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Avoiding monochromatic solutions to 3-term
equations
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Given an equation, the integers [n] = {1, 2, . . . , n} as inputs, and

the colors red and blue, how can we color [n] in order to mini-

mize the number of monochromatic solutions to the equation, and

what is the minimum? The answer is only known for a handful of

equations, but much progress has been made on improving upper

and lower bounds on minima for various equations. A well-studied

characteristic of an equation, which has its roots in graph Ramsey

theory, is to determine if the minimum number of monochromatic

solutions can be achieved (asymptotically) by uniformly random

colorings. Such equations are called common. We prove that no

3-term equations are common and provide a lower bound for a

specific class of 3-term equations.
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1. Introduction

Given an equation

(1) a1x1 + · · ·+ akxk = 0 with ai ∈ Z

and the colors red and blue, how should we color the elements of [n] =

{1, 2, . . . , n} in order to reduce the number of monochromatic solutions,

with the ultimate goal being to find the asymptotic (as n → ∞) minimum

number? To be precise, by a coloring we mean a function f : [n] → {−1, 1}
(where −1 represents blue and 1 represents red), by a solution we mean a

vector (x∗1, . . . , x
∗
k) ∈ [n]k that satisfies the equation, and by monochromatic

we mean f(x∗1) = · · · = f(x∗k).

Before we proceed, we clarify the asymptotic notation used throughout.

Let f, g be functions of n. If f = O(g), there exist some constants C,N such
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that |f(n)| ≤ Cg(n) for all n ≥ N . By f = Ω(g), we mean g = O(f). If
f = o(g), this indicates f/g → 0 as n → ∞1.

Asymptotic minima are difficult to come by, but much progress has been
made on improving upper and lower bounds. The most comprehensive result
on lower bounds is due to Frankl, Graham, and Rödl, who showed that as
long there is a nonempty subset of coefficients which sum to 0, the equation
will always have Ω(nk−1) monochromatic solutions [8]. In fact, their result
is more general, considering systems of equations and an arbitrary number
of colors.

For upper bounds, a well-studied problem is to determine if colorings can
be found which yield fewer monochromatic solutions asymptotically than
uniformly random colorings. This problem has its roots in graph Ramsey
theory, where one can ask a similar question: given a fixed graph H, can the
edges of Kn always be colored in such a way that produces asymptotically
fewer monochromatic copies of H in Kn than what would be expected from
uniformly random colorings? Graphs with this property are referred to as
uncommon. In 1959, Goodman showed that K3 was common, i.e. every col-
oring of Kn has asymptotically at least as many monochromatic copies of
K3 as one would expect from uniformly random colorings [9]. Three years
later, Erdős conjectured that Ks was common for all s ≥ 2 [6], and in 1980
Burr and Rosta were even bolder, conjecturing that all graphs were common
[1]. However, in 1989 Thomason showed that K4 was uncommon, disproving
both conjectures [19].

The first result regarding equations came nearly a decade later, and we
will highlight certain aspects of the original equation of study: x + y = z,
known as Schur’s equation. Each solution is generally represented as a Schur
triple (x, y, x + y). There are

(
n
2

)
solutions over [n] (when (x, y, x + y) and

(y, x, x + y) are considered distinct). With a uniformly random coloring,
a given solution with x �= y will be monochromatic with probability 1/4
(and solutions with x = y contribute only to lower order terms), so we
would expect n2/8 + O(n) monochromatic solutions. In 1998, Robertson
and Zeilberger found the asymptotic minimum number of monochromatic
solutions: n2/11 + O(n) [14]. In particular, there is always a coloring of [n]
with fewer monochromatic solutions than what would be expected from a
uniformly random coloring. To borrow the terminology from graph theory,
x + y = z is uncommon. A coloring that achieves this minimum is quite
simple to describe:

1In all cases, the implicit constants are allowed to depend on the equation being
analyzed.
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(or as close to this as possible when n is not a multiple of 11).

One can ask the same questions about other equations or systems of
equations. Generally the equations considered are linear with integer coeffi-
cients, which enables another variation on the problem: replace [n] with an
abelian group. Colorings of Zn and Fn

p are frequently studied [12, 7, 15]. Over
[n], true (asymptotic) minima are only known for a handful of equations,
such as x+by = z with b ∈ N = {1, 2, 3, . . . } [14, 18] and x+y = z+w, where
it turns out the 1/8 fraction of monochromatic solutions from a random col-
oring is asymptotically optimal (see Appendix A for proof). Asymptotic
minima are studied most often, but there are also some results on exact
minima [11].

In this paper, we restrict our focus to 3-term equations and address
both upper and lower bounds. For upper bounds, we show that all 3-term
equations are uncommon, i.e. we can always color [n] in such a way which
produces asymptotically fewer monochromatic solutions than what is ex-
pected from uniformly random colorings. This result is of interest because
all 3-term equations (in fact, all equations with an odd number of terms)
are actually common over any abelian group whose order is coprime to each
coefficient of the equation [4]. For lower bounds, we use a structure theorem
(a robust version of Freiman’s 3k−4 Theorem [16]) to show equations of the
form ax+ ay = cz, a, c ∈ N, always have Ω(n2) monochromatic solutions.

