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Colorful graph associahedra

Satyan L. Devadoss and Mia Smith

Given a graph G, the graph associahedron is a simple convex poly-
tope whose face poset is based on the connected subgraphs of G.
With the additional assignment of a color palette, we define the
colorful graph associahedron, show it to be a collection of simple
abstract polytopes, and explore its properties.
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1. Introduction

Given a finite graph G, the graph associahedron KG is a simple polytope [7]
whose face poset is based on tubes, the connected subgraphs of G. For spe-
cial examples of graphs, KG becomes well-known, sometimes classical: when
G is a path, a cycle, or a complete graph, KG results in the associahedron,
cyclohedron, and permutohedron, respectively. Figure 1 shows the examples
for a path and a cycle with three nodes. These polytopes were first motivated
by De Concini and Procesi in their work on ‘wonderful’ compactifications of
hyperplane arrangements [10]. They make appearances in numerous areas,
including geometric group theory [9], real moduli space of curves [7], Hee-
gaard Floer homology [5], and biological statistics [20]. It is not surprising
to see KG in such a broad range of subjects since the structures of these
polytopes capture and expose the fundamental concepts of connectivity and
nestings. There have been numerous extensions, including nestohedra [12]
and Postnikov’s generalized permutohedra [21].

This work deals with another such generalization, now with the addi-
tional feature of coloring. Associating a combinatorial structure with color-
ings is not new and has been successfully exploited in the topological study
of colored triangulations and crystallization of manifolds [6, 13]. Moreover,
the use of flips to reconfigure diagonals of triangulations (akin to moving
tubes on graphs) is relevant to the study of mixing [18], mesh generation
[11], and optimizing triangulation measures [4]. Despite the extensive work
on flips, only recently has the question of where diagonals go under flip op-
erations been investigated, notably using color to keep track of their move-
ments. In particular, work by Lubiw, Masárová, and Wagner [17] explores
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Figure 1: Graph associahedron of (a) paths and (b) cycles with three nodes.

colored triangulations of an arbitrary planar point set, establishing connec-
tivity through sequences of color diagonal flips, generalizing the work of
Lawson [16]. More important to our discussions are the results of Araujo-
Pardo, Hubard, Oliveros, and Schulte [2] that showcase coloring diagonals
of triangulations of an n-gon (associahedron) and centrally symmetric tri-
angulations of a 2n-gon (cyclohedron).

Our work brings together these two notions, of colorings and polytopes,
in forming colorful graph associahedra KG. Figure 2 shows an example of
KG for the path of 3 nodes, resulting in a 10-gon; contrast this with Fig-
ure 1(a). Categorical complexity increases with the number of nodes: For
the path with four nodes, KG is no longer a polytope but a genus-four han-
dlebody. And for paths with five or more nodes, KG is not even a manifold
but an abstract polytope.

This paper extends the results of [2] to arbitrary simple graphs G. We
first show how the connectivity levels of G stand in obstruction to simply
coloring the tubes of G. Thus, colored tubes require larger machinery to be
well-defined, notably a color template and associated compatibility struc-
tures. With this in hand, for a simple graph G with n nodes, a definition
of the colorful graph associahedron KG is offered and the strongest possible
result proven: KG is a simple abstract polytope of rank n− 1.

An overview of this paper is as follows: Section 2 provides background,
while exploring issues of connectivity and cores. Section 3 introduces colors,
along with the structures of palettes and templates necessary for a well-
defined formulation of the colorful graph associahedron. Section 4 showcases
the main theorem along with examples and properties, whereas Section 5
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Figure 2: Colorful graph associahedron of the path with three nodes.

deals with disconnected graphs. Issues of convexity and regularity of these
polytopes are addressed in Section 6, and the proofs of the main results are
provided in Section 7.

2. Graphs and definitions

2.1. Tubes

Throughout the paper, let G be a simple graph, following the lead in [7].

Definition. A tube of G is a set of nodes whose induced graph is a proper,
connected subgraph. Two tubes are compatible if one properly contains the
other, or if they are disjoint and cannot be connected by an edge of G. A
k-tubing of G is a set of k pairwise compatible tubes.

Theorem 1. [7] Given a simple graph G with n nodes, the graph associa-
hedron KG is a simple convex polytope of dimension n− 1 whose face poset
is isomorphic to the set of valid tubings of G, ordered such that T ≺ T ′ if T
is obtained from T ′ by adding tubes.

The codimension k-faces correspond to k-tubings of G; in particular, the
vertices of KG correspond to maximal tubings of G, those containing n− 1
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tubes. For a maximal tubing, there is exactly one node of G not contained
in any tube, called the universal node. For technical reasons discussed later,
we define the entire graph G itself as the universal tube.1 It is tempting to
define KG analogous to KG, as the poset of valid color tubings of G, ordered
by adding and removing color tubes. As we discuss below, this method fails
due to issues of connectivity.

Definition. A graph G has connectivity k if there exists a set of k nodes
whose removal disconnects the graph, but there is no set of k − 1 nodes
whose removal disconnects it.

A hint of the larger problem at hand appears even when considering
cycles (connectivity 2) rather than just paths (connectivity 1). Figure 3
displays KG for a cycle with three nodes. Unlike Figure 2, the resulting
object yields two isomorphic copies of a hexagon, each with a different color
schemata. In particular, whenG is an n cycle, KG is made of n−1 isomorphic
copies. This small disparity between paths and cycles hints at a looming
failure: when the connectivity of G increases beyond 2, the ability to define
KG simply as the poset of valid color tubings of G becomes impossible.

Figure 3: Colorful graph associahedron of the cycle with three nodes.

2.2. Inner and outer

The rest of this section is devoted to examining this phenomena and estab-
lishing the definitions necessary for the proper formulation of colorful graph
associahedra.

1This is not an official tube since it is not a proper subgraph of G.
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Definition. Given a graph G with n nodes and connectivity k, a tube of G

with n− k nodes or less is an inner tube, and a tube with more than n− k

nodes is an outer tube.

