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A Cantor-Bernstein theorem for infinite matroids
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We give a common matroidal generalisation of ‘A Cantor-Bernstein
theorem for paths in graphs’ by Diestel and Thomassen and ‘A
Cantor-Bernstein-type theorem for spanning trees in infinite graphs’
by ourselves.
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1. Introduction

Let us reformulate the Cantor-Bernstein theorem in the language of graph

theory:

Theorem 1.1 (Cantor-Bernstein, [1]). If G = (V0, V1;E) is a bipartite graph

and matching Ii covers Vi for i ∈ {0, 1}, then G admits a perfect matching.

Ore discovered the following generalisation of the Cantor-Bernstein theo-

rem which is the extension of the Mendelsohn-Dulmage theorem [2, Theorem

1] to infinite graphs:

Theorem 1.2 (Ore, [3, Theorem 7.4.1]). Let G = (V0, V1;E) be a bipartite

graph and let I0, I1 ⊆ E be matchings in G. Then there exists a matching I

such that V (I) ∩ Vi ⊇ V (Ii) ∩ Vi for i ∈ {0, 1}.

Diestel and Thomassen examined in their paper ‘A Cantor-Bernstein

theorem for paths in graphs’ a more general graph-theoretic setting in which

disjoint paths are used to connect two vertex sets. We call a finite path that

meets the vertex sets V0 and V1 and subgraph-minimal with respect to this

property a V0V1-path.
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Theorem 1.3 (Diestel and Thomassen, [4]). Assume that G = (V,E) is
a graph, V0, V1 ⊆ V and Pi is a system of disjoint V0V1-paths in G for
i ∈ {0, 1}. Then there exists a system of disjoint V0V1-paths P with V (P) ∩
Vi ⊇ V (Pi) ∩ Vi for i ∈ {0, 1}.

Note that Theorem 1.2 is the special case of Theorem 1.3 where G is
bipartite and the sets Vi are its vertex classes.

In our paper entitled ‘A Cantor-Bernstein-type theorem for spanning
trees in infinite graphs’ we investigated if the existence of a κ-packing and a
κ-covering by spanning trees implies the existence of a κ-family of spanning
trees which is both, i.e. a κ-partition:

Theorem 1.4 (Erde et al. [5, Theorem 1.1]). Let G = (V,E) be a graph
and let κ be a cardinal. If there are κ many pairwise edge-disjoint spanning
trees in G and E can be covered by κ many spanning trees, then E can be
partitioned into κ many spanning trees.

At first sight the connection between Theorems 1.3 and 1.4 seems to
be only analogical. In this paper, we show that the connection is actu-
ally stronger. There is an abstract matroidal “Cantor-Bernstein”-type phe-
nomenon behind these theorems. Let us first state a special case of our main
result which is the generalisation of a theorem by Kundu and Lawler (see
[6]) to finitary matroids1:

Theorem 1.5. For i ∈ {0, 1}, let Mi be a finitary matroid on E and let
Ii ∈ IM0

∩ IM1
. Then there is an I ∈ IM0

∩ IM1
with Ii ⊆ spanMi

(I) for
i ∈ {0, 1}.

The proof for finite matroids by Kundu and Lawler in [6] is quite short:
If I0 spans I1 in M1, then I := I0 is as desired. Otherwise we add an
e ∈ I1 \ spanM1

(I0) to I0 and if I0 + e /∈ IM0
, then delete a suitable f ∈

I0 \ I1 in order to restore the M0-independence. This can be done because
the fundamental circuit CM0

(e, I0) (if exists) cannot be entirely in I1. The
resulting set I0 + e− f (or I0 + e) still spans I0 in M0 and has strictly more
edges in I1 than I0. After finitely many iterations of this step the desired I
is obtained.

A naive proof-idea for Theorem 1.5 would be to iterate the step above via
transfinite recursion. Unfortunately it does not work. To demonstrate this
we define a graph G = (V,E) as a ray (one-way infinite path) v0, v1, v2, . . .

