A Cantor-Bernstein theorem for infinite matroids

Attila Joó*

We give a common matroidal generalisation of 'A Cantor-Bernstein theorem for paths in graphs' by Diestel and Thomassen and 'A Cantor-Bernstein-type theorem for spanning trees in infinite graphs' by ourselves.
AMS 2000 SUbJect classifications: Primary 05B35, 05C63, 05C38; secondary 03E35.
Keywords and phrases: Infinite matroid, Cantor-Bernstein theorem, packing and covering.

1. Introduction

Let us reformulate the Cantor-Bernstein theorem in the language of graph theory:

Theorem 1.1 (Cantor-Bernstein, [1]). If $G=\left(V_{0}, V_{1} ; E\right)$ is a bipartite graph and matching I_{i} covers V_{i} for $i \in\{0,1\}$, then G admits a perfect matching.

Ore discovered the following generalisation of the Cantor-Bernstein theorem which is the extension of the Mendelsohn-Dulmage theorem [2, Theorem 1] to infinite graphs:

Theorem 1.2 (Ore, [3, Theorem 7.4.1]). Let $G=\left(V_{0}, V_{1} ; E\right)$ be a bipartite graph and let $I_{0}, I_{1} \subseteq E$ be matchings in G. Then there exists a matching I such that $V(I) \cap V_{i} \supseteq V\left(I_{i}\right) \cap V_{i}$ for $i \in\{0,1\}$.

Diestel and Thomassen examined in their paper 'A Cantor-Bernstein theorem for paths in graphs' a more general graph-theoretic setting in which disjoint paths are used to connect two vertex sets. We call a finite path that meets the vertex sets V_{0} and V_{1} and subgraph-minimal with respect to this property a $V_{0} V_{1}$-path.

[^0]Theorem 1.3 (Diestel and Thomassen, [4]). Assume that $G=(V, E)$ is a graph, $V_{0}, V_{1} \subseteq V$ and \mathcal{P}_{i} is a system of disjoint $V_{0} V_{1}$-paths in G for $i \in\{0,1\}$. Then there exists a system of disjoint $V_{0} V_{1}$-paths \mathcal{P} with $V(\mathcal{P}) \cap$ $V_{i} \supseteq V\left(\mathcal{P}_{i}\right) \cap V_{i}$ for $i \in\{0,1\}$.

Note that Theorem 1.2 is the special case of Theorem 1.3 where G is bipartite and the sets V_{i} are its vertex classes.

In our paper entitled 'A Cantor-Bernstein-type theorem for spanning trees in infinite graphs' we investigated if the existence of a κ-packing and a κ-covering by spanning trees implies the existence of a κ-family of spanning trees which is both, i.e. a κ-partition:

Theorem 1.4 (Erde et al. [5, Theorem 1.1]). Let $G=(V, E)$ be a graph and let κ be a cardinal. If there are κ many pairwise edge-disjoint spanning trees in G and E can be covered by κ many spanning trees, then E can be partitioned into κ many spanning trees.

At first sight the connection between Theorems 1.3 and 1.4 seems to be only analogical. In this paper, we show that the connection is actually stronger. There is an abstract matroidal "Cantor-Bernstein"-type phenomenon behind these theorems. Let us first state a special case of our main result which is the generalisation of a theorem by Kundu and Lawler (see [6]) to finitary matroids ${ }^{1}$:

Theorem 1.5. For $i \in\{0,1\}$, let M_{i} be a finitary matroid on E and let $I_{i} \in \mathcal{I}_{M_{0}} \cap \mathcal{I}_{M_{1}}$. Then there is an $I \in \mathcal{I}_{M_{0}} \cap \mathcal{I}_{M_{1}}$ with $I_{i} \subseteq \operatorname{span}_{M_{i}}(I)$ for $i \in\{0,1\}$.

The proof for finite matroids by Kundu and Lawler in [6] is quite short: If I_{0} spans I_{1} in M_{1}, then $I:=I_{0}$ is as desired. Otherwise we add an $e \in I_{1} \backslash \operatorname{span}_{M_{1}}\left(I_{0}\right)$ to I_{0} and if $I_{0}+e \notin \mathcal{I}_{M_{0}}$, then delete a suitable $f \in$ $I_{0} \backslash I_{1}$ in order to restore the M_{0}-independence. This can be done because the fundamental circuit $C_{M_{0}}\left(e, I_{0}\right)$ (if exists) cannot be entirely in I_{1}. The resulting set $I_{0}+e-f\left(\right.$ or $\left.I_{0}+e\right)$ still spans I_{0} in M_{0} and has strictly more edges in I_{1} than I_{0}. After finitely many iterations of this step the desired I is obtained.

A naive proof-idea for Theorem 1.5 would be to iterate the step above via transfinite recursion. Unfortunately it does not work. To demonstrate this we define a graph $G=(V, E)$ as a ray (one-way infinite path) $v_{0}, v_{1}, v_{2}, \ldots$

[^1]together with an additional vertex w connected to each vertex of the ray (see Figure 1). Let M_{0} be the cycle matroid on E corresponding to G (i.e. the circuits are the edge sets of the graph-theoretic cycles) and let M_{1} be the free matroid on E (i.e. every set is independent in M_{1}). We define I_{0} as the set of edges incident with w and let $I_{1}:=E \backslash I_{0}$. The naive approach might proceed as:
$$
I_{0}, I_{0}+v_{0} v_{1}-w v_{0}, I_{0} \cup\left\{v_{0} v_{1}, v_{1} v_{2}\right\} \backslash\left\{w v_{0}, w_{1}\right\}, \ldots
$$

Figure 1: The failure of the naive approach for infinite matroids.