Even though the main focus in this paper is 3-term equations, the nota-
tion below is kept more general in order to make connections with the result
in [20], which we will discuss later. Let E be an equation a1x1+· · ·+akxk = 0
with integer coefficients whose inputs are taken from a finite set A, and let
f : A → {−1, 1} a coloring. Denote the set of all solutions

(2) TE(A) := {(x1, . . . , xk) ∈ Ak | a1x1 + · · ·+ akxk = 0},

and denote the set of all monochromatic solutions

(3) ME(f) := {(x1, . . . , xk) ∈ TE(A) | f(x1) = · · · = f(xk)}.

Next, the proportion of monochromatic solutions under f is denoted

(4) μE(f) :=
|ME(f)|
|TE(A)|
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(with μE(f) defined to equal 0 if |TE(A)| = 0). Finally, the value in question
is the minimum monochromatic proportion:

(5) μE(A) := min
f :A→{±1}

μE(f).

2. Upper bounds

With the previous notation, an equation E is uncommon over [n] if

(6) lim sup
n→∞

μE([n]) <
1

2k−1

(asymptotically strictly less than 21−k). To reiterate, 21−k is the expected
value of μE(f) when f is a uniformly random coloring, assuming that the
equation has both positive and negative coefficients2. Note that what makes
an equation uncommon over [n] is a sequence of colorings in n, but will often
refer to the sequence simply as a single coloring f : [n] → {−1, 1} defined in
terms of n. With this, we can now state our main result formally.

Theorem 2.1. All equations ax+by+cz = 0 with a, b, c ∈ Z are uncommon
over [n].

Here we emphasize “over [n]” because of other results when [n] is re-
placed by an abelian group [4, 12, 15, 7]. To show many equations are un-
common over [n], we will color cyclic groups and extend them to colorings
of [n], an idea that has some similarities with techniques for solving related
problems [12, 2]. We will actually define our colorings via probability dis-
tributions and use Fourier-analytic techniques like those in [4, 5, 7, 15, 20].
We do not make a distinction between the general cyclic group of order m
and the integers modulo m, which we will denote Zm = {0, 1, . . . ,m− 1}.

Below is the crucial lemma that allows us to work in Zm rather than [n].
An analogous statement can be found in [12] regarding arithmetic progres-
sions. While our results are centered around 3-term equations, we state this
fact more generally for use in a later discussion.

Lemma 2.1. Given an equation E : a1x1 + · · · + akxk = 0 and a positive
integer m,

(7) lim sup
n→∞

μE([n]) ≤ μE(Zm).

2Note that equations with all coefficients the same sign (e.g. x+ y + z = 0) will
have 0 solutions for any n, and therefore μE(f) := 0. Such equations are always
uncommon by our definition.
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Proof. Let f : Zm → {−1, 1} be a coloring that achieves the minimum on
the right-hand side. This coloring can be extended to a coloring f̃ : [n] →
{−1, 1} very naturally by composing f with the canonical projection map
[n] → Zm. By design, a vector in [n]k is monochromatic if and only if it is
monochromatic when projected onto the corresponding vector in Zk

m. Let
Cnk−1+O(nk−2) be the number of solutions to the equation over [n], where
C is some positive constant. Then each solution over Zm corresponds to

C
( n

m

)k−1
+O(nk−2)

solutions over [n]. Using the fact that |TE(Zm)| = mk−1, we get

μE([n])

≤ |ME(f̃)|
|TE([n])|

=
μE(Zm)mk−1[C(n/m)k−1 +O(nk−2)]

Cnk−1 +O(nk−2)
= μE(Zm) + o(1),

and the result follows.

Lemma 2.1 is critical because it allows us to prove results (and use
past results) over Zm and apply them to scenarios over [n]. In practice, the
“colorings” we use are actually defined probabilistically, and we invoke the
probabilistic method to say that if there is a random coloring whose expected
proportion of monochromatic solutions is at most some value K, then there
must exist an actual coloring f such that μE(f) ≤ K.

Remark. In the graph theoretic setting, the proportion analogous to μ,

min. # of monochr. H in Kn

total # of H in Kn
,

has a limit as n → ∞ (often referred to as the Ramsey multiplicity con-
stant). The proof of this fact is straightforward, as the sequence is bounded
and monotonic. However, for equations the corresponding sequence is not
monotonic. We still expect the limit to exist, but a proof (or counterexam-
ple) has not yet been found.

We prove Theorem 2.1 in a series of steps, each of which handles some
subset of 3-term equations ax + by + cz = 0, a, b, c ∈ Z. First, we use
Fourier-analytic techniques and Lemma 2.1 to deal with most equations.
Next, we state and prove a modest proposition for nearly all the equations
not covered in the first step and again utilize Lemma 2.1. Finally, the equa-
tions which remain are a small and rigid class of equations and one isolated
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equation, and for these we explicitly define colorings with asymptotically
fewer than the critical 1/4 monochromatic fraction expected from uniformly
random colorings. Detailed computations for the equations in this step are
provided in Appendix B. We always assume the equations are fully reduced,
i.e. gcd(a, b, c) = 1.

2.1. Fourier-analytic techniques

First, we will cover the standard notation for Fourier analysis in this setting.
For a generalized and thorough introduction, we recommend [17, Chapter
4]. Let f : Zm → [0, 1], which we associate with a probabilistic coloring via

(8) f(t) = P[t is red].