1A matroid is called finitary if all of its circuits are finite. In the older papers of
Higgs, Oxley and others it is also called ‘independence space’. For a brief introduc-
tion to the concept of infinite matroids see Section 2.
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together with an additional vertex w connected to each vertex of the ray

(see Figure 1). Let M0 be the cycle matroid on E corresponding to G (i.e.

the circuits are the edge sets of the graph-theoretic cycles) and let M1 be

the free matroid on E (i.e. every set is independent in M1). We define I0 as

the set of edges incident with w and let I1 := E \ I0. The naive approach

might proceed as:

I0, I0 + v0v1 − wv0, I0 ∪ {v0v1, v1v2} \ {wv0, w1}, . . .

v0 v1 v2 v3 v4 . . .

w

. . .

Figure 1: The failure of the naive approach for infinite matroids.

It terminates after ω steps and transforms I0 into I1. Since I1 does not

span I0 in M0, it fails to provide a desired I. It is easy to see that if we

keep wv0 and delete only wv1, wv2, . . . (while the incoming edges are in the

same order), then we end up with the same ray together with the edge wv0
which is suitable as I. In order to prove Theorem 1.5, we are going to show

in Section 3 that it is always possible to choose the leaving edge in each step

in such a way that we obtain a solution at the end. The proof of Theorem

1.5 makes possible to understand quickly the main ideas without dealing

with technicalities arising in the general form. Basic knowledge about finite

matroids is already sufficient to understand the paper, all the necessary

matroidal background is given in Section 2.

In Section 4 we discuss the general form of our main result. Let us denote

the class of finitary matroids by F, the class of their duals (i.e. cofinitary

matroids) by F∗ and let F⊕ F∗ be the class of matroids that are the direct

sums of a finitary and a cofinitary matroid (equivalently the matroids with

only finitary and cofinitary components). For a matroid class C, let C(E) be

the set of matroids on edge set E that are in class C.

Our main result generalises Theorem 1.5 in two ways. On the one hand,

we replace F by F ⊕ F∗. On the other hand, we allow arbitrary edge sets

instead of common independent sets (this possibility was conjectured by

Bowler) in the following sense:
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Theorem 1.6. For i ∈ {0, 1}, let Mi ∈ (F⊕F∗)(E) and Fi ⊆ E. Then there
exists an F ⊆ E such that spanMi

(F ) ⊇ Fi and spanM∗
i
(E \ F ) ⊇ E \ F1−i

for i ∈ {0, 1}.

We are going to prove the following family variant of Theorem 1.6 as
well:

Theorem 1.7. For i ∈ Θ, let Mi ∈ (F⊕ F∗)(E), Pi, Ri ⊆ E and for e ∈ E,
let Ne ∈ (F⊕ F∗)(Θ). Then there are Ti ⊆ Pi ∪Ri for i ∈ Θ such that

1. spanMi
(Ti) ⊇ Pi;

2. spanM∗
i
(E \ Ti) ⊇ E \Ri;

3. For every e ∈ E, the set {i ∈ Θ : e ∈ Ti} spans {i ∈ Θ : e ∈ Ri} in
Ne;

4. For every e ∈ E, the set {i ∈ Θ : e /∈ Ti} spans {i ∈ Θ : e /∈ Pi} in
N∗

e .

The connection between the Theorems 1.6 and 1.7 is far from obvious.
It worths to mention that it is impossible to extend our results above to
arbitrary matroids working in set theory ZFC. Indeed, the analogue of The-
orem 1.5 for arbitrary matroids fails under the Continuum Hypothesis even
if E is countable, Mi is uniform and Ii is a base of Mi (take U and U∗ in [7,
Theorem 5.1]).

In the last section (Section 5) we provide an application related to the
following conjecture:

Conjecture 1.8 (Matroid Intersection Conjecture by Nash-Williams, [8,
Conjecture 1.2]). For every M0,M1 ∈ F(E), there is an I ∈ IM0

∩ IM1
and

a partition E = E0 � E1 such that I ∩ Ei spans Ei in Mi for i ∈ {0, 1}.