It terminates after ω steps and transforms I_{0} into I_{1}. Since I_{1} does not span I_{0} in M_{0}, it fails to provide a desired I. It is easy to see that if we keep $w v_{0}$ and delete only $w v_{1}, w v_{2}, \ldots$ (while the incoming edges are in the same order), then we end up with the same ray together with the edge $w v_{0}$ which is suitable as I. In order to prove Theorem 1.5, we are going to show in Section 3 that it is always possible to choose the leaving edge in each step in such a way that we obtain a solution at the end. The proof of Theorem 1.5 makes possible to understand quickly the main ideas without dealing with technicalities arising in the general form. Basic knowledge about finite matroids is already sufficient to understand the paper, all the necessary matroidal background is given in Section 2.

In Section 4 we discuss the general form of our main result. Let us denote the class of finitary matroids by \mathfrak{F}, the class of their duals (i.e. cofinitary matroids) by \mathfrak{F}^{*} and let $\mathfrak{F} \oplus \mathfrak{F}^{*}$ be the class of matroids that are the direct sums of a finitary and a cofinitary matroid (equivalently the matroids with only finitary and cofinitary components). For a matroid class \mathfrak{C}, let $\mathfrak{C}(E)$ be the set of matroids on edge set E that are in class \mathfrak{C}.

Our main result generalises Theorem 1.5 in two ways. On the one hand, we replace \mathfrak{F} by $\mathfrak{F} \oplus \mathfrak{F}^{*}$. On the other hand, we allow arbitrary edge sets instead of common independent sets (this possibility was conjectured by Bowler) in the following sense:

Theorem 1.6. For $i \in\{0,1\}$, let $M_{i} \in\left(\mathfrak{F} \oplus \mathfrak{F}^{*}\right)(E)$ and $F_{i} \subseteq E$. Then there exists an $F \subseteq E$ such that $\operatorname{span}_{M_{i}}(F) \supseteq F_{i}$ and $\operatorname{span}_{M_{i}^{*}}(E \backslash F) \supseteq E \backslash F_{1-i}$ for $i \in\{0,1\}$.

We are going to prove the following family variant of Theorem 1.6 as well:

Theorem 1.7. For $i \in \Theta$, let $M_{i} \in\left(\mathfrak{F} \oplus \mathfrak{F}^{*}\right)(E), P_{i}, R_{i} \subseteq E$ and for $e \in E$, let $N_{e} \in\left(\mathfrak{F} \oplus \mathfrak{F}^{*}\right)(\Theta)$. Then there are $T_{i} \subseteq P_{i} \cup R_{i}$ for $i \in \Theta$ such that

1. $\operatorname{span}_{M_{i}}\left(T_{i}\right) \supseteq P_{i}$;
2. $\operatorname{span}_{M_{i}^{*}}\left(E \backslash T_{i}\right) \supseteq E \backslash R_{i}$;
3. For every $e \in E$, the set $\left\{i \in \Theta: e \in T_{i}\right\}$ spans $\left\{i \in \Theta: e \in R_{i}\right\}$ in N_{e};
4. For every $e \in E$, the set $\left\{i \in \Theta: e \notin T_{i}\right\}$ spans $\left\{i \in \Theta: e \notin P_{i}\right\}$ in N_{e}^{*}.

The connection between the Theorems 1.6 and 1.7 is far from obvious. It worths to mention that it is impossible to extend our results above to arbitrary matroids working in set theory ZFC. Indeed, the analogue of Theorem 1.5 for arbitrary matroids fails under the Continuum Hypothesis even if E is countable, M_{i} is uniform and I_{i} is a base of M_{i} (take U and U^{*} in [7, Theorem 5.1]).

In the last section (Section 5) we provide an application related to the following conjecture:

Conjecture 1.8 (Matroid Intersection Conjecture by Nash-Williams, [8, Conjecture 1.2]). For every $M_{0}, M_{1} \in \mathfrak{F}(E)$, there is an $I \in \mathcal{I}_{M_{0}} \cap \mathcal{I}_{M_{1}}$ and a partition $E=E_{0} \sqcup E_{1}$ such that $I \cap E_{i}$ spans E_{i} in M_{i} for $i \in\{0,1\}$.

The special case of the conjecture where E is assumed to be countable was proved in [9]. This was then generalised to the case where E is still countable but $\mathfrak{F}(E)$ is replaced by $\left(\mathfrak{F} \oplus \mathfrak{F}^{*}\right)(E)$ (see [10, Theorem 1.4]).

A maximal sized common independent set of two finite matroids can always be chosen in such a way that it spans a prescribed common independent set in both matroids. Indeed, if a common independent set is not a largest such a set, then the well-known 'augmenting path' method by Edmonds gives a new common independent set which is larger by one and spans the original in both matroids (see in [11]). Iterating such augmenting paths starting with the prescribed common independent set provides a desired largest common independent set.

The question can be phrased with respect to Conjecture 1.8 by replacing 'maximal sized' by 'strongly maximal' which we define as satisfying the
property described in Conjecture 1.8. The same argument for the positive answer does not work because finitely many iteration of augmenting paths does not lead to a strongly maximal one in general. Even so, we can answer the question affirmatively based on our main results. Let us denote the set of strongly maximal common independent sets by $\operatorname{SM}\left(M_{0}, M_{1}\right)$. For $I, J \in$ $\mathcal{I}_{M_{0}} \cap \mathcal{I}_{M_{1}}$, let $J \unlhd_{M_{0}, M_{1}} I$ iff $J \subseteq \operatorname{span}_{M_{0}}(I) \cap \operatorname{span}_{M_{1}}(I)$.
Theorem 1.9. Let E be countable and let $M_{i} \in\left(\mathfrak{F} \oplus \mathfrak{F}^{*}\right)(E)$ for $i \in\{0,1\}$. Then $\operatorname{SM}\left(M_{0}, M_{1}\right)$ is cofinal but not necessarily upward closed in $\left(\mathcal{I}_{M_{0}} \cap\right.$ $\left.\mathcal{I}_{M_{1}}, \unlhd_{M_{0}, M_{1}}\right)$.