Proposition 2. For any inner tube ti and outer tube tu of tubing T , we

have ti ⊂ tu, justifying the nomenclature of this terminology.

Proof. It is either the case that ti and tu are disjoint or that one is a subset

of the other. The total number of nodes in their union is greater than n −
k, which means that the subgraph induced by the union of their nodes is

connected. Hence, they cannot be disjoint and so ti ⊂ tu.

Proposition 3. For a graph G with n nodes and connectivity k, every max-

imal tubing contains k − 1 outer tubes and n− k inner tubes. In particular,

for all n− k < i < n, there is precisely one outer tube containing i nodes.

Proof. By the logic in Proposition 2, given two outer tubes, one must be

contained in the other. This means no two outer tubes contain the same

number of nodes, so there are at most k−1 outer tubes. Suppose these were

fewer; then, for some number of nodes i with n − k < i < n, there would

be no tube containing precisely j nodes in T . Consider the smallest tube t

with greater than j nodes; this may be the universal tube. There exist at

least two nodes in t that are not in any t′ ⊂ t. Taking t and removing one

of these two nodes yields a tube which is compatible with all other tubes of

T , contradicting the maximality of the tubing.

Example. Figure 4 shows three examples of graphs with 4 nodes, with

connectivity 3, 2, and 1, respectively. The left side of each pair shows a

maximal tubing, whereas the right side depicts the outer tubes of that tub-

ing. Note that outer tubes are based on the underlying connectivity of the

graph, rather than properties such as nestings of tubes.

Figure 4: Three pairs of graphs with four nodes each; the left side displays
a maximal tubing, the right side the outer tubes of this tubing.
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2.3. Cores

With connectivity being the first ingredient, the second concept needed for
constructing KG is a manipulation algorithm for tubes and graphs. The
following definition is motivated by the notion of reconnected complement
as defined in [7]; indeed, this construct can be reformulated as an iterative
reconnected complement operation.

Definition. Given a graph G, a tubing T , and a tube t of T , let ST (t) be
the core graph of t in T : The nodes of ST (t) are those of t not contained
in any other tubes t′ ⊂ t of T . There is an edge between such two nodes if
they are adjacent in G or if they are connected via a path in some t′ ⊂ t.

Remark. As an exceptional case, extend this to the core graph of the uni-
versal tube G, denoted by ST (G), whose nodes are those not contained in
any tube of T .

Example. Figure 5(a) shows an example of a tubing T of G with two tubes,
the larger one denoted as t. Part (b) shows the core ST (t) and (c) the core
ST (G) of the universal tube.

Figure 5: A tubing and two core graphs.

3. Graphs and colors

3.1. Palettes and templates

We now introduce color to the discussion. Araujo-Pardo, Hubard, Oliveros,
and Schulte [2] construct colorful associahedra and cyclohedra using a set
of distinct colors for the labeling of tubes. We extend this to arbitrary color
collections.

Definition. For a graph G with n nodes, consider its color palette, a col-
lection of n− 1 colors where repeats are permitted. If the palette has n− 1
distinct colors, we say it is a full color palette. A color tube is a tube of G
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along with a color chosen from the palette. The colors of the tubes in a color

k-tubing are a choice of k colors from the palette.2

The core graphs form the basis for how color is distributed. In particular,

the following bijection allows us to recast tubings of G entirely in the realm

of core graphs.

Proposition 4. Given a graph G, a tubing T , and a tube t of T , the tubes

of ST (t) are in bijection with tubes compatible with T and strictly contained

in t, but not contained in any other tube t′ ⊂ t.

Proof. By the construction ofST (t), there is a bijection φ between the nodes

of the core and the nodes of G contained in t but not in any t′ ⊂ t. For a

tube h compatible with T , its nodes can be partitioned into two sets: set h0
consisting of all nodes contained in some t′ ⊂ t, and set h1 consisting of the

rest. Mapping h to φ(h1) gives our desired bijection of tubes.

This framing now affords the opportunity to combine the notion of cores

and connectivity to define coloring tubes in a proper manner.

Definition. Let G be a graph with a color palette. A color template is the

pair (T,O): T is an uncolored tubing of G, and O is a partition of the color

palette amongst the tubes of T , where the colors associated to each tube t

satisfying the following:

1. The first block is the color of t.

2. Let kt be the connectivity of the core ST (t). The next kt − 1 blocks

are the outer blocks, and contain kt − 1 colors to be used on the outer

tubes of ST (t).

3. The last block, called the inner block, contains n−kt colors to be used

on the inner tubes of the core ST (t).

The template fixes the color orders for outer blocks whereas the colors in

the inner block are unordered. In the case of the universal tube, the color

template identification is similar except for one change: the universal tube

is uncolored.

2In particular, the colors of these k tubes are in bijection with a submultiset of
the color palette of size k.
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Example. Figure 6 shows three examples of color templates (T,O) for three
distinct tubings of a graph. The color palette uses eight distinct colors and
each template partitions the color palette as expected. Each row displays
the core graph ST (t) and the color blocks associated to each tube t, with
the top row corresponding to the universal tube. The first block of each row
is the color of the tube, the only ‘visible’ color in the shading of the tube.

Figure 6: Examples of color templates for three tubings.

3.2. Compatibility

These color templates will form the elements of our poset for KG. A template
can be thought of as a organizer: as our tubing T is altered, by adding and
removing tubes, the template gives us rules for success to ensure consistency.
For color templates (T,O) and (T ′,O′) to be compatible, we first require
tube compatibility in the classical sense, where tubing T can be formed
from T ′ by adding tubes. With the addition of color, the partitions of the
color palette O and O′ also need to be compatible, where O can be formed
by further partitioning O′ in a way that respects the color order. This is
now made precise.

