
Journal of Combinatorics

Volume 14, Number 3, 305–338, 2023

On a conjecture of Lin and Kim concerning a
refinement of Schröder numbers

Toufik Mansour and Mark Shattuck

In this paper, we compute the distribution of the first letter statis-
tic on nine avoidance classes of permutations corresponding to two
pairs of patterns of length four. In particular, we show that the
distribution is the same for each class and is given by the entries
of a new Schröder number triangle. This answers in the affirma-
tive a recent conjecture of Lin and Kim. We employ a variety of
techniques to prove our results, including generating trees, direct
bijections and the kernel method. For the latter, we make use of in
a creative way what we are trying to show to aid in solving a sys-
tem of functional equations satisfied by the associated generating
functions in three cases.
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1. Introduction

Given two permutations π = π1 · · ·πn ∈ Sn and τ = τ1 · · · τk ∈ Sk, we say
that π contains the pattern τ if there exist indices i1 < i2 < · · · < ik such
that πi1 · · ·πik is order isomorphic to τ , that is, πia > πib if and only if
τa > τb. Otherwise, π is said to avoid the pattern τ . Moreover, we say that
π avoids a set L of patterns if it avoids each pattern in L, and let Sn(L)
denote the subset of Sn whose members avoid L. In recent decades, the study
of pattern avoidance in permutations has been the object of considerable
attention (see, e.g., [7] and references contained therein).

An inversion within a permutation σ = σ1 · · ·σn ∈ Sn is an ordered
pair (a, b) such that 1 ≤ a < b ≤ n and σa > σb. The inversion sequence of
σ is given by a1 · · · an, where ai records the number of entries of σ to the
right of i and less than i for each i ∈ [n]. The systematic study of patterns in
inversion sequences was initiated only relatively recently in [4, 13]. Analogous
problems, such as avoidance of vincular [12] or multiple [20] patterns, have
been considered on inversion sequences in parallel to those on permutations
represented in the one-line notation.
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The (large) Schröder number Sn (see [17, A006318]) is defined recursively
by

nSn = 3(2n− 3)Sn−1 − (n− 3)Sn−2, n ≥ 3,

with S1 = 1 and S2 = 2, and arises as the enumerator of several avoidance
classes of permutations corresponding to a pair of patterns of length four. In
particular, combining the results from [5, 8, 18], one has the Sn enumerates
Sn(σ, τ) for the following ten inequivalent pairs (σ, τ):

I. (1234, 2134) II. (1324, 2314) III. (1342, 2341) IV. (3124, 3214)

V. (3142, 3214) VI. (3412, 3421) VII. (1324, 2134) VIII. (3124, 2314)

IX. (2134, 3124) X. (2413, 3142).

This answered in the affirmative a conjecture originally posed by Stanley
(see [8] for details). Moreover, outside of symmetry, there are no other such
pairs (σ, τ) for which |Sn(σ, τ)| = Sn. In this paper, we obtain a refinement
of this result in several cases by considering distributions of certain statistics
on the various classes. For other refinements of the Schröder numbers, see,
e.g., [2, 14, 15, 16].

Table 1: The new Schröder triangle Sn,k for 1 ≤ k ≤ n ≤ 6

n\k 1 2 3 4 5 6

1 1
2 1 1
3 2 2 2
4 4 6 6 6
5 8 16 22 22 22
6 16 40 68 90 90 90

In a recent paper, Lin and Kim [11] introduced a new triangle Sn,k for
Schröder numbers in their study of inversion sequences; see Table 1 above.
Here, we find it here more convenient for what follows to start from k = 1
instead of k = 0, as was done in [11]. Note that Sn,k is given recursively by

Sn,k = Sn,k−1 + 2Sn−1,k − Sn−1,k−1, 1 ≤ k ≤ n− 2,

with Sn,n = Sn,n−1 = Sn,n−2 for n ≥ 3 and S1,1 = S2,1 = S2,2 = 1. Lin
and Kim showed that Sn,k enumerates the inversion sequences π1 · · ·πn ∈
{In(021) | πn ≡ k mod n}. Then they state the following conjecture which
provides a connection between inversion sequences and pattern avoidance in
permutations.
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Conjecture 1.1 (Lin and Kim [11]). Let (ν, μ) be a pair of patterns of
length four. Then

Sn,k = |{σ1 · · ·σn ∈ Sn(ν, μ) | σn = k}|

for all 1 ≤ k ≤ n if and only if (ν, μ) is one of the following nine pairs:

(4321, 3421), (3241, 2341), (2431, 2341), (4231, 3241), (4231, 2431),

(4231, 3421), (2431, 3241), (3421, 2431), (3421, 3241).

Further, it was also shown in [11] that S(n, k) for 1 ≤ k ≤ n gives the
cardinality of the restricted class {π1 · · ·πn ∈ In(≥,−, >) : πn = k − 1} of
inversion sequences. For other recent results concerning the avoidance of a
pattern of relation triples by inversion sequences, see, e.g., [1, 3, 9, 10].

Given 1 ≤ i ≤ n, let Sn,i(σ, τ) denote the set of permutations of length
n avoiding σ and τ and starting with i. Note that one may consider equiva-
lently the distribution of the first letter statistic on the set of permutations
avoiding the reversal of the two patterns in question in each case. Here, we
confirm the conjecture by showing that |Sn,i(σ, τ)| = Sn,i for each of the
nine pairs above (where the patterns in each pair are reversed). It is seen
that these nine cases are derived from only six of the ten symmetry classes
(I)-(X) above. It should be remarked that the reversal, complement and in-
verse operations do not respect the first letter statistic and thus members
of the same symmetry class do not have the same first letter distribution in
general. Moreover, these are the only nine pairs such that |Sn,i(σ, τ)| = Sn,i

for all i; see Table 2 below which rules out all other possible pairs (σ, τ) for
which |Sn(σ, τ)| = Sn.

In several cases, we will make use of a generating function approach to
establish the result. Note that by the kernel method [6], one can show

∑
n≥1

(
n∑

k=1

Sn,ky
k

)
xn

=
xy(2− 3x− 3y + 3xy) + xy(x+ y − xy)(xy +

√
1− 6xy + x2y2)

2(1− 2x− y + xy)
,(1)

which reduces when y = 1 to the well-known formula for the Schröder num-
ber generating function given by

(2)
∑
n≥1

Snx
n =

1− x−
√
1− 6x+ x2

2
.
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This paper is organized as follows. In the next section, we show six cases

of the conjecture above using various methods such as induction, bijections

and generating trees. In the third section, we prove the remaining three

cases, each of which involves 1243 and another pattern, by considering the

joint distribution of the first and second letter statistics. This permits one

Table 2: All symmetries of classes I-X according to the first letter statistic,
where the 9 boldface cases correspond to the conjecture and the 9 italicized
cases are obtained by complementation

σ, τ {|{π ∈ S8(σ, τ) | π1 = k}|}8k=1 σ, τ {|{π ∈ S8(σ, τ) | π1 = k}|}8k=1

2413,4123 1584,1036,996,956,879,751,533,233 3142,4123 1584,1584,1252,912,637,443,323,233

3142,3214 1584,1584,736,396,292,304,488,1584 2341,2413 1584,488,304,292,396,736,1584,1584

2341,3142 1584,811,587,489,481,577,855,1584 2413,3214 1584,855,577,481,489,587,811,1584

2431,3421 1806,1022,710,614,644,795,1161,1806 2431,4231 1806,1092,1008,1045,1120,1134,924,429

2314,3124 1806,1092,752,629,629,752,1092,1806 2314,3214 1806,1092,752,629,629,752,1092,1806

2341,3241 1806,1092,752,629,629,752,1092,1806 2413,3142 1806,1092,752,629,629,752,1092,1806

2431,3241 1806,1092,752,629,629,752,1092,1806 2134,3124 1806,1161,795,644,614,710,1022,1806

3241,3421 1806,1806,1198,678,406,342,516,1806 3214,3241 1806,1806,1220,672,390,342,516,1806

3124,4123 1806,1806,1502,1152,840,594,429,429 3214,4213 1806,1806,1502,1152,840,594,429,429

3241,4231 1806,1806,1502,1152,840,594,429,429 3412,4312 1806,1806,1502,1152,840,594,429,429

3421,4231 1806,1806,1502,1152,840,594,429,429 3421,4321 1806,1806,1502,1152,840,594,429,429

4123,4132 1806,1806,1806,1412,928,512,224,64 4123,4213 1806,1806,1806,1412,928,512,224,64

4132,4213 1806,1806,1806,1412,928,512,224,64 4132,4231 1806,1806,1806,1412,928,512,224,64

4132,4312 1806,1806,1806,1412,928,512,224,64 4213,4231 1806,1806,1806,1412,928,512,224,64

4213,4312 1806,1806,1806,1412,928,512,224,64 4231,4312 1806,1806,1806,1412,928,512,224,64

4312,4321 1806,1806,1806,1412,928,512,224,64 3124,3214 1806,1806,788,540,484,540,788,1806

3412,3421 1806,1806,788,540,484,540,788,1806 2314,2341 1806,516,342,390,672,1220,1806,1806