2. Preliminaries

Rado asked in 1966 if there is an infinite generalisation of matroids preserving the key concepts (bases, circuits, duality and minors) of the finite theory. The positive answer was given by Higgs [12] (see also [13]). The same concept of infinite matroids was independently rediscovered by Bruhn, Diestel, Kriesell, Pendavingh and Wollan. They gave a set of cryptomorphic axioms for infinite matroids, generalising the usual independent set-, bases-, circuit-, closure- and rank-axioms of finite matroids (see [14]). They showed that several fundamental facts of the theory of finite matroids are preserved in the infinite case. It opened the door for a more systematic investigation of infinite matroids. An $M=(E, \mathcal{I})$ is a matroid (also called B-matroid) if $\mathcal{I} \subseteq \mathcal{P}(E)$ with
(I) $\varnothing \in \mathcal{I}$;
(II) \mathcal{I} is downward closed;
(III) For every $I, J \in \mathcal{I}$ where J is \subseteq-maximal in \mathcal{I} and I is not, there exists an $e \in J \backslash I$ such that $I+e \in \mathcal{I}$;
(IV) For every $X \subseteq E$, any $I \in \mathcal{I} \cap \mathcal{P}(X)$ can be extended to a \subseteq-maximal element of $\mathcal{I} \cap \mathcal{P}(X)$.

For a finite E, axioms (I)-(III) are equivalent to the usual axiomatization of finite matroids in terms of independent sets (while (IV) is redundant).

The terminology and the basic facts we will use are well-known for finite matroids. The elements of \mathcal{I} are called independent sets while the sets in $\mathcal{P}(E) \backslash \mathcal{I}$ are dependent. The maximal independent sets are the bases and the minimal dependent sets are the circuits of the matroid. Every dependent set contains a circuit (which fact is not obvious if E is infinite). A singleton circuit is called a loop. The components of a matroid are the connected components of the hypergraph of its circuits on E. The dual of matroid M
is the matroid M^{*} on the same edge set whose bases are the complements of the bases of M. By the deletion of an $X \subseteq E$ we obtain the matroid $M-X:=(E \backslash X,\{Y \in \mathcal{I}: Y \subseteq E \backslash X\})$ and the contraction of X gives $M / X:=\left(M^{*}-X\right)^{*}$. If I is independent in M but $I+e$ is dependent for some $e \in E \backslash I$ then there is a unique circuit $C_{M}(e, I)$ of M through e contained in $I+e$ which is called the fundamental circuit of e on I in M. We say $X \subseteq E$ spans $e \in E$ in matroid M if either $e \in X$ or there exists a circuit $C \ni e$ with $C-e \subseteq X$. We denote the set of edges spanned by X in M by $\operatorname{span}_{M}(X)$. A matroid is called finitary if all of its circuits are finite. A matroid is cofinitary if its dual is finitary. If C_{1} and C_{2} are circuits with $e \in C_{1} \backslash C_{2}$ and $f \in C_{1} \cap C_{2}$, then there is a circuit C_{3} with $e \in$ $C_{3} \subseteq C_{1} \cup C_{2}-f$. This fact is called (strong) circuit elimination. For more information about infinite matroids we refer to [15].

3. The infinite generalisation of the Kundu-Lawler theorem

Theorem 1.5. For $i \in\{0,1\}$, let M_{i} be a finitary matroid on E and let $I_{i} \in \mathcal{I}_{M_{0}} \cap \mathcal{I}_{M_{1}}$. Then there is an $I \in \mathcal{I}_{M_{0}} \cap \mathcal{I}_{M_{1}}$ with $I_{i} \subseteq \operatorname{span}_{M_{i}}(I)$ for $i \in\{0,1\}$.

Proof. We may assume without loss of generality that E is the disjoint union of I_{0} and I_{1} since otherwise we can simply contract $I_{0} \cap I_{1}$ and delete $E \backslash\left(I_{0} \cap I_{1}\right)$ in both matroids. Let $<$ be a well-order on E in which I_{1} is an initial segment, i.e. $e<f$ for every $e \in I_{1}$ and $f \in I_{0}$. From now on, the maximum of a finite subset of E is interpreted corresponding to $<$. We define a well-order \prec on the set $E^{<\aleph_{0}}$ of finite subsets of E. For $X \neq Y \in E^{<\aleph_{0}}$ let $X \prec Y$ iff one of the following holds:

- $X=\varnothing$,
- $\max X<\max Y$,
- $\max X=\max Y=: z$ and $X-z \prec Y-z$.

It is not too hard to check that \prec is indeed a well-order.
Observation 3.1. If $X \prec Y$ then $X+z \prec Y+z$ for every $z \in I_{0} \cup I_{1}$.
Let $\left\langle E_{\beta}: \beta<\alpha\right\rangle$ be a sequence of subsets of E where α is a limit ordinal. If

$$
\bigcup_{\gamma<\alpha} \bigcap_{\beta>\gamma} E_{\beta}=\bigcap_{\gamma<\alpha} \bigcup_{\beta>\gamma} E_{\beta}
$$

then we call this set the limit of the sequence and denote it by $\lim \left\langle E_{\beta}: \beta<\alpha\right\rangle$. We apply transfinite recursion starting with $J_{0}:=I_{0}$. Suppose that $J_{\alpha} \in$
$\mathcal{I}_{M_{0}} \cap \mathcal{I}_{M_{1}}$ is defined and spans I_{0} in M_{0}. If J_{α} spans I_{1} in M_{1} as well, then $I:=J_{\alpha}$ is as desired. Otherwise let $e \in I_{1} \backslash \operatorname{span}_{M_{1}}\left(J_{\alpha}\right)$ be arbitrary and let

$$
J_{\alpha+1}:=\left\{\begin{array}{lc}
J_{\alpha}+e & \text { if } \text { it is independent in } M_{0} \\
J_{\alpha}+e-\max C_{M_{0}}\left(e, J_{\alpha}\right) & \text { otherwise. }
\end{array}\right.
$$

