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We investigate various pursuit-evasion parameters on Latin square
graphs, including the cop number, metric dimension, and local-
ization number. Bounds for the cop number are given for Latin
square graphs and for similarly defined graphs corresponding to k
mutually orthogonal Latin squares of order n. If n > (k+1)2, then
the cop number is shown to be k + 2. Lower and upper bounds
are provided for the metric dimension and localization number of
Latin square graphs. An analysis of the metric dimension of back-
circulant Latin squares shows that the lower bound is close to tight.
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1. Introduction

Pursuit-evasion games, including the well-known game of Cops and Rob-
bers and the Localization game, are combinatorial models for detecting or
neutralizing an adversary’s activity on a graph. In such models, pursuers
attempt to capture an evader loose on the vertices of a graph. There are
numerous variants which dictate the rules for player movement. Such games
are motivated by foundational topics in computer science, discrete math-
ematics, and artificial intelligence, such as robotics and network security.
For a recent book on pursuit-evasion games, see [4]. For surveys of pursuit-
evasion games, see [8, 9, 12], and see [7] for more background on Cops and
Robbers.

In Cops and Robbers, the pursuers are cops and the evader is the robber.
Both players move on vertices. The cops move first, followed by the robber;
the players then alternate moves. The robber is visible, and players move
to adjacent vertices or remain on their current vertex. The cops win if,
after a finite number of rounds, they can land on the vertex of the robber;
otherwise, the robber wins. The least number of cops needed to guarantee
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that the robber is captured on a graph G is the cop number of G, denoted
by c(G). Note that c(G) is well-defined, as c(G) ≤ γ(G), where γ(G) is the
domination number of G. For more background on the cop number of a
graph, see [7].

In the Localization game, the robber moves first and is invisible to the
cops during gameplay. As in Cops and Robbers, the robber occupies vertices
and moves between vertices along edges. On their turn, the cops may move
to any vertex of the graph. After each move, the cops occupy a set of vertices
u1, u2, . . . , uk and each cop sends out a cop probe, which gives their distance
di, where 1 ≤ i ≤ k, from ui to the robber’s vertex. The distances di are
nonnegative integers or may be ∞. Hence, in each round, the cops determine
a distance vector D = (d1, d2, . . . , dk) of cop probes. The cops win if they
have a strategy to determine, after a finite number of rounds, the vertex that
the robber occupies, at which time we say that the cops capture the robber.
We assume the robber is omniscient, in the sense that they know the entire
strategy for the cops. The localization number of a graph G, written ζ(G),
is the least positive integer k for which k cops have a winning strategy.

The minimum number of cops needed to win in the first round (that
is, using only one set of cop probes in round 0) is equivalent to the metric
dimension, written β(G). Observe that ζ(G) ≤ β(G) ≤ |V (G)|. A survey
on metric dimension and related concepts may be found in [1], and a recent
literature review on the localization number may be found in [6].

The present paper is the first to consider the cop number, localization
number, and metric dimension of graphs arising from Latin squares. For a
positive integer n, a Latin square of order n is an n × n array of cells with
each cell containing a symbol from a set S with |S| = n, such that each
symbol occurs exactly once in each row and in each column. Often rows are
indexed by R, columns are indexed by C, and symbols are indexed by S.
For a Latin square L, we write its set of entries as

{(r, c, s) ∈ R× C × S : symbol s occurs in row r and column c of L}.

We will take R = C = S = [n] = {1, 2, . . . , n}. We call the elements of R
the row-indices, of C the column-indices, and of S the symbol-indices. The
elements of R ∪ C ∪ S will be known as the indices. Define the row-line (or
more simply, the row) of a row-index r as the subset of n entries of L that
contain r, and analogously define column-line and symbol-line. Each of these
is called simply a line. Given a Latin square L, we denote the symbol in row
r and column c by L[r, c].

The Latin square graph of a Latin square L of order n, written as G(L),
is the graph with n2 vertices labeled with the cells of the Latin square,
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where distinct vertices are adjacent if they share a row, column, or symbol.

See Figure 1 for the graph corresponding to the following Latin square of

order 3:

L3 =

1 2 3

2 3 1

3 1 2

.

E7

E4

E1

E8

E5

E2

E9

E6

E3

Figure 1: The graph arising from the Latin square L3, where blue edges
come from rows, red edges from columns, and green edges from symbols.
Entries are labeled Ei, where 1 ≤ i ≤ 9, for example where E1 = (1, 1, 1).

We may also consider graphs derived from mutually orthogonal Latin

squares. A pair of Latin squares A and B of order n are orthogonal if the

n2 pairs (A[i, j], B[i, j]) are distinct. For positive integers n and k, a set

of k Latin squares of order n are mutually orthogonal, written k-MOLS(n),

if the Latin squares in the set are pairwise orthogonal. We may write an

entry of a k-MOLS(n) as (r, c, s1, s2, . . . , sk), where si is a symbol from the

symbol set of the ith Latin square and 1 ≤ i ≤ k. The maximum number

of pairwise orthogonal Latin squares is k = n− 1. The existence of a set of

(n− 1)-MOLS(n) is equivalent to the existence of a (finite) projective plane

of order n and an affine plane of order n; see [10].

If L is a set of k-MOLS(n), then define the Latin square graph of L,
written G(L), to be the graph with n2 vertices labeled with the cells of the

Latin square, where distinct vertices are adjacent if the corresponding cells

in the Latin square share a row, a column, or a symbol from any of the k
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symbol sets. In the case k = 1, these are the Latin square graphs of Latin
squares. The graph G(L) is (k + 2)(n− 1)-regular.