2134,2314 1806,516,342,406,678,1198,1806,1806 2134,2143 1806,788,540,484,540,788,1806,1806

2341,2431 1806,788,540,484,540,788,1806,1806 1432,2413 233,323,443,637,912,1252,1584,1584

1432,3142 233,533,751,879,956,996,1036,1584 1234,2134 429,429,594,840,1152,1502,1806,1806

1243,2143 429,429,594,840,1152,1502,1806,1806 1324,2134 429,429,594,840,1152,1502,1806,1806

1324,2314 429,429,594,840,1152,1502,1806,1806 1342,2341 429,429,594,840,1152,1502,1806,1806

1432,2431 429,429,594,840,1152,1502,1806,1806 1324,3124 429,924,1134,1120,1045,1008,1092,1806

1423,4123 429,924,1344,1582,1582,1344,924,429 1432,4132 429,924,1344,1582,1582,1344,924,429

1234,1243 64,224,512,928,1412,1806,1806,1806 1243,1324 64,224,512,928,1412,1806,1806,1806

1243,1342 64,224,512,928,1412,1806,1806,1806 1243,1423 64,224,512,928,1412,1806,1806,1806

1324,1342 64,224,512,928,1412,1806,1806,1806 1324,1423 64,224,512,928,1412,1806,1806,1806

1342,1423 64,224,512,928,1412,1806,1806,1806 1342,1432 64,224,512,928,1412,1806,1806,1806

1423,1432 64,224,512,928,1412,1806,1806,1806

to write a system of recurrence relations in each case which may then be

expressed in terms of some auxiliary generating functions leading to a system

of functional equations. At this point, one can use the conjecture itself in

these particular cases along with the kernel method to ascertain a potential

solution to the aforementioned system, which may then be shown to be the

actual solution. Taking the variable that marks the second letter statistic to

be unity then recovers formula (1) and demonstrates the desired equality of

distributions.
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We remark further that in order to prove the final three cases we make
use of a special decomposition of the respective generating functions into
what we term positive and negative parts as well as parts corresponding
to certain ordered pair values of the parameters in question (see, for exam-
ple, the various generating functions that are defined following the proof of
Lemma 3.1 below). Such a decomposition is necessary in translating the sys-
tem of recurrences at hand into a system of functional equations. In addition,
the decompositions of the permutations themselves required in deriving the
recurrences for the last three cases involving 1243 (see proofs of Lemmas 3.1,
3.5 and 3.10) are apparently new. Finally, in establishing the recurrences in
the cases (1324, 1423) and (1342, 1423) (see Lemma 2.3), we make use of
generating trees in not only tracking the labels of offspring but also the
value of the first letter statistic in the offspring. We do not know of other
examples of generating trees being used in this way in conjunction with a
statistic auxiliary to the tree structure such as the one recording the first
letter.

In several instances, the distribution of the first letter statistic on the
pattern pair in question follows as a special case of a more general distribu-
tion. For one’s reference, listed below are the places within the paper where
the specific cases are shown.

Table 3: Places where specific cases of Conjecture 1 are proven

Pattern Pair Reference Pattern Pair Reference

1234,1243 Theorem 2.1 1243,1324 Corollary 3.14
1243,1342 Corollary 3.9 1243,1423 Corollary 3.4
1324,1342 Theorem 2.1 1324,1423 Theorem 2.5
1342,1423 Theorem 2.5 1342,1432 Theorem 2.2
1423,1432 Theorem 2.1

2. Pattern avoidance and the new Schröder triangle

In this section, we enumerate members of Sn,i(σ, τ) confirming the conjecture
in six of the cases, the first three of which we treat together in the following
result.

Theorem 2.1. If n ≥ 1 and 1 ≤ i ≤ n, then |Sn,i(σ, τ)| = Sn,i for (σ, τ) =
(1234, 1243), (1324, 1342) and (1423, 1432).

Proof. We prove the case when (σ, τ) = (1234, 1243), the others being
similar. Let An,i = Sn,i(1234, 1243) and we first write a recurrence for
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an,i = |An,i|. Note that members of An,i where 1 ≤ i ≤ n − 3 must have
second letter � ∈ [i − 1] or � = n − 1, n, for otherwise there would be an
occurrence of 1234 or 1243 starting with i�. Furthermore, the first letter i is
seen to be extraneous concerning the avoidance of 1234 or 1243 if � ∈ [i− 1]
and thus may be deleted. Similarly, � may be deleted in cases when � = n−1
or n. This implies the recurrence

an,i = 2an−1,i +

i−1∑
�=1

an−1,�, 1 ≤ i ≤ n− 2,

with an,n = an,n−1 =
∑n−1

i=1 an−1,i for n ≥ 3.
Before proceeding further, note that

Sn,n−2 =

n−2∑
k=1

(Sn,k − Sn,k−1)

=

n−2∑
k=1

(2Sn−1,k − Sn−1,k−1)

= 2Sn−1,n−2 +

n−3∑
k=1

Sn−1,k

=

n−1∑
k=1

Sn−1,k.

Thus, the an,i and Sn,i are both given by the sum of the entries of the
previous row if i ∈ [n− 2, n], with the two arrays also agreeing for n = 1, 2.
Therefore, to complete the proof, it suffices to show

(3) Sn,i = 2Sn−1,i +

i−1∑
�=1

Sn−1,�, 1 ≤ i ≤ n− 2.

To do so, we proceed by induction on n and i, the i = 1 case clearly holding
since Sn,1 = 2Sn−1,1 for all n ≥ 3. So assume n ≥ 4 and 2 ≤ i ≤ n− 2. Note
further that (3) also holds when i = n− 1 for n ≥ 3, which follows from the
work above. Then by the induction hypothesis, we have

Sn,i = Sn,i−1 + 2Sn−1,i − Sn−1,i−1

= 2Sn−1,i−1 +

i−2∑
�=1

Sn−1,� + 4Sn−2,i + 2

i−1∑
�=1

Sn−2,�
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− 2Sn−2,i−1 −
i−2∑
�=1

Sn−2,�

= 2Sn−1,i−1 + 4Sn−2,i +

i−2∑
�=1

(Sn−1,� + Sn−2,�).(4)

Upon substituting (3) into (4), and simplifying the resulting equality, to
complete the induction, we must show

(5) 2Sn−1,i = Sn−1,i−1 + 4Sn−2,i +

i−2∑
�=1

Sn−2,�.

Substituting Sn−1,i = 2Sn−2,i +
∑i−1

�=1 Sn−2,� into (5) reduces it to

2

i−1∑
�=1

Sn−2,� = Sn−1,i−1 +

i−2∑
�=1

Sn−2,�,

i.e.,

Sn−1,i−1 = 2Sn−2,i−1 +

i−2∑
�=1

Sn−2,�,

which is true by the induction hypothesis. This establishes (3) and completes
the proof in the case of (σ, τ) = (1234, 1243). Since the associated an,i can
be shown to satisfy the same recurrence and initial conditions for the other
two pattern pairs, one obtains the same result in these cases as well.

To establish the case (1342, 1432), we define a bijection with a previous
case.

Theorem 2.2. The members of Sn,i(1342, 1432) having a prescribed set of
left-right minima in specified positions are in one-to-one correspondence with
members of Sn,i(1234, 1243) having the same set of left-right minima in the
same positions. In particular, |Sn,i(1342, 1432)| = Sn,i.

Proof. We define a bijection f between Sn,i(1342, 1432) and Sn,i(1234, 1243)
with the desired properties as follows. Let π = x1 · · ·xn ∈ Sn,i(1342, 1432)
have left-right minima values ar > ar−1 > · · · > a1, where ar = x1 and
a1 = 1. Note that since the patterns in both pairs start with 1, one may
always assume a left-right minima plays the role of the 1. Suppose π = α1β,
where α or β is possibly empty. Then let π1 be obtained by reversing the
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order of all letters in β within π0 = π, that is, π1 = α1β′, where β′ denotes
the reversal of β. Note that π1 contains no 1234 or 1243 starting with the
actual element 1 since all such occurrences of 1234 or 1243 within π0 have
been replaced with comparable occurrences of 1432 or 1342, respectively.

If r = 1 (i.e., if π starts with 1), then we let f(π) = π1 and we are done,
so assume r ≥ 2. In this case, let S denote the subsequence comprising all
elements of [a2 + 1, n] occurring to the right of a2 in the permutation π1.
Let S∗ denote the portion of S to the right of a1 within π1. We then let π2
be the permutation obtained from π1 as follows. First remove all letters of
π1 corresponding to S and replace them with blanks. Within these blanks,
from left to right, we then write the elements of S∗ followed by the reversal
of S − S∗ to obtain π2. That is, the elements between a2 and a1 in π1
that belong to [a2 + 1, n] have their relative order reversed when they are
written within the blanks and now follow (instead of precede) the remaining
elements of S. Observe that π2 has no occurrences of 1234 or 1243 starting
with a2 as the relative order of all elements belonging to [a2 + 1, n] to the
right of a2 in π2 is the reverse of the order of these same elements in π. To
see this, note that only the elements in S − S∗ have their order reversed in
going from π1 to π2 as the order of S∗ in π1 is already the reversal of what
it was in π. Further, no occurrence of 1234 or 1243 starting with a1 can
arise during the transition from π1 to π2 since the positions of elements in
[2, a2 − 1] do not change during this transition.