When we identify elements in Zm with the integers 0, 1, . . . ,m− 1, both

f(t) and e−2πiξt/m (t, ξ ∈ Zm)

are well-defined notions. The Fourier transform of f , denoted f̂ , is the
function from Zm to C given by

(9) f̂(ξ) :=
1

m

∑
t∈Zm

f(t)e−2πiξt/m.

In the arguments of [4, 7, 20], it was crucial that the order of the group was
relatively prime to each coefficient of the equation. We will use similar tools,
but we will actually exploit the fact that these results do not always hold
without this condition.

Without loss of generality we may assume |c| = max{|a|, |b|, |c|}. Put
m = |c|. In order to use Fourier transforms effectively, we need additional
assumptions:

m > |a|, |b|,(10)

One of gcd(a,m), gcd(b,m) is equal to 1,(11)

a+ b �≡ 0 mod m).(12)

Our goal now is to show that all equations of this form are uncommon over
Zm = Z|c|, as this combined with Lemma 2.1 implies they are also uncom-
mon over [n]. We will then show, using various other techniques, that the
equations not satisfying one of the above assumptions are still uncommon.
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First, we can write the expected number of red solutions over Zm in
terms of Fourier transforms:

(13) E[# of red solutions] = m2f̂(0)
∑
t∈Zm

f̂(at)f̂(bt).

Note, this formula requires thatm does not divide a or b, which is guaranteed
by (10). Extending this idea, the expected proportion of monochromatic
solutions is

μ{ax+by+cz=0}(f)

= f̂(0)
∑
t∈Zm

f̂(at)f̂(bt) + ̂(1− f)(0)
∑
t∈Zm

̂(1− f)(at) ̂(1− f)(bt).(14)

Therefore, to show ax+ by + cz = 0 is uncommon over Zm, we simply need
to find an f such that (14) is strictly less than 1/4. In order to simplify

calculations, we will impose the restriction f̂(0) = 1/2, which is equivalent
to requiring overall red and blue appear with equal probability. This gives
us

μ{ax+by+cz=0}(f) =
1

4
+

1

2

∑
t∈Zm−{0}

[f̂(at)f̂(bt) + ̂(1− f)(at) ̂(1− f)(bt)]

=
1

4
+

∑
t∈Zm

at,bt �=0

f̂(at)f̂(bt).

The last equality follows from the fact that ̂(1− f)(s) = −f̂(s) whenever
s �= 0, so any summand in the first sum with exactly one of at, bt equal
to 0 will be 0 (and the case at = bt = 0 will only occur when t = 0 since
the equation is fully reduced). Therefore, it suffices to find an f such that

f̂(0) = 1/2 and

(15)
∑
t∈Zm

at,bt �=0

f̂(at)f̂(bt) < 0.

We will refer to the above sum as the deviation. By the Fourier inversion
formula, we may define f by its Fourier coefficients, although some care must
be taken to ensure Range(f) ⊆ [0, 1]. First, we will utilize the fact that f is

real-valued if and only if f̂ is Hermitian: f̂(s) = f̂(−s) for all s. Next, we
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must find Fourier coefficients that guarantee f is between 0 and 1. To do

this, we will use the Fourier inversion formula:

(16) f(v) =
∑
t∈Zm

f̂(t)e2πitv/m.

By requiring f̂(0) = 1/2 and using the triangle inequality with (16), we have

(17) |f(v)− 1/2| ≤
∑

t∈Zm−{0}
|f̂(t)|.

Regarding Assumption (11), without loss of generality we may assume

gcd(a,m) = 1. We split the work into two cases: a �= b and a = b. When

a �= b, we may set f̂(±a) = −1/8, f̂(±b) = 1/9, and f̂(s) = 0 for all other

s �= 0. Note that if we did not assume (12), these choices could not be made.

With this f̂ is Hermitian, and by (17) 0 ≤ f(v) ≤ 1 for all v. Now we argue

the deviation is negative. Here, the deviation will have at least two negative

terms and at most two positive terms. To see this, the negative terms are

guaranteed by t = ±1, which are distinct since (10) and (12) together imply

m ≥ 3. Positive terms arise when

(at, bt) ∈ {(±a,±a), (±a,∓a), (±b,±b), (±b,∓b)}.

Since gcd(a,m) = 1, t �→ at is injective modulo m, so (at, bt) ∈ {(±a,±a),

(±a,∓a)} will only occur when t = ±1. In the other cases, t = ±ba−1 /∈ {±1}
is possible. Therefore, the deviation is at most

−2 · 1
8
· 1
9
+ 2 · 1

92
< 0,

and hence the equation is uncommon over Zm.

If a = b, then we simply take f̂(±a) = ±i/4 and f̂(s) = 0 for all other

s �= 0. Again, f̂ is Hermitian and f takes values within [0, 1], and here

the deviation −1/8. This covers all cases, proving any equation satisfying

the initial assumptions (10), (11), and (12) is uncommon over Zm and is

therefore uncommon over [n] by Lemma 2.1. Next we will cover equations

that do not satisfy those assumptions.
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2.2. Remaining equations

As discussed previously, the Fourier-analytic techniques do not cover every

equation. Recall the assumptions we needed:

(10) m > |a|, |b|,
(11) One of gcd(a,m), gcd(b,m) is equal to 1,

(12) a+ b �≡ 0 mod m).