The special case of the conjecture where E is assumed to be countable
was proved in [9]. This was then generalised to the case where E is still
countable but F(E) is replaced by (F⊕ F∗)(E) (see [10, Theorem 1.4]).

A maximal sized common independent set of two finite matroids can
always be chosen in such a way that it spans a prescribed common inde-
pendent set in both matroids. Indeed, if a common independent set is not
a largest such a set, then the well-known ‘augmenting path’ method by Ed-
monds gives a new common independent set which is larger by one and
spans the original in both matroids (see in [11]). Iterating such augment-
ing paths starting with the prescribed common independent set provides a
desired largest common independent set.

The question can be phrased with respect to Conjecture 1.8 by replacing
‘maximal sized’ by ‘strongly maximal’ which we define as satisfying the
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property described in Conjecture 1.8. The same argument for the positive
answer does not work because finitely many iteration of augmenting paths
does not lead to a strongly maximal one in general. Even so, we can answer
the question affirmatively based on our main results. Let us denote the set
of strongly maximal common independent sets by SM(M0,M1). For I, J ∈
IM0

∩ IM1
, let J �M0,M1

I iff J ⊆ spanM0
(I) ∩ spanM1

(I).

Theorem 1.9. Let E be countable and let Mi ∈ (F⊕ F∗)(E) for i ∈ {0, 1}.
Then SM(M0,M1) is cofinal but not necessarily upward closed in (IM0

∩
IM1

,�M0,M1
).

2. Preliminaries

Rado asked in 1966 if there is an infinite generalisation of matroids pre-
serving the key concepts (bases, circuits, duality and minors) of the finite
theory. The positive answer was given by Higgs [12] (see also [13]). The same
concept of infinite matroids was independently rediscovered by Bruhn, Di-
estel, Kriesell, Pendavingh and Wollan. They gave a set of cryptomorphic
axioms for infinite matroids, generalising the usual independent set-, bases-,
circuit-, closure- and rank-axioms of finite matroids (see [14]). They showed
that several fundamental facts of the theory of finite matroids are preserved
in the infinite case. It opened the door for a more systematic investigation
of infinite matroids. An M = (E, I) is a matroid (also called B-matroid) if
I ⊆ P(E) with

(I) ∅ ∈ I;
(II) I is downward closed;
(III) For every I, J ∈ I where J is ⊆-maximal in I and I is not, there exists

an e ∈ J \ I such that I + e ∈ I;
(IV) For every X ⊆ E, any I ∈ I ∩P(X) can be extended to a ⊆-maximal

element of I ∩ P(X).

For a finite E, axioms (I)-(III) are equivalent to the usual axiomatization of
finite matroids in terms of independent sets (while (IV) is redundant).

The terminology and the basic facts we will use are well-known for finite
matroids. The elements of I are called independent sets while the sets in
P(E) \ I are dependent. The maximal independent sets are the bases and
the minimal dependent sets are the circuits of the matroid. Every dependent
set contains a circuit (which fact is not obvious if E is infinite). A singleton
circuit is called a loop. The components of a matroid are the connected
components of the hypergraph of its circuits on E. The dual of matroid M
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is the matroid M∗ on the same edge set whose bases are the complements
of the bases of M . By the deletion of an X ⊆ E we obtain the matroid
M − X := (E \ X, {Y ∈ I : Y ⊆ E \ X}) and the contraction of X gives
M/X := (M∗ − X)∗. If I is independent in M but I + e is dependent for
some e ∈ E \ I then there is a unique circuit CM (e, I) of M through e
contained in I + e which is called the fundamental circuit of e on I in M .
We say X ⊆ E spans e ∈ E in matroid M if either e ∈ X or there exists a
circuit C 	 e with C − e ⊆ X. We denote the set of edges spanned by X
in M by spanM (X). A matroid is called finitary if all of its circuits are
finite. A matroid is cofinitary if its dual is finitary. If C1 and C2 are circuits
with e ∈ C1 \ C2 and f ∈ C1 ∩ C2, then there is a circuit C3 with e ∈
C3 ⊆ C1 ∪ C2 − f . This fact is called (strong) circuit elimination. For more
information about infinite matroids we refer to [15].