Note that $e \in I_{1} \backslash I_{0}$ and $\max C_{M_{0}}\left(e, J_{\alpha}\right) \in I_{0} \backslash I_{1}$. In limits steps we take the limit of the earlier members (which is well-defined). Clearly, $J_{\alpha} \in \mathcal{I}_{M_{0}} \cap \mathcal{I}_{M_{1}}$ remains true for limit ordinals because a finite circuit cannot show up first in a limit step. It is enough to show that $J_{\beta} \subseteq \operatorname{span}_{M_{0}}\left(J_{\alpha}\right)$ for $\beta<\alpha$. Let β and $g \in I_{\beta}$ be fixed and suppose for a contradiction that there is a (smallest) α with $g \notin \operatorname{span}_{M_{0}}\left(J_{\alpha}\right)$. It is obvious from the definition of successor steps that α must be a limit ordinal. For $\gamma \in[\beta, \alpha)$, let S_{γ} be the unique minimal subset of J_{γ} that spans g in M_{0}. It is enough to show that $S_{\gamma+1} \preceq S_{\gamma}$ for $\gamma \in[\beta, \alpha)$. Indeed, since there is no infinite \prec-decreasing sequence, S_{γ} is the same set S for every large enough γ. But then $S \subseteq J_{\alpha}$ and it spans g in M_{0}, a contradiction.

Let $\gamma \in[\beta, \alpha)$ be fixed. We may assume that $S_{\gamma+1} \neq S_{\gamma}$ since otherwise we are done. Suppose first that $S_{\gamma}=\{g\}$. Then $g \notin S_{\gamma+1}$ because otherwise $S_{\gamma}=S_{\gamma+1}=\{g\}$. But then there is an edge e such that $g=\max C_{M_{0}}\left(e, J_{\alpha}\right)$ and $J_{\gamma+1}=J_{\gamma}+e-g$. Therefore

$$
S_{\gamma+1}=C_{M_{0}}\left(e, J_{\gamma}\right)-g \prec\{g\}=S_{\gamma}
$$

If $S_{\gamma} \neq\{g\}$, then $S_{\gamma}=C_{M_{0}}\left(g, J_{\gamma}\right)-g$ and there is an edge e such that $J_{\gamma+1}=J_{\gamma}+e-\max C_{M_{0}}\left(e, J_{\gamma}\right)$ with $\max C_{M_{0}}\left(e, J_{\gamma}\right) \in C_{M_{0}}\left(g, J_{\gamma}\right)-g$. By strong circuit elimination we know that

$$
C_{M_{0}}\left(g, J_{\gamma+1}\right) \subseteq C_{M_{0}}\left(g, J_{\gamma}\right) \cup C_{M_{0}}\left(e, J_{\gamma}\right)-\max C_{M_{0}}\left(e, J_{\gamma}\right)
$$

and therefore

$$
S_{\gamma+1} \subseteq S_{\gamma} \cup C_{M_{0}}\left(e, J_{\gamma}\right)-\max C_{M_{0}}\left(e, J_{\gamma}\right)
$$

It follows that $S_{\gamma+1} \backslash S_{\gamma} \prec S_{\gamma} \backslash S_{\gamma+1}$ because $\max C_{M_{0}}\left(e, J_{\gamma}\right) \in S_{\gamma+1} \backslash S_{\gamma}$ is <-larger than any element of $S_{\gamma} \backslash S_{\gamma+1}$. Finally, this implies $S_{\gamma+1} \prec S_{\gamma}$ by applying Observation 3.1 repeatedly with the edges in $S_{\gamma} \cap S_{\gamma+1}$.

4. The proof of the main results

We are going to derive Theorems 1.6 and 1.7 from the following statement:

Proposition 4.1. For $i \in \Theta$, let $M_{i} \in\left(\mathfrak{F} \oplus \mathfrak{F}^{*}\right)(E)$ and $P_{i}, R_{i} \subseteq E$ such that the sets P_{i} form a packing and the sets R_{i} form a covering, i.e. $P_{i} \cap P_{j}=\varnothing$ for $i \neq j$ and $\bigcup_{i \in \Theta} R_{i}=E$. Then there are $T_{i} \subseteq P_{i} \cup R_{i}$ for $i \in \Theta$ forming a partition of E such that $\operatorname{span}_{M_{i}}\left(T_{i}\right) \supseteq P_{i}$ and $\operatorname{span}_{M_{i}^{*}}\left(E \backslash T_{i}\right) \supseteq E \backslash R_{i}$.
Proof. We may assume without loss of generality by "trimming" that the sets R_{i} form a partition of E. We can also assume that $P_{i} \in \mathcal{I}_{M_{i}}$ since otherwise we replace P_{i} with a maximal M_{i}-independent subset of it. It is enough to consider the case where $P_{i} \cap R_{i}=\varnothing$ for $i \in \Theta$. Indeed, if it is not the case, then we contract $P_{i} \cap R_{i}$ and delete $P_{j} \cap R_{j}$ for $j \neq i$ in M_{i}. Finally, by decomposing each M_{i} into a finitary and a cofinitary matroid (which we extend to E by loops) and partition the sets R_{i} and P_{i} accordingly, it is enough to deal with matroid families where each M_{i} is either finitary or cofinitary.

Let $<_{i}$ be a well-order on $P_{i} \cup R_{i}$ where R_{i} is an initial segment. Then $<_{i}$ induces a well-order \prec_{i} on the set $\left[P_{i} \cup R_{i}\right]^{<\aleph_{0}}$ the same way as in Section 3.