The cop number of graphs arising from combinatorial designs was stud-
ied in [5], where bounds and exact values were determined for incidence
graphs of designs, polarity graphs, block intersection graphs, and point
graphs. That study was partially motivated by the search for new examples
of so-called Meyniel extremal families of graphs, which have the conjectured
largest asymptotic value of the cop number for connected graphs; see [2].
For a Latin square graph of order n, the domination number (which upper
bounds the cop number) is bounded between n/2 and n, but an exact value
is not known; see [13]. The localization number and metric dimension of
designs were studied in [6], where these parameters were studied for inci-
dence graphs of various balanced incomplete block designs such as projective
planes, affine planes, and Steiner systems.

The present paper is organized as follows. After a subsection on notation,
in Section 2 we consider the cop number of Latin square graphs arising from
k-MOLS(n). For many instances of the parameters k and n, including the
case k = 1, we determine the exact value of the cop number. In the remaining
cases, we give bounds on the cop number. The metric dimension of Latin
square graphs is discussed in the next section, and bounds are presented. In
particular, for a Latin square L of order n, we derive in Theorem 3.5 that

n−
√

n+ 5
4−

1
2 ≤ β(G(L)). For the family of back-circulant Latin squares, we

derive that for n sufficiently large with 2, 3, 5, 7 � n, β(G(Bn)) ≤ n−1, which
proves that the lower bound in Theorem 3.5 is close to tight. In Section 4,
bounds are provided for the localization number of Latin square graphs. In
particular, we show that 2

3(n − 1) ≤ ζ(G(L)) ≤ n + 6. Our final section
presents several open problems on pursuit-evasion on Latin square graphs.

Throughout, all graphs considered are simple, undirected, connected,
and finite. Note that the graphs studied are connected because Latin square
(and k-MOLS(n)) graphs contain the n × n grid as a spanning subgraph.
For a general reference on graph theory, see [15]. For background on Latin
squares, see [10, 11, 14]. Unless otherwise stated, k and n are positive inte-
gers.

1.1. Notation

We think of L a set of k-MOLS(n) as being a n × n grid of cells, with cell
(r, c) containing an entry (r, c, s1, . . . , sk). If (r, c, s1, . . . , sk) ∈ L, then we
write Li(r, c) = si for each i ∈ [k]. The lines of L are

R(L, i) = {(r, c) ∈ [n]× [n] : r = i},
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C(L, i) = {(r, c) ∈ [n]× [n] : c = i},
Sj(L, i) = {(r, c) ∈ [n]× [n] : Lj(r, c) = i}.

In the Latin square graph G(L), each vertex is labeled by a cell (r, c) of L.
Two vertices in the Latin square graph, (r1, c1) and (r2, c2), are adjacent if
either r1 = r2, c1 = c2, or Li(r1, c1) = Li(r2, c2) for some i ∈ [k]. Each line

� of L (consisting of n cells of L) can also be interpreted as a line of the

Latin square graph consisting of n vertices of G(L). Two lines �1 and �2 are
parallel if �1 ∩ �2. This only occurs if �1 and �2 are the same type of line; for

example, both �1 and �2 are row-lines in L. A cop is on or moves to a line �

if they are on or moves to a vertex v and v is contained in �, and likewise

for the robber.

To demonstrate this notation, we give three properties of Latin square

graphs of L that will be useful throughout the paper.

(P1): Each vertex is contained in exactly k + 2 lines of G(L).
(P2): Let {�1, . . . , �k+2} be the set of all lines of G(L) that contain vertex

v. Let � be a line that is parallel to �1. The set � ∩ �i is a singleton

subset of � when i �= 1. The set
⋃

1≤j≤k+2(� ∩ �j) is a (k + 1)-subset
of �.

(P3): Let {�1, . . . , �k+2} be the set of all lines of G(L) that intersect v. A

vertex w �= v is on either zero or one line in {�1, . . . , �k+2}. This follows
from the Latin property of the Latin square.

2. Cop number of Latin square graphs

For Latin squares of small orders, the cop number of their graphs may be
directly computed. By directly checking, the cop number of a Latin square

of order 1 or 2 is 1, order 3 is 2, and order 4 is 3. Interestingly, the cop

number of Latin squares equals 3 for all n ≥ 5, as we now demonstrate in

the more general setting of MOLS.

Theorem 2.1. If L is a set of k-MOLS(n), then we have that

c(G(L)) ≤ k + 2.

Proof. Suppose that k+2 cops are at play, which we label as C1, C2, . . . , Ck+2.

The idea of this proof is that these cops can use their first move to block
off each of the robber’s k + 2 possible escape routes, leading to the robber

being captured on the next turn.
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For their first move, the cops move to arbitrarily chosen vertices. The
robber moves to the vertex v = (r, c). If one of the k+2 lines that intersect
v also contains a cop, then the cop can win on their next move. Hence, we
assume that the k + 2 lines that intersect v do not contain a cop.

A cop can move to any line incident with the robber. This follows from
property (P2), since a line � incident to the robber intersects with k + 1 of
the k+ 2 lines incident to each cop. Let {�1, �2, . . . , �k+2} be the set of lines
incident to the robber. For 1 ≤ i ≤ k + 2, cop Ci moves to a vertex on the
line �i. Thus, each line containing v now also contains a cop. If the robber
moves, then it will still be on one of these lines which contains a cop, so will
be captured. If the robber does not move, then it can be captured by any of
the cops.

If n is sufficiently large compared to k, then the upper bound in Theo-
rem 2.1 has a matching lower bound.

Theorem 2.2. Suppose that n > (k+1)2. If L is a set of k-MOLS(n), then

c(G(L)) = k + 2.