If r = 2, then let f(π) = π2. Otherwise, consider moving the letters that
belong to [a3+1, n] and lie to the right of a3 within π2 in a comparable man-
ner as before, reversing the order of only those elements occurring between
a3 and a2. Continue on for subsequently larger i where in the r-th step,
one moves letters in [ar + 1, n] in obtaining πr from πr−1. Let f(π) = πr.
Note that πr indeed belongs to Sn(1234, 1243) since as one may verify no
occurrence of 1234 or 1243 starting with aj for some j < i can arise during
the i-th transition from πi−1 to πi for any i ∈ [r]. Since each step of the
algorithm described above is seen to preserve both the positions and values
of left-right minima, then so does the mapping f (in particular, the first
letter statistic is preserved by f). This implies that the inverse of f may be
found by reversing each of the r steps of the algorithm starting with the last
step and proceeding in reverse order.

We next treat the cases (1324, 1423) and (1342, 1423) together using a
generating tree approach (see, e.g., [19]). Consider forming π ∈ Sn(1324,
1423) (or Sn(1342, 1423)) by inserting the element 1 within a member

ρ ∈ Sn−1(1324, 1423) (Sn−1(1342, 1423), respectively),
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expressed using the letters in [2, n]. By an active site within ρ = ρ1 · · · ρn−1,
we mean a position in which 1 may be inserted without introducing an
occurrence of either 1324 or 1423 (and likewise for (1342, 1423)). Given either
pair (σ, τ) of patterns under consideration, let un(i, j) denote the number
of members of Sn,i(σ, τ) having exactly j active sites. Note that un(i, j) for
n ≥ 2 can assume non-zero values only when 1 ≤ i ≤ n and 3 ≤ j ≤ n+ 1.

The un(i, j) are given recursively as follows.

Lemma 2.3. If 3 ≤ j ≤ n, then

(6) un(i, j) = un−1(i− 1, j − 1) +

n∑
�=j−1

un−1(i− 1, �), 2 ≤ i ≤ n,

with un(1, j) = 0. If j = n+ 1, then we have

(7) un(i, n+ 1) = un−1(i− 1, n), i ≥ 2,

with un(1, n+ 1) = 2n−2 for n ≥ 2 and u1(1, 2) = 1.

Proof. We treat the case (1324, 1423), with the same recurrences seen to
hold for (1342, 1423) by a comparable analysis. Let Un,i,j denote the subset
of Sn,i(1324, 1423) enumerated by un(i, j). Note that the (active) sites of
π ∈ Un,i,j correspond to the rightmost j possible positions of π in which to
insert a 1 if j ≤ n. For if the j-th letter x from the right within π where
j ≤ n starts either a 213 or 312 and is the rightmost such letter to do so,
then all positions to the right of x are sites. From this observation, we may
conclude that Un,1,j is empty if 3 ≤ j ≤ n, upon considering separately
the cases j = n or j < n. On the other hand, since 1 starts both of the
patterns that are being avoided, we have that Un,1,n+1 is synonymous with
Sn−1(213, 312), which has cardinality 2n−2 if n ≥ 2. This establishes the
initial conditions when i = 1, so assume henceforth that i ≥ 2.

Let π be formed from a precursor α ∈ Un−1,a,b for some a and b, expressed
using [2, n], by inserting 1 as described. Let (k) denote a precursor having k
sites. Then we have the succession rule (k) → (3)(4) · · · (k + 1)(k + 1) with
root (2), which follows from the argument used in the proof of [8, Prop. 11]
or can be reasoned directly in this case. Note that no offspring of α if b < n
can arise by inserting 1 in the first position, for otherwise a 1324 or 1423
would be introduced, whereas if b = n, an offspring so produced would have
n + 1 sites. Since any offspring π ∈ Un,i,j where i ≥ 2 must have precursor
starting with i− 1 and containing at least j− 1 sites, recurrence (6) follows.
On the other hand, an offspring π ∈ Un,i,n+1 where i ≥ 2 can only come
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about by inserting 1 in the final position within its precursor ρ ∈ Un−1,i−1,n,
for the other offspring of ρ having n+ 1 sites comes about by inserting 1 in
the first position. This implies (7) and completes the proof.

Given n ≥ 2, let vn(i; q) =
∑n+1

j=3 un(i, j)q
j−2 for 1 ≤ i ≤ n, with

v1(1; q) = 1. Define the joint distribution polynomial

vn(y, q) =

n∑
i=1

vn(i; q)y
i, n ≥ 2,

with v1(y, q) = y.
Then the vn(y, q) are given recursively as follows.

Lemma 2.4. If n ≥ 2, then

vn(y, q) =
(1− y)(2n−1y − yn)qn−1

2− y
(8)

+
yq(vn−1(y, 1) + (1− 2q)vn−1(y, q))

1− q
,

with v1(y, q) = y.

Proof. Note that (8) is seen to hold if n = 2 since v2(y, q) = yq(1 + y),
so assume n ≥ 3. Multiplying both sides of (6) by qj−2, summing over
3 ≤ j ≤ n and adding qn−1 times (7) gives

vn(i; q) = un−1(i− 1, n)qn−1 +

n∑
j=3

un−1(i− 1, j − 1)qj−2

+

n∑
j=3

qj−2
n∑

�=j−1

un−1(i− 1, �)

= q

n∑
j=3

un−1(i− 1, j)qj−2

+

n∑
�=2

un−1(i− 1, �)

�+1∑
j=3

qj−2 − un−1(i− 1, n)qn−1

= qvn−1(i− 1; q) +

n∑
�=2

un−1(i− 1, �)
q − q�

1− q
− un−1(i− 1, n)qn−1

= qvn−1(i− 1; q) +
q

1− q
(vn−1(i− 1; 1)− qvn−1(i− 1; q))
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− un−1(i− 1, n)qn−1,

for 2 ≤ i ≤ n, with vn(1; q) = 2n−2qn−1. Multiplying the last recurrence by

yi, and summing over i, yields

vn(y, q) = yqvn−1(y, q) +
yq(vn−1(y, 1)− qvn−1(y, q))

1− q

+ 2n−2yqn−1 − qn−1
n∑

i=2

un−1(i− 1, n)yi

=
yq(vn−1(y, 1) + (1− 2q)vn−1(y, q))

1− q

+ 2n−2yqn−1 − qn−1

(
yn +

n−1∑
i=2

2n−i−1yi

)
,

where we have used the fact

um(j,m+ 1) = |Sm,j(213, 312)| =
{
2m−j−1, if 1 ≤ j < m;

1, if j = m,

which follows from elementary considerations. Simplifying and combining

the inhomogeneous terms in the last recurrence formula now gives (8).

Note that (8) holds for both (1324, 1423) and (1342, 1423) since Lemma

2.3 applies to either pair. Let f(x, y; q) =
∑

n≥1 vn(y, q)x
n.

Theorem 2.5. The generating function of the joint distribution for the

statistics on Sn(1324, 1423) and Sn(1342, 1423) recording the first letter and

number of active sites is given by

f(x, y; q) =
xy(1− q)(1− xq)(1− 2xyq)

(1− 2xq)(1− xyq)(1− (xy + 1)q + 2xyq2)

+
xyq

1− (xy + 1)q + 2xyq2
A(x, y),(9)

where

A(x, y) =
xy(2− 3x− 3y + 3xy) + xy(x+ y − xy)(xy +

√
1− 6xy + x2y2)

2(1− 2x− y + xy)
.
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Proof. Multiplying both sides of (8) by xn, and summing over n ≥ 2, yields

f(x, y; q)− xy =
y(1− y)

2− y
· 2x2q

1− 2xq
− 1− y

2− y
· x2y2q

1− xyq
+

xyq

1− q
f(x, y; 1)

+
xyq(1− 2q)

1− q
f(x, y; q),

which may be rewritten as(
1− xyq(1− 2q)

1− q

)
f(x, y; q)

= xy +
x2yq(1− y)

(1− 2xq)(1− xyq)
+

xyq

1− q
f(x, y; 1).(10)

To solve (10), we apply the kernel method [6] and let

q = q0 =
1 + xy −

√
1− 6xy + x2y2

4xy
.

This gives

f(x, y; 1) =
q0 − 1

q0
+

x(1− y)(q0 − 1)

1− 2xq0 − xyq0 + 2x2yq20

=
q0 − 1

q0
+

x(1− y)(q0 − 1)

1− x+ x(xy − y − 1)q0
,

where we have used the fact 2xyq20 = (1 + xy)q0 − 1. Substituting 1
q0

=
1+xy+

√
1−6xy+x2y2

2 into

f(x, y; 1) =

(
1− 1

q0

)(
1 +

x(1− y)
1−x
q0

+ x(xy − y − 1)

)
,

and simplifying, leads to the formula f(x, y; 1) = A(x, y). Substituting this
back into (10) yields (9).