If (11) does not hold, then we may assume one of these gcds is at least 3, as

they cannot both be 2 with the equation fully reduced. For these equations,

we have the following proposition.

Proposition 2.1. Every 3-term equation with two coefficients that have a

common factor of at least 3 is uncommon over [n].

Proof. Without loss of generality, assume m = gcd(a, c) ≥ 3. As done pre-

viously, we will work in Zm. The coloring is quite simple: f(0) = −1, and

f(t) = 1 otherwise. Note that since the equation is fully reduced, every solu-

tion will be of the form (x, 0, z) ∈ Z3
m, and x, z are unrestricted. Therefore,

only one solution, namely (0, 0, 0), will be monochromatic, and hence the

monochromatic proportion is 1/m2 ≤ 1/9 < 1/4. By Lemma 2.1 this ex-

tends to a coloring of [n], and hence the equation is uncommon over [n].

Equations where (12) does not hold are equivalent to one of three types

of equations:

ax+ by = −(a+ b)z, ax+ by = (a+ b)z, and ax− ay + cz = 0.

For the first type, note that our assumption that z has the largest coefficient

in magnitude implies that a and b have the same sign. Therefore, the first

type has no solutions and is automatically uncommon. The second type is

equivalent to a constellation shown to be uncommon in [3]. Equations of

the third type with |a| ≥ 3 can be eliminated by Proposition 2.1, which

does not require that c is the largest coefficient. If |a| = 1, the equations

are equivalent to ones of the form x − y + cz = 0, which were shown to be

uncommon in [18] (in fact, the authors found asymptotic minima). If |a| = 2,

we are left with equations of the form

(18) 2x− 2y + cz = 0.
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If (10) does not hold but the largest coefficients are at least 3, then
Proposition 2.1 ensures these equations are uncommon. Up to equivalence,
the equations left in this case are

x+ y − z = 0, 2x− y + 2z = 0, and 2x+ y − 2z = 0.

The first equation is Schur’s equation, discussed previously. Therefore, the
only equations not yet covered are, up to equivalence:

(19) 2x− 2y + cz = 0 and 2x− y + 2z = 0.

We now describe colorings for these equations that yield asymptotically
fewer than a 1/4 proportion of monochromatic solutions, and detailed com-
putations can be found in Appendix B.

The colorings for equations of the form 2x−2y+cz = 0 all have a similar
construction: alternate between red and blue until some boundary point αn
that depends on c, and then color from αn to n entirely red. Let the coloring
f : [n] → {−1, 1} be defined as follows:

f(t) =

{
−1, t even, t ≤ αn,

1, otherwise,
where α =

{
3/4, c = 1,

2/c, c ≥ 3

(note that c is odd because our equations are fully reduced). With these
colorings, we get monochromatic proportions of{

5/24 + o(1), c = 1,

1/c2 + o(1), c ≥ 3,

both of which are asymptotically less than 1/4, proving these equations are
uncommon.

For the final equation, 2x− y + 2z = 0, we use the following coloring:

1 n/8 n/2 n

(or as close to this as possible if n is not a multiple of 8). With this coloring,
the proportion of monochromatic solutions is 1/64 + o(1), far less than the
1/4 threshold. This finally proves Theorem 2.1, i.e. all 3-term equations are
uncommon over [n]. Next, we will calculate lower bounds for a specific class
of 3-term equations.
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3. Lower bounds

Every equation

(20) a1x1 + · · ·+ akxk = 0 (ai ∈ Z)

with at least one positive and one negative coefficient has Cnk−1+O(nk−2)
solutions for some C > 0 depending on the coefficients, and we believe a
positive fraction of these will always be monochromatic, as long as at least
three coefficients are nonzero. Note that it follows from a result of Rado (see
discussion following equation (3) in section 2 of [13]) that a 2-coloring of
these equations has at least one monochromatic solution.

Conjecture 3.1. Given an equation a1x1 + · · · + akxk = 0 with nonzero
ai ∈ Z, k ≥ 3, and at least one negative and one positive coefficient, every
coloring has Ω(nk−1) monochromatic solutions over [n].

As stated previously, a result of Frankl, Graham, and Rödl confirms this
conjecture for equations which have a subset of coefficients that sum to 0
[8]. And in fact, they showed this for systems of equations (with an analo-
gous assumption on the coefficients) and colorings of an arbitrary number
of colors. They also showed that this is not necessarily true for equations in
general via the equation x+ y− 3z = 0 using 5 colors. We expect this lower
bound on the number of monochromatic solutions to still hold when only
two colors are used. We make partial progress towards this conjecture.

Theorem 3.1. Equations of the form ax + ay − cz = 0 (a, c ∈ N) always
have Ω(n2) monochromatic solutions.

We will prove this by using the structure theorem from Xuancheng Shao
and Max Wenqiang [16]. We may assume a and c are relatively prime. Fix
a coloring f : [n] → {−1, 1}, and let R = f−1({1}) and B = f−1({−1})
denote the red and blue elements, respectively. We will actually show there
are Ω(n2) monochromatic solutions just among the multiples of c, so we
denote R′ = R ∩ cZ and B′ = B ∩ cZ. Let C1 and C2 be small, positive
constants possibly depending on a and c to be determined later.