Remark. For the color template compatibility of (T,O) and (T ′,O′), it is
sufficient to consider when T differs from T ′ by only one tube. For all other
cases, an iterative procedure can be used to extend the following definition.

Definition. Let t be a tube of graph G, with tubings T ′ and T = T ′ ∪ {t}.
Moreover, let t∗ be the smallest tube in T that contains t; if no such tube
exists, let t∗ be the universal tube G. Two color template (T,O) ≺ (T ′,O′)
are compatible if the following holds:
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1. In O, the color blocks for all tubes in T \ {t, t∗} must be the same as
in O′.

2. The k = |ST (t∗)| colors of t∗ in O are the first k colors of t∗ in O′,
preserving partial order. If inner block colors are included in the first
k colors, then any of these colors may be selected.

3. The |ST (t)| colors associated to t are colors k + 1 to |ST ′(t∗)| of t∗
in O′, preserving partial order. If the first block of t together with the
outer blocks in ST (t) outnumber the outer blocks amongst colors k+1
to |ST ′(t∗)| of t∗ in O′, then any inner block colors may be selected.

Example. Figure 7 shows that the color template in (a) is compatible with
the color template in (e) via the iterative addition of compatible tubes.
Observe that at each step, when a tube t is added, the colors for t are
selected starting from the end of the ordered partition associated to t∗.
Progressing from (b) to (c), ST (t) has connectivity 2 but the last four colors
associated to t∗ in T ′ all lie in the inner block; per requirement (3), two
colors are arbitrarily selected from the inner block, blue for the tube t and
pink for single outer block. Progressing from (c) to (d), ST (t∗) has higher
connectivity than ST ′(t∗) and thus more outer blocks. Per requirement (2),
green is arbitrarily selected to fill the outer block t∗.

Figure 7: Compatibility of color templates.
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Definition. For a simple graph G with a color palette, the colorful graph
associahedron KG is the collections of posets of color templates (T,O) of G,
with the partial ordering ≺ defined above.

The proof of Theorem 5 shows this to be well-defined.

4. Colorful graph associahedra

4.1. Abstract polytopes

We begin with some foundations, culminating in the formulation of one of
our main theorems. The reader is encouraged to explore [19] for a wealth of
information on abstract polytopes. The elements of a poset P are its faces,
and two faces f and g are incident if f � g or g � f . By convention, there is
a face f∅ at rank −1 corresponding to the empty set, and faces of rank 0 are
the vertices of P . In general, the rank of face f is defined as j − 2, where j
is the maximum number of faces in any chain of faces f∅ ≺ f0 ≺ f1 · · · ≺ f .
A flag of poset P is a totally-ordered set of faces of maximal length, where
two flags are adjacent if they differ from each other in precisely one face. A
poset is flag-connected if any two flags Φ and Ψ can be joined by a sequence
of adjacent flags

Φ = Φ0, Φ1, · · · , Φn = Ψ,

and is strongly flag-connected with the additional restriction that Φ∩Ψ ⊂ Φi,
the intersection held constant throughout the sequence.

Definition. A poset P is an abstract polytope of rank n if it satisfies the
following:

1. P contains a least face and a greatest face.
2. Each flag of P contains exactly n+ 2 faces.
3. P is strongly flag-connected.
4. For incident faces f and h (of ranks j−1 and j+1, respectively), there

are precisely two faces g1 and g2 (of rank j) such that f ≺ gi ≺ h.

This definition captures combinatorial properties that appear naturally
for convex polytopes, such as connectivity (requirement 3) and incidence
(requirement 4, sometimes called the ‘diamond’ property). While geometric
properties are lost, a wealth of freedom is gained. For example, the hemi-
icosahedron is an abstract 3-polytope whose facets tessellate RP

2, with 10
triangles meeting five at each vertex. Another example is the 11-cell, an
abstract 4-polytope tiled by 11 hemi-icosahedron, containing 55 faces, 55
edges, and 11 vertices. The following is one our main results, an analog to
Theorem 1, whose proof is relegated to Section 7:
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Theorem 5. Let G be a simple graph with n nodes and connectivity k, along
with a color palette. The colorful graph associahedron KG is a collection of
simple abstract polytopes of rank n − 1, consisting of one abstract polytope
for each distinct ordering of k − 1 colors from the color palette.

In particular, each abstract polytope in the collection corresponds to a
distinct assignment of colors to the k−1 outer blocks in the universal tube of
G. As we will show, this assignment of colors precisely determines whether
two flags are connected.

Corollary 6. For a monochrome color palette, KG is the classical graph
associahedron. For a full palette of n − 1 distinct colors, KG consists of
(n− 1)!/(n− k)! identical abstract polytopes.

Remark. For a full palette, an n-path (connectivity 1) has no outer blocks,
resulting in a unique colorful associahedron (Figure 2). For n-cycles (connec-
tivity 2), only the color of the outer block associated to the universal tube
must be fixed, resulting in n − 1 copies of colorful cyclohedra (Figure 3).
In [2], this was addressed by fixing the color of the long diagonal of the
centrally symmetric polygons representing the cyclohedron.

4.2. Graphs with four nodes

Consider all the connected simple graphs with four nodes, as displayed by
the top row of Figure 8. The three subsequent rows show the topology of the
associated colorful graph associahedra for the three types of color palettes:
full { , , }, mixed { , , }, and monochrome { , , }. All these
colorful graph associahedra are (collections of) handlebodies; in particular,
the bottom row is simply the classical graph associahedron, topologically
equivalent to a 3-ball.

Each entry also has a vector (k4, k5, k6, k10), corresponding to the num-
ber of squares, pentagons, hexagons, and decagons tiling the respective sur-
face boundaries. The two highlighted entries in the first row are the colorful
associahedron and cyclohedron considered in [2]. Note that the colorful cy-
clohedron has three distinct copies, each tiled by the 2-faces in (8, 0, 8, 4),
corresponding to the three ways of assigning colors to the outer block. The
bottom row of Figure 8 showcases the monochrome case. In [8], natural cel-
lular surjections (with certain algebra and coalgebra homomorphims) are
shown to exist between graph associahedra as their underlying graphs are
altered. It would be interesting to find analogous maps between colorful
graph associahedra as their palettes are transformed.
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Figure 8: Colorful graph associahedra for connected graphs with four nodes.

