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Counting abelian squares efficiently for a problem
in quantum computing∗

Ryan Bennink

I describe how the number of abelian squares of given length re-
lates to a certain problem in theoretical quantum computing, and
I present a recursive formula for calculating the number of abelian
squares of length t + t over an alphabet of size d. The presented
formula is similar to a previously known formula but has substan-
tially lower complexity for large d, a key improvement resulting in
a practical solution to the original application.
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1. Introduction

An abelian square is a word whose first half is an anagram of its second
half, for example intestines = intes · tines or bonbon = bon · bon.
Abelian squares have been a subject of pure math research for many decades
[9, 19, 16, 3, 4, 15, 8] but are seemingly not encountered often in scientific
applications. Here I describe an application of abelian squares to a problem
in the field of quantum computing. This application motivated the devel-
opment of a recursive formula, presented here, for efficiently calculating the
number fd(t) of abelian squares of length t + t over an alphabet of size d.
While the formula derived here is similar to a previously known formula [30],
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it is computationally efficient even when d is large, a key improvement which
enables a practical solution to the original application. This work highlights
the sometimes surprising connections between pure math and applied sci-
ence, and the value of efficiently computable formulas for practitioners in
applied fields.

In the first part of this Letter I review the basics of enumerating abelian
squares, derive a new recursive formula for calculating their number, and
provide a constructive interpretation for the formula. In the second part
I describe the problem of quantifying the expressiveness of parameterized
quantum circuits, show how for a particular subclass of circuits it reduces
to the problem of counting abelian squares over an exponentially large al-
phabet, and utilize the new formula to quantify the expressiveness of that
subclass of circuits.

2. Counting abelian squares

2.1. Background

Let fd(t) denote the number of abelian squares of length t+t over an alphabet
of d symbols. Trivially, f1(t) = 1 for all t and fd(0) = 1 for all d. It is also
not difficult to see that fd(1) = d. To determine fd(t) for arbitrary d and
t, we define the signature (sometimes called the Parikh vector) of a word
w ∈ {a1, . . . , ad}∗ as (m1, . . . ,md) where mi is the number of times the
symbol ai appears in w. Note that two words are anagrams if and only if
they have the same signature. Thus the number of abelian squares is the
number of pairs (x, y) such that x and y have the same signature. The
number of words with a particular signature (m1, . . . ,md) is given by the
multinomial coefficient(

m1 + · · ·+md

m1, . . . ,md

)
=

(m1 + · · ·+md)!

m1! · · ·md!
.(1)

The number of ways to choose a pair of words, each with signature
(m1, . . . ,md), is just the square of this quantity. Therefore the number of
abelian squares of length t+ t is

fd(t) =
∑

m1+···+md=t

(
t

m1, . . . ,md

)2

(2)

where the sum is implicitly over nonnegative integers. The first few values
of fd(t) are shown in Table 1.
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Table 1: Number of abelian squares of length t+ t over an alphabet of size
d [30]

d\t 0 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1 1
2 1 2 6 20 70 252 924 3432
3 1 3 15 93 639 4653 35169 272835
4 1 4 28 256 2716 31504 387136 4951552
5 1 5 45 545 7885 127905 2241225 41467725
6 1 6 66 996 18306 384156 8848236 218040696

Eq. (2) is not easy to evaluate when t is large, as the number of signa-

tures grows combinatorially in d and t. Richmond and Shallit [30] derived

a recursive formula using a simple constructive argument: To create a size

(t, t) abelian word pair (x, y) over alphabet {a1, . . . , ad}, first choose the

number i ∈ {0, . . . , t} of occurrences of ad in each word. There are
(
t
i

)
ways

to distribute these occurrences in each word. Then there are fd−1(t−i) ways

to create an abelian pair over {a1, . . . , ad−1} for the remaining t− i symbols

in each word. Setting k = t− i and summing over the choice of k yields

fd(t) =

t∑
k=0

(
t

k

)2

fd−1(k).(3)

Using this formula, fd(t) can be obtained by starting with f1(0) = · · · =
f1(t) = 1 and computing fi(0), . . . , fi(t) in turn for i = 2, . . . , d (Fig. 1 left).

The cost of computing the values of fi given the previously computed values

of fi−1 is O(1+2+ · · ·+ t) = O(t2). Thus the complexity of evaluating fd(t)

using (3) is O(t2d), a huge improvement over (2) in most cases. However,

eq. (3) is still impractical for the quantum computing application to be

described later, for which t is typically small but d is exponentially large.

This motivates the development of a formula for fd(t) whose cost scales with

t rather than d.

