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On a barrier height problem for RNA branching
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The branching of an RNA molecule is an important structural
characteristic yet difficult to predict correctly, especially for longer
sequences. Using plane trees as a combinatorial model for RNA
folding, we consider the thermodynamic cost, known as the barrier
height, of transitioning between branching configurations. Using
branching skew as a coarse energy approximation, we character-
ize various types of paths in the discrete configuration landscape.
In particular, we give sufficient conditions for a path to have both
minimal length and minimal branching skew. The proofs offer some
biological insights, notably the potential importance of both hair-
pin stability and domain architecture to higher resolution RNA
barrier height analyses.
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1. Introduction

An RNA sequence is said to fold into a secondary structure via the formation
of (noncrossing, canonical) base pairings. There are many possible secondary
structures for a given sequence, but the most biologically relevant typically
have a low free energy approximation under the nearest neighbor thermo-
dynamic model (NNTM). The barrier height problem [18] then considers
the thermodynamic cost of transitioning between low-energy configurations.
Progress has typically focused on steps consisting of adding/removing a base
pair, c.f. [7, 16, 26] and related work discussed therein. Here, we take a com-
plementary approach, focusing on larger structural rearrangements by using
plane trees as a combinatorial model of RNA branching configurations.

A plane tree is a rooted tree whose subtrees are linearly ordered [25].
Also know as ordered or linear trees, they are one of the many combinatorial
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families enumerated by the Catalan numbers. Depending on the question of
interest, there are different ways1 of associating RNA secondary structures
with trees in general, e.g. [8], and plane trees in particular, e.g. [24]. As done
in other branching analyses [1, 2, 10, 13], we take a low-resolution approach,
associating helices to edges and loops to vertices with the external loop as
the distinguished root vertex.

A plane tree is thus an abstract representation of an arbitrary RNA sec-
ondary structure. By focusing on the overall arrangement of edges/helices
and vertices/loops, mathematical results have provided insight into the chal-
lenge of designing RNA sequences with a particular branching structure [10],
configurations which minimize loop energy costs [1, 2], and a parametric
analysis of the branching entropy approximation [13]. This work has lead
both to better understanding of RNA prediction accuracy [3, 20, 21] as well
as some new combinatorics [12].

Here, we extend this theoretical branching analysis to consider folding
pathways between plane trees. We move from one tree to another under a
“pairing exchange” operation inspired by the challenge of encoding a partic-
ular branched structure in a sequence [11, 10]. Under a coarse approximation
to the thermodynamics (branching skew), combinatorial analysis of differ-
ent types of transition paths is possible in this model of RNA folding. The
proofs offer some biological insights.

First, there is a direct path between any two trees, i.e. one where each
step increases the number of edges from the final tree by at least one. The
edges incident on a leaf are the crucial first steps in such a path, and indeed
the stability of RNA hairpins is a critical component of biological function [4]
and modeling accuracy [28]. Hence, a suitable model for hairpin rearrange-
ments [29] may be an important component of a higher resolution barrier
height analysis.

Second, the branching skew of a direct path is provably bounded when
the edges of the two trees decompose into consistent blocks that can rear-
range from initial to final configurations independent of each other. This
suggests that modeling the domain architecture of RNA secondary struc-
tures, which emerges in the folding of longer sequences [14, 19, 23], may be
critical to the analysis of optimal folding pathways.

2. Pairing exchanges and branching skew

Let Tn denote the set of plane trees with n edges. Then |Tn| = 1
n+1

(
2n
n

)
, the

n-th Catalan number. Motivated by RNA secondary structures, we consider

1See [11] for an overview of the combinatorics of RNA secondary structures and
more comprehensive references.



On a barrier height problem for RNA branching 487

T ∈ Tn to be a set of paired half-edges. For i, j ∈ N, let [i, j] = {k ∈ N |
i ≤ k ≤ j}. Label the boundary of T counter-clockwise from the root with
[1, 2n] in increasing order. Let (i, j) denote the edge in T which has i as the
label on its left side and j on the right for 1 ≤ i < j ≤ 2n.

Lemma 1. A set I = {(i, j) | 1 ≤ i < j ≤ 2n} is a plane tree when each in-
dex appears in exactly one ordered pair and there do not exist (i, j), (i′, j′) ∈ I
with i < i′ < j < j′.

Proof. Consider (1, k) ∈ I. If k is odd, then either there exists an (i, j) ∈ I
with 1 < i < k < j or an index in [2, k − 1] that is unpaired or in more
than one pairing. Since k must be even, induct on the pairings with indices
in [2, k − 1] and [k + 1, 2n].

In other words, there is a simple bijection between noncrossing perfect
matchings on 2n endpoints and plane trees with n edges. Previous work [12]
considered the comparable operation on matchings to the pairing exchange
defined below with the goal of better understanding meanders (interpreted
as pairs of noncrossing perfect matchings which form a single closed loop).