Claim 3.1. If |R′| ≤ C1n for sufficiently small C1, then there are Ω(n2)
blue solutions.

Proof. There are Ω(n2) total solutions involving only multiples of c. Since
each number in R′ is present in at most 3n solutions, by assumption there
are at most 3C1n

2 solutions with an input from R′. If we make C1 small
enough, this still leaves Ω(n2) solutions with inputs exclusively from B′.
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By this claim, we may assume |R′|, |B′| ≥ C1n. Now we will cover some
necessary notation. Let X,Y ⊆ Z. The sum set of two sets X and Y ,
denoted X + Y , is

(21) X + Y = {x+ y : x ∈ X, y ∈ Y }.

The basic outline of our argument is as follows: if the sum sets R′ +R′ and
B′ + B′ are both large, then they will have a nontrivial intersection, and if
one of these sum sets is small, then [n]∩cZ will contain large monochromatic
arithmetic progressions, and both cases imply there will be Ω(n2) monochro-
matic solutions. Rather than use sum sets, We will use the robust sum sets
defined in [16]: given a subset Γ ⊆ X × Y , let

(22) X +Γ Y := {x+ y : (x, y) ∈ Γ}.

For A ∈ {R′, B′}, let Γ = Γ(A) be the set of all pairs in A × A whose sum
has at least C2n distinct representations as a sum of pairs, i.e.

(23) Γ = {(a1, a2) ∈ A×A : |{(b1, b2) ∈ A×A : b1+b2 = a1+a2}| ≥ C2n}.

We will first show that if the robust sum sets in question are large, then
we will have Ω(n2) monochromatic solutions. Let ε > 0. We leave it arbitrary
for now, but later we will pick a specific ε which depends on C1 and C2.

Claim 3.2. If |A+Γ(A) A| ≥ (2 + ε)|A| for A = R′, B′, then

(24) |(R′ +Γ(R′) R
′) ∩ (B′ +Γ(B′) B

′)| = Ω(n),

which implies there are Ω(n2) monochromatic solutions.

Proof. We have

|R′ +Γ(R′) R
′|+ |B′ +Γ(B′) B

′| ≥ (2 + ε)(|R′|+ |B′|) = (2 + ε)
⌊n
c

⌋
,

and since A +Γ(A) A ⊆ cZ ∩ [2n] (which has only 
2n/c� elements), (24)
follows from the Inclusion-Exclusion Principle.

Note that by construction v ∈ (R′+Γ(R′)R
′)∩(B′+Γ(R′)B

′) corresponds
to at least C2n monochromatic solutions: if v is colored red, each distinct
representation will correspond to a red solution, and similarly if v is colored
blue. Since there are Ω(n) such v, we have Ω(n2) monochromatic solutions.
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Because of the above claim, we may now assume that one of the robust
sum sets is not too large. Without loss of generality, suppose

(25) |R′ +Γ(R′) R
′| < (2 + ε)|R′|.

We are now in a position to use the previously mentioned structure
theorem [16]. Rather than state the theorem verbatim, we state only what
we need for this scenario.

Theorem 3.2. Let ε > 0. Suppose |R′| ≥ max{3, 2ε−1/2}, and let Γ ⊆
R′×R′ be a subset with |Γ| ≥ (1−ε)|R′|2. If |R′+ΓR

′| < (1+θ−11ε1/2)|R′|,
where θ = 1+

√
5

2 , then there is an arithmetic progression P with |P | ≤ |R′+Γ

R′| − (1− 5ε1/2)|R′|, |R′ ∩ P | ≥ (1− ε1/2)|R′|.
With (25), R′+ΓR

′ is small enough to fit the corresponding assumption
to the theorem. We also have an appropriate lower bound on Γ. To see this,
note the following claim.

Claim 3.3. There are at most ε|R′|2 pairs in R′ ×R′ − Γ, where ε = 2C2

cC2
1
.

Proof. Since R′ + R′ contains only multiples of c and lies inside [2n], |R′ +
R′| ≤ 2n/c. By the definition of Γ, each of these elements leads to at most
C2n pairs that are not in Γ. Therefore, since |R′| ≥ C1n,

|R′ ×R′ − Γ| ≤ (C2n)(2n/c) ≤
2C2

cC2
1

|R′|2.

By this claim,

|Γ| = |R′ ×R′| − |R′ ×R′ − Γ| ≥ |R′|2 − ε|R′|2 = (1− ε)|R′|2,

as required.
Note that the line of reasoning from Claim 3.1 up to this point is valid

for B′ as well (with the same choice for ε), and that once C1 is fixed (by
Claim 3.1) this choice of ε can be made arbitrarily small by decreasing C2.

By Theorem 3.2, we can now say that R′ strongly resembles an arith-
metic progression. That is,

(26) |R′ ∩ P | = (1− oε→0(1))|R′|,

where the notation oε→0(1) emphasizes things being asymptotic as ε → 0,
rather than n → ∞. With so much information about the coloring (at least
on the multiples of c), we can now find a specific progression which contains
the desired amount of monochromatic solutions.
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Claim 3.4. There exists an arithmetic progression Q = {dk : 1 ≤ k ≤

n/d�} with |Q ∩A| = (1− oε→0(1))|Q| for some A ∈ {R,B}.