3. The remaining cases

In this section, we consider the remaining cases (1243, 1423), (1243, 1342)
and (1423, 1324). We adopt a common approach for these three cases and
consider the joint distribution of the first and second letter statistics. For
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the given pattern pair (σ, τ) under current consideration, let an(i, j) denote
the number of members of Sn,i(σ, τ) whose second letter is j. Let an(i) =∑

j �=i an(i, j) and an =
∑n

i=1 an,i. Note that an = Sn, the n-th Schröder
number (see, e.g., [8]). Clearly, we have

(11) an(i, j) = an−1(j), 1 ≤ j < i,

for all pairs of patterns under consideration. If i < j where i ≤ n−3, then in
order to write a recurrence for an(i, j) in this case, we consider the position
of the second ascent and further subcases based on the size of the difference
j − i. If n ≤ 3, then all three pattern pairs have initial values given by
a1(1) = a2(1, 2) = a2(2, 1) = a3(i, j) = 1 where i, j ∈ [3] with i �= j.

3.1. The case (1243, 1423)

In this subsection, we enumerate the members of Sn(1243, 1423) according
to the joint distribution of the first and second letter statistics.

We first prove the following recurrence for an(i, j) when i < j.

Lemma 3.1. We have

(12) an(i, i+ 1) = an−1(i, i+ 1) +

i−1∑
a=1

i−a−1∑
c=0

i−c∑
b=a+1

(
i− a− 1

c

)
an−c−2(a, b),

for 1 ≤ i ≤ n− 2, with an(n− 1, n) = an−2,

an(i, i+ 2) = an−1(i, i+ 1) + an−1(i, i+ 2)

+

i−1∑
a=1

i−a−1∑
c=0

i−c+1∑
b=a+1

(
i− a− 1

c

)
an−c−2(a, b),(13)

for 1 ≤ i ≤ n− 3, with an(n− 2, n) = an−2, and

an(i, j) = an−1(i, j − 1) +

i−1∑
a=1

i−a−1∑
c=0

(
i− a− 1

c

)
an−c−2(a, j − c− 2)

+ (1− δj,n) ·
(
an−1(i, j) +

i−1∑
a=1

i−a−1∑
c=0

(
i− a− 1

c

)
an−c−2(a, j − c− 1)

)
,

(14)

for 4 ≤ i+ 3 ≤ j ≤ n.
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Proof. Let k denote the third letter of a member of An,i,j . We will consider
various cases based on k in the proofs of (12)–(14). To show (12), first observe
that for members of An,i,i+1 where i ≤ n−2, one has either k = i+2 or k < i,
for k > i+2 would ensure an occurrence of 1243 which isn’t permissible. In
the first case, the third letter is superfluous concerning avoidance of either
pattern and thus may be deleted leading to an−1(i, i+1) possibilities. On the
other hand, in the latter case, we have that π ∈ An,i,i+1 can be decomposed
as π = i(i+ 1)x1 · · ·xcadρ, where a ∈ [i− 1], x1, . . . , xc ∈ [a+ 1, i− 1] with
x1 > · · · > xc, d > a and ρ denotes the terminal section of π. Note that
d = i+2 or d ∈ [a+1, i−1]−{x1, . . . , xc} since d > i+2 is again not allowed.
Further, the letters x1, . . . , xc, i, i+1 may be removed from π in light of the
ascent a, d, leading to a member π′ ∈ An−c−2,a,b for some b after reduction of
letters. Note that within π′, the b parameter value can range over [a+1, i−c]
since the largest possible value it may assume is i+ 2− (c+ 2) = i− c. As
there are

(
i−a−1

c

)
ways in which to choose the xi, considering all possible a,

c and b implies that the number of π ∈ An,i,i+1 for which k < i is given by∑i−1
a=1

∑i−a−1
c=0

∑i−c
b=a+1

(
i−a−1

c

)
an−c−2(a, b), which establishes (12).

A similar argument applies to (13) except that now we have k < i or k =
i+1, i+3 for members of An,i,i+2 where i ≤ n−3. Note that k = i+3 leads
to an−1(i, i+2) possibilities, as k may be deleted in this case. If k < i, then
making use of the previous notation, we have d ∈ [a+1, i−1]∪{i+1, i+3}
and thus b may range in [a+1, i−c+1] in this case. Finally, to show (14), we
consider first the case when j < n within a member of An,i,j where j ≥ i+3.
Here, we would have k ∈ [i − 1] ∪ {j − 1, j + 1}, as k ∈ [i + 1, j − 2] would
lead to an occurrence of 1423 as witnessed by ijk(k + 1). If k = j − 1 or
k = j + 1, then k may be deleted in either case giving an−1(i, j − 1) and
an−1(i, j) possibilities, respectively. If k < i, then we must have d = j− 1 or
d = j+1, for other values of d would lead to an occurrence of 1243 or 1423.
Considering all possible a and c then yields the two double sum expressions
occurring in the j < n case of (14). Combining this with the preceding then
implies (14) when j < n. On the other hand, if j = n, then k = j + 1 or
d = j + 1 does not occur in the preceding argument, which implies (14) in
this case and completes the proof.

We will make use of the following generating functions:

A(x, v, w) =
∑
n≥2

n∑
a=1

n∑
b=1

an(a, b)v
awbxn,

A+(x, v, w) =
∑
n≥2

n−1∑
a=1

n∑
b=a+1

an(a, b)v
awbxn,
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A−(x, v, w) =
∑
n≥2

n∑
a=2

a−1∑
b=1

an(a, b)v
awbxn,

C(x, v) =
∑
n≥2

n−1∑
a=1

an(a, a+ 1)vaxn,

D(x, v) =
∑
n≥3

n−2∑
a=1

an(a, a+ 2)vaxn,

B(x, v, w) =
∑
n≥4

n−3∑
a=1

n∑
b=a+3

an(a, b)v
awbxn.

Translating (11)–(14) in terms of generating functions (the details of
which are provided below in the appendix) yields the following system of
functional equations.

Proposition 3.2. We have

A+(x, v, w) = wC(x, vw) + w2D(x, vw) +B(x, v, w),

A−(x, v, w) = v2wx2 +
vx

1− v
A(x, vw, 1)− v2x

1− v
A(vx,w, 1),

C(x, vw) = vwx2A(vwx, 1, 1) + vwx2 + v2w2x3 + xC(x, vw)

+
vwx2

vwx+ vw − 1
A+(

vwx

1− vwx
, 1− vwx, 1)

− (1− vwx)x2

vwx+ vw − 1
A+(x, 1− vwx,

vw

1− vwx
),

D(x, vw) = x2A(vwx, 1, 1)− v2w2x4 + x(C(x, vw)− vwx2A(vwx, 1, 1))

+ xD(x, vw) +
x2(1− vwx)

vwx+ vw − 1
A+(

vwx

1− vwx
, 1− vwx, 1)

− x2(1− vwx)2

vw(vwx+ vw − 1)
A+(x, 1− vwx,

vw

1− vwx
)− x2C(x, vw),

B(x, v, w) = wxB(x, v, w) + w3xD(x, vw)

+
w2x2(1− vwx)

vwx+ v − 1
A+(x, 1− vwx,

vw

1− vwx
)

− vw2x2

vwx+ v − 1
A+(x, v, w) + xB(x, v, w)

+
wx2(1− vwx)2

v(vwx+ v − 1)
B(x, 1− vwx,

vw

1− vwx
)
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− vwx2

vwx+ v − 1
B(x, v, w).

Using the conjecture itself as an aid, we are able to solve explicitly (see
appendix for details) the preceding system and obtain the following result.

Theorem 3.3. The generating function for the joint distribution of the first
and second letter statistics on Sn(1243, 1423) for n ≥ 2 is given by

A+(x, v, w) +A−(x, v, w),

where A+(x, v, w) and A−(x, v, w) are as in (28) and (29), respectively.

Substituting w = 1 in the prior theorem and finding vx+A(x, v, 1), one
obtains the following result.

Corollary 3.4. The generating function for the distribution of the first letter
statistic on Sn(1243, 1423) for n ≥ 1 is given by

vx(2− 3v − 3x+ 3vx) + vx(v + x− vx)(vx+
√
1− 6vx+ v2x2)

2(1− v − 2x+ vx)
.

3.2. The case (1243, 1342)

We first write a recurrence for an(i, j) when i < j.

Lemma 3.5. If 1 ≤ i < j ≤ n− 1, then

an(i, j) =

j−1∑
k=i+1

an−1(i, k) +

i−1∑
a=1

i−a−1∑
c=0

j−c−2∑
b=a+1

(
i− a− 1

c

)
an−c−2(a, b)

+ δi+1,j ·
(
an−1(i, i+ 1) +

i−1∑
a=1

i−a−1∑
c=0

(
i− a− 1

c

)
an−c−2(a, i− c)

)
,(15)

with an(i, n) = an−1(i) for 1 ≤ i ≤ n− 1.