3. The infinite generalisation of the Kundu-Lawler theorem

Theorem 1.5. For i ∈ {0, 1}, let Mi be a finitary matroid on E and let
Ii ∈ IM0

∩ IM1
. Then there is an I ∈ IM0

∩ IM1
with Ii ⊆ spanMi

(I) for
i ∈ {0, 1}.

Proof. We may assume without loss of generality that E is the disjoint
union of I0 and I1 since otherwise we can simply contract I0 ∩ I1 and delete
E \ (I0 ∩ I1) in both matroids. Let < be a well-order on E in which I1 is
an initial segment, i.e. e < f for every e ∈ I1 and f ∈ I0. From now on, the
maximum of a finite subset of E is interpreted corresponding to <. We define
a well-order ≺ on the set E<ℵ0 of finite subsets of E. For X �= Y ∈ E<ℵ0 let
X ≺ Y iff one of the following holds:

• X = ∅,
• maxX < maxY ,
• maxX = maxY =: z and X − z ≺ Y − z.

It is not too hard to check that ≺ is indeed a well-order.

Observation 3.1. If X ≺ Y then X + z ≺ Y + z for every z ∈ I0 ∪ I1.

Let 〈Eβ : β < α〉 be a sequence of subsets of E where α is a limit ordinal.
If ⋃

γ<α

⋂
β>γ

Eβ =
⋂
γ<α

⋃
β>γ

Eβ ,

then we call this set the limit of the sequence and denote it by lim 〈Eβ : β<α〉.
We apply transfinite recursion starting with J0 := I0. Suppose that Jα ∈
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IM0
∩ IM1

is defined and spans I0 in M0. If Jα spans I1 in M1 as well, then
I := Jα is as desired. Otherwise let e ∈ I1 \ spanM1

(Jα) be arbitrary and let

Jα+1 :=

{
Jα + e if it is independent in M0

Jα + e−maxCM0
(e, Jα) otherwise.

Note that e ∈ I1 \ I0 and maxCM0
(e, Jα) ∈ I0 \ I1. In limits steps

we take the limit of the earlier members (which is well-defined). Clearly,
Jα ∈ IM0

∩IM1
remains true for limit ordinals because a finite circuit cannot

show up first in a limit step. It is enough to show that Jβ ⊆ spanM0
(Jα) for

β < α. Let β and g ∈ Iβ be fixed and suppose for a contradiction that there
is a (smallest) α with g /∈ spanM0

(Jα). It is obvious from the definition of
successor steps that α must be a limit ordinal. For γ ∈ [β, α), let Sγ be
the unique minimal subset of Jγ that spans g in M0. It is enough to show
that Sγ+1 � Sγ for γ ∈ [β, α). Indeed, since there is no infinite ≺-decreasing
sequence, Sγ is the same set S for every large enough γ. But then S ⊆ Jα
and it spans g in M0, a contradiction.

Let γ ∈ [β, α) be fixed. We may assume that Sγ+1 �= Sγ since otherwise
we are done. Suppose first that Sγ = {g}. Then g /∈ Sγ+1 because otherwise
Sγ = Sγ+1 = {g}. But then there is an edge e such that g = maxCM0

(e, Jα)
and Jγ+1 = Jγ + e− g. Therefore

Sγ+1 = CM0
(e, Jγ)− g ≺ {g} = Sγ .

If Sγ �= {g}, then Sγ = CM0
(g, Jγ) − g and there is an edge e such that

Jγ+1 = Jγ + e −maxCM0
(e, Jγ) with maxCM0

(e, Jγ) ∈ CM0
(g, Jγ) − g. By

strong circuit elimination we know that

CM0
(g, Jγ+1) ⊆ CM0

(g, Jγ) ∪ CM0
(e, Jγ)−maxCM0

(e, Jγ)

and therefore

Sγ+1 ⊆ Sγ ∪ CM0
(e, Jγ)−maxCM0

(e, Jγ).