Proof. Let P be the progression guaranteed by Theorem 8, containing num-
bers of the form a + dk. If a = 0, then P satisfies the conclusions of
the claim, so we may assume 0 < a < d. In this case, the progression
Q = {dk : 1 ≤ k ≤ 
n/d�} is contained almost entirely blue (since it’s
almost entirely disjoint from R′ and everything is still a multiple of c). In
other words, |Q ∩R′| = oε→0(1), and so |Q ∩B| = (1− oε→0(1))|Q|.

Finally, if x, y ∈ Q, then

z =
x+ y

c
=

dk1 + dk2
c

= d

(
k1 + k2

c

)
,

which is in Q whenever k1 + k2 ∈ cZ and k1 + k2 ≤ n/d. There are approxi-
mately

1

2c
((1− oε→0(1))|Q|)2

blue pairs (x, y) ∈ Q2 satisfying these constraints. Since Q contains at most
oε→0(1)|Q| red numbers, there are at most oε(1)|Q|2 solutions (x, y, z) in Q
with x and y blue and z red. Subtracting, we are left with

1

2c
((1− oε→0(1))|Q|)2 = Ω(n2)

monochromatic blue solutions. Note that by Theorem 3.2 and the assump-
tion following Claim 3.1, we have

|P | ≥ |R′ ∩ P | ≥ (1− ε1/2)|R′| ≥ (1− ε1/2)C1n.

In particular, since |P | is linear in size, d must be bounded above by a
constant, and hence Q is also linear in size. Therefore, every equation of the
form ax+ay− cz = 0 has Ω(n2) monochromatic solutions regardless of how
[n] is colored, proving Theorem 3.1.

4. Conclusion and new directions

We have shown that all 3-term equations are uncommon over [n]. For any
single equation a1x1 + · · ·+ akxk = 0 over an abelian group A whose order
is relatively prime to each ai, a full classification is known.
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Theorem 4.1 ([20]). An equation is uncommon over A if and only if k is
even and has no canceling partition.

A canceling partition of an equation is a partition of the coefficients
into pairs {ai, aj} such that ai + aj = 0. Over [n], we expect the following
to be true.

Conjecture 4.1. An equation is common over [n] if and only if k is even
and has a canceling partition.

Note that if this were true, equations with k even would behave the same
over A and [n], while equations with k odd would behave differently. With
this paper, the conjecture is now confirmed for k = 3. Much is still unknown,
but we can also definitively say that equations with k even and no canceling
partition are uncommon over [n]. This is simply because they are uncommon
over Zp if p is a large enough prime (p > max{|ai|}) by Theorem 4.1, and
Lemma 2.1 implies they are also uncommon over [n]. Appendix A provides
a proof for the only type of equation known to be common over [n]:

(27) x1 + · · ·+ xk/2 = xk/2+1 + · · ·+ xk (k even).

For instance, it is not even known if x+ 2y = z + 2w is common.
Aside from these types of classification problems (and ones which ad-

dress systems of equations as in [10]), improving upper and lower bounds
on minima remains widely open. Furthermore, all these questions and more
can be asked about colorings of more than 2 colors.

Appendix A. Monochromatic solutions for additive tuples

Fix k ∈ N even. Here we prove all additive tuples, equations of the form

(28) x1 + · · ·+ xk/2 = xk/2+1 + · · ·+ xk,

are common over [n], i.e. the minimum fraction of monochromatic solutions
the same as what is expected from uniformly random colorings: 21−k. Let
p be a prime which is larger than kn/2. We identify [n] with the subset
S = {1, 2, . . . , n} ⊆ Zp and note that by our choice of p any solution to (28)
over S is also a solution over the integers.

Let 1S be the indicator function of S, and recall the definition of the
Fourier transform from Section 2.1:

1̂S(ξ) =
1

p

∑
t∈Zp

1S(t)e
−2πiξt/p.
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It is standard (see, for example, Equation (4.14) in [17]) that the number

of solutions to (28) in S is given by

pk−1
∑
t∈Zp

∣∣∣1̂S(t)
∣∣∣k .

Now suppose we have a partition of S into a red set R and a blue

set B. The total number of monochromatic solutions to x1 + · · · + xk/2 =

xk/2+1 + · · ·+ xk is then given by

pk−1
∑
j∈Zp

∣∣∣1̂R(j)
∣∣∣k + pk−1

∑
j∈Zp

∣∣∣1̂B(j)
∣∣∣k .

Using the inequality xk + yk ≥ 21−k(x + y)k, which is valid for all real

x, y and k ≥ 2 even (by Jensen’s inequality), we get that the number of

monochromatic solutions is at least

(p/2)k−1
∑
j∈Zp

(
|1̂R(j)|+ |1̂B(j)|

)k
≥ (p/2)k−1

∑
j∈Zp

∣∣∣1̂R(j) + 1̂B(j)
∣∣∣k

= 21−k

⎛⎝pk−1
∑
j∈Zp

∣∣∣1̂S(j)
∣∣∣k
⎞⎠ .

In other words, the number of monochromatic solutions is always at least a

21−k fraction of the total number of solutions.

Appendix B. Computations

Below are detailed calculations for the equations remaining after using the

Fourier-analytic techniques, Proposition 2.1, and past results [14, 3, 18].