Proof. The upper bound follows by Theorem 2.1. For the lower bound, as-
sume that k+1 cops are at play. Suppose during any point in play, the cops
have just moved and did not capture the robber. We will show that there
is a line containing the robber that does not contain a cop, and then show
that this line must contain a vertex that the robber can move to without
capture. Moving to this vertex means the robber will not be captured dur-
ing the cops’ next turn, completing a step that can be repeatedly applied.
A proof that an initial placement is possible will be delayed until the end of
the proof.

Suppose the k+1 cops have taken their turn and not been able to capture
the robber, and that the robber is on vertex v. By property (P3), each cop
is on at most one of the lines containing the robber’s vertex v. As such, in
the set of k+2 lines that contain v there is at least one line � that does not
contain a cop. During the next round, the robber will move along line �, and
we proceed by showing that line � contains a vertex such that the robber
can move to this vertex without being captured on the next cop turn.

By property (P2), each cop is adjacent to exactly k + 1 vertices on �.
This means that the k+1 cops are adjacent to at most (k+1)(k+1) vertices
on �. Since n > (k+1)2, there is at least one vertex on � that is not adjacent
to a cop, and the robber moves to such a vertex. By repeating this strategy
in subsequent rounds, the robber may avoid capture.
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To see an initial placement is possible, the robber may apply the above
analysis to any vertex v that does not contain a cop, and hence, find a vertex
u that is adjacent to v but is not adjacent to any of the cops. The robber
moves in the first round to u.

We have the following immediate corollary in the case k = 1.

Corollary 2.3. If L is Latin square of order n ≥ 5, then c(G(L)) = 3.

In the case that k is close to n, a lower bound is provided in our next
theorem, although we do not know if it is tight.

Theorem 2.4. Suppose that n ≤ (k+1)2. If L is a set of k-MOLS(n), then

c(G(L)) ≥
⌈

n

k + 1

⌉
.

Proof. Suppose that there are 	 n
k+1
− 1 cops. We show that the robber can

be ensured of being on a line without a cop, and then show this line contains
a “safe” vertex that the robber can move to.

Note that 	 n
k+1
 − 1 ≤ k since n ≤ (k + 1)2. By property (P3), at most

k of the k + 2 lines incident the robber also contain a cop. Therefore, the
robber is always incident to at least one line, �, that does not contain a cop.
The robber will move along this line during its turn.

Each cop is incident to exactly k + 1 vertices on � by property (P2),
and so there are (	 n

k+1
 − 1)(k + 1) < n vertices on � adjacent to cops.
Therefore, there is at least one vertex on � that is not adjacent to a cop, and
the robber moves to such a vertex on its turn. The robber can then employ
the strategy found in the proof of Theorem 2.2 for its initial placement and
to avoid capture indefinitely.

The lower bound in Theorem 2.4 is tight, showing that the lower bound
cannot be improved. We demonstrate this in the following lemma, in par-
ticular, when k = n − 1 or k = n − 2, which are the two largest possible
values of k. It is known that (n− 1)-MOLS(n) and (n− 2)-MOLS(n) exist
if and only if there exists a projective plane of order n, and so the following
results only make sense for such integers n. This occurs at least when n is a
prime power. Note that an (n− 2)-MOLS(n) can always be extended to an
(n− 1)-MOLS(n).

Lemma 2.5. If L is a set of (n− 1)-MOLS(n), then c(G(L)) = 1.

Proof. The graph G(L) is the complete graph, which requires exactly one
cop to capture the robber.
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Lemma 2.6. If L is a set of (n− 2)-MOLS(n), then c(G(L)) = 2.

Proof. The lower bound is given by Theorem 2.4. We will play with two
cops, in order to show that two cops are sufficient to capture the robber.
By initializing the cops correctly, the robber can be captured when the cops
first move from their initialized positions.

Note that every set L of (n − 2)-MOLS(n) has a unique Latin square,
say L′, that can appended to L to form a set of (n − 1)-MOLS(n). In the
Cops and Robbers game on L, if a cop is on vertex (r, c) ∈ S1(L

′, s), then it
can move to any vertex except the other vertices in S1(L

′, s).
In the first round, move one cop to a vertex in S1(L

′, 1) and the other
cop to a vertex in S1(L

′, 2). Therefore, if the first cop cannot capture the
robber on the next move, the robber is on a vertex in S1(L

′, 1), and so is
not in a vertex in S1(L

′, 2), and so can be captured by the second cop.

The upper bound in Theorem 2.1 is not tight when k ∈ {n − 2, n − 1},
and the lower bound in Theorem 2.4 is tight. It is possible that both could be
tight for values n < (k+1)2 with k /∈ {n−2, n−1}, as it is possible that there
is one Latin square that reaches the lower bound, and another Latin square
of the same order that reaches the upper bound. We note that in the case
of graphs from 2-MOLS(n), our results show that the cop number is 4 for
n ≥ 11. Analogous (but omitted) arguments improve this to show that the
cop number of graphs from 2-MOLS(n) is 4 if n ≥ 7 and 2-MOLS(n) exist.

3. Metric dimension of Latin square graphs

Let L be a set of k-MOLS(n). We note that d(u, v) ∈ {0, 1, 2} for all pairs of
vertices u, v in G(L). We begin with general results on the metric dimension
of graphs derived from MOLS.

Theorem 3.1. If L is a set of k-MOLS(n), then

β(G(L)) ≤ (k + 2)(2n− k − 2).

Proof. After the robber makes their first move, the cops probe the vertices
that correspond to the cells in first k+2 rows and the k+2 columns on the
set on k-MOLS(n), which can also be written as:

S =
⋃

1≤j≤k+2

(R(L, j) ∪ C(L, j)).

There are (k + 2)(2n − k − 2) vertices in this set. The robber could be on
a vertex of S, or a vertex not on S. We will show that in both cases, the
distances that the cops probe will uniquely determine the robber’s position.
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Case 1 : The robber is on S.