It follows that Sγ+1 \Sγ ≺ Sγ \Sγ+1 because maxCM0
(e, Jγ) ∈ Sγ+1 \Sγ

is <-larger than any element of Sγ \ Sγ+1. Finally, this implies Sγ+1 ≺ Sγ

by applying Observation 3.1 repeatedly with the edges in Sγ ∩ Sγ+1.

4. The proof of the main results

We are going to derive Theorems 1.6 and 1.7 from the following statement:
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Proposition 4.1. For i ∈ Θ, let Mi ∈ (F⊕F∗)(E) and Pi, Ri ⊆ E such that
the sets Pi form a packing and the sets Ri form a covering, i.e. Pi ∩Pj = ∅

for i �= j and
⋃

i∈ΘRi = E. Then there are Ti ⊆ Pi ∪ Ri for i ∈ Θ forming
a partition of E such that spanMi

(Ti) ⊇ Pi and spanM∗
i
(E \ Ti) ⊇ E \Ri.

Proof. We may assume without loss of generality by “trimming” that the
sets Ri form a partition of E. We can also assume that Pi ∈ IMi

since
otherwise we replace Pi with a maximal Mi-independent subset of it. It is
enough to consider the case where Pi ∩Ri = ∅ for i ∈ Θ. Indeed, if it is not
the case, then we contract Pi∩Ri and delete Pj∩Rj for j �= i in Mi. Finally,
by decomposing each Mi into a finitary and a cofinitary matroid (which we
extend to E by loops) and partition the sets Ri and Pi accordingly, it is
enough to deal with matroid families where each Mi is either finitary or
cofinitary.

Let <i be a well-order on Pi∪Ri where Ri is an initial segment. Then <i

induces a well-order ≺i on the set [Pi ∪Ri]
<ℵ0 the same way as in Section 3.

Observation 4.2. Suppose that Eα is the limit of 〈Eβ : β < α〉.

(i) If Eα contains an Mi-circuit C �⊆ Ri where Mi is finitary, then so does
Eβ for every large enough β < α;

(ii) If g ∈ spanMi
(Eβ) for β < α where Mi is cofinitrary, then g ∈

spanMi
(Eα).

To construct the desired partition (Ti : i ∈ Θ), we apply transfinite

recursion. Let T 0
i := Pi for i ∈ Θ. Suppose that T β

i is defined for β < α and
i ∈ Θ satisfying the following properties:

1. T β
i ∩ T β

j = ∅ for i �= j ∈ Θ;

2. T β
i ⊆ Pi ∪Ri;

3. T β
i ∩ Pi is ⊆-decreasing and T β

i ∩Ri is ⊆-increasing in β;

4. T β
i = lim

〈
T δ
i : δ < β

〉
if β is a limit ordinal;

5. spanMi
(T β

i ) ⊇ Pi;

6. For every finitary Mi, each Mi-circuit C ⊆ T β
i is a subset of Ri;

7. For every finitary Mi and g ∈ Pi, the ≺i-smallest finite Sβ
g ⊆ T β

i that

is witnessing g ∈ spanMi
(T β

i ) is a �i-decreasing function of β;

8. (T δ
i : i ∈ Θ) �= (T δ+1

i : i ∈ Θ) for δ + 1 < α.

Note that condition (6) is a rephrasing of “spanM∗
i
(E \ T β

i ) ⊇ E \ Ri

for finitary Mi”. Assume first that α is a limit ordinal. Then conditions (2)

and (3) guarantee that Tα
i := lim

〈
T β
i : β < α

〉
is well-defined. Preservation
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of conditions (1)-(4) and (8) is straightforward. The restriction of condition

(5) to cofinitary matroids and condition (6) are kept by Observation 4.2. To

check condition (5) for a finitary Mi, let g ∈ Pi be arbitrary. Since �i is a

well-order, it follows from condition (7) that there is an Sg such that Sβ
g = Sg

for all large enough β < α. But then Sg ⊆ Tα
i from which g ∈ spanMi

(Tα
i )

follows. Furthermore, clearly Sα
g = Sg since a finite set which is ≺i-smaller

than Sg and Mi-spans g would have appeared already before the limit.