2.2. An alternative recursive formula

In this section I derive an alternative to (3) whose cost of evaluation is only

O(t2min(d, t)). Let Ad denote an alphabet of d symbols. The number of

abelian squares (x, y) ∈ At
d×At

d can be expressed as the sum of the number
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of anagrams of each word x:

fd(t) =
∑
x∈At

d

(
t

m1, . . . ,md

)
.(4)

Here m denotes the signature of x = (x1, . . . , xt). We split off the sum over
xt:

fd(t) =
∑

x′∈At−1
d

∑
xt∈Ad

(
t

m′
1, . . . ,m

′
xt

+ 1, . . .m′
d

)
(5)

where m′ is the signature of x′ ≡ (x1, . . . , xt−1). We have

(
t

m′
1, . . . ,m

′
xt

+ 1, . . .m′
d

)
=

t

m′
xt

+ 1

(
t− 1

m′
1, . . . ,m

′
d

)
.(6)

Then

fd(t) =
∑

x′∈At−1
d

∑
xt∈Ad

t

m′
xt

+ 1

(
t− 1

m′
1, . . . ,m

′
d

)
.(7)

By symmetry xt can be replaced by any value; choosing d yields

fd(t) = d
∑

x′∈At−1
d

t

m′
d + 1

(
t− 1

m′
1, . . . ,m

′
d

)
.(8)

Now, each x′ with a given signature contributes the same value to the sum.
We may thus replace the sum over x′ by a sum over the signatures of x′,
weighted by the number of occurrences of each signature:

fd(t) = d
∑

m′
1+···+m′

d=t−1

t

m′
d + 1

(
t− 1

m′
1, . . . ,m

′
d

)2

.(9)

We henceforth suppress the primes on m. The goal now is to move the
dependence on md out of the sum, leaving something which has the form of
(2). We have

(
t− 1

m1, . . . ,md

)
=

(
t− 1

md

)(
t− 1−md

m1, . . . ,md−1

)
.(10)
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This yields

fd(t) = d
∑

m1+···+md=t−1

t

md + 1

(
t− 1

md

)2( t− 1−md

m1, . . . ,md−1

)2

.(11)

= d

t−1∑
md=0

t

md + 1

(
t− 1

md

)2 ∑
m1+···+md−1=t−1−md

(
t− 1−md

m1, . . . ,md

)2

.(12)

In terms of k ≡ t− 1−md,

fd(t) = d

t−1∑
k=0

t

t− k

(
t− 1

t− 1− k

)2 ∑
m1+···+md−1=k

(
k

m1, . . . ,md

)2

.(13)

Comparison of the latter sum to (2) reveals that it is none other than fd−1(k).
The remaining quantities can be simplified as follows:(

t− 1

t− 1− k

)
=

(
t− 1

k

)
,(14)

t

t− k

(
t− 1

t− 1− k

)
=

(
t

k

)
.(15)

Making these substitutions yields the main result:

fd(t) = d

t−1∑
k=0

(
t

k

)(
t− 1

k

)
fd−1(k).(16)

Note the close similarity between (16) and (3). The crucial difference is that
in (16) the sum goes up to only t−1; that is, each level of recursion decreases
both t and d (Fig. 1 right). Thus only min(t, d) levels of recursion are needed.
The cost of this algorithm is O(t2min(d, t)).

Eq. (16) can be interpreted in terms of the following approach to con-
structing an abelian pair: There are d choices for the first symbol a of x.
Let k ∈ {0, . . . , t−1} be the number of occurrences in each word of symbols
from Ad/a. There are

(
t−1
k

)
choices to place those other symbols in x and(

t
k

)
places to place those other symbols in y. Then, one creates an abelian

pair of size (k, k) over Ad/a, which is an alphabet of size d− 1.
Fig. 3 (left) shows fd(t) as a function of t for exponentially increasing val-

ues of d. (The lines for d ≥ 64 are truncated due to the largest results being
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Figure 1: Computational dependencies for two different recursive formulas
for fd(t), the number of abelian squares. (left) Dependency graph for eq. (3),
obtained from [30]. (right) Dependency graph for eq. (16). In each case,
the desired quantity fd(t) is shown as a red dot, arrows show the direct
dependencies, and the gray shaded region covers all the quantities that must
be calculated to determine fd(t). The pattern on the left leads to a cost of
O(t2d), while the pattern on the right leads to a cost of O(t2min(t, d)).

outside the range of double-precision arithmetic.) The entire plot, compris-
ing 1000 data points, took less than two seconds to compute in MATLAB
on a standard personal computer.