Proof. The formula when j = n is obvious, so assume j < n. Let An,i,j

denote the subset of Sn,i(1243, 1342) having second letter j. Let π ∈ An,i,j

where 1 ≤ i < j ≤ n− 1 and k denote the third letter of π. Suppose k < j,
noting that this is indeed a requirement if j ≥ i+2, for otherwise j < n would
imply a 1342 would occur. If i+1 ≤ k ≤ j−1, then the letter j is extraneous
and thus may be deleted from π since all elements of [k + 1, n] − {j} must
occur in increasing order with all elements of [i+ 1, k] occurring to the left
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of those in [k+1, n]−{j}. This implies the first summation formula in (15).
Otherwise k < i and we may write π = ijx1 · · ·xcadρ, where 1 ≤ a < x1 <
· · · < xc ≤ i− 1 and d > a. Note that d < j if j ≥ i+ 2 in order to avoid a
1342 of the form ijdt for some t ∈ [i+ 1, j − 1].

We argue now that d < j implies that i and j may be deleted from π.
Clearly, the letters i and j are extraneous concerning the avoidance of 1243 in
light of the ascent a, d where a < i. They are also irrelevant concerning 1342,
whence they may be deleted. To see this, note that if d < i, then members of
[d+1, n] occurring to the right of d must form an increasing subsequence due
to a preceding d and thus no 1342 can start with ij. The same conclusion is
reached if i < d < j, for in this case all letters in [i+1, d−1] occur to the left
of those in [d+1, n]−{j}, with the latter forming an increasing subsequence.
Since x1, . . . , xc may clearly also be deleted from π as a < xc, one is left
with π′ ∈ An−c−2,a,b for some a and b. Note that b ∈ [a+ 1, j − c− 2] (after
reducing letters) since d ∈ [a + 1, j − 1] − {x1, . . . , xc, i}. Considering all
possible a, c and b then yields the triple sum expression in (15) and finishes
the case when j ≥ i + 2. On the other hand, if j = i + 1, then k = j + 1
is possible without introducing an occurrence of 1342, in which case k may
be deleted resulting in a member of An−1,i,i+1. Likewise, d = j + 1 is also
possible in the decomposition of π above. Combining these two additional
cases then accounts for the second line in formula (15) and completes the
proof.

From (15), we may deduce the following further useful formulas.

Lemma 3.6. If 1 ≤ i ≤ n− 2, then

(16) an(i, i+ 1) = an(i, i+ 2)

and

(17) an(i, i+ 1) =

i∑
�=1

an−1(�, i+ 1).

Proof. Both equalities are easily seen to hold if i = n − 2, so assume 1 ≤
i ≤ n− 3. Taking j = i+1 and j = i+2 in (15), and comparing the results,
then completes the proof of (16). For (17), first observe

i−1∑
�=1

an−1(�, i+ 1)
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=

i−1∑
�=1

i∑
k=�+1

an−2(�, k) +

i−1∑
�=1

�−1∑
a=1

�−a−1∑
c=0

i−c−1∑
b=a+1

(
�− a− 1

c

)
an−c−3(a, b)

=

i−1∑
�=1

i∑
k=�+1

an−2(�, k) +

i−2∑
a=1

i−a−2∑
c=0

i−c−1∑
b=a+1

an−c−3(a, b)

i−1∑
�=a+c+1

(
�− a− 1

c

)

=

i−1∑
�=1

i∑
k=�+1

an−2(�, k) +

i−2∑
a=1

i−a−1∑
c=1

i−c∑
b=a+1

(
i− a− 1

c

)
an−c−2(a, b).

Then, by (16) and (15) when j = i+ 2, we have

an(i, i+ 1)−
i−1∑
�=1

an−1(�, i+ 1) = an(i, i+ 2)−
i−1∑
�=1

an−1(�, i+ 1)

= an−1(i, i+ 1)−
i−1∑
�=1

i∑
k=�+1

an−2(�, k)

+

(
i−1∑
a=1

i−a−1∑
c=0

i−c∑
b=a+1

−
i−2∑
a=1

i−a−1∑
c=1

i−c∑
b=a+1

)(
i− a− 1

c

)
an−c−2(a, b)

= an−1(i, i+ 1)−
i−1∑
�=1

i∑
k=�+1

an−2(�, k)

+

i−1∑
a=1

i∑
b=a+1

an−2(a, b) = an−1(i, i+ 1),

which completes the proof of (17).

To summarize, we have the following recurrence for an(i, j):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

an(i, j) = an−1(j), 1 ≤ j < i ≤ n,

an(i, n) = an−1(i), 1 ≤ i ≤ n− 1,

an(i, i+ 1) =
∑i

�=1 an−1(�, i+ 1), 1 ≤ i ≤ n− 2,
an(i, i+ 2) = an(i, i+ 1), 1 ≤ i ≤ n− 2,

an(i, j) =
∑j−1

k=i+1 an−1(i, k)

+
∑i−1

a=1

∑i−a−1
c=0

∑j−c−2
b=a+1

(
i−a−1

c

)
an−c−2(a, b),

4 ≤ i+ 3 ≤ j ≤ n− 1.

(18)

In this case, we state the recurrence formulas satisfied by the correspond-
ing distribution polynomials which will aid in translating (18) to functional
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equations as they are not too lengthy. Define

A+
n (v, w) =

n−1∑
i=1

n∑
j=i+1

an(i, j)v
iwj ,

A−
n (v, w) =

n∑
i=2

i−1∑
j=1

an(i, j)v
iwj ,

An(v, w) =

n∑
i=1

n∑
j=1

an(i, j)v
iwj ,

for n ≥ 2. Clearly, An(v, w) = A+
n (v, w) + A−

n (v, w) for all n ≥ 2. Further,
we define

Cn(v) =

n−2∑
i=1

an(i, i+ 1)vi and Bn(v, w) =

n−4∑
i=1

n−1∑
j=i+3

an(i, j)v
iwj .

Then (18) may be rewritten in terms of these distributions as

A−
n (v, w) =

v

1− v
An−1(vw, 1)−

vn+1

1− v
An−1(w, 1),

A+
n (v, w) = Bn(v, w) + w2(Cn(vw)− (vw)n−2An−2(1, 1)) + wCn(vw)

+ wnAn−1(1, w),

Cn(v) =
1

v
A+

n−1(1, v),

Bn(v, w) =
w

1− w
(Bn−1(v, w) + w2(Cn−1(vw)−An−3(1, 1)(vw)

n−3))

− wn

1− w
(Bn−1(v, 1) + Cn−1(v)−An−3(1, 1)v

n−3)

+
w3

1− w
(Cn−1(vw)−An−3(1, 1)v

n−3wn−3)

− wn

1− w
(Cn−1(v)−An−3(1, 1)v

n−3)

+

n−4∑
i=1

n−1∑
j=i+3

i−1∑
a=1

i−a−1∑
c=0

j−c−2∑
b=a+1

(
i− 1− a

c

)
an−c−2(a, b)v

iwj .

Define

A±(x, v, w) =
∑
n≥2

A±
n (v, w)x

n,
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A(x, v, w) =
∑
n≥2

An(v, w)x
n.

Further, defineB(x, v, w) =
∑

n≥2Bn(v, w)x
n and C(x, v) =

∑
n≥2Cn(v)x

n.
Rewriting the preceding recurrences in terms of generating functions yields
the following result.

Proposition 3.7. We have

A−(x, v, w) = v2wx2 +
vx

1− v
A(x, vw, 1)− v2x

1− v
A(vx,w, 1),

A+(x, v, w) = vw2x2 − vw3x3 +B(x, v, w)

+ w2(C(x, vw)− x2A(vwx, 1, 1))

+ wC(x, vw) + wxA(wx, v, 1),

where

C(x, v) =
x

v
A+(x, 1, v),

B(x, v, w) =
wx(1− v)

(1− v − vwx)(1− w)
(B(x, v, w)−B(wx, v, 1))

+
2(1− vw)w3x

(1− vw − vwx)(1− w)
C(x, vw)

− 2wx(1− v)

(1− v − vwx)(1− w)
C(wx, v)

+
x2w2(1− vwx)2

(1− v − vwx)(1− vw − vwx)

(
B(

vwx

1− vwx
, 1− vwx, 1)

−B(x, 1− vwx,
vw

1− vwx
)

)

+
2x2w2(1− vwx)2

(1− v − vwx)(1− vw − vwx)
C(

vwx

1− vwx
, 1− vwx).

By mathematical programming, one may verify the following solution of
the foregoing system of functional equations.

Theorem 3.8. Let S(x) =
√
x2 − 6x+ 1. The generating function for the

joint distribution of the first and second letter statistics on Sn(1243, 1342)
for n ≥ 2 is given by A(x, v, w) = A+(x, v, w) +A−(x, v, w), where

A+(x, v, w)
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=
(1− v + (v2x− 2v2 + vx− x)w − vx(x− 2)(v − 1)w2)vw2x2

2(1− v + wx(v − 2))(1− 2vw − x(1− vw))
S(vwx)

+
(1− v + (6v2 − 4v − x(4v2 − 2v + 1))w)vw2x2

2(1− v + wx(v − 2))(1− 2vw − x(1− vw))

+
(x(v2 + 4v − 4)− 2v2 − 6v + 6)v2w4x3

2(1− v + wx(v − 2))(1− 2vw − x(1− vw))

− (x− 2)(v − 1)v3w5x4

2(1− v + wx(v − 2))(1− 2vw − x(1− vw))

= vw2x2 + w2v(vw + w + 1)x3

+ w2v(2v2w2 + 2vw2 + 2vw + 2w2 + w + 1)x4 + · · ·

and

A−(x, v, w)

=
(x(1 + v − 2vx) + x(v2x− v2 + vx− 1)w − v(x− 1)(vx− 1)w2)v2wx2

2(1− vw − x(2− vw))(1− w − vx(2− w))
S(vwx)

+
((3x− 2)(w− 1)+(−w2x2− 3w2x− 2wx2+3w2+2wx+6x2− 2w− 3x)v)v2wx2

2(1− vw − x(2− vw))(1− w − vx(2− w))

+
(w2x+ wx2 − w2 + 3wx− 2x2 − 3w − 2x+ 3− (x− 1)(w − 1)vwx)v4w2x3

2(1− vw − x(2− vw))(1− w − vx(2− w))

= v2wx2 + (vw + v + 1)v2wx3 + 2(v2w2 + v2w + v2 + vw + v + 1)v2wx4 + · · · .

