, (−1)n
k+1

and 0(−1)n
k+1−1 if row i in A is 1n, (−1)n and

0(−1)n, respectively. Hence,Rk+1(A,B,C) ⊆ {1nk+1

, 0(−1)n
k+1−1, (−1)n

k+1}
in the case of 01n−1 /∈ R(A). For the case of 0(−1)n−1 /∈ R(A), we can follow
similar arguments to see that Rk+1(A,B,C) ⊆ {01nk+1−1, 1n

k+1

, (−1)n
k+1}.

Assume both 01n−1 and 0(−1)n−1 are in R(A). So, every row inMk(A,B,C)
is 01n

k−1, 1n
k

, 0(−1)n
k−1 or (−1)n

k

and

Rk+1(A,B,C) = R(ABnk−1) ∪R(Bnk

) ∪R(ACnk−1) ∪R(Cnk

).

Note that R(Bnk

), R(Cnk

) ⊆ {1nk+1

, (−1)n
k+1}. Row i in ACnk−1 is 1n

k+1

,
(−1)n

k+1

, 01n
k+1−1 and 0(−1)n

k+1−1 if row i in A is 1n, (−1)n, 01n and
0(−1)n, respectively. Row i in ABnk−1 is 1n

k+1

, (−1)n
k+1

, 01n
k+1−1 and

0(−1)n
k+1−1 if row i in A is 1n, (−1)n, 01n and 0(−1)n, respectively. Hence,

Rk+1(A,B,C) ⊆ {1nk+1

, 0(−1)n
k+1−1, (−1)n

k+1}. Thus, we have shown that,
for any k > 0,

Rk(A,B,C) ⊆ {01nk−1, 1n
k

, 0(−1)n
k−1, (−1)n

k}.

By Corollary 13, Gk
o(A,B,C) is semi-transitive for any k > 0, which means

that IST(A,B,C) = ∞.

Theorem 39. Let A, B, C be m× n matrices over {−1, 0, 1} such that A
has a 0 and (A,B,C) is not independent from B and C. Suppose A is not a
layered matrix but B and C are layered matrices. Then, IST(A,B,C) = ∞
if and only if one of the following conditions holds:

• (A,B,C) is left-0-invariant.
• (A,B,C) is right-0-invariant.
• R(A) = {1p01n−p−1} for some p ∈ {1, 2, . . . , n− 2}, and B and C are
all 1 and (−1) matrices, respectively.

Proof. Assume IST(A,B,C) = ∞. Since A is not a layered matrix, by
Lemma 22, every row of M1(A,B,C) = A contains at most one 0. Then,
by Theorem 12, every row in A is 01n−1, 1n−10, 1n, 0(−1)n−1, (−1)n−10,
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(−1)n, 1p0(−1)n−p−1 or 1q(−1)n−q for some p ∈ {1, 2, . . . , n − 2} and q ∈
{1, 2, . . . , n − 1}. Since (A,B,C) is not independent from B and C, and B
and C are layered matrices, we have every row of B and C must be 1n or
(−1)n, otherwise there is a row in Mk(A,B,C) having more than one 0 for
some k.

If 1q(−1)n−q is row i in A for q ∈ {1, 2, . . . , n − 1}, then every row
in A, except for row i, is 1q(−1)n−q, 1q−10(−1)n−q or 1q0(−1)n−q−1. By
(5) in Lemma 35, we have that A cannot contain both 1q−10(−1)n−q and
1q0(−1)n−q−1 as its rows.

If 1q−10(−1)n−q /∈ R(A), then

A =

⎡
⎢⎢⎢⎣
1q a1 (−1)n−q−1

1q a2 (−1)n−q−1

...
...

...
1q am (−1)n−q−1

⎤
⎥⎥⎥⎦

for ai ∈ {0, 1}. Since A has a 0, there is row j in A of the form 1q0(−1)n−q−1.
Let b and c be row j in B and C, respectively. Note that BqACn−q−1 is m
consecutive rows ofM2 obtained by applying the morphism to 1q0(−1)n−q−1.
Then, bq1q0(−1)n−q−1cn−q−1 is row j in M2(A,B,C) and it must be of the
form 1r0s(−1)t for some r, s, t ≥ 0. So, we obtain b = 1n and cn = (−1)n

and 1nq+q0(−1)n
2−nq−q−1 is a row of M2(A,B,C). Note that BqCn−q is m

consecutive rows of M2 obtained by applying the morphism to 1q(−1)n−q,
and 1nq(−1)n(n−q) is row j in BqCn−q. Since 1nq+q0(−1)n

2−nq−q−1 and
1nq(−1)n(n−q) are rows in M2(A,B,C), the conditions of Theorem 12 are
not satisfied for M2(A,B,C). So, M2(A,B,C) is not semi-transitive, which
is a contradiction. By the same argument, we also obtain a contradiction in
the case of 1q−10(−1)n−q /∈ R(A). Hence 1q(−1)n−q cannot be a row in A.

Suppose that 1p0(−1)n−p−1 is row i in A. By Theorem 12, we have that
1n and (−1)n are not rows in M1(A,B,C). By Lemma 36, we have that
01n−1, 1n−10, 0(−1)n−1 and (−1)n−10 are not rows in M1(A,B,C). If there
is a row in A of the form 1u0(−1)n−u−1, where 1 ≤ u ≤ n − 2, by (5) in
Lemma 35, we have p = u. Hence, we obtain

A =

⎡
⎢⎢⎢⎣
1p 0 (−1)n−p−1

1p 0 (−1)n−p−1

...
...

...
1p 0 (−1)n−p−1

⎤
⎥⎥⎥⎦ where 1 ≤ p < n− 2.