In this case, a cop will probe a distance of 0, and so the cops will imme-
diately capture the robber.

Case 2 : The robber is on a vertex (r, c) not in S.

The k+2 cops on vertices in the same row-line as the robber, R(L, r)∩
S = R(L, r)∩

⋃
1≤j≤k+2C(L, j), will all probe a distance of 1. Consider the

k + 2 cops R(L, r′) ∩ S = R(L, r′) ∩
⋃

1≤j≤k+2C(L, j) on row-line r′ �= r,
where r′ > k + 2. By property (P2), at most k + 1 of these are incident
with a line that contains (r, c), and so at most k + 1 probe a distance of
1. Therefore, the row-line that contains the robber is uniquely identifiable
from the cops that probe a distance of 1. A symmetric argument holds for
the columns, and so the cops can find the exact location of the robber.

Note in particular that G(L) is the complete graph when k = n − 1,
and so Theorem 3.1 is tight in this case. Applying this result in the case
for Latin squares of order n (with k = 1) yields an upper bound of 6n− 9,
which can be substantially improved.

Theorem 3.2. If L is a Latin square of order n that contains a set of
four entries of the form {(r1, c1, s1), (r1, c2, s2), (r2, c1, s2), (r2, c2, s3)}, where
s1, s2, s3 are each distinct and n ≥ 5, then

β(G(L)) ≤ 2n− 3.

Proof. We place 2n−3 cops on the vertices of the two column-lines of c1 and
c2 except for on the three vertices (r1, c2), (r2, c1), (r2, c2)}. That is, there is
a cop on each vertex in (C(L, c1)∪C(L, c2))\{(r1, c2), (r2, c1), (r2, c2)}. Note
that this implies that S(L, s2) does not contain a cop, S(L, s3) contains ex-
actly one cop, and all other symbol-lines contain exactly two cops. Similarly,
R(L, r2) does not contain a cop, R(L, r1) contains exactly one cop, and all
other row-lines contain exactly two cops.

We show how the cops capture the robber in two cases. The first is to
show that if the robber in on column-line c1 or c2, then the cops can find
the exact location of the robber and capture the robber. The second is to
show that if the robber is not on one of these two column-lines, then the
cops can also capture the robber.

Case 1 : The robber is in column-line ci for i = 1 or i = 2.

We show that the cops capture the robber. To see this, first note that if
the robber is on the same vertex as a cop, then this cop probes 0, and so the
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robber is captured. Otherwise, the n−2 ≥ 3 or n−1 ≥ 3 cops in column-line
ci probe a distance of 1, for i ∈ {1, 2}. By (P2), if the robber was on vertex
(r, c) with c �= ci, then at most two vertices in column-line ci would have
distance 1 to the robber (one vertex on column-line ci and row-line r, and
the other vertex on column-line ci and symbol-line L(r, c)). As at least three
cops on column-line ci probed a distance of 1, the cops know the robber is
on column-line ci.

Subcase 1a: i = 1.

In this case, the cops know the robber must be on (r2, c1), as this is the
only vertex on column-line c1 of distance 1 to all cops on column-line c1.

Subcase 1a: i = 2.

In this case, either: 1) the cop on (r′, c1), where L(r′, c1) = s3, probes a
distance of 1, in which case the cops know the robber is on (r2, c2); or 2) no
cop on column-line c1 probes a distance of 1, in which case the cops know
the robber is on a vertex of symbol-line s2, which is only vertex (r1, c2). In
either scenario, the robber is captured.

Case 2 : The robber is in column-line ci for i ≥ 3.

By Case 1, the cops can identify that the robber is not on column-lines
c1 or c2; otherwise, the robber would be captured. Suppose that the robber
is on vertex (r, c). There are exactly four vertices in C(L, c1)∪C(L, c2) that
have distance 1 to the robber; two in row-line r, and two in symbol-line
L(r, c). These four vertices are distinct by the Latin property of L, and as
such the only pair of vertices in these four that share a row-line are those in
row-line r, and the only pair of vertices in these four that share a symbol-
line are those in symbol-line L(r, c). If two cops in the same row-line probe a
distance of 1, then the cops know the robber is on that row-line. If two cops
in the same symbol-line probe a distance of 1, then the cops know the robber
is on that symbol-line. Since exactly four vertices in C(L, c1)∪C(L, c2) that
have distance 1 to the robber, at most four cops will probe a distance of 1,
and we separate into cases for each possibility.

Subcase 2a: Suppose that exactly four cops probe 1.

If exactly four cops probe a distance of 1, then the cops know both the
row-line and symbol-line of the robber, and so know that exact location of
the robber by (P2), so the robber is captured.

Subcase 2b: Suppose that exactly three cops probe 1.
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In this case, either: 1) two of these three cops share the same row-line,
and so the cops know the robber is on that row-line, and the third cop is
on the same symbol-line as the robber (which is symbol-line s3); or 2) two
of these three cops share the same symbol-line and so the cops know the
robber is on that symbol-line. The third cop is on the same row-line as the
robber (which is row-line r1). The cops know exact location of the robber
by (P2), and so the robber is captured.

Subcase 2c: Suppose that exactly two cops probe 1.

In this case, either: 1) both cops share the same row-line, so the cops
know the robber is on that row-line, and also on symbol-line s2 (which is the
only symbol-line without a cop); 2) both cops share the same symbol-line
so the cops know the robber is on that symbol-line, and also on row-line r2
(which is the only row-line without a cop); or 3) neither cop shares a row-line
or symbol-line, so the robber is on row-line r1 and symbol-line s3. The cops
know exact location of the robber by (P2), so the robber is captured.