Moreover, the generating functions counting the members of Sn(1243,

1342) starting with an ascent of size greater than two or of size exactly

one and whose second letter is not n in either case according to the first and

second letter statistics are given respectively by

B(x, v, w) =
(vwx− 2wx2 + 2wx+ x− 1)w2x2

2(1− 2vw − x(1− vw))(1− v − wx(2− v))
S(vwx)

+
(1− x+ (3vx− 4v + 2x− 2)wx− (2x+ v − 6)vw2x2)w2x2

2(1− 2vw − x(1− vw))(1− v − wx(2− v))

= 2vw4x5 + 2(4vw + 2w + 1)vw4x6 + 2
(
17v2w2 + 10vw2 + 5vw

+ 4w2 + 2w + 1
)
vw4x7 + · · ·

and

C(x, v) =
−vx2(vx2 − 2vx− 3x+ 2 + (x− 2)S(vx))

2(1− x− 2v + vx)
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= vx3 + (2v + 1)vx4 + (6v2 + 3v + 1)vx5

+ (22v3 + 11v2 + 4v + 1)vx6 + · · · .

Substituting w = 1 in the prior theorem and finding vx+A(x, v, 1), one
obtains the following result.

Corollary 3.9. The generating function for the distribution of the first letter
statistic on Sn(1243, 1342) for n ≥ 1 is given by

vx(2− 3v − 3x+ 3vx) + vx(v + x− vx)(vx+
√
1− 6vx+ v2x2)

2(1− v − 2x+ vx)
.

3.3. The case (1243, 1324)

We first write a recurrence for an(i, j) when i < j.

Lemma 3.10. We have

(19) an(i, i+ 1) = an−1(i, i+ 1) +

i−1∑
a=1

i−a−1∑
c=0

i−c∑
b=a+1

(
i− a− 1

c

)
an−c−2(a, b),

for 1 ≤ i ≤ n− 2, and

(20) an(i, j) = an−1(i, j) +

i−1∑
a=1

i−a−1∑
c=0

(
i− a− 1

c

)
an−c−2(a, j − c− 1),

for 3 ≤ i+ 2 ≤ j ≤ n− 1, with an(i, n) = an−1(i) for 1 ≤ i ≤ n− 1.

Proof. A similar proof may be given as in the prior two cases. Note that the
formula for an(i, n) is obvious since an n in the second position may clearly
be removed. Let k denote the third letter of a member of Sn,i(1243, 1324).
If j = i + 1 where 1 ≤ i ≤ n − 2, then either k = i + 2 or k < i, where
clearly k may be deleted in the former case. Assuming the latter, let a, d
denote the second leftmost ascent. Then we must have a+1 ≤ d ≤ i+2, for
otherwise a 1243 would occur. Thus, each letter prior to a may be deleted
in this case and considering all possible a, b and c, where b and c are as
before, implies formula (19). If i + 2 ≤ j < n, then we have k = j + 1 or
k < i, the former leading to an−1(i, j) possibilities. On the other hand, if
k < i and a, d denotes the second ascent, then we must have d = j + 1.
To see this, note that elements of [d + 1, n] to the right of d must form an
increasing subsequence and thus d < j < n would imply an occurrence of
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1324 of the form ijxn where x ∈ [i + 1, j − 1]. Therefore d = j + 1 implies
all letters prior to a again may be deleted, resulting in a permutation that
starts a, j − c − 1. Considering all possible a and c then accounts for the
double sum expression in (20) and completes the proof.

From this, one may deduce the following further useful formula.

Lemma 3.11. If 1 ≤ i ≤ n− 3 and i+ 2 ≤ j ≤ n− 1, then

(21) an(i, j) =

i−1∑
k=1

an−1(k, j − 1) + an−1(i, j).

Proof. Note that (21) is clearly true on combinatorial grounds if i = 1 since
the third letter of a member of Sn(1243, 1324) starting with 1, j where j < n
must be j + 1. So let i ≥ 2 and j ∈ [i+ 2, n− 1]. Then by (20), we have

i−1∑
�=1

an−1(�, j − 1)

=

i−1∑
�=1

(
an−2(�, j − 1) +

�−1∑
a=1

�−a−1∑
c=0

(
�− a− 1

c

)
an−c−3(a, j − c− 2)

)
.

(22)

If i ≥ 3, then

i−1∑
�=2

�−1∑
a=1

�−a−1∑
c=0

(
�− a− 1

c

)
an−c−3(a, j − c− 2)

=

i−2∑
a=1

i−a−2∑
c=0

an−c−3(a, j − c− 2)

i−1∑
�=a+c+1

(
�− a− 1

c

)

=

i−2∑
a=1

i−a−2∑
c=0

an−c−3(a, j − c− 2)

(
i− a− 1

c+ 1

)

=

i−2∑
c=1

i−c−1∑
a=1

(
i− a− 1

c

)
an−c−2(a, j − c− 1).

Thus, the right-hand side of (22) is given by

i−1∑
�=1

an−2(�, j − 1) +

i−2∑
c=1

i−c−1∑
a=1

(
i− a− 1

c

)
an−c−2(a, j − c− 1)
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=

i−2∑
c=0

i−c−1∑
a=1

(
i− a− 1

c

)
an−c−2(a, j − c− 1)

=

i−1∑
a=1

i−a−1∑
c=0

(
i− a− 1

c

)
an−c−2(a, j − c− 1)

= an(i, j)− an−1(i, j),

again by (20), which completes the proof.

Summarizing, we have the following recurrence relations satisfied by

an(i, j):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

an(i, j) = an−1(j), 1 ≤ j < i ≤ n,

an(i, n) = an−1(i), 1 ≤ i ≤ n− 1,

an(i, j) =
∑i−1

�=1 an−1(�, j − 1) + an−1(i, j),
1 ≤ i ≤ n− 3 and i+ 2 ≤ j ≤ n− 1,

an(i, i+ 1) = an−1(i, i+ 1)

+
∑i−1

a=1

∑i
b=a+1

∑i−b
c=0

(
i−a−1

c

)
an−c−2(a, b),

1 ≤ i ≤ n− 2.

(23)

Define An(v, w), A
±
n (v, w) and Cn(v) as in the previous subsection, but

with Bn(v, w) now given by Bn(v, w) =
∑n−3

i=1

∑n−1
j=i+2 an(i, j)v

iwj . Trans-

lating (23) then yields the following recurrences:

A−
n (v, w) =

n∑
i=2

i−1∑
j=1

an−1(j)v
iwj =

v

1− v
An−1(vw, 1)−

vn+1

1− v
An−1(w, 1),

A+
n (v, w) =

n−2∑
i=1

n−1∑
j=i+1

an(i, j)v
iwj +

n−1∑
i=1

an(i, j)v
iwn

=

n−3∑
i=1

n−1∑
j=i+2

an(i, j)v
iwj + w

n−2∑
i=1

an(i, i+ 1)(vw)i + wnAn−1(v, 1)

= Bn(v, w) + wCn(vw) + wnAn−1(v, 1),

with

Bn(v, w) =

n−3∑
i=2

n−1∑
j=i+2

i−1∑
k=1

an−1(i, j − 1)viwj +

n−3∑
i=1

n−1∑
j=i+2

an−1(i, j)v
iwj
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= w

n−4∑
k=1

n−1∑
j=k+3

j−2∑
i=k+1

an−1(i, j − 1)viwj

+

n−4∑
i=1

n−2∑
j=i+2

an−1(i, j)v
iwj +

n−3∑
i=1

an−2(i)v
iwn−1

=
wv

1− v
Bn−1(v, w)−

w

1− v
Bn−1(1, vw) +Bn−1(v, w)

+ wn−1An−2(v, 1)− wn−1vn−2An−3(1, 1)

and

Cn(v) = Cn−1(v) + vn−2An−3(1, 1)

+

n−2∑
i=1

i−1∑
a=1

i∑
b=a+1

i−b∑
c=0

(
i− a− 1

c

)
an−2−c(a, b)v

i

= Cn−1(v) + vn−2An−3(1, 1)

+

n−3∑
a=1

n−2∑
b=a+1

n−2−b∑
c=0

n−2∑
i=b+c

(
i− a− 1

c

)
an−2−c(a, b)v

i.