Observation 4.2. Suppose that E_{α} is the limit of $\left\langle E_{\beta}: \beta<\alpha\right\rangle$.
(i) If E_{α} contains an M_{i}-circuit $C \nsubseteq R_{i}$ where M_{i} is finitary, then so does E_{β} for every large enough $\beta<\alpha$;
(ii) If $g \in \operatorname{span}_{M_{i}}\left(E_{\beta}\right)$ for $\beta<\alpha$ where M_{i} is cofinitrary, then $g \in$ $\operatorname{span}_{M_{i}}\left(E_{\alpha}\right)$.
To construct the desired partition $\left(T_{i}: i \in \Theta\right)$, we apply transfinite recursion. Let $T_{i}^{0}:=P_{i}$ for $i \in \Theta$. Suppose that T_{i}^{β} is defined for $\beta<\alpha$ and $i \in \Theta$ satisfying the following properties:

1. $T_{i}^{\beta} \cap T_{j}^{\beta}=\varnothing$ for $i \neq j \in \Theta$;
2. $T_{i}^{\beta} \subseteq P_{i} \cup R_{i}$;
3. $T_{i}^{\beta} \cap P_{i}$ is \subseteq-decreasing and $T_{i}^{\beta} \cap R_{i}$ is \subseteq-increasing in β;
4. $T_{i}^{\beta}=\lim \left\langle T_{i}^{\delta}: \delta<\beta\right\rangle$ if β is a limit ordinal;
5. $\operatorname{span}_{M_{i}}\left(T_{i}^{\beta}\right) \supseteq P_{i}$;
6. For every finitary M_{i}, each M_{i}-circuit $C \subseteq T_{i}^{\beta}$ is a subset of R_{i};
7. For every finitary M_{i} and $g \in P_{i}$, the \prec_{i}-smallest finite $S_{g}^{\beta} \subseteq T_{i}^{\beta}$ that is witnessing $g \in \operatorname{span}_{M_{i}}\left(T_{i}^{\beta}\right)$ is a \preceq_{i}-decreasing function of β;
8. $\left(T_{i}^{\delta}: i \in \Theta\right) \neq\left(T_{i}^{\delta+1}: i \in \Theta\right)$ for $\delta+1<\alpha$.

Note that condition (6) is a rephrasing of " $\operatorname{span}_{M_{i}^{*}}\left(E \backslash T_{i}^{\beta}\right) \supseteq E \backslash R_{i}$ for finitary $M_{i}{ }^{\prime \prime}$. Assume first that α is a limit ordinal. Then conditions (2) and (3) guarantee that $T_{i}^{\alpha}:=\lim \left\langle T_{i}^{\beta}: \beta<\alpha\right\rangle$ is well-defined. Preservation
of conditions (1)-(4) and (8) is straightforward. The restriction of condition (5) to cofinitary matroids and condition (6) are kept by Observation 4.2. To check condition (5) for a finitary M_{i}, let $g \in P_{i}$ be arbitrary. Since \preceq_{i} is a well-order, it follows from condition (7) that there is an S_{g} such that $S_{g}^{\beta}=S_{g}$ for all large enough $\beta<\alpha$. But then $S_{g} \subseteq T_{i}^{\alpha}$ from which $g \in \operatorname{span}_{M_{i}}\left(T_{i}^{\alpha}\right)$ follows. Furthermore, clearly $S_{g}^{\alpha}=S_{g}$ since a finite set which is \prec_{i}-smaller than S_{g} and M_{i}-spans g would have appeared already before the limit.

Suppose now that $\alpha=\beta+1$. If $\bigcup_{i \in \Theta} T_{i}^{\beta} \supseteq E$ and the analogue of condition (6) for the cofinitary M_{i} holds, then $\left(T_{i}^{\beta}: i \in \Theta\right)$ is a desired partition of E and we are done. Suppose it is not the case. If there is some T_{j}^{β} that contains an M_{j}-circuit C with $C \nsubseteq R_{j}$, then we take an $e \in P_{j} \cap C$ (see property (2)) and define $T_{j}^{\beta+1}:=T_{j}^{\beta}-e$ and $T_{i}^{\beta+1}:=T_{i}^{\beta}$ for $i \neq j$. The preservation of the conditions (1)-(8) is trivial. If there is no such a T_{j}^{β}, then there must be some $e \in E$ which is not covered by the sets T_{i}^{β}. Then there is a unique $k \in \Theta$ with $e \in R_{k}$. If M_{k} is cofinitary then let $T_{k}^{\beta+1}:=T_{k}^{\beta}+e$ and $T_{i}^{\beta+1}:=T_{i}^{\beta}$ for $i \neq k$. We proceed the same way if M_{k} is finitary and $T_{k}^{\beta}+e$ does not contain any M_{k}-circuit C with $C \nsubseteq R_{k}$. The preservation of the conditions is again straightforward in both cases.