Let b and c be row j in B and C, respectively, for any 1 ≤ j ≤ m. Note that
BpACn−p−1 ism consecutive rows ofM2 obtained by applying the morphism
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to 1p0(−1)n−p−1. Then, bp1p0(−1)n−p−1cn−p−1 is row j in M2(A,B,C) and

it must be of the form 1r0s(−1)t for some r, s, t ≥ 0. So, we obtain b = 1n

and c = (−1)n. Hence, we see that B and C are all 1 matrix and all (−1)

matrix, respectively.

Assume that 1p0(−1)n−p−1 is not a row in A for any 1 ≤ p ≤ n − 2.

That is, every row in A is 01n−1, 1n−10, 1n, 0(−1)n−1, (−1)n−10 or (−1)n.

By Lemma 35, we need to consider the following two cases.

Case1: 01n−1, 0(−1)n−1 ∈ R(A) and 1n−10, (−1)n−10 /∈ R(A). That is,

every row in A is 01n−1, 1n, 0(−1)n−1 or (−1)n. Suppose that 01n−1 is a

row in A. Then, ABn−1 is m consecutive rows in M2(A,B,C). Let row i in

B be b. Consider the following subcases:

• If row i in A is 01n−1, then 01n−1bn−1 is a row in M2(A,B,C). Since

b 
= 0n, we have b = 1n.

• If row i in A is 1n, then 1nbn−1 is a row in M2(A,B,C). Since b 
= 0n,

we have b = 1n.

• If row i in A is 0(−1)n−1, then 0(−1)n−1bn−1 is a row in M2(A,B,C).

Since b 
= 0n, we have b = (−1)n.

• If row i in A is (−1)n, then (−1)nbn−1 is a row in M2(A,B,C). Since

b 
= 0n, we have b = (−1)n.

Suppose that 0(−1)n−1 is a row in A. Then, ACn−1 is m consecutive rows

in M2(A,B,C). Let row i in C be c. Consider the following subcases:

• If row i in A is 01n−1, then 0(−1)n−1cn−1 is a row in M2(A,B,C).

Since c 
= 0n, we have c = 1n.

• If row i in A is 1n, then 1ncn−1 is a row in M2(A,B,C). Since c 
= 0n,

we have c = 1n.

• If row i in A is 0(−1)n−1, then 0(−1)n−1cn−1 is a row in M2(A,B,C).

Since c 
= 0n, we have c = (−1)n.

• If row i in A is (−1)n, then (−1)ncn−1 is a row in M2(A,B,C). Since

c 
= 0n, we have c = (−1)n.

Thus, we see that (A,B,C) is left-0-invariant.

Case2: 1n−10, (−1)n−10 ∈ R(A) and 01n−1, 0(−1)n−1 /∈ R(A). With the

same way of the case 1, we can prove that (A,B,C) is right-0-invariant.

Thus, “⇒” has been proved. Lemma 38 gives us the converse.
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4. Direction of further research

In this paper, we fully classified semi-transitivity of infinite families of di-
rected split graphs generated by iterations of morphisms in the cases when
the matrix A has a 0. This research is a first step towards a classification
of semi-transitive directed graphs in terms of positions of 0s and 1s (and
(−1)s in the lower-triangular case) in the adjacency matrices. An applica-
tion of such a classification could be in finding more efficient algorithms to
recognize semi-transitivity of a directed graph, which is a problem solvable
in polynomial time [8]. More importantly, a classification of semi-transitive
directed graphs via adjacency matrices may lead to a better understanding
of which (undirected) graphs admit semi-transitive orientations; this is an
NP-complete problem [7, 8]. Should the general problem resist attempts to
solve it, one could shift their attention to classification of semi-transitivity of
naturally defined (infinite) families of directed graphs. Such a shift should
allow discovering new methods to deal with semi-transitivity of oriented
graphs, and hence bring us closer to solving the general problem.

For yet another direction of research, note that Definition 20 of the
index of semi-transitivity IST(A,B,C) makes sense in many situations when
A has no 0’s. For example, if A, B and C contain only 1’s, we still can
apply Definition 20 to see that IST(A,B,C) = ∞. On the other hand,
Definition 20 does not work, for example, in the case when A is any matrix
without 0’s while B and C contain only 0’s, as the infinite graph Go(A,B,C)
is then not well-defined. Indeed, in the later case we see that Gi

o(A,B,C) is
not an induced subgraph of Gi+1

o (A,B,C) while Gi
o(A,B,C) is an induced

subgraph of Gi+2
o (A,B,C) for any i ≥ 0, so that we have two infinite chains

of induced subgraphs leading to two different infinite graphs as the limits
(one of which is with no edges between the clique and the independent set).
For another example, letting A be an all one matrix, B be an all (−1) matrix,
and C be an all zero matrix, we witness the situation of three infinite chains
of induced subgraphs with three infinite graphs as the limits.

In any case, the problem we solved in this paper can be extended to
the case of matrices A with no 0’s in the situations when the limiting infi-
nite graph is uniquely defined, and the goal then is to classify such triples
(A,B,C) with IST(A,B,C) = ∞. Of course, extra care should be taken
about Definition 20 as it still may not work. For example, A without 0’s
can easily be chosen so that G1

0(A,B,C) has directed cycles and thus is not
semi-transitive, while then choosing B and C be all one matrices, we see that
Gk

0(A,B,C) is semi-transitive for k > 1, so that the limiting graph is also
semi-transitive and it is natural to assume that IST(A,B,C) = ∞, while by



Semi-transitivity of directed split graphs generated by morphisms 137

Definition 20, IST(A,B,C) = 1. However, natural adjustments to Defini-
tion 20 could be introduced. For example, we can define IST(A,B,C) := ∞
if there exists a natural number k such that Gi

o(A,B,C) is semi-transitive
for every i ≥ k.
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