3. Application to a problem in quantum computing

3.1. Parameterized quantum circuits and expressiveness

In this section I present an application of formula (16) to a problem in the
field of quantum computing. Quantum computing is an emerging approach
to computing that leverages the peculiar laws of quantum physics to process
information in new, sometimes powerful ways. In the last few years primitive
quantum computing devices have become widely available and catapulted
quantum computing into a highly active field of research. In the current
era of small, noisy devices, the variational approach to quantum computing
has become popular [26, 38, 24]. In the variational approach a conventional
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(digital) computer adjusts the parameters of a parameterized quantum cir-
cuit to optimize some function of its output. This approach can be used
for a variety of useful tasks such as calculating properties of molecules and
materials [28, 21, 17, 34, 25, 22, 20, 12, 6, 11, 37, 5], discrete optimization
[10, 27], and machine learning [13, 36, 31, 1, 18], as well as linear algebra
[35] and differential equations [23].

A key property of a parameterized quantum circuit is its expressiveness—
the range of outputs that can be obtained by varying the parameters. A
circuit that is not expressive enough for the problem at hand will produce
inferior solutions. On the other hand, a circuit that is overly expressive may
be difficult to optimize [14]. For our purposes, the output of a quantum
circuit will be the state of an n-qubit register. (A qubit is a quantum bit.)
Such a state can be represented by a unit-length complex vector ψ ∈ C2n

,
with the caveat that the overall complex phase of the state is irrelevant.

One way of quantifying the expressiveness of a parameterized circuit is
by its fidelity distribution [33, 29]. Fidelity F (ψ,ψ′) = |〈ψ,ψ′〉|2, where 〈·, ·〉
denotes inner product, is a measure of the similarity of two quantum states
ψ and ψ′. It ranges from 0 (for completely dissimilar states) to 1 (for iden-
tical states). Let ψ(θ) denote the quantum state produced by a quantum
circuit as a function of the parameter vector θ. Suppose parameter values
are drawn at random. If the circuit is highly expressive, i.e. capable of pro-
ducing a wide range of states, most of the resulting states will be dissimilar
to each other and will have small mutual fidelity. Conversely, if the circuit
is inexpressive, i.e. capable of producing only a narrow range of states, most
of the produced states will be similar to each other and have large mutual
fidelity. Thus the expected value of F (ψ(θ), ψ(θ′)), where θ, θ′ are indepen-
dent random parameter values, quantifies the circuit’s expressiveness: the
lower the expected value, the more expressive the circuit. As it turns out,
this metric is not very sensitive. A more discerning metric is

(17) E
[
F (ψ(θ), ψ(θ′))t

]
where t > 1; typically t is a small positive integer. As t increases, E

[
F t

]
becomes less sensitive to the states that are far apart. Thus small values of
t measure the expressiveness at a coarse scale in the quantum state space,
while large values of t measure the expressiveness at a fine scale.

3.2. Commutative quantum circuits and abelian squares

Commutative quantum circuits (also known as Instantaneous Quantum Poly-
nomial circuits [32]) are a class of relatively simple parameterized quantum
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Figure 2: The structure of a commutative quantum circuit (CQC) in the
Hadamard basis. Each circuit operation is a multiqubit Z-type rotation on
a distinct subset of qubits. A maximal CQC on n qubits consists of all 2n−1
Z-type rotations that act non-trivially on at least one qubit.

circuits whose output distributions are hard to simulate using digital com-

puters [2]. These properties make them an interesting case study in the

quest to understand when and why quantum computing is more powerful

than classical computing. These properties also suggests that commutative

quantum circuits may be a useful ansatz for variational quantum algorithms,

for example in the field of machine learning [7].

An n qubit commutative quantum circuit (CQC) of length L can be

defined as a sequence of L multiqubit X rotations acting on the state |0〉⊗n.

(Since these operations all commute, their order does not matter.) For our

purposes it will be convenient to treat the circuit and its output in the

Hadamard basis; in this basis the circuit consists of L multiqubit Z rotations

acting on the state |+〉⊗n where |+〉 ≡ (|0〉 + |1〉)/
√
2 (Fig. 2). The output

state is

|ψ〉 =

⎛
⎝ L∏

j=1

exp(iαjZSj
)

⎞
⎠ ∑

x∈{0,1}n

1√
2n

|x〉(18)

Where S1, . . . , SL are distinct subsets of {1, . . . , n} and ZS≡
⊗n

i=1

{
Z i∈S

I i 	∈S
,

with Z ≡ |0〉〈0| − |1〉〈1|.
Consider a “maximal” circuit consisting of all 2n Z-type rotations. Then

α may be regarded as a vector over all length-n bitstrings, where each bit-

string specifies a particular subset of {1, . . . , n}. A simple derivation shows
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that

|ψ〉 = 1√
2n

∑
x∈{0,1}n

eiθx |x〉(19)

where θ ∈ R2n

is the Walsh-Hadamard transform of α. It follows that the

ability to prescribe all 2n components of α implies the ability to prescribe all

d components of θ. Since the circuit operation corresponding to α0 imparts

an inconsequential global phase to the quantum state, that circuit operation

may be omitted and the global phase may be chosen so that θ0 = 0. The

output state may then be represented by a length-2n complex vector

ψ(θ) =

(
1√
d
,
eiθ1√
d
, . . . ,

eiθd−1

√
d

)
(20)

where θ1, . . . , θd−1 can be independently varied. (Here d = 2n and I have

switched indices from bitstrings in {0, 1}n to corresponding integers in {0,
. . . , 2n − 1}.)