Suppose now that α = β + 1. If
⋃

i∈Θ T β
i ⊇ E and the analogue of

condition (6) for the cofinitary Mi holds, then (T β
i : i ∈ Θ) is a desired

partition of E and we are done. Suppose it is not the case. If there is some

T β
j that contains an Mj-circuit C with C �⊆ Rj , then we take an e ∈ Pj ∩C

(see property (2)) and define T β+1
j := T β

j − e and T β+1
i := T β

i for i �= j. The

preservation of the conditions (1)-(8) is trivial. If there is no such a T β
j , then

there must be some e ∈ E which is not covered by the sets T β
i . Then there

is a unique k ∈ Θ with e ∈ Rk. If Mk is cofinitary then let T β+1
k := T β

k + e

and T β+1
i := T β

i for i �= k. We proceed the same way if Mk is finitary and

T β
k + e does not contain any Mk-circuit C with C �⊆ Rk. The preservation

of the conditions is again straightforward in both cases.

Finally assume that Mk is finitary and T β
k + e contains an Mk-circuit C

with C � Rk. Let f be the <k-maximal element of such a C and we define

T β+1
k := T β

k + e− f and T β+1
i := T β

i for i �= k. Since C ∩ Pk �= ∅ (because

C �⊆ Rk) and the elements of Pk are <k-larger than the elements of Rk, we

have f ∈ Pk. Conditions (1)-(5) remain true for obvious reasons. Suppose for

a contradiction that condition (6) fails and C ′ is an Mk-circuit in T β+1
k with

C ′ �⊆ Rk. Then f /∈ C ′ and we must have e ∈ C ′ since otherwise C ′ ⊆ T β
k

and therefore this condition would have been already violated with respect

to T β
k . By applying strong circuit elimination with the Mk-circuits C and

C ′, we obtain a circuit C ′′ ⊆ C ∪C ′ − e through f . But then C ′′ ⊆ T β
k is an

Mk-circuit and f witnesses C ′′ �⊆ Rk in violation of condition (6) for β which

is a contradiction. To check (7), we may assume that f ∈ Sβ
g since otherwise

Sβ
g ⊆ T β+1

k and thus Sβ+1
g �k Sβ

g . If S
β
g = {g}, then f = g by f ∈ Sβ

g and

by the choice of f we have Sβ+1
f �k C − f ≺k {f}. Otherwise there is an

Mk-circuit C
′ 	 f, g such that Sβ

g = C ′−g ⊆ T β
k . By applying strong circuit

elimination with C and C ′, we obtain a circuit C ′′ ⊆ C ∪C ′ − f through g.

Since f ∈ C ′ \C ′′ and each element of C ′′ \C ′ is ≺k-smaller than f (because

f = max≺k
C) we may conclude that C ′′ \C ′ ≺k C ′ \C ′′. Thus by applying
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Observation 3.1 iteratively we get C ′′ − g ≺k C ′ − g. Therefore

Sβ+1
g �k C ′′ − g ≺k C ′ − g = Sβ

g .

The recursion is done and it terminates at some ordinal since the con-
structed set families (T β

i : i ∈ Θ) are pairwise distinct by conditions (2), (3)
and (8).

Let us point out that the special case of Proposition 4.1 in which Pi and
Ri are bases of Mi is exactly [7, Theorem 1.2]. Now we derive Theorems 1.6
and 1.7 from Proposition 4.1:

Theorem 1.6. For i ∈ {0, 1}, let Mi ∈ (F⊕F∗)(E) and Fi ⊆ E. Then there
exists an F ⊆ E such that spanMi

(F ) ⊇ Fi and spanM∗
i
(E \ F ) ⊇ E \ F1−i

for i ∈ {0, 1}.