B.1. 2x − 2y + cz = 0

Recall the colorings f : [n] → {−1, 1} (with −1 as blue and 1 as red) used

for these equations:

f(t) =

{
−1, t even, t ≤ αn,

1, otherwise,
where α =

{
3/4, c = 1,

2/c, c ≥ 3
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(note that c is odd because our equations are fully reduced). We address the

case when c ≥ 3 and c = 1 separately.

Let c ≥ 3. Since in any solution z is even, this coloring forces z to be

blue: if z ∈ [2n/c, n], then

2(y − x) = cz ≥ c(2n/c) = 2n,

so y−x ≥ n, but this is not possible. Therefore, all monochromatic solutions

are blue, and in particular x, y, z ∈ [1, 2n/c]. There are 2n2/c2 +O(n) ways

to choose two numbers x and y in [1, 2n/c] (note y > x is required for a valid

solution to the equation). Only 1/4 + O(n−1) of the pairs (x, y) are blue3.

Furthermore, 2(y − x) must be divisible by c, and only 1/c+O(n−1) of the

pairs (x, y) meet that requirement. Finally, once x and y are chosen, z is

determined, and z is always in [1, 2n/c]: z = 2(y − x)/c < 2n/c. Therefore,

there are

n2

2c3
+O(n)

monochromatic solutions. The total number of solutions is n2/2c + O(n):

there are
(
n
2

)
ways to choose two numbers in [n] and set them as x and y,

and 1/c + O(n−1) of these pairs will have z = 2(y − x)/c ∈ Z (and z will

always be in [n]). This gives us

μ{2x−2y+cz=0}(f) ≤
n2/2c3 +O(n)

n2/2c+O(n)
=

1

c2
+ o(1) =

1

4
− Ω(1) (for c ≥ 3).

Now let c = 1. We will use the fact that for any solution z must be even

and break the counting into two cases: (a) z ∈ [1, 3n/4] (blue solutions) and

(b) z ∈ [3n/4, n] (red solutions). To count the number of monochromatic

solutions, it helps to visualize solutions on an n× n grid. For our purposes

here the horizontal axis will represent the x values, and the vertical axis will

represent the y values. Once x and y are chosen, z = 2(y−x) is determined,

and valid solutions (x, y, 2(y − x)) in [n]3 will lie within a certain area on

the grid. Figure 1 is provided as a visual aid for the following computations.

(a) For a blue solution, we must have x, y, z ∈ [1, 3n/4]. There are

27n2/128 + O(n) valid choices for x and y in [1, 3n/4] that also lead to

3The O(n−1) error term here is due to edge effects from the boundaries of the
regions; the total number of pairs involved in such effects is O(n). We use facts
similar to this several more times throughout this Appendix.
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1 n

n

3n
4

3n
4

3n
8

3n
8

≈ 27n2

128

(a) z ∈ [1, 3n/4]: The gray areas com-
bined represent all pairs (x, y) with 1 ≤
z = 2(y − x) ≤ 3n/4. Since here we are
counting blue solutions, x, y ∈ [1, 3n/4],
as well, i.e. we only consider the dark gray
area. The area of the dark gray trape-
zoid must be multiplied by 1/4, since only
about 1/4 of the pairs (x, y) in that region
are blue.

1 n

n

3n
4

3n
4

3n
8

n
2

n
4

3n
8

≈ 5n2

128

n2

32 ≈

(b) z ∈ [3n/4, n]: The gray areas com-
bined represent all pairs (x, y) with
3n/4 ≤ z = 2(y − x) ≤ n. Since we are
counting red solutions, the dark gray area
must be multiplied by 1/4, because only
about 1/4 of the pairs (x, y) in that trape-
zoid are red, and the light gray area must
be multiplied by 1/2, because only about
half of the x values there are red (the y
values in the light gray area are all red).

Figure 1: Two depictions of the n × n grid in the xy-plane. Labeled points
on the axes correspond to boundary points of the colored regions.

z ∈ [1, 3n/4]. Note, however, that only 1/4 +O(n−1) of the pairs (x, y) will

be blue. Therefore, there are

27

512
n2 +O(n)

blue solutions.

(b) For a red solution, note that since z must be even, z ∈ [3n/4, n].

For valid x and y, there are two possible cases here: (i) x ∈ [1, 3n/4] and

y ∈ [3n/4, n], or (ii) x, y ∈ [1, 3n/4]. In (i) there are n2/32 + O(n) valid

choices for x and y, but only 1/2 + O(n−1) of the x will be red. Therefore,

the contribution from (i) is

1

64
n2 +O(n).
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In (ii) there are 5n2/128+O(n) solutions, but only a 1/4+O(n−1) proportion
of the pairs (x, y) will be red, so the contribution from (ii) is

5

512
n2 +O(n).

Adding up all the blue solutions and all the red solutions, we get(
27

512
+

1

64
+

5

512

)
n2 +O(n) =

5

64
n2 +O(n)

monochromatic solutions.
The total number of solutions is 3n2/8+O(n), because for a solution we

must have

1 ≤ z = 2(y − x) ≤ n,

or 0 < y − x ≤ n/2, and there are 3n2/8 + O(n) pairs (x, y) which satisfy
this. Therefore,

μ{2x−2y+z=0}([n]) ≤
5

24
+ o(1) =

1

4
− Ω(1),

i.e. 2x− 2y + z = 0 is uncommon over [n].