Subcase 2d : It is impossible to have less than two cops probe 1.

Otherwise, we would need to have either: 1) the robber on row-line r1
and symbol-line s2 (but only vertex (r1, c2) satisfies this); 2) the robber on
row-line r2 and symbol-line s2 (but only vertex (r2, c1) satisfies this); or
3) the robber on row-line r2 and symbol-line s3 (but only vertex (r2, c2)
satisfies this). Since the robber is not on column-line c1 nor c2, these cannot
occur.

There are some Latin squares that are not covered by Theorem 3.2, such
as the Cayley table of addition for Zk

2 for k ∈ N. A slight modification is
applicable to all Latin squares.

Theorem 3.3. If L is a Latin square of order n ≥ 4, then

β(G(L)) ≤ 2n− 2.

Proof. By Theorem 3.2, all cases follow except the case where it is impossible
for a subset of entries {(r1, c1, s1), (r1, c2, s2), (r2, c1, s2), (r2, c2, s3)} to exist
in L with s1, s2, s3 each being unique.

Suppose that s1 = s3, and we now play on G(L) as before, except that
we also include an additional cop on vertex (r1, c2) ∈ S(L, s2). The proof of
Theorem 3.2 is straightforwardly modified to show that the robber’s row-
line and symbol-line are determined by the cops, and so the robber’s precise
location is known.
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We present a lower bound for graphs arising from mutually orthogonal

Latin squares.

Theorem 3.4. If L is a set of k-MOLS(n), then

β(G(L)) ≥ 2n2 − 2

(k + 2)(n− 1) + 4
.

Proof. Let G = G(L). Suppose there are c-many cops positioned on vertices

C ⊂ V , where c is a positive integer that is to be determined. Let N≥2(C) =
{c ∈ V \ C : |NG(v) ∩ C| ≥ 2} be the collection of vertices with at least two

cops in their neighborhood. Setting eG(C, N≥2(C)) as the number of edges

in G between C and N≥2(C), and noting that G is (k + 2)(n− 1)-regular, it

follows that

(1) 2|N≥2(C)| ≤ eG(C, N≥2(C)) ≤ |C| · (k + 2)(n− 1).

As a result of (1), it suffices to prove that to successfully capture the robber

in one move, we necessarily need n2 − 2c− 1 ≤ |N≥2(C)|.
Let Ni(C) = {c ∈ V \ C : |NG(v) ∩ C| = i} be the collection of vertices

with exactly i cops in their neighborhood. We then have that |V \ C| =

|N0(C)|+ |N1(C)|+ |N≥2(C)| and also |V \ C| = n2 − c. As such, we are left

to show that n2 − 2c − 1 ≤ n2 − c − |N0(C)| − |N1(C)|, which is just that

|N0(C)|+ |N1(C)| ≤ c+ 1.

All vertices in N0(C) have distance 2 to each cop, so if |N0(C)| > 1, then

there are two vertices in N0(C) that cannot be distinguished by the cops.

Therefore, |N0(C)| ≤ 1.

All vertices in N1(C) have distance 1 to one cop and distance 2 to all

other cops. Using the pigeonhole principle, if |N1(C)| ≥ c + 1, then there

are two vertices in N1(C) that both have distance 1 to the same cop and

distance 2 to all other cops, and so these two vertices cannot be distinguished

by the cops. Therefore, |N1(C)| ≤ c, and so |N0(C)|+ |N1(C)| ≤ c+1, which

completes the proof.

For Latin squares, Theorem 3.4 yields a lower bound of 2n2−2
3n+1 = 2n

3 −O(1)

for their metric dimension. We improve this bound as follows.

Theorem 3.5. If L is a Latin square of order n, then

β(G(L)) ≥ n−
√

n+
5

4
− 1

2
.
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Proof. Let s be a positive integer that will be determined later in the proof.

Suppose we play with n − s cops. Independently of how the cops are em-

ployed, there is a set of s rows R and a set of s columns C such that their

corresponding row-lines and column-lines each do not contain a vertex with

a cop. Note also that there are at least s symbol-lines that do no contain a

robber. The idea of this proof is that if R×C is large, then it must contain

two vertices that the cops cannot distinguish.

Consider the set of vertices R× C. Each of these vertices have distance

1 to a cop if and only if it is in the same symbol-line as that cop, by the

definition of R and C. As such, there can be at most one vertex in R × C

that is not in the same symbol-line as a cop, or else there would be two

vertices with distance 2 to all cops and so the cops could not distinguish

these two vertices. Also, if a vertex in R × C is in symbol-line �, then no

other vertex of R × C can also be in symbol-line �, or else there are two

vertices that have distance 1 to all cops on the line � and distance 2 to all

other cops, and so cannot be distinguished by the cops.

As such, of the s2 vertices in R×C, there are at least s2 − 1 that are in

symbol-lines with some cop, and each of these s2−1 symbol-lines are unique

from each other. As such, there must be at least s2−1 cops, since each cop is

in at most one symbol-line and s2 − 1 symbol-lines contain a cop. However,

we are playing with only n−s cops, so it must be that n−s ≥ s2−1. Solving

for s, we find that s ≤
√

n+ 5
4 − 1

2 , from which the result follows.

By Theorems 3.3 and 3.5, the metric dimension of a Latin square graph

of order n will have metric dimension between somewhat below n and up to

2n. Two different Latin squares graphs of the same order may have different

metric dimension, so it is possible that both the upper and lower bounds we

have given are tight. We proceed by showing that the lower bound is close

to being tight.

The back-circulant Latin square Bn, is defined as Bn[i, j] = i + j − 1

(mod n), where we write n instead of 0 to remain consistent with our typical

symbol set [n]. See Figure 2 for an example.