Finally assume that M_{k} is finitary and $T_{k}^{\beta}+e$ contains an M_{k}-circuit C with $C \subsetneq R_{k}$. Let f be the $<_{k}$-maximal element of such a C and we define $T_{k}^{\beta+1}:=T_{k}^{\beta}+e-f$ and $T_{i}^{\beta+1}:=T_{i}^{\beta}$ for $i \neq k$. Since $C \cap P_{k} \neq \varnothing$ (because $C \nsubseteq R_{k}$) and the elements of P_{k} are $<_{k}$-larger than the elements of R_{k}, we have $f \in P_{k}$. Conditions (1)-(5) remain true for obvious reasons. Suppose for a contradiction that condition (6) fails and C^{\prime} is an M_{k}-circuit in $T_{k}^{\beta+1}$ with $C^{\prime} \nsubseteq R_{k}$. Then $f \notin C^{\prime}$ and we must have $e \in C^{\prime}$ since otherwise $C^{\prime} \subseteq T_{k}^{\beta}$ and therefore this condition would have been already violated with respect to T_{k}^{β}. By applying strong circuit elimination with the M_{k}-circuits C and C^{\prime}, we obtain a circuit $C^{\prime \prime} \subseteq C \cup C^{\prime}-e$ through f. But then $C^{\prime \prime} \subseteq T_{k}^{\beta}$ is an M_{k}-circuit and f witnesses $C^{\prime \prime} \nsubseteq R_{k}$ in violation of condition (6) for β which is a contradiction. To check (7), we may assume that $f \in S_{g}^{\beta}$ since otherwise $S_{g}^{\beta} \subseteq T_{k}^{\beta+1}$ and thus $S_{g}^{\beta+1} \preceq_{k} S_{g}^{\beta}$. If $S_{g}^{\beta}=\{g\}$, then $f=g$ by $f \in S_{g}^{\beta}$ and by the choice of f we have $S_{f}^{\beta+1} \preceq_{k} C-f \prec_{k}\{f\}$. Otherwise there is an M_{k}-circuit $C^{\prime} \ni f, g$ such that $S_{g}^{\beta}=C^{\prime}-g \subseteq T_{k}^{\beta}$. By applying strong circuit elimination with C and C^{\prime}, we obtain a circuit $C^{\prime \prime} \subseteq C \cup C^{\prime}-f$ through g. Since $f \in C^{\prime} \backslash C^{\prime \prime}$ and each element of $C^{\prime \prime} \backslash C^{\prime}$ is \prec_{k}-smaller than f (because $f=\max _{\prec_{k}} C$) we may conclude that $C^{\prime \prime} \backslash C^{\prime} \prec_{k} C^{\prime} \backslash C^{\prime \prime}$. Thus by applying

Observation 3.1 iteratively we get $C^{\prime \prime}-g \prec_{k} C^{\prime}-g$. Therefore

$$
S_{g}^{\beta+1} \preceq_{k} C^{\prime \prime}-g \prec_{k} C^{\prime}-g=S_{g}^{\beta}
$$

The recursion is done and it terminates at some ordinal since the constructed set families $\left(T_{i}^{\beta}: i \in \Theta\right)$ are pairwise distinct by conditions (2), (3) and (8).

Let us point out that the special case of Proposition 4.1 in which P_{i} and R_{i} are bases of M_{i} is exactly [7, Theorem 1.2]. Now we derive Theorems 1.6 and 1.7 from Proposition 4.1:

Theorem 1.6. For $i \in\{0,1\}$, let $M_{i} \in\left(\mathfrak{F} \oplus \mathfrak{F}^{*}\right)(E)$ and $F_{i} \subseteq E$. Then there exists an $F \subseteq E$ such that $\operatorname{span}_{M_{i}}(F) \supseteq F_{i}$ and $\operatorname{span}_{M_{i}^{*}}(E \backslash F) \supseteq E \backslash F_{1-i}$ for $i \in\{0,1\}$.

Proof. We can assume by contracting $F_{0} \cap F_{1}$ and deleting $E \backslash\left(F_{0} \cup F_{1}\right)$ in both matroids that the sets F_{i} form a bipartition of E. We apply Proposition 4.1 with $\Theta=\{0,1\}$, matroids M_{0} and M_{1}^{*} and sets $P_{0}:=R_{1}:=F_{0}$ and $P_{1}:=R_{0}:=F_{1}$. From the resulting bipartition $E=T_{0} \sqcup T_{1}$ we take $F:=T_{0}$. Then

1. $\operatorname{span}_{M_{0}}(F) \supseteq F_{0}$,
2. $\operatorname{span}_{M_{1}^{*}}(E \backslash F) \supseteq F_{1}$,
3. $\operatorname{span}_{M_{0}^{*}}(E \backslash F) \supseteq F_{0}$,
4. $\operatorname{span}_{M_{1}}(F) \supseteq F_{1}$.

Theorem 1.7. For $i \in \Theta$, let $M_{i} \in\left(\mathfrak{F} \oplus \mathfrak{F}^{*}\right)(E), P_{i}, R_{i} \subseteq E$ and for $e \in E$, let $N_{e} \in\left(\mathfrak{F} \oplus \mathfrak{F}^{*}\right)(\Theta)$. Then there are $T_{i} \subseteq P_{i} \cup R_{i}$ for $i \in \Theta$ such that

1. $\operatorname{span}_{M_{i}}\left(T_{i}\right) \supseteq P_{i}$;
2. $\operatorname{span}_{M_{i}^{*}}\left(E \backslash T_{i}\right) \supseteq E \backslash R_{i}$;
3. For every $e \in E$, the set $\left\{i \in \Theta: e \in T_{i}\right\}$ spans $\left\{i \in \Theta: e \in R_{i}\right\}$ in N_{e};
4. For every $e \in E$, the set $\left\{i \in \Theta: e \notin T_{i}\right\}$ spans $\left\{i \in \Theta: e \notin P_{i}\right\}$ in N_{e}^{*}.

Proof. We may assume that $\Theta \cap E=\varnothing$. For $i \in \Theta$, we construct a matroid M_{i}^{\prime} by "copying" M_{i} to $\{i\} \times E$ and then extending to $\Theta \times E$ by loops. For $e \in E$, we construct a matroid N_{e}^{\prime} by copying N_{i}^{*} to $\Theta \times\{e\}$ and then extending to $\Theta \times E$ by loops. The sets $R_{i}^{\prime}:=\{i\} \times R_{i}$ for $i \in \Theta$ together with the sets $R_{e}^{\prime}:=\left\{i \in \Theta: e \notin R_{i}\right\} \times\{e\}$ for $e \in E$ cover $\Theta \times E$.