B.2. 2x − y + 2z = 0

We will now cover a general technique to show an individual equation is
uncommon, and then we will use it on the equation 2x− y+2z = 0. Fix the
equation ax+ by+ cz = 0, and let f : [n] → {−1, 1} be a coloring. Consider
the value

(29) L =
∑

ai+bj+ck=0

f(i)f(j) + f(i)f(k) + f(j)f(k).

Here and elsewhere in this section, the variables i, j, k are implicitly assumed
to lie in [n]. L, in a sense, indirectly counts the number of monochromatic
solutions: by direct computation, each summand is 3 if i, j, k are monochro-
matic and is −1 otherwise, so

L = 3(# monochr. solutions)− (# non-monochr. solutions).

With a straightforward manipulation, we get

(30) # monochr. solutions =
1

4
(# total solutions) +

L

4
,
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which means that to show ax+ by + cz = 0 is uncommon, we only need to

exhibit a family of colorings with L = Cn2 +O(n) for some C < 0.

Our next task is to find a way to actually compute L. For i < j, let

N(i, j) denote the number of times a solution contains i and j as two of the

three values for x, y, z (in no particular order). Then we can rewrite (29) as

(31) L =
∑
i<j

N(i, j)f(i)f(j) +O(n).

Note the O(n) term accounts for the possibility of solutions with i = j.

We can view N(i, j) as the sum of six indicator-like functions, each corre-

sponding to where there exists a solution with (i, j) playing the role of some

ordered pair from {x, y, z}. We will examine the total contribution of each

of these functions separately in computing L, using areas in an n × n grid

to aid the calculations.

The coloring

1 n/8 n/2 n

will be enough for our purposes4. To compute L, the cases to consider are

1. (i, j) plays the role of (x, z): 2i−y+2j = 0; restriction: 1 ≤ 2i+2j ≤ n.

2. (i, j) plays the role of (z, x): 2j−y+2i = 0; restriction: 1 ≤ 2j+2i ≤ n.

3. (i, j) plays the role of (x, y): 2i−j+2z = 0; restrictions: 2 ≤ j−2i ≤ 2n,

j even.

4. (i, j) plays the role of (y, x): 2j−i+2z = 0; restrictions: 2 ≤ i−2j ≤ 2n,

i even.

5. (i, j) plays the role of (y, z): 2x−i+2j = 0; restrictions: 2 ≤ i−2j ≤ 2n,

i even.

6. (i, j) plays the role of (z, y): 2x−j+2i = 0; restrictions: 2 ≤ j−2i ≤ 2n,

j even.

Note in each of these six cases one of the bounds holds trivially.

4This coloring was obtained by first running a basic version of the local opti-

mization algorithm described in [3] for n = 1000. We then simplified the coloring

by hand and blew it up to an arbitrary n. The hand-manipulation did increase the

number of monochromatic solutions slightly, but it greatly simplified the following

calculations.
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n
8

n
2

n
8

n
2

1 n

n

n
4

3n
8

(a) Visual for L1.

n
8

n
2

n
8

n
2

1 n

n

n
16

n
4

n
4

(b) Visual for L3.

Figure 2: In each case, the contributions to L are computed by subtracting
the gray area (dichromatic pairs) from the red/blue area (monochromatic
pairs). The lighter regions represent i ≥ j and are not a part of L. Labeled
points on the axes correspond to boundary points of the colored regions.

Let us explore Case 1. We start by defining an “indicator” of sorts, which
will help us rewrite (31):

I1(i, j) =

{
f(i)f(j), 1 ≤ 2i+ 2j ≤ n,

0, otherwise.

Aggregating, we define L1 =
∑

i<j I1(i, j), which simply counts up Case 1’s
contribution to (31). Note Case 2 is identical to Case 1.

We can approach Case 3 in a similar manner, but there is an additional
twist. If we define

I3(i, j) =

{
f(i)f(j), 2 ≤ j − 2i ≤ 2n,

0, otherwise,

then L3 =
∑

i<j I3(i, j) includes the contributions from both even and odd

j, so the contribution from Case 3 is actually 1
2L3 + O(n). The rest of the

Lr are defined similarly.

Each Lr can be computed by considering the pairs (i, j) in Case r with
i < j and subtracting the number of dichromatic pairs from the number of
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monochromatic pairs. Similar to (yet distinct from) the counting technique
implemented for the equation 2x − 2y + z = 0, to compute a given Lr we
can consider areas within an n × n grid, as seen in Figure 2, now with i
represented on the horizontal axis and j on the vertical axis.

Case 2 is identical to 1, Case 5 is identical to 3, and Cases 4 and 6 lie
completely in i ≥ j and therefore will not contribute to L. This allows us to
simplify the calculation:

(32) L = L1+L2+
1

2
(L3+L5)+O(n) = 2L1+L3+O(n) = − 15

128
n2+O(n).

The coefficient of n2 is negative, so by (30) this coloring gives (asymptoti-
cally) fewer monochromatic solutions than what is expected from uniformly
random colorings, i.e. 2x− y + 2z = 0 is uncommon over [n].
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