Example. Consider the shaded entry in the second row of Figure 8, the

trivalent graph with color palette { , , }. The abstract polytope is a

solid genus-two surface tiled by 9 squares, 6 pentagons, 3 hexagons, and 6

dodecagons. The color templates associated to these facets are fully outlined

in Figure 9.

Figure 9: Facets of the trivalent graph with a mixed color palette.
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Figure 10 examines a part of this genus-two surface up-close, showcasing
the gluing of a few facets from Figure 9. The pentagons and squares are
given a darker shading to help distinguish them from the hexagons and
dodecagons.

Figure 10: A gluing of some facets from Figure 9.

Corollary 6 shows that every monochrome palette yields the classical
graph associahedron. However, the moment we leave the monochrome world,
abstraction sets in. Even for a palette with just two colors, there are cases in
which the colorful graph associahedron is not even a manifold. Figure 11(a)
gives the example of a graph with its color palette. Part (b) is one facet
of this graph, corresponding to the color 1-tubing. But this facet is what
we have been discussing in detail, whose colorful graph associahedron is
the genus-two handlebody, demonstrating that facets of part (a) are not
topological balls.

Figure 11: (a) Graph with palette, along with (b) a facet and its color tem-
plate, whose colorful graph associahedron is (c) a genus-two handlebody.
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4.3. Product structures

We turn our attention from the global nature of KG to the local construction
of its faces. The following result allows us to look at any face and, based on
its color template, completely determine its structure.

Theorem 7. Given a graph G, the j-faces of KG correspond to the color
templates of G with an underlying (n − j − 1)-tubing. Moreover, the j-face
associated to (T,O), where T is the set {t1, . . . , tn−j−1} of tubes, is combi-
natorially equivalent to

KST (t1)× · · · ×KST (tn−j−1)×KST (G) .

Proof. The proof is akin to that of the product structure of facets in KG
presented in [7]. As per Proposition 4, there is a natural bijection from each
tube ti of G to the universal tube of ST (ti). Moreover, the structure of the
color blocks associated to ti in T is the same as the structure of those associ-
ated to the universal tube ofST (ti). This gives rise to the following mapping:
For a color template (T,O) ∈ KG, where T is the set {t1, t2, · · · , tn−j−1} of
tubes and oi is the collection of color blocks associated to ti, define

(T,O) �→ ((ST (t1), o1), . . . , (ST (tn−j−1), on−j−1), (ST (G), o)) .

It is straight-forward to verify that this is a bijection.

Example. Figure 12(a) depicts a color template with an underlying 2-
tubing. The core of the pink tube is a path with two nodes, which gives
rise to a line segment as its colorful graph associahedron. The core of the
blue tube is a path with three nodes, which (with the monochrome pink
palette) yields a pentagon. Since the universal tube is simply a node, the
face of the given 2-tubing is a pentagonal prism, shown in (b), as Theorem 7
claims. Part (c) lists the seven tubings associated to each face of the prism.

Figure 12: A face with a product structure.
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5. Disconnected graphs

5.1. Modifications

We extend the definitions and results for colorful graph associahedra to dis-
connected graphs. Let G be a graph with connected components G1, . . . , Gm.
As for the classic graph associahedra [8], any tubing of G cannot contain
all of the tubes {G1, . . . , Gm}. Thus, for a graph with n nodes, a maximal
tubing still contains exactly n−1 tubes. Based on this, we make a few minor
alterations to existing definitions:

1. Universal Modification: The universal tubes are now the connected
components of G (and no longer the entire graph). As before, the
universal tubes are included in the color template, but now they can
also take on a color.

2. Template Modification: A color template is the pair (T,O) as be-
fore, but now O is a partition of the color palette amongst the tubes
of T and the universal tubes Gi. Here, an additional universal block is
created to store the colors that will be used on the universal tubes.

3. Compatibility Modification: Compatibility of (T,O) ≺ (T ′,O′) is
as before, with the following addendum: For a universal tube Gi of G,
with tubings T ′ and T = T ′ ∪ {Gi},
(a) In O, the ordered partitions for all tubes in T \ {Gi} must be the

same as in O′.

(b) In O, the inner and outer blocks of Gi are colored as dictated by
O′, but the color of Gi is selected from the universal block of O′.

Example. Consider Figure 13, the example of a disconnected graph with
three components: a 4-cycle, a 3-path, and a node. As with connected graphs,
the color template in (a) consists of a tubing and partition of the color
palette. Each component has color blocks assigned according to its connec-
tivity. We now have the addition of a universal block, designating colors
(pink, yellow) that can be used for the universal tubes. As universal tubes
are added, their color will be taken from this block.

The second row in Figure 13 represents compatible color tubings achieved
through the iterative addition of tubes to (a). A universal tube is added in
(b), given an available color (pink) from the the universal block. The colors
for its inner and outer blocks remain those designated by the template in
(a). Another universal tube is added in (c), using the only available color
(yellow) in the universal block. At this point, no colors remain in the uni-
versal block, and likewise, the maximal number of universal tubes has been
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Figure 13: Compatibility of disconnected colored graphs.

reached. Non-universal tubes may still added, as in (d), whose color blocks
are determined according to normal compatibility rules.

Consider the simplest example of a disconnected graph G[n], the null
graph on n nodes. Proof of the following is provided in Section 7:

Proposition 8. Given G[n] with a color palette, its colorful graph associa-
hedron, denoted as K[n], is a connected simple abstract polytope.