Furthermore, the elements of the family consisting of $P_{i}^{\prime}:=\{i\} \times P_{i}$ for $i \in \Theta$ and $\left\{i \in \Theta: e \notin P_{i}\right\} \times\{e\}$ for $e \in E$ are pairwise disjoint. Let $\left\{T_{i}^{\prime}, T_{e}^{\prime}: i \in \Theta, e \in E\right\}$ be a partition of $\Theta \times E$ obtained by applying Proposition 4.1 with the matroids $M_{i}^{\prime}, N_{e}^{\prime}$, covering $R_{i}^{\prime}, R_{e}^{\prime}$ and packing $P_{i}^{\prime}, P_{e}^{\prime}(i \in \Theta, e \in E)$. It is easy to check that the family consisting of the projections T_{i} of T_{i}^{\prime} to E for $i \in \Theta$ is as desired.

5. Applications

5.1. Cantor-Bernstein for path-systems

We derive Theorem 1.3 from Theorem 1.5.
Theorem 1.3 (Diestel and Thomassen, [4]). Assume that $G=(V, E)$ is a graph, $V_{0}, V_{1} \subseteq V$ and \mathcal{P}_{i} is a system of disjoint $V_{0} V_{1}$-paths in G for $i \in\{0,1\}$. Then there exists a system of disjoint $V_{0} V_{1}$-paths \mathcal{P} with $V(\mathcal{P}) \cap$ $V_{i} \supseteq V\left(\mathcal{P}_{i}\right) \cap V_{i}$ for $i \in\{0,1\}$.

Proof. For $i \in\{0,1\}$, we define M_{i} to be the cycle matroid of the graph we obtain from G by contracting V_{i} to a single vertex. Then $E\left(\mathcal{P}_{i}\right) \in \mathcal{I}_{M_{0}} \cap \mathcal{I}_{M_{1}}$ for $i \in\{0,1\}$. By applying Theorem 1.5 with $I_{i}:=E\left(\mathcal{P}_{i}\right)$ and M_{1-i}, we can find an $I \in \mathcal{I}_{M_{0}} \cap \mathcal{I}_{M_{1}}$ with $E\left(\mathcal{P}_{1-i}\right) \subseteq \operatorname{span}_{M_{i}}(I)$ for $i \in\{0,1\}$. Then $G[I]$ is a forest in which every tree meets each V_{i} at most once. Each connected component of $G[I]$ which meets both V_{i} contains a unique $V_{0} V_{1}$-path. We define \mathcal{P} to be the set of these paths. It remains to show that \mathcal{P} satisfies the requirements. Let $v_{0} \in V\left(\mathcal{P}_{i}\right) \cap V_{i}$. It is enough to show that v_{0} is reachable from V_{1-i} in $G[I]$ because then the (unique) path witnessing this is in \mathcal{P}. Consider the path $P \in \mathcal{P}_{i}$ through v_{0}. Let the vertices of P be v_{0}, \ldots, v_{n} enumerated in the path-order starting from V_{i}. It follows from $E(P) \subseteq \operatorname{span}_{M_{1-i}}(I)$ that for every $k<n$ either $G[I]$ contains a path between v_{k} and v_{k+1} or both of them are reachable from V_{1-i} in $G[I]$. Vertex v_{n} is obviously reachable from V_{1-i} because it is an element of it. If we already know that v_{k+1} is reachable from V_{1-i} in $G[I]$, then it follows that v_{k} is reachable as well. Thus by induction v_{0} is reachable from V_{1-i} in $G[I]$ which completes the proof.

5.2. Matroid intersection

Theorem 1.9. Let E be countable and let $M_{i} \in\left(\mathfrak{F} \oplus \mathfrak{F}^{*}\right)(E)$ for $i \in\{0,1\}$. Then $\operatorname{SM}\left(M_{0}, M_{1}\right)$ is cofinal but not necessarily upward closed in $\left(\mathcal{I}_{M_{0}} \cap\right.$ $\left.\mathcal{I}_{M_{1}}, \unlhd_{M_{0}, M_{1}}\right)$.

Figure 2: Matching I_{0} consists of the dashed and I_{1} consists of the normal edges.

Proof. We start with the 'cofinal' part of the statement. Let $J \in \mathcal{I}_{M_{0}} \cap \mathcal{I}_{M_{1}}$ be given. We take an $I^{\prime} \in \operatorname{SM}\left(M_{0}, M_{1}\right)$ and fix a partition $E=E_{0} \sqcup E_{1}$ such that $I_{i}^{\prime}:=I^{\prime} \cap E_{i}$ spans E_{i} in M_{i} for $i \in\{0,1\}$. By applying Theorem 1.6 with the matroids $M_{i} \upharpoonright E_{i}$ and $M_{1-i} . E_{i}$ and sets I_{i}^{\prime} and $J_{i}:=J \cap E_{i}$, we obtain a base I_{i} of $M_{i} \upharpoonright E_{i}$ which is independent in $M_{1-i} . E_{i}$ and spans J_{i} in $M_{1-i} . E_{i}$. We claim that $I:=I_{0} \sqcup I_{1}$ is as desired. Indeed, $I \in \operatorname{SM}\left(M_{0}, M_{1}\right)$ because I_{i} is an $M_{1-i} . E_{i}$-independent base of $M_{i} \upharpoonright E_{i}$. Finally, I_{1-i} spans J_{1-i} in $M_{i} . E_{1-i}=M_{i} / E_{i}$ and $I_{i} \subseteq E_{i}$ spans E_{i} (which contains J_{i}) in M_{i} by construction thus $J \subseteq \operatorname{span}_{M_{i}}(I)$. Therefore $J \subseteq \operatorname{span}_{M_{0}}(I) \cap \operatorname{span}_{M_{1}}(I)$ which means $J \unlhd_{M_{0}, M_{1}} I$.