Proof. We can assume by contracting F0 ∩ F1 and deleting E \ (F0 ∪ F1) in
both matroids that the sets Fi form a bipartition of E. We apply Proposition
4.1 with Θ = {0, 1}, matroids M0 and M∗

1 and sets P0 := R1 := F0 and
P1 := R0 := F1. From the resulting bipartition E = T0�T1 we take F := T0.
Then

1. spanM0
(F ) ⊇ F0,

2. spanM∗
1
(E \ F ) ⊇ F1,

3. spanM∗
0
(E \ F ) ⊇ F0,

4. spanM1
(F ) ⊇ F1.

Theorem 1.7. For i ∈ Θ, let Mi ∈ (F⊕ F∗)(E), Pi, Ri ⊆ E and for e ∈ E,
let Ne ∈ (F⊕ F∗)(Θ). Then there are Ti ⊆ Pi ∪Ri for i ∈ Θ such that

1. spanMi
(Ti) ⊇ Pi;

2. spanM∗
i
(E \ Ti) ⊇ E \Ri;

3. For every e ∈ E, the set {i ∈ Θ : e ∈ Ti} spans {i ∈ Θ : e ∈ Ri} in
Ne;

4. For every e ∈ E, the set {i ∈ Θ : e /∈ Ti} spans {i ∈ Θ : e /∈ Pi} in
N∗

e .

Proof. We may assume that Θ ∩E = ∅. For i ∈ Θ, we construct a matroid
M ′

i by “copying” Mi to {i} × E and then extending to Θ × E by loops.
For e ∈ E, we construct a matroid N ′

e by copying N∗
i to Θ × {e} and then

extending to Θ × E by loops. The sets R′
i := {i} × Ri for i ∈ Θ together

with the sets R′
e := {i ∈ Θ : e /∈ Ri} × {e} for e ∈ E cover Θ × E.
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Furthermore, the elements of the family consisting of P ′
i := {i} × Pi for

i ∈ Θ and {i ∈ Θ : e /∈ Pi} × {e} for e ∈ E are pairwise disjoint. Let
{T ′

i , T ′
e : i ∈ Θ, e ∈ E} be a partition of Θ × E obtained by applying

Proposition 4.1 with the matroids M ′
i , N ′

e, covering R′
i, R′

e and packing
P ′
i , P

′
e (i ∈ Θ, e ∈ E). It is easy to check that the family consisting of the

projections Ti of T
′
i to E for i ∈ Θ is as desired.

5. Applications

5.1. Cantor-Bernstein for path-systems

We derive Theorem 1.3 from Theorem 1.5.

Theorem 1.3 (Diestel and Thomassen, [4]). Assume that G = (V,E) is
a graph, V0, V1 ⊆ V and Pi is a system of disjoint V0V1-paths in G for
i ∈ {0, 1}. Then there exists a system of disjoint V0V1-paths P with V (P) ∩
Vi ⊇ V (Pi) ∩ Vi for i ∈ {0, 1}.

Proof. For i ∈ {0, 1}, we define Mi to be the cycle matroid of the graph we
obtain from G by contracting Vi to a single vertex. Then E(Pi) ∈ IM0

∩IM1

for i ∈ {0, 1}. By applying Theorem 1.5 with Ii := E(Pi) and M1−i, we can
find an I ∈ IM0

∩ IM1
with E(P1−i) ⊆ spanMi

(I) for i ∈ {0, 1}. Then G[I]
is a forest in which every tree meets each Vi at most once. Each connected
component of G[I] which meets both Vi contains a unique V0V1-path. We
define P to be the set of these paths. It remains to show that P satisfies
the requirements. Let v0 ∈ V (Pi) ∩ Vi. It is enough to show that v0 is
reachable from V1−i in G[I] because then the (unique) path witnessing this
is in P . Consider the path P ∈ Pi through v0. Let the vertices of P be
v0, . . . , vn enumerated in the path-order starting from Vi. It follows from
E(P ) ⊆ spanM1−i

(I) that for every k < n eitherG[I] contains a path between
vk and vk+1 or both of them are reachable from V1−i in G[I]. Vertex vn is
obviously reachable from V1−i because it is an element of it. If we already
know that vk+1 is reachable from V1−i in G[I], then it follows that vk is
reachable as well. Thus by induction v0 is reachable from V1−i in G[I] which
completes the proof.