Example. Figure 14 displays the net of the boundary of K[4], a solid torus
tiled by hexagons. Each hexagon is a copy of K[3] corresponding to a color

Figure 14: The colorful graph associahedron K[4].
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tube about one of its four nodes. The color template for a hexagon and one
of its vertices is provided. In general, each facet of K[n] corresponds to a
unique color and node combination, and is adjacent to precisely those facets
that correspond to both a different node and color.

5.2. Structures

We turn our attention to general disconnected graphs. In particular, we show
that the colorful graph associahedron has a product structure given by its
connected components.

Theorem 9. Let G be a simple graph with connected components G1, . . . , Gm,
along with a color palette. The colorful graph associahedron KG is a collec-
tion of simple abstract polytopes. Moreover, each ordered partition of the
palette into sets of sizes |G1|−1, . . . , |Gm|−1,m−1 corresponds to a unique
subset of abstract polytopes of KG given by

(5.1) KG1 × · · · ×KGm ×K[m] ,

where the palette for KGi is given by the partition class of size |Gi| − 1 and
the palette for K[m] is given by the partition class of size m− 1.

Proof. We create an order-embedding bijection φ from the faces of the form
in (5.1), satisfying the conditions outlined above, to the faces of KG. Given
a face described by the ordered tuple

((T1,O1), . . . , (Tm+1,Om+1)) ,

define φ as follows: The first m arguments follow the natural mapping: for
each face (Ti,Oi) of KGi, the tubing Ti is constructed on component Gi

in G. The color order Oi is not changed and is simply associated to the
corresponding tubes on G.

The final argument uses a different mapping: Given the face(Tm+1,Om+1)
of K[m], a tube is constructed around Gi if and only if Tm+1 includes a tube
around the i-th node of G[m]. As before, the color order Om+1 is not changed
and is simply associated to the corresponding tubes on G. This holds even
for the universal block. Note that φ is an order-embedding bijection and
maintains the validity of the tubings. It is straight-forward to verify this is
an order isomorphism. By [15, Theorem A], since each term in (5.1) is a
collection of abstract polytopes, KG is a collection of abstract polytopes.
Simplicity follows immediately.
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Corollary 10. Let Δi be the i-simplex. For a monochrome color palette,
KG is isomorphic to

KG1 × · · · × KGm ×Δm−1 .

For a full palette of n− 1 distinct colors, KG is isomorphic to

KG1 × · · · ×KGm ×K[m] ,

consisting of

(
n− 1

m− 1

)
·
(

n−m

|G1| − 1

)
·
(
n−m− |G1|+ 1

|G2| − 1

)
· · ·

(
|Gm| − 1

|Gm| − 1

)

copies of identical polytopes.

Proof. The monochrome results follows from classical graph associahedra
[8, Theorem 2]. For the full palette, the enumeration is obtained from the
appropriate partitions of the colors amongst the connected components.

Remark. It follows that for a multi-component graph G, the colorful graph
associahedron KG is connected only when the color palette is monochrome
or when G is the null graph.

Example. Figure 15 depicts the colorful graph associahedra for discon-
nected graphs with four nodes. Similar to Figure 8, the three subsequent
rows show the geometry of colorful graph associahedra associated to these

Figure 15: Colorful graph associahedra for disconnected graphs with four
nodes.
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graphs, for the three types of color palettes: full { , , }, mixed { , ,

}, and monochrome { , , }. The number of connected components de-
creases monotonically moving down the rows: as distinct colors are removes,
the number of ways to partition the palette amongst the components and
universal block decreases.

While the shaded entry of Figure 15 is a solid torus (detailed in Fig-
ure 14), the rest are convex polytopes. Convexity is common here because
any graph with two components contains the interval K[2] in its product.
But as the number of nodes and connected components of G increases, the
polytope structure of KG will move from convex to abstract.

6. Convexity and regularity

6.1. Convexity

This section focuses on colorful graph associahedra which hold additional
structure, notably convex polytopes and regular abstract polytopes. With
a monochrome palette, KG becomes the classical graph associahedron and
thus a convex polytope. In what follows, we consider convexity in other
palettes for graphs with a range of connectivity settings.

Proposition 11. Let G be the complete graph on n nodes. Then KG consists
of identical copies of the permutohedron for any color palette.

Proof. The color template for the complete graph on n nodes consists of
n − 2 outer blocks and 1 inner block. Each assignment of colors to the
blocks yields a copy of the permutohedron. In particular, there are r identical
permutohedra, where r is the number of distinct orderings of the colors.

Proposition 12. Let G be the null graph on n nodes. Then K[n] is a convex
polytope if and only if its color palette has one or two colors.

Proof. For a monochrome palette, the colorful graph associahedron K[n] is
the n − 1 simplex [7]. For palettes with three of more colors, K[n] fails to
be a convex polytope: K[4] with three colors yields a genus-one handlebody.
We now consider the two-color case.

Given a vector space V and a Weyl group W , the weight polytope of
x ∈ V is the convex polytope defined by the convex hull of the orbit of x
under W ; see Fulton and Harris [14] for details. Consider the special case
where x = 〈0, . . . , 0, 1, 2, . . . , 2〉 ∈ R

n, with r zeros and b twos. The vertices
of the resulting weight polytope are the permutations of the coordinates of
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x under the action of the symmetric group on n letters. The facets lie on
the hyperplanes defined by

n∑
i=1

aixi = 1 + 2b

with ai = 1 for all i except one, when i = j, in which case aj = 0 or aj = 2.
Consider K[n] with a palette consisting of exactly two colors: r reds and

b blues such that r + b+ 1 = n. The correspondence of the weight polytope
defined above to K[n] is immediate. The number in the i-th position of the
vector defines the color of the i-th node of G[n]: 0 corresponds to a red tube,
2 to a blue tube, and 1 to no tube. For instance, the string 2010 is identified
with red tubes on the second and fourth node, a blue tube on the first node,
and no tube on the third node.

Proposition 13. Let G be a graph with a 4-star, 4-path or 4-cycle as an
induced subgraph. Then KG is a convex polytope if and only if its color
palette is monochrome.