In order to show the 'not necessarily upward closed' part we shall construct first a bipartite graph $G=\left(V_{0}, V_{1} ; E\right)$. We start with a double ray $\ldots, v_{-1}, v_{0}, v_{1}, \ldots$ and add a new vertex w_{i} and new edge $v_{i} w_{i}$ for $i \in\{0,1\}$ (see Figure 2). The bipartite graph G induces two partition matroids M_{0} and M_{1} on E in the way that $I \subseteq E$ is defined to be independent in M_{i} if no two edges in I have a common end-vertex in V_{i}. Then the elements of $\mathcal{I}_{M_{0}} \cap \mathcal{I}_{M_{1}}$ are exactly the matchings, moreover, matching I is in $\operatorname{SM}\left(M_{0}, M_{1}\right)$ iff one can choose exactly one vertex from each $e \in I$ such that the resulting set is a vertex cover. Let

$$
I_{i}:=\left\{v_{2 k+i} v_{2 k+1+i}: k<\omega\right\} \text { for } i \in\{0,1\} .
$$

On the one hand, the matchings I_{i} cover the same vertices thus

$$
I_{0} \unlhd_{M_{0}, M_{1}} I_{1} \unlhd_{M_{0}, M_{1}} I_{0}
$$

On the other hand, we claim that I_{1} is strongly maximal but I_{0} is not. Indeed, $\left\{v_{-2 k}, v_{2 k+1}: k<\omega\right\}$ is a vertex cover (upper-left and lower-right corners on Figure 2) that consists of choosing exactly one end-vertex of each
edge in I_{1} and therefore witnessing $I_{1} \in \mathrm{SM}\left(M_{0}, M_{1}\right)$. But there is no such a vertex cover for I_{0} because if we pick v_{i} from the edge $v_{0} v_{1}$, then we cannot choose any end-vertex of $v_{1-i} w_{1-i}$. Thus $\operatorname{SM}\left(M_{0}, M_{1}\right)$ is not upward closed in $\left(\mathcal{I}_{M_{0}} \cap \mathcal{I}_{M_{1}}, \unlhd_{M_{0}, M_{1}}\right)$.

References

[1] Georg Cantor. Mitteilungen zur lehre vom transfiniten. Zeitschrift für Philosophie und philosophische Kritik, 91:81-125, 1987.
[2] N. S. Mendelsohn and A. L. Dulmage. Some generalizations of the problem of distinct representatives. Canadian Journal of Mathematics, 10: 230-241, 1958. doi: $10.4153 / \mathrm{cjm}-1958-027-8$. MR0095129
[3] Oystein Ore. The theory of graphs. American Mathematical Society, 1962. doi: 10.1090/coll/038. MR0150753
[4] Reinhard Diestel and Carsten Thomassen. A cantor-bernstein theorem for paths in graphs. The American Mathematical Monthly, 113 (2): 161166, 2006. MR2203237
[5] Joshua Erde, J. Pascal Gollin, Attila Joó, Paul Knappe, and Max Pitz. A cantor-bernstein-type theorem for spanning trees in infinite graphs. Journal of Combinatorial Theory, Series B, 149: 16-22, 2021. doi: 10. 1016/j.jctb.2021.01.004. MR4203549
[6] Sukhamay Kundu and Eugene L Lawler. A matroid generalization of a theorem of Mendelsohn and Dulmage. Discrete Mathematics, 4 (2): 159-163, 1973. doi: 10.1016/0012-365x(73)90078-2. MR0311495
[7] Joshua Erde, J. Pascal Gollin, Attila Joó, Paul Knappe, and Max Pitz. Base partition for mixed families of finitary and cofinitary matroids. Combinatorica, 41 (1): 31-52, 2021. doi: 10.1007/s00493-020-4422-4. MR4235313
[8] Ron Aharoni and Ran Ziv. The intersection of two infinite matroids. Journal of the London Mathematical Society, 58 (03): 513-525, 1998. doi: $10.1112 /$ s0024610798006723. MR1678148
[9] Attila Joó. Proof of Nash-Williams' Intersection Conjecture for countable matroids. Advances in Mathematics, 380: 107608, 2021. doi: 10. 1016/j.aim.2021.107608. MR4205117
[10] Attila Joó. On the Packing/Covering Conjecture of infinite matroids. 2021. https://arxiv.org/abs/2103.14881.
[11] Jack Edmonds. Submodular functions, matroids, and certain polyhedra. In Combinatorial Optimization-Eureka, You Shrink!, pages 1126. Springer, 2003. doi: 10.1007/3-540-36478-1_2. MR2163945
[12] Denis Arthur Higgs. Matroids and duality. In Colloquium Mathematicum, volume 2, pages 215-220, 1969. URL http://eudml.org/doc/ 267207. MR0274315
[13] James Oxley. Infinite matroids. Matroid applications, 40: 73-90, 1992. doi: 10.1017/cbo9780511662041.004. MR1165540
[14] Henning Bruhn, Reinhard Diestel, Matthias Kriesell, Rudi Pendavingh, and Paul Wollan. Axioms for infinite matroids. Advances in Mathematics, 239: 18-46, 2013. doi: 10.1016/j.aim.2013.01.011. MR3045140
[15] Nathan Bowler. Infinite matroids. Habilitation thesis, University of Hamburg, 2014. https://www.math.uni-hamburg.de/spag/dm/papers/ Bowler_Habil.pdf.

Attila Joó
Department of Mathematics
University of Hamburg
Bundesstrasse 55 (Geomatikum)
20146 Hamburg
Germany
Logic, Set theory and topology department
Alfréd Rényi Institute of Mathematics
13-15 Reáltanoda St.
Budapest
Hungary
E-mail address: attila.joo@uni-hamburg.de
Received January 29, 2022

[^0]: arXiv: 2009.08439
 *The author would like to thank the generous support of the Alexander von Humboldt Foundation and NKFIH OTKA-129211.

[^1]: ${ }^{1}$ A matroid is called finitary if all of its circuits are finite. In the older papers of Higgs, Oxley and others it is also called 'independence space'. For a brief introduction to the concept of infinite matroids see Section 2.