5.2. Matroid intersection

Theorem 1.9. Let E be countable and let Mi ∈ (F⊕ F∗)(E) for i ∈ {0, 1}.
Then SM(M0,M1) is cofinal but not necessarily upward closed in (IM0

∩
IM1

,�M0,M1
).
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v0 w1

w0 v1

V0

V1

. . . . . .

Figure 2: Matching I0 consists of the dashed and I1 consists of the normal
edges.

Proof. We start with the ‘cofinal’ part of the statement. Let J ∈ IM0
∩ IM1

be given. We take an I ′ ∈ SM(M0,M1) and fix a partition E = E0�E1 such
that I ′i := I ′ ∩ Ei spans Ei in Mi for i ∈ {0, 1}. By applying Theorem 1.6
with the matroids Mi � Ei and M1−i.Ei and sets I ′i and Ji := J ∩ Ei, we
obtain a base Ii of Mi � Ei which is independent in M1−i.Ei and spans Ji in
M1−i.Ei. We claim that I := I0 � I1 is as desired. Indeed, I ∈ SM(M0,M1)
because Ii is an M1−i.Ei-independent base of Mi � Ei. Finally, I1−i spans
J1−i in Mi.E1−i = Mi/Ei and Ii ⊆ Ei spans Ei (which contains Ji) in Mi

by construction thus J ⊆ spanMi
(I). Therefore J ⊆ spanM0

(I) ∩ spanM1
(I)

which means J �M0,M1
I.

In order to show the ‘not necessarily upward closed’ part we shall con-
struct first a bipartite graph G = (V0, V1;E). We start with a double ray
. . . , v−1, v0, v1, . . . and add a new vertex wi and new edge viwi for i ∈ {0, 1}
(see Figure 2). The bipartite graph G induces two partition matroidsM0 and
M1 on E in the way that I ⊆ E is defined to be independent in Mi if no two
edges in I have a common end-vertex in Vi. Then the elements of IM0

∩IM1

are exactly the matchings, moreover, matching I is in SM(M0,M1) iff one
can choose exactly one vertex from each e ∈ I such that the resulting set is
a vertex cover. Let

Ii := {v2k+iv2k+1+i : k < ω} for i ∈ {0, 1}.

On the one hand, the matchings Ii cover the same vertices thus

I0 �M0,M1
I1 �M0,M1

I0.

On the other hand, we claim that I1 is strongly maximal but I0 is not.
Indeed, {v−2k, v2k+1 : k < ω} is a vertex cover (upper-left and lower-right
corners on Figure 2) that consists of choosing exactly one end-vertex of each
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edge in I1 and therefore witnessing I1 ∈ SM(M0,M1). But there is no such a
vertex cover for I0 because if we pick vi from the edge v0v1, then we cannot
choose any end-vertex of v1−iw1−i. Thus SM(M0,M1) is not upward closed
in (IM0

∩ IM1
,�M0,M1

).

References

[1] Georg Cantor. Mitteilungen zur lehre vom transfiniten. Zeitschrift für
Philosophie und philosophische Kritik, 91:81–125, 1987.

[2] N. S. Mendelsohn and A. L. Dulmage. Some generalizations of the prob-
lem of distinct representatives. Canadian Journal of Mathematics, 10:
230–241, 1958. doi: 10.4153/cjm-1958-027-8. MR0095129

[3] Oystein Ore. The theory of graphs. American Mathematical Society,
1962. doi: 10.1090/coll/038. MR0150753

[4] Reinhard Diestel and Carsten Thomassen. A cantor-bernstein theorem
for paths in graphs. The American Mathematical Monthly, 113 (2): 161–
166, 2006. MR2203237

[5] Joshua Erde, J. Pascal Gollin, Attila Joó, Paul Knappe, and Max Pitz.
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