We need a few definitions. Suppose L is a Latin square of order n. For

a non-negative integer d, a partial transversal of deficit d in L is a subset

of n − d entries T ⊆ L such that each row, each column, and each symbol

is represented at most once among the entries of T . A partial transversal of

deficit d = 0 is called a transversal. We note that in the following proof, we

will commonly use (r, c) ∈ S(L, s) to emphasize that the vertex in row-line r

and column-line c is in symbol-line s, with corresponding entry (r, c, s) ∈ L.
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B11 =

1 2 3 4 5 6 7 8 9 10 11
2 3 4 5 6 7 8 9 10 11 1
3 4 5 6 7 8 9 10 11 1 2
4 5 6 7 8 9 10 11 1 2 3
5 6 7 8 9 10 11 1 2 3 4
6 7 8 9 10 11 1 2 3 4 5
7 8 9 10 11 1 2 3 4 5 6
8 9 10 11 1 2 3 4 5 6 7
9 10 11 1 2 3 4 5 6 7 8
10 11 1 2 3 4 5 6 7 8 9
11 1 2 3 4 5 6 7 8 9 10

.

Figure 2: The back-circulant Latin square B11, where the 11 entries in bold
are those chosen in Lemma 3.6.

Lemma 3.6. For n sufficiently large with 2, 3, 5, 7 � n, we have that

β(G(Bn)) ≤ n− 1.

Proof. We begin by providing a set of n vertices of G(Bn), and then will
show that placing n cops on these vertices can capture the robber on the
cops’ first turn. In particular, the placement of cops will be made such that
every row-line, column-line, and symbol-line contains exactly one cop. This
means that exactly three cops will probe a distance of 1. Further, we will
show that given the set of three cops that probe a distance of 1, the robber
could only be on one particular vertex, and so will be captured on the first
turn. After this, we will show that placing cops on only n−1 of these vertices
provides identical information to if we had placed n, and so the cops can
similarly capture the robber in one turn.

Place n cops on the vertices (i, n+ 2− 3i) for i ∈ [n]. Note that (i, n+
2− 3i) ∈ S(Bn, n+ 1− 2i). See Figure 2 for an example of this selection of
vertices translated to the corresponding entries in B11. As 2, 3 � n, note that
each vertex containing a cop is on a unique row-line, unique column-line,
and unique symbol-line. That is, the n corresponding entries of the Latin
square L form a transversal of L. Therefore, if the robber is on a vertex that
does not contain a cop, then exactly three cops will probe a distance of 1
to the robber (one for each line type). If we know that two particular cops
probe a distance of 1 (and do not know the distances that the other cops
probed), then there are at most six vertices of G(L) that the robber may be
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on. We will show that for each of these six vertices, if the robber chose to

be initialized on this vertex, there will be a distinct third cop of distance 1

from the robber that is associated with that choice, so the robber’s location

is known exactly.

Suppose that the first two cops are on vertices Ci = (i, n + 3 − 3i) ∈
S(L, n+2−2i) and Cj = (j, n+3−3j) ∈ S(L, n+2−2j), where i �= j. Table 1

provides the lines of the six vertices that the robber may be on, with each

row of the table representing a distinct vertex. The first row of this table, for

example, says that if the robber was on the vertex that is in the same row-

line as Ci and the same column-line as Cj , then the robber is on the vertex

(i, n+3−3j) ∈ S(L, n+2−3j+ i). Table 2 then provides the location of the

third cop that also probes a distance of 1, given that the robber was on either

of the six vertices that were possible. Note that the cop De corresponds to

the case that the robber was on the vertex associated with the eth row of

Table 1. For example, if the robber was on (i, n+3−3j) ∈ S(L, n+2−3j+i),

then the cop Ck with k = (3j − i)/2 would have distance 1 to the robber.

Table 1: The six possible locations of the robber, given that the cop on
row-line i and cop on row-line j both probe a distance of 1 to the robber

Row-line Column-line Symbol-line
i n+ 3− 3j n+ 2− 3j + i
i n+ 3− 2j − i n+ 2− 2j
j n+ 3− 3i n+ 2− 3i+ j

3i− 2j n+ 3− 3i n+ 2− 2j
j n+ 3− 2i− j n+ 2− 2i

3j − 2i n+ 3− 3j n+ 2− 2i

Finally, Table 3 shows the resulting equation if we assume that cop

De = Df , by equating the rows that De and Df are in. As 2, 3, 5, 7 � n,

each of these conditions would imply that i = j, giving a contradiction

Table 2: The lines of the vertices of the six additional cops that will probe a
distance of 1 if the robber is on the corresponding locations given in Table 1

Cop Row-line Column-line Symbol-line
D1 2−1(3j − i) n+ 3− 3(2−1(3j − i)) n+ 2− 3j + i
D2 3−1(2j + i) n+ 3− 2j − i n+ 2− (3−1 − 1)(2j + i)
D3 2−1(3i− j) n+ 3− 3(2−1(3i− j)) n+ 2− 3i+ j
D4 3i− 2j n+ 3− 3(3i− 2j) n+ 2− 2(3i− 2j)
D5 3−1(2i+ j) n+ 3− 2i− j n+ 2− (3−1 − 1)(2i+ j)
D6 3j − 2i n+ 3− 3(3j − 2i) n+ 2− 2(3j − 2i)
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Table 3: The equation (modulo n) that results when we assume that two
cops in Table 2 share the same row-line

D1 D2 D3 D4 D5 D6

D1 – 5i = 5j 4i = 4j 7i = 7j 7i = 7j 3i = 3j
D2 – – 7i = 7j 7i = 7j i = j 9i = 9j
D3 – – – 3i = 3j 5i = 5j 7i = 7j
D4 – – – – 7i = 7j 5i = 5j
D5 – – – – – 8i = 8j

of assumptions, and so each triple of cops that probe a distance of 1 will
uniquely determine the location of the robber.