Define A(x, v, w), A±(x, v, w) and C(x, v) as in the previous subsection,

with B(x, v, w) =
∑

n≥2Bn(v, w)x
n per the new definition for Bn(v, w).

From the preceding recurrences, we obtain the following system of functional

equations.

Proposition 3.12. We have

A−(x, v, w) = v2wx2 +
vx

1− v
A(x, vw, 1)− v2x

1− v
A(vx,w, 1),

A+(x, v, w) = vw2x2 +B(x, v, w) + wC(x, vw) + wxA(wx, v, 1),

where

B(x, v, w) =
wx

1− v
(vB(x, v, w)−B(x, 1, vw)) + xB(x, v, w)

+ wx2A(wx, v, 1)− vw2x3A(vwx, 1, 1)− v2w3x4,

C(x, v) =
vx3(1 + vx)

1− x
+

vx3

1− x
A(vx, 1, 1)
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+
x2

(vx+ v − 1)(1− x)

(
vA+(

vx

1− vx
, 1− vx, 1)

− (1− vx)A+(x, 1− vx,
v

1− vx
)

)
.

By programming, one may verify that the solution of the foregoing sys-

tem is given as follows.

Theorem 3.13. Let S(x) =
√
x2 − 6x+ 1. We have

A(x, v, w) = A+(x, v, w) +A−(x, v, w),

where

A+(x, v, w)

=
(1− v + (v2x− 2v2 + vx− x)w − vx(x− 2)(v − 1)w2)vw2x2

2(1− v + wx(v − 2))(1− 2vw − x(1− vw))
S(vwx)

+
(1−v+(6v2−4v−x(4v2−2v+1))w+xv(x(v2+4v−4)−2v2−6v+6)w2)vw2x2

2(1− v + wx(v − 2))(1− 2vw − x(1− vw))

− (x− 2)(v − 1)v3w5x4

2(1− v + wx(v − 2))(1− 2vw − x(1− vw))

= vw2x2 +w2v(vw+w+1)x3 +w2v(2v2w2 +2vw2 +2vw+2w2 +w+1)x4 + · · ·

and

A−(x, v, w)

=
(x(1 + v − 2vx) + x(v2x− v2 + vx− 1)w − v(x− 1)(vx− 1)w2)v2wx2

2(1− vw − x(2− vw))(1− w − vx(2− w))
S(vwx)

+
((3x− 2)(w− 1)+ (−w2x2− 3w2x− 2wx2+3w2+2wx+6x2− 2w− 3x)v)v2wx2

2(1− vw − x(2− vw))(1− w − vx(2− w))

+
(w2x+ wx2 − w2 + 3wx− 2x2 − 3w − 2x+ 3− (x− 1)(w − 1)vwx)v4w2x3

2(1− vw − x(2− vw))(1− w − vx(2− w))

= v2wx2 + (vw + v + 1)v2wx3 + 2(v2w2 + v2w + v2 + vw + v + 1)v2wx4 + · · · .

Moreover,

B(x, v, w)

= − vw2x2(wx2 − 2wx− x+ 1)

2(vwx− 2vw − x+ 1)(vwx− 2wx− v + 1)
S(vwx)

− vw2x2(vw2x3 − 2vw2x2 − vwx2 + 3vwx− 3wx2 + 2wx+ x− 1)

2(vwx− 2vw − x+ 1)(vwx− 2wx− v + 1)
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= vw3x4 + w3v(3vw + 2w + 1)x5+w3v(11v2w2+8vw2 + 4vw + 4w2+2w + 1)x6

+ · · ·

and

C(x, v) =
−vx2(vx2 − 2vx− 3x+ 2 + (x− 2)S(vx))

2(1− x− 2v + vx)
.

Taking w = 1 in the prior theorem yields the following result.

Corollary 3.14. The generating function for the distribution of the first
letter statistic on Sn(1243, 1324) for n ≥ 1 is given by

vx(2− 3v − 3x+ 3vx) + vx(v + x− vx)(vx+
√
1− 6vx+ v2x2)

2(1− v − 2x+ vx)
.

4. Appendix

In this section, we provide proofs of the formulas obtained in Proposition
3.2 and Theorem 3.3. We omit the proofs of the comparable steps in the
derivations of Theorems 3.8 and 3.13.

Proof of Proposition 3.2: Clearly, A+(x, v, w) = wC(x, vw)+w2D(x, vw)+
B(x, v, w), by the definitions. Translating (11)–(14) in terms of generating
functions yields

A−(x, v, w) =
∑
n≥2

n∑
a=2

a−1∑
b=1

an−1(b)v
awbxn

=
∑
n≥2

n−1∑
b=1

an−1(b)
vb+1 − vn+1

1− v
wbxn

= v2wx2 +
vx

1− v
A(x, vw, 1)− v2x

1− v
A(vx,w, 1),

wC(x, vw)− vw2x2A(vwx, 1, 1)− vw2x2 − v2w3x3

= wxC(x, vw) +
∑
n≥2

n−2∑
i=1

i−1∑
a=1

i−a−1∑
c=0

i−c∑
b=a+1

(
i− a− 1

c

)
an−c−2(a, b)v

iwi+1xn

= wxC(x, vw)+w
∑
a≥1

∑
c≥0

∑
i≥1

∑
n≥i+c+a+2

i+a∑
b=a+1

(
i+ c− 1

c

)
an−c−2(a, b)(vw)

i+a+cxn

= wxC(x, vw) + w
∑
a≥1

∑
i≥1

∑
n≥a+i

i+a∑
b=a+1

an(a, b)
(vw)i+axn+2

(1− vwx)i
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= wxC(x, vw)

+
w

vwx+ vw − 1

∑
n≥2

n−1∑
a=1

n∑
b=a+1

an(a, b)(
xn+2(vw)n+1

(1− vwx)n−a
− xn+2(vw)b

(1− vwx)b−a−1
)

= wxC(x, vw)

+
vw2x2

vwx+ vw − 1
A+(

vwx

1− vwx
, 1− vwx, 1)

− (1− vwx)wx2

vwx+ vw − 1
A+(x, 1− vwx,

vw

1− vwx
),

w2D(x, vw)− w2x2A(vwx, 1, 1) + v2w4x4

= w2x(C(x, vw)− vwx2A(vwx, 1, 1)) + w2xD(x, vw)

+ w2
∑
n≥3

n−3∑
i=1

i−1∑
a=1

i−1−a∑
c=0

i−c+1∑
b=a+1

(
i− 1− a

c

)
an−2−c(a, b)(vw)

ixn

= w2x(C(x, vw)− vwx2A(vwx, 1, 1)) + w2xD(x, vw)

+ w2
∑
a≥1

∑
c≥0

∑
i≥1

∑
n≥i+a+3

i+a+1∑
b=a+1

(
i+ c− 1

c

)
an−2(a, b)(vw)

i+a+cxn+c

= w2x(C(x, vw)− vwx2A(vwx, 1, 1)) + w2xD(x, vw)

+ w2x2
∑
a≥1

∑
n≥a+2

n∑
b=a+2

an(a, b)
(vw)i+axn

(1− vwx)i

+ w2x2
∑
a≥1

∑
n≥a+2

n−a−1∑
i=1

an(a, a+ 1)
(vw)i+axn

(1− vwx)i

= w2x(C(x, vw)− vwx2A(vwx, 1, 1)) + w2xD(x, vw)

+
w2x2(1− vwx)

vwx+ vw − 1
A+(

vwx

1− vwx
, 1− vwx, 1)

− wx2(1− vwx)2

v(vwx+ vw − 1)
A+(x, 1− vwx,

vw

1− vwx
)− w2x2C(x, vw),

and

B(x, v, w)

= wxB(x, v, w) + w3xD(x, vw)

+
∑
n≥3

n−3∑
i=1

n∑
j=i+3

i−1∑
a=1

i−a−1∑
c=0

(
i− a− 1

c

)
an−c−2(a, j − c− 2)viwjxn

+
∑
n≥3

n−3∑
i=1

n∑
j=i+3

(
(1− δj,n)(an−1(i, j)v

iwjxn
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+

i−1∑
a=1

i−a−1∑
c=0

(
i− a− 1

c

)
an−c−2(a, j − c− 1)viwjxn

)

= wxB(x, v, w) + w3xD(x, vw)

+
∑
n≥3

n−3∑
i=1

n∑
j=i+3

i−1∑
a=1

i−a−1∑
c=0

(
i− a− 1

c

)
an−c−2(a, j − c− 2)viwjxn

+
∑
n≥3

n−3∑
i=1

n−1∑
j=i+3

(
an−1(i, j)v

iwjxn

+

i−1∑
a=1

i−a−1∑
c=0

(
i− a− 1

c

)
an−c−2(a, j − c− 1)viwjxn

)

= wxB(x, v, w) + w3xD(x, vw)

+
∑
a≥1

∑
n≥a+2

n∑
j=a+2

j−a−1∑
i=1

an(a, j)
vi+awj+2xn+2

(1− vwx)i

+
∑
n≥3

n−3∑
i=1

n−1∑
j=i+3

(
an−1(i, j)v

iwjxn

+

i−1∑
a=1

i−a−1∑
c=0

(
i− a− 1

c

)
an−c−2(a, j − c− 1)viwjxn

)