Proof. Figure 8 demonstrates that if G contains the 4-star, 4-path, or 4-
cycle as an induced subgraph, then KG fails to be a convex polytope for
non-monochrome palettes.

Corollary 14. For a tree T with n ≥ 4 nodes, KT is a convex polytope if
and only if its color palette is monochrome.

Remark. The full classification of colorful graph associahedra that are con-
vex polytopes remains open, although convexity is quite rare within this
realm from the evidence above.

6.2. Regularity

For convex polytopes, regularity requires that the symmetry group be flag-
transitive. However, abstract polytopes do not necessarily have a symmetry
group and a geometry. By weakening the notion of regularity and only requir-
ing flag-transitivity of the automorphism group, the definition of regularity
can be extended to abstract polytopes [19]. For the remainder of this section,
we consider only colorful graph associahedra with full palettes.

Definition. Let P be an abstract polytope. Then, P is (combinatorially)
regular if its automorphism group Γ(P ) is flag-transitive. Equivalently, for
any two flags Φ and Ψ, there exists an element σ ∈ Γ(P ) such that σ(Φ) = Ψ.
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Given the high degree of symmetry, it is not surprising that K[n] is
regular. In fact, it mostly turns out to be the only example. Let Pi be the
path and Ki be the complete graph on i nodes.

Lemma 15. Let G be a simple connected graph, along with a full color
palette. If KG is regular, then G is either K1, K2, K3, or P3.

Proof. First, observe that the colorful graph associahedra ofK1,K2,K3, and
P3 are all regular. The following argument examines only tube compatibility;
it doesn’t specify color orders. This is permitted because all facets with the
same underlying tubing are isomorphic, a consequence of full color palettes.

If G contains more than one node, let x and y be adjacent nodes. Since
KG is flag transitive, a facet corresponding to tube {x} must be isomorphic
to a facet corresponding to tube {x, y}. Hence

KS{x}(G) ∼= K[2]×KS{x,y}(G).

Since K[2] is an interval, there must exist tubes t1 and t2 of S{x}(i) which
are compatible with all other tubes except each other. Removing t1 from
S{x}(G) creates a number of connected components, all of which are adja-
cent to (and thus not compatible with) t1. Hence, S{x}(G) − t1 consists of
only one component, which we denote as t2. Since S{x}(G) is connected,
there is an edge {v1, v2} with v1 ∈ t1 and v2 ∈ t2. Suppose t1 or t2 has more
than one node. Then, the {v1, v2} is a valid tube but is not compatible with
t1 or t2, contradicting the definition of t1 and t2. We conclude that G has
at most 3 nodes; as it is connected, the result follows.

Proposition 16. Let G be a simple graph with n ≥ 5 nodes, along with a
full color palette. Then KG is a regular abstract polytope if and only if G is
the null graph G[n].

Proof. In the backwards direction, assume G is the null graph. Let Γn denote
the permutation group on n elements. The flags of K[n] are in bijection with
the elements (s, t) of Γn−1 × Γn−1:

1. s determines the labeling of the nodes of G[n], determining the tube
ordering in the flag.

2. t determines the assignment of colors to tubes.

Given flags (s1, t1) and (s2, t2) of K[n], there exist permutations p, q such
that ps1 = s2 and qt1 = t2, with p relabeling nodes and q relabeling colors.
Hence (s, t) �→ (ps, qt) is the desired automorphism, ensuring the regularity
of K[n].
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In the forwards direction, assume KG is regular for a simple graph G

with m connected components, G1, . . . , Gm. Thus KGi is also regular, and

by Lemma 15, Gi must be one of K1, K2, K3, or P3. Since the palette is

full, Corollary 10 claims that KG is isomorphic to

(6.1) KG1 × · · · ×KGm ×K[m] .

In [15, Section 5], it is proven that all abstract polytopes have a unique

prime factorization under the Cartesian product. Moreover, if an abstract

polytope is regular, then it is either prime or has a prime factorization that is

isomorphic to a product of intervals. We apply these results to our situation.

If KG is prime, then either G is connected or is the null graph G[n]. Since

n ≥ 5, Lemma 15 guarantees the impossibility of the former, meaning (6.1)

is isomorphic to a product of intervals. But component KGm is isomorphic

to a product of intervals only when m = 1 or m = 2. The former case has

been discussed. For the latter, since n ≥ 5, one component must be K3 or

P3. But since neither is isomorphic to a product of intervals, G must be the

null graph G[n].

7. Proofs of the main results

7.1. Exchange graph

For the duration of this paper, let G be a simple connected graph with n

nodes and connectivity k, along with a color palette. Thus far, we have de-

scribedKG as a collection of posets of color templates, highlighting the struc-

ture of KG and its relationships to connectivity and color tubings. Drawing

inspiration from [1], we provide an alternate definition of KG starting from

its 1-skeleton.

Definition. The nodes of the exchange graph EG correspond to maximal

color tubings of G, where two nodes are adjacent if their tubings differ at

precisely one tube. Note that the color of the differing tubes must be the

same, and by Proposition 3, the tube type (inner versus outer) must also be

the same.

By Proposition 3, each maximal tubing ofG contains precisely k−1 outer

tubes: a unique outer tube containing i nodes, one for each n − k < i < n.

We say two maximal color tubings are color-matched if the matching pairs

of outer tubes (with i nodes) from each tubing are identically colored.
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Proposition 17. Two maximal color tubings of G are color-matched if and

only if they are nodes in the same connected component of EG.

Proof. The discussion above guarantee that if T1 and T2 are connected by

a path, then the outer tubes of T1 and T2 with the same number of nodes

will have identical colors. Thus, they must be color-matched, concluding one

direction.