This completes the proof that placing cops on the n chosen vertices will
capture the robber. To show that n−1 is sufficient, we may remove any one
cop from this set of n vertices. Hence, either two or three cops will probe
a distance of 1 to the robber. In the case that exactly two cops probe a
distance of 1, we know that the removed cop would have probed a distance
of 1 if we had not removed it. We therefore have the same information as if
we had placed n cops on the set of n vertices, and so the robber’s location
is uniquely determined.

4. Localization number of Latin square graphs

As the metric dimension is an upper bound on the localization number, by
Theorem 3.3 we have the following.

Corollary 4.1. If L is a Latin square of order n, then ζ(G(L)) ≤ 2n− 2.

The bound in Corollary 4.1 may be greatly improved, however. The
following result demonstrates that using a little more than n cops, the cops
may capture the robber.

Theorem 4.2. For a Latin square L of order n, we have that

ζ(G(L)) ≤ n+ 6.

Proof. We will play three rounds of the localization game on G(L) with n+6
cops. In the first round, the cops will play such that they can identify two
vertices of G(L) that the robber must be residing on, although these two
vertices may not share a common line. After the robber has taken its turn,
the cops play their second turn and may identify two vertices of G(L) that
the robber must be residing on that are on a common line. After the robber
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moves and in the cops third and final turn, the cops are able to play to
capture the robber.

For the first round, choose a symbol s and place n cops on the n vertices
in symbol-line S(L, s). We assume that the robber is not on one of these n
vertices, or else it is immediately captured. By (P2), there must be exactly
k + 1 = 2 cops that probe a distance of 1 to the robber, say the cops on
vertices (r1, c1) and (r2, c2), where r1 �= r2 and c1 �= c2. The robber is either
on the vertex (r1, c2) or (r2, c1).

For the second round, consider the symbol s1 such that (r1, c1) ∈ S(L, s1)
and place n cops on the n vertices in symbol-line S(L, s1). In addition, place
a cop on (r2, c2) and a further four cops on the vertices of distance 1 from
both (r1, c1) and (r2, c2) that do not yet contain cops. Note that if the robber
just moved along line �, then there are three cops on line �. Since (P2) implies
that at most two vertices on a line have distance 1 to the robber if the robber
is not on that line, then when three cops on � all probe a distance of 1, the
cops know the robber is on this line. We may assume that � is not the
symbol-line S(L, s1), or else a cop would probe 0, and the robber would be
captured. Now, as in the first round, since each vertex in a row-line contains
a cop, there must be exactly k + 1 = 2 cops on this row-line that probe
a distance of 1 to the robber, say the cops on vertices (r3, c3) and (r4, c4),
where r3 and r4, and c3 and c4 may or may not be distinct. The robber is
either on the vertex (r3, c4) or (r4, c3); however, these two vertices must be
on the same line �.

By symmetry, we may assume that � is a symbol-line, and so that r3 �= r4
and c3 �= c4. For the third round, place n cops on the n vertices in symbol-
line �. In addition, place a cop on vertices (r3, c4) and (r4, c3) and a further
four cops on vertices such that the lines of rows r3, r4 and columns c3, c4
each have three cops on their vertices. As in the second round, if the robber
moved along some line �′, then the cops know this. If the robber moved along
a symbol-line, then � = �′, and the robber is caught since a cop probed a
distance of 0. Otherwise, we may assume by symmetry that �′ is a row-line.
Further, exactly one cop on � \ {(r3, c3), (r4, c4)} will probe a distance of 1
to the robber. This is because no vertex on � \ {(r3, c3), (r4, c4)} can share a
symbol-line or a row-line with the robber. As such, the row-line and column-
line of the robber is known to the cops, and so by the Latin property, the
cops capture the robber.

We also establish a lower bound on the localization number of MOLS.

Theorem 4.3. If L is a set of k-MOLS(n), then

ζ(G(L)) ≥ 2(n− 1)

k + 2
.
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Proof. We play the game with c cops, and derive a lower bound on c such
that these c cops can capture the robber (with c to be determined later).
Suppose that the robber was not located during the cops’ last turn, and
after its turn, the robber informs the cops that the robber is on the vertices
of some given row-line, say R(L, r).

This weakens the strategy for only the robber, and so cannot increase
the number of cops required to capture the robber. Note that if the cops
cannot capture the robber in this round, independent of the row-line on
which the robber is located, then the cops will never be able to capture the
robber in the standard game. Thus, a lower bound on c such that c cops
are required to capture the robber during this single round will be a lower
bound on ζ(G(L)). Similar to Theorem 3.4, we will analyze the number of
vertices of R(L, r) that have distance 0 to a cop, have distance 2 to all cops
not on R(L, r), have distance 1 to exactly one cop not on R(L, r), and have
distance 1 to two or more cops not on R(L, r).

R(L, r)

A′

Figure 3: Eight cops attempting to locate a robber along a single row-line
of vertices in the Latin square graph of a set of 2-MOLS(11).

Each cop is either on a vertex in R(L, r), or it is not on R(L, r) and is
adjacent to k + 1 vertices in R(L, r). Let A′ denote the vertices of R(L, r)
that do not contain cops. Each vertex on R(L, r) \ A′ has distance 1 to
each vertex in A′, so cannot distinguish which vertex the robber is on if
the robber is on a vertex of A′. Let C ′ denote the set of vertices containing
the remaining cops on vertices not on R(L, r), which have some hope of
distinguishing the remaining vertices of A′, and let c′ = |C ′|. See Figure 3,
which depicts a case with k = 2, n = 11, and where eight cops are at play.