While maximal commutative quantum circuits are not practically re-

alizable for large n (the number of operations is 2n − 1), they provide an

upper bound on the expressiveness that can be achieved by any commuta-

tive quantum circuit with a given number of qubits. As I will now show, the

expressiveness of a maximal commutative circuit, as measured by E
[
F t

]
, is

proportional to f2n(t). The fidelity F is the square of the inner product

ψ(θ)†ψ(θ′) =
1

d

d−1∑
x=0

ei(θ
′
x−θx).(21)

In terms of φx ≡ θ′x − θx we have

F (ψ(θ), ψ(θ′)) =
∣∣∣ψ(θ)†ψ(θ′)∣∣∣2 = 1

d2

d−1∑
x,y=0

ei(φx−φy),(22)

F (ψ(θ), ψ(θ′))t =
1

d2t

d−1∑
x1,y1=0

· · ·
d−1∑

xt,yt=0

ei(φx1+···+φxt )−i(φy1+···φyt ),(23)
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and

E
[
F (ψ(θ), ψ(θ′))t

]
=

1

d2t

d−1∑
x1,y1=0

· · ·
d−1∑

xt,yt=0

E

[
ei(φx1+···+φxt )−i(φy1+···φyt )

]
.

(24)

Let us suppose the rotation angles αi are drawn uniformly and independently
from [0, 2π]. Then each θx and θ′x are independent and uniform over [0, 2π],
and φx is also uniform over [0, 2π]. For each i ∈ {1, . . . , d − 1}, let mi(x)
be the number of occurrences of i in (x1, . . . , xt) and let mi(y) denote the
number of occurrences of i in (y1, . . . , yt). Then the summand may be written
as

E

[
ei(φx1+···+φxt )−i(φy1+···φyt )

]
= E

[
d−1∏
i=1

ei(mi(x)−mi(y))φi

]
(25)

=

d−1∏
i=1

E

[
ei(mi(x)−mi(y))φi

]
(26)

since the φi’s are independent. Now,

E

[
ei(mi(x)−mi(y))φi

]
=

{
1 mi(x) = mi(y)

0 mi(x) 	= mi(y)
.(27)

Thus the only pairs (x, y) that contribute to E
[
F t

]
are those for which

mi(x) = mi(y) for all i = 1, . . . , d − 1. For such pairs it also holds that
m0(x) = m0(y). That is, a term contributes if and only if x = (x1, . . . , xt) is
an anagram of y = (y1, . . . , yt), i.e. xy is an abelian square. It follows that

E
[
F t

]
=

f2n(t)

4nt
.(28)

Whereas t is typically small, d = 2n can be very large, which necessitates
use of eq. (16).

It is convenient to compare E
[
F t

]
for a given circuit to its minimal value

E
[
F t

]
min

=

(
t+ d− 1

t

)−1

(29)

which is achieved by a circuit that covers the entire state space uniformly.
Fig. 3(right) plots the normalized expressiveness E

[
F t

]
min

/E
[
F t

]
. For all
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Figure 3: (left) Number fd(t) of abelian squares of length t + t over an
alphabet of size d. (right) Normalized expressiveness E

[
F t

]
min

/E
[
F t

]
of

maximal commutative quantum circuits, as a function of the number of
qubits n and the resolving power t.

d, the normalized expressiveness is near 1 at small t and decays to 0 at
large t. This indicates that the circuits are highly expressive at coarse scales
(small t), but have very low expressiveness at fine scales (large t). That
is, the set of states that can achieved by maxmimal commutative quantum
circuits span the breadth of the state space, but constitute only a sparse or
low-dimensional subset of the state space.
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[9] Erdős, P. (1957). Some Unsolved Problems. Michigan Math. J. 4 291–
300. MR0098702 MR0098702

[10] Farhi, E., Goldstone, J. and Gutmann, S. (2014). A Quantum Approx-
imate Optimization Algorithm. arXiv:1411.4028 [quant-ph].

[11] Gard, B. T., Zhu, L., Barron, G. S., Mayhall, N. J., Economou, S. E.
and Barnes, E. (2020). Efficient Symmetry-Preserving State Prepara-
tion Circuits for the Variational Quantum Eigensolver Algorithm. npj
Quantum Inf 6 10.

[12] Grimsley, H. R., Economou, S. E., Barnes, E. and Mayhall, N. J. (2019).
An Adaptive Variational Algorithm for Exact Molecular Simulations on
a Quantum Computer. Nat Commun 10 3007.
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