= wxB(x, v, w) + w3xD(x, vw)

+
w2x2(1− vwx)

vwx+ v − 1
A+(x, 1− vwx,

vw

1− vwx
)− vw2x2

vwx+ v − 1
A+(x, v, w)

+
∑
n≥3

n−3∑
i=1

n−1∑
j=i+3

(
an−1(i, j)v

iwjxn

+

i−1∑
a=1

i−a−1∑
c=0

(
i− a− 1

c

)
an−c−2(a, j − c− 1)viwjxn

)

= wxB(x, v, w) + w3xD(x, vw)

+
w2x2(1−vwx)

vwx+v−1
A+(x, 1− vwx,

vw

1−vwx
)− vw2x2

vwx+v−1
A+(x, v, w)+xB(x, v, w)

+
1

vwx+ v − 1

∑
a≥1

∑
n≥a+3

n∑
j=a+3

an(a, j)(
vj−1wj+1xnn+2

(1− vwx)j−2−a
− va+1wj+1xnn+2)

= wxB(x, v, w) + w3xD(x, vw)

+
w2x2(1− vwx)

vwx+ v − 1
A+(x, 1− vwx,

vw

1− vwx
)− vw2x2

vwx+ v − 1
A+(x, v, w)

+ xB(x, v, w) +
wx2(1− vwx)2

v(vwx+ v − 1)
B(x, 1− vwx,

vw

1− vwx
)− vwx2

vwx+ v − 1
B(x, v, w).
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Combining the results above gives Proposition 3.2.

Proof of Theorem 3.3: By Proposition 3.2, one may express B in terms of
the generating functions A,C,D and C,D in terms of A. Substituting these
relations into the last equation from Proposition 3.2, one obtains

vx− wx− v − x+ 1

vwx+ v − 1
A+(x, v, w)(24)

=
w2x2(vwx− v − 1)A+( vwx

1−vwx , 1− vwx, 1)

vwx+ vw − 1

+
vwx2(w2 − 1)(vwx− 1)A+(x, 1− vwx, vw

1−vwx)

(vwx+ v − 1)(vwx+ vw − 1)

+ w2x2(vwx− v − 1)A(vwx, 1, 1) + x2vw2(vw2x2 − vwx− 1).

Replacing w by w/v in (24), we have

v2x− wx− v2 − vx+ v

v(wx+ v − 1)
A+(x, v, w/v)(25)

=
w2x2(wx− v − 1)A+( wx

1−wx , 1− wx, 1)

v2(wx+ w − 1)

+
wx2(w2 − v2)(wx− 1)A+(x, 1− wx, w

1−wx)

v2(wx+ v − 1)(wx+ w − 1)

+
w2x2

v2
(wx− v − 1)A(wx, 1, 1) +

x2w2

v2
(w2x2 − vwx− v).

We now seek to determine a formula for A+(x, v, w) using (25). First
note that by (2) and the main result from [8], we have

A(x, 1, 1) =
1− 3x−

√
1− 6x+ x2

2
,(26)

which implies A+(x, v, 1) may be determined independently of A−(x, v, 1)
since A occurs in (25) only through the A(wx, 1, 1) term. Suppose for a
moment that A(x, v, 1) is as in Corollary 3.4. Then the second equation
in Proposition 3.2 above at w = 1, together with the fact A(x, v, 1) =
A+(x, v, 1)+A−(x, v, 1), gives a linear system of equations in the quantities
A+ and A−. This yields

A+(x, v, 1) =
vx2(1 + v − vx)

2(vx− v − 2x+ 1)
S(vx)(27)
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− vx2(v2x2 − v2x− 4vx+ 3v − 1)

2(vx− v − 2x+ 1)
,

which we will assume for now to aid in solving (25).

Then taking v = v0 =
1−x+

√
1−2(1+2w)x+(1+4w)x2

2(1−x) in (25), and using (26)

and (27), implies

A+(x, 1− wx,
w

1− wx
)

=
(1− x)(wx+ w − 1)

4(wx− w − 2x+ 1)(wx− 1)
S(wx)

√
(1− x)(1− x− 4vwx)

+
1−w + (2w2 −w− 2)x− (w− 1)(2w2 + 4w + 1)x2 + w(2w2 − 2w− 1)x3

4(wx− w − 2x+ 1)(wx− 1)
S(wx)

− (wx+ w − 1)(wx2 − wx− 3x+ 1)

4(wx− w − 2x+ 1)(wx− 1)

√
(1− x)(1− x− 4vwx)

+
w − 1− (3w2 − 4)x+ (8w3 + w2 − 9w − 3)x2

4(wx− w − 2x+ 1)(wx− 1)

+
−w(2w3 + 8w2 − 9w − 4)x3 + w2(2w2 − 2w − 1)x4

4(wx− w − 2x+ 1)(wx− 1)
.

Substituting this expression into (24), and using (26) and (27), we obtain

A+(x, v, w)(28)

=
(w2 − 1)(1− x)vwx2S(vwx)

√
(1− x)(1− x− 4vwx)

4(vwx− vw − 2x+ 1)(vx− wx− v − x+ 1)

+
(1− x− 2vwx)vw(1− x)x2S(vwx)

4(vwx− vw − 2x+ 1)(vx− wx− v − x+ 1)

+
(1− 2v2x2 + 4v2x− 2v2 − x2 − 2x− 2vwx(1− x))vw3x2S(vwx)

4(vwx− vw − 2x+ 1)(vx− wx− v − x+ 1)

+
(1− w2)(vwx2 − vwx− 3x+ 1)vwx2

√
(1− x)(1− x− 4vwx)

4(vwx− vw − 2x+ 1)(vx− wx− v − x+ 1)

+
(3(w2 − 1)x2 + 4(1− 2w)x− w2 + 4w − 1)vwx2

4(vwx− vw − 2x+ 1)(vx− wx− v − x+ 1)

− ((w2 − 1)x3 + 8(w2 + 1)x2 − (7w2 + 4w + 11)x+ 4w + 4)v2w2x2

4(vwx− vw − 2x+ 1)(vx− wx− v − x+ 1)

− 2((1− x)(w2x2 + x2 + 3x− 3) + vwx(1− x)2)v3w3x2

4(vwx− vw − 2x+ 1)(vx− wx− v − x+ 1)
.



336 Toufik Mansour and Mark Shattuck

One may verify using programming that this expression for A+(x, v, w)

indeed satisfies (24) and (27) and thus is the solution of (24) that is sought.

We may now determine A−(x, v, w). By the second equation in Proposition

3.2, we have

A−(x, v, 1) = v2x2 +
vx

1− v
A(x, v, 1)− v2x

1− v
A(vx, 1, 1)

= v2x2 +
vx

1− v
(A+(x, v, 1) +A−(x, v, 1))− v2x

1− v
A(vx, 1, 1).

Solving for A−(x, v, 1) in this last equation, and using (26) and (27),

yields

A−(x, v, 1) =
v2x(x− 1)(vx2 − vx− 3x+ 1 + (x− 1)

√
1− 6vx+ v2x2)

2(vx− v − 2x+ 1)
.

Hence, by Proposition 3.2, we get the following explicit formula for A−(x, v,
w):

A−(x, v, w)

(29)

=
((1 + v − 2vx)x+ (v2x− v2 + vx− 1)wx− (1− x)(1− vx)vw2)v2wx2

2(vwx− 2vx− w + 1)(vwx− vw − 2x+ 1)
S(vwx)

+
(6vx2− 3(v+1)x+2− (2v2x3+2v(v+1)x2− (3v2+2v+3)x+2v+2)w)v2wx2

2(vwx− 2vx− w + 1)(vwx− vw − 2x+ 1)

+
(v2x3 − v2x2 + vx3 + 3vx2 − 3vx− x2 − 3x+ 3− (1− x)(1− vx)vwx)v3w3x2

2(vwx− 2vx− w + 1)(vwx− vw − 2x+ 1)
.

Combining the formulas for A+(x, v, w) and A−(x, v, w) yields the for-

mula for A(x, v, w).

References

[1] G. E. Andrews and S. Chern, A proof of Lin’s conjecture on inversion

sequences avoiding patterns of relation triples. J. Combin. Theory Ser.

A 179 (2021), Art. 105388. MR4190575

[2] J. Bonin, L. Shapiro, and R. Simion, Some q-analogues of the Schröder

numbers arising from combinatorial statistics on lattice paths. J.

Statist. Plann. Inference 34 (1993), 35–55. MR1209988

http://www.ams.org/mathscinet-getitem?mr=4190575
http://www.ams.org/mathscinet-getitem?mr=1209988


On a conjecture of Lin and Kim 337

[3] W. Cao, E. Y. Jin, and Z. Lin, Enumeration of inversion sequences
avoiding triples of relations. Discrete Appl. Math. 260 (2019), 86–97.
MR3944611

[4] S. Corteel, M. Martinez, C. D. Savage, and M. Weselcouch, Patterns in
inversion sequences I. Discrete Math. Theor. Comput. Sci. 18 (2016),
#2. MR3548801
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