For the other direction, we show there exists a path between two color-

matched nodes T1 and T2 of EG. Denote mono(T∗) to be the monochrome

version of T∗. Since the 1-skeleton of the classical associahedron KG is con-

nected, there exists a path betweenmono(T∗) and any monochrome maximal

tubing U of G. This naturally lifts to a path in EG, between T∗ and some

node U∗ where mono(U∗) = U . To prove there exists a path between U1

and U2 with mono(U1) = U = mono(U2) (concluding the proof), we show

that the colors of any two inner tubes in a coloring of U can be exchanged.

Repeatedly performing color exchanges yields a path between the desired

tubings.

To start, notice that the inner tubes of any maximal tubing reside on a

subgraph ofG with connectivity 1. Since we only need to show that the colors

of any two inner tubes can be exchanged, assume that G has connectivity 1.

Claim. If G has at least 3 nodes, there is a node w such that G − w has

connectivity 1.

Proof. Since G has connectivity 1, there exists a node v whose removal dis-

connects G into multiple components, G1, G2, · · · , Gm. (If each component

contains only one node, there will be at least two components and the single

node of G1 is an appropriate choice for w.) Without loss of generality, say

component G1 contains more than one node. Define H1 to be the induced

subgraph on the nodes of G1 together with v. Construct the spanning tree

of H1 and choose any leaf of this tree (other than v) and call it w. Thus,

H1−w is connected, and thus, so is G−w. However, since G1 contains more

than one node, (G− w)− v is not connected.

We proceed by induction on the number of nodes of G. Since the only

graph of connectivity 1 with less than 3 nodes is the path on 2 nodes (for

which EG is connected), consider a graph G with n ≥ 3 nodes. We now

specify the tubing U : Pick a maximal tubing that includes the tubes t :=

G − w and t′ := Gm, in addition to the tubes G1 − w,G2, . . . , Gm−1. The

remaining tubes can be chosen arbitrarily. By the inductive hypothesis, the
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colors of any two tubes inside of t can be exchanged. Figure 16 depicts the

algorithm which exchanges the colors of t and t′, completing the proof.3

Figure 16: Exchanging the colors of two tubes.

7.2. Poset isomorphism

As the vertices of KG are the nodes of EG, it is possible to redefine the faces

of KG as subsets of these nodes, providing an alternate poset formulation

of KG. In particular, we later show that EG is the 1-skeleton of KG.

Definition. Given a tubing T of G, a path in EG preserves T if for each

node in the path, the associated maximal tubing contains T .

Definition. Let PEG be a collection of posets, one for each connected com-

ponent of EG. Each poset consists of elements and a partial order, as out-

lined below:

1. Faces: For the faces of rank j = 0, 1, 2, . . . n−1, define the j-face (T, v)

to be the set of nodes in the component of EG that are reachable from

v via a path that preserves the (n− j− 1)-tubing T . Append a unique

face f∅ of rank −1 that has f∅ ≺ f0 for all faces f0 of rank 0.

2. Partial order: Given faces f and h, we say that f ≺ h if and only if

the node set of f is contained in the node set of h.

Remark. The representation of the face (T, v) is not unique: (T, v) =

(T ′, v′) if and only if T = T ′ and v and v′ are connected by a path pre-

serving T . Consider two faces f = (Tf , vf ) and h = (Th, vh), where f ≺ h.

Notice that h can be equivalently represented as (Th, vf ) and Th must consist

of a subset of the tubes of Tf .

3This algorithm appears in [17, Figure 1] as walking halfway around the 10-gon
in Figure 2 above.
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By the definition of PEG, there is one poset for each connected com-

ponent of EG. Each (n − 1)-face (T, v) has |T | = 0 and corresponds to

all of the nodes in a connected component of EG. Each 0-face (T, v) has

|T | = n− 1 and corresponds to the single node v of EG. All color-matched

faces of rank 0 are incident to the same least face f∅. In a similar manner,

there is one poset in the collection KG for each distinct assignment of colors

to the k− 1 outer blocks in the universal tube of G: for two color templates

to be comparable, they must be compatible with the same color template

for the 0-tubing.

Proposition 18. There is a bijection between the collections KG and PEG.

Moreover, each poset of KG and its corresponding poset in PEG are order-

isomorphic.

Proof. Each poset of KG corresponds to a distinct assignment of colors to

the outer blocks of the universal tube of G, reimagined as an assignment of

colors to the outer tubes of all maximal tubing. In fact, this assignment is

precisely what distinguishes each connected component of EG. The bijection

between the collections KG and PEG is immediate.

Consider a poset P∗
EG in the collection PEG and its corresponding poset

K
∗G in KG. The 0-faces of P∗

EG and K
∗G both correspond to the color-

matched maximal color tubings of G, yielding an immediate bijection be-

tween 0-faces. Moreover, this bijection can be extended to faces of higher

rank. Let f = (T,O) be a face of K∗G with positive rank, and let f0 be a

0-face incident to f . Suppose f0 corresponds to the node vf ∈ EG. Let h0
be an arbitrary 0-face associated to some vh ∈ EG. Apply Proposition 17 to

each core graph of T . There is a path from vh to vf that preserves T if and

only if h0 ≺ f . From this, an order-embedding bijection between the faces

of K∗G and P∗
EG follows. Each face f of K∗G is mapped to the set of nodes

in EG which correspond to precisely the set of maximal tubings represented

among its 0-faces.

7.3. Flags

We consider the flags of PEG. To simplify notation, we exclude the face f−1

from the flags. By the discussions above, each flag is of the form

Φ = {(T0, v), . . . , (Tn−1, v)} = (T , v) ,

where T is the maximal nested family of subsets T0 ⊂ T1 ⊂ · · · ⊂ Tn−1.
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Proposition 19. Each poset in the collection PEG satisfies the diamond
condition.