Suppose the cops are able to determine the location of the robber on
this turn. Each vertex in R(L, r) \A′ can be immediately localized, as these
vertices contain a cop, which will probe a distance of 0. There can be at
most one vertex in A′ of distance 2 to all cops in C ′. For each of the cops
in C ′, there can be at most one vertex in A′ of distance 1 to this cop and
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distance 2 to all other cops in C ′. The most optimal situation for the cops is
when each cop is adjacent to exactly one vertex in A′ that has the property
of being distance 2 to all other cops in C ′, so we assume that this is the
case.

We therefore, have that 1 + c′ vertices in A′ have distance 1 to one or
zero cops. The remaining |A′| − c′ − 1 such vertices must each be adjacent
to two cops each. Label the edges that directly connect these |A′| − c′ − 1
vertices to the cops as E. This means that E contains at least 2(|A′|−c′−1)
edges. Each cop is adjacent to at most k such vertices, so |E| ≤ c′k. Thus,
we must have that 2(|A′| − c′ − 1) ≤ |E| ≤ c′k, and so

2(|A′| − 1)

k + 2
≤ c′.

The total number of cops used is

c = n− |A′|+ c′ ≥ n− |A′|+ 2(|A′| − 1)

k + 2
,

which is minimized when |A′| = n, yielding c ≥ 2(n−1)
k+2 . The proof follows.

When k is close to n, the lower bound in Theorem 4.3 does not apply.
In certain cases, when k ≥ n/2, we may substantially improve the lower
bound by observing certain properties of the set of MOLS. An orthogonal
array OA(k+2, n) is a (n2)× (k+2) array, with cells filled with symbols in
[n] such that the subarray formed by taking any two columns contain each
pair in [n]× [n] precisely once. We say that two rows of an orthogonal array
intersect in a column if both cells of that column in the two rows contain the
same symbol. We note that there is a one-to-one correspondence between a
set of k-MOLS(n) and an orthogonal array OA(k + 2, n); see [14].

Theorem 4.4. If M is a set of k-MOLS(n) and N is a set of (n− 1− k)-
MOLS(n) such that the composition of the orthogonal arrays of M and N
is the orthogonal array of a set of (n− 1)-MOLS(n), then

ζ(G(M)) = ζ(G(N )).

Proof. Let O(M) and O(N ) denote the orthogonal arrays corresponding to
M and N , respectively. We write both of these arrays such that the side-
by-side composition of the two arrays forms the orthogonal array of a set
of (n − 1)-MOLS(n), say O(L). If a cop C probes a distance of 1 to the
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robber R on G(M), then the rows of O(M) that correspond to the vertices
of R and C will intersect, and since the corresponding two rows in O(L) can
only intersect in one column, the two corresponding rows in O(N ) do not
intersect. Similarly, if a cop C probes a distance of 2 to the robber on R on
G(M), then the rows of O(M) that correspond to the vertices of R and C do
not intersect, and since the corresponding two rows in O(L) do intersect, the
two corresponding rows in O(N ) must also intersect. Equivalent statements
hold for N .

We can define a Localization game on O(M) similar to the Localization
game on graphs, except where the following rules apply.

1. The cops and robber are placed on rows of the orthogonal array.
2. The distance between a cop and robber is 0 if they are on the same

row, 1 if their rows intersect, and 2 if their rows do not intersect.

By our observations in the first paragraph of this proof, the regular Local-
ization game on G(M) is equivalent to playing the new Localization game
on O(M). An equivalent statement holds for N .

By our observations in the first paragraph of this proof, the distance vec-
tors obtained while playing the new Localization game on O(M) will differ
from the distance vectors obtained while playing the new Localization game
on O(N ) only in that the 1’s will be mapped to 2’s, and vice versa. Thus, the
information that the cops receive is equivalent, independent of whether the
game is played on O(M) or O(N ). As such, playing the Localization game
on both O(M) and O(N ) are equivalent. Since these games were equivalent
to the Localization game played on G(M) and G(N ), we have the desired
result that ζ(G(M)) = ζ(G(N )).

By combining Theorems 4.3 and 4.4 we derive following result, which
is an improvement when k ≥ n/2. If i < j, then a set M of i-MOLS(n) is
completable to a set of j-MOLS(n) if symbols may be added to M to form
a j-MOLS(n).

Corollary 4.5. If M is a set of k-MOLS(n) that is completable to a set of
(n− 1)-MOLS(n), then

ζ(G(M)) ≥ 2(n− 1)

n− k + 1
.

It is well-known that (n−1)-MOLS(n) exist when n is a prime power; see
for example, [14]. Thus, Corollary 4.5 shows that when n is a prime power
and k is close to n, that a set of k-MOLS(n) exists such that the localization
number is large. In particular, if k = c or k = n − c, where c is a constant,
then a set M of k-MOLS(n) exists such that ζ(G(M)) = Θ(n).
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5. Future directions

We determined the precise cop number of k-MOLS(n) when n > (k + 1)2.
However, several other cases remain unresolved. For instance, it is unclear
whether the bound on the cop number stated in Theorem 2.4 is tight. In
Sections 3 and 4, for a Latin square L of order n, we established the bounds

n−
√

n

3
+

37

36
+

1

6
≤ β(G(L)) ≤ 2n− 2,

and
2

3
(n− 1) ≤ ζ(G(L)) ≤ n+ 6.

We do not know if these bounds are tight.
There are many other graph parameters in pursuit-evasion besides those

studied in this paper, such as the 0-visibility cop number [16], the search
number [12], and the burning number [3]. We will investigate these and other
pursuit-evasion parameters on Latin square graphs in future work.
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