Proof. Let P∗
EG be a poset of PEG. Each flag Φ = (T , v) of P∗

EG has exactly
one j-adjacent flag Φj , differing from Φ in the j-th face. When j ≥ 1, the
tubing Tj−1 is a subset of n − j tubes and the tubing Tj+1 is a subset of
n−j−2 tubes. Hence, there are precisely two (n−j−1)-subsets T such that
Tj+1 ⊂ T ⊂ Tj−1, one of which is Tj ; this leaves precisely one j-adjacent
face. When j = 0, one can appeal to the behavior of the monochrome version
of T0.

Proposition 20. Each poset in the collection PEG is strongly flag-connected.

Proof. Our approach builds on [1, Lemma 3.1] and adapts their technique
to our more general poset. Let P∗

EG be a poset of PEG. For a polytope of
rank n− 1, a vertex-figure is the set of faces fn−1/f0 = {h | f0 ≺ h ≺ fn−1},
where f0 is a face of rank 0 and fn−1 is a face of rank n−1. If f0 = (T, v) for
some tubing T and node v, then all faces of the vertex-figure can be written
the form (T ′, v), where T ′ ⊂ T . Moreover, they are in bijection with the
subsets of tubes of T . Additionally, for any two faces in the vertex-figure,
(T ′, v) ≺ (T ′′, v) if and only if T ′′ ⊂ T ′. Hence, the vertex-figure of f0 is
isomorphic to the Boolean lattice on T , and thus strongly flag-connected.

Now, let Φ and Λ be flags in the same poset of P∗
EG with

Φ = {(T0, v), . . . , (Tn−1, v)} = (T , v)

Λ = {(U0, w), . . . , (Un−1, w)} = (U , w) .
We show that there exists a sequence of adjacent flags

Φ = Φ0, Φ1, . . . , Φr = Λ

such that Φ ∩ Λ ⊂ Φi. Let J = {j | (Tj , v) = (Uj , w)} be the set of indices
of the j-faces shared by Φ and Λ, and let m denote the lowest non-negative
index in J . (Such an m exists since the connectivity of EG ensures that
n− 1 is an upper bound.) By the definition of P∗

EG, there is a path

v = v0, v1, . . . , vp = w

from v to w in EG which preserves the tubing Tm = Um. To prove that each
poset is strongly flag-connected, we induct on the length p of the path.

If p = 0, then v = w and we can appeal to the strong flag-connectivity
of vertex-figures. If p ≥ 1, then m ≥ 1 and Tm is not a maximal tubing.
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By induction, we need to construct a sequence of flags from Φ = (T , v) to
(some yet to be specified) flag Λ′ = (T ′, v1).

1. Selecting Flag Λ′′′: Since v and v1 are adjacent, their associated
maximal tubings T0 and S0 differ at precisely one tube. Let S1 de-
note the shared (n− 2)-tubing. Since nodes v and v1 are contained in
(Tm, v) = (Um, w), Tm ⊂ T0 and Tm ⊂ S0. Thus, Tm ⊆ T0 ∩ S0 = S1

and (S1, v) � (Tm, v). This guarantees the existence of a flag Λ′′′ that
contains Φ∩Λ and has (S1, v) as its 1-face. Moreover, Φ and Λ′′′ share
a 0-face (T0, v). By the strong flag-connectivity of vertex-figures, there
exists a sequence of flags from Φ to Λ′′′ where each flag in the sequence
contains (Φ ∩ Λ) ⊆ (Φ ∩ Λ′′′).

2. Selecting Flag Λ′′: Since v1 is in the node set of (S1, v1) = (S1, v),
there exists a flag Λ′′ which is the same as Λ′′′ except for its 0-face
(S0, v1). Accordingly, Λ′′ is adjacent to Λ′′′ and Φ ∩ Λ ⊂ Λ′′.

3. Selecting Flag Λ′: Define flag Λ′ = {(S0, v1), · · · (Sn−1, vn−1)}, where
S0 and S1 are defined as above, and Sj = Tj = Uj for all j ∈ J . Such
a flag is guaranteed to exist because Uj = Tj ⊆ Tm ⊆ S1 for all j ∈ J .
By construction, Φ∩Λ is also contained in Λ′. Again, since Λ′′ and Λ′

share a 0-face, the strong flag-connectivity of vertex-figures dictates
that there exists a sequence of flags from Λ′′ to Λ′ such that each flag
contains (Φ ∩ Λ) ⊆ (Λ′′ ∩ Λ′).

Combining the flag sequences from Φ to Λ′′′ to Λ′′ to Λ′ with one from
Λ′ to Λ (guaranteed by the inductive hypothesis) produces the desired flag
sequence.

7.4. Finishing touches

With this machinery, the main results are proven.

Proof of Theorem 5. Let G be a simple graph with n nodes and connectivity
k, along with a color palette. Each distinct ordering of k− 1 colors from the
palette determines an assignment of colors to the k − 1 outer blocks of the
universal tube of G. As such, each ordering corresponds to a unique poset in
the collection PEG. Let P∗

EG be a poset of PEG. By construction, conditions
(1) and (2) are satisfied. Proposition 20 guarantees strong flag-connectivity,
satisfying condition (3) and Proposition 19 verifies the diamond condition,
satisfying condition (4).

The 1-skeleton of P∗
EG is isomorphic to its associated connected compo-

nent of EG. Moreover, since every node in the component of EG corresponds
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to a maximal tubing of G and is adjacent to precisely n−1 maximal tubings,
we can conclude that P∗

EG is simple. This proves that PEG, and thus KG,
is a collection of simple abstract polytopes of rank n− 1.

Finally, we prove that G[n] is an abstract polytope.

Proof of Proposition 8. By employing the same strategy as used to prove
Theorem 5, it suffices to prove that the exchange graph of G[n] is connected,
which in turn requires showing that any two colors within a given maximal
tubing can be exchanged. Let T be a maximal tubing of G[n] and let vn be
the node without a tube. To exchange the colors of the tubes on nodes vi
and vj , remove the tube around vi and place that tube around vn. Move the
tube around vj to the now open node vi and move the tube on vn to vj ,
completing the color exchange.
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