Here we consider plane trees as a low-resolution model of RNA sec-
ondary structures, and analyze (very approximately) the thermodynamic
cost of moving around this branching configuration landscape. Inspired by
the challenge of minimizing alternative lower-energy configurations when
designing RNA secondary structures (c.f. Fig. 1 in [10]), we transition from
one tree to the next by breaking apart and “repairing” two edges.

We start by applying to edges in T the common familial terminology
for vertices in rooted trees, i.e. parent/child, siblings, ancestor/descendent,
etc. Additionally, an edge incident on the root vertex is called an orphan.
Two edges in T are unobstructed if they are incident on the same vertex, in
which case they are either parent/child or siblings.

We define a pairing exchange on unobstructed edges E = {(i, j), (i′, j′)} ⊆
T as

μE(T ) = (T \E) ∪
{

(i, i′) and (j′, j) if i < i′ < j′ < j
(i, j′) and (j, i′)) if i < j < i′ < j′

}

and claim that converting a parent/child into siblings, or vice versa, intro-
duces no crossings.

Lemma 2. The pairing exchange operation is well-defined.

Proof. Let 1 ≤ a < b < c < d ≤ 2n be the indices of two edges in T .
Let A = [1, a − 1] ∪ [d + 1, 2n], B = [a + 1, b − 1], C = [b + 1, c − 1], and



488 Christine Heitsch et al.

Figure 1: A pairing exchange on unobstructed edges with indices 1 ≤ a < b <
c < d ≤ 2n converts siblings (a, b), (c, d) into parent/child (a, d), (b, c), and
vice versa. Note how the incident vertices split and merge. However, edges
in the four subtrees with indices exclusively in A = [1, a − 1] ∪ [d + 1, 2n],
B = [a+ 1, b− 1], C = [b+ 1, c− 1], or D = [c+ 1, d− 1] are unaltered.

D = [c + 1, d − 1]. Observe that if the edges are (a, d) and (b, c), then all
other edges must have indices in either A or in B ∪D or in C exclusively.
However, if (a, d) and (b, c) are parent and child, then there cannot be an
edge (k, l) with k ∈ B and l ∈ D. A similar argument holds if (a, b) and
(c, d) are siblings.

As illustrated in Figure 1, pairing exchanges are reversible operations.
Let Gn be the (undirected) graph with vertex set Tn and edges which connect
two plane trees that differ by a single pairing exchange.

Before proving that Gn is connected, we distinguish two trees which have
the maximum degree of

(
n
2

)
in Gn. Let Un = {(2i − 1, 2i) | 1 ≤ i ≤ n} and

Ln = {(1, 2n)}∪{(2i, 2i+1) | 1 ≤ i ≤ n−1}. Then U1 = L1, and G1 consists
of a single vertex. For n ≥ 2, Un and Ln differ in the choice of root; both
are “star” trees with n unobstructed edges.

Lemma 3. The graph Gn is connected.

Proof. We claim there is a path in Gn from T to Un. If (1, 2) ∈ T , then induc-
tively the subtree with indices in [3, 2n] is connected by pairing exchanges
to Un−1. Else the edges (1, k), (2, l) ∈ T are unobstructed, and there is an
edge in Gn between T and [T \ {(1, k), (2, l)}] ∪ {(1, 2), (k, l)}.

Dually, T is connected to Ln by first considering the edge (1, 2n), and
then successive (2i, 2i + 1). Thus, any two trees are connected by a path
through Un or one through Ln. Unless a star tree is one of the endpoints,
the path is indirect since it effectively erases most pairing information in the
first tree before replacing it with second. Moreover, although mathematically
simple, these are the highest possible barrier paths in terms of branching
thermodynamics.
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Figure 2: The graph G3 with L3 on left, U3 on right, and the three plane trees
T ∈ T3 with c(T ) = 2 in the middle. Dashed lines are pairing exchanges.
The number of odd edges increases by 1 moving left to right.

Previous results [2, 11, 13] demonstrated that branching is locally fa-
vorable but globally balanced by increasing the number of leaves — since
hairpins are the most energetically expensive type of loop structures [27].
Hence, a low barrier path in Gn passes through trees with a low degree
of branching. Since tracking changes in branching degree under pairing ex-
changes is complicated, we instead consider “branching skew.”

We start by defining the parity of an edge. Since (i, j) ∈ T has j−i−1
2

descendents, exactly one of i and j is odd. Call the edge odd if i is, and even
otherwise. Let c(T ) denote the number of odd edges in T . Then 1 ≤ c(T ) ≤
n, with c(T ) = 1 exactly when T = Ln and n only if Un. Moreover, a pairing
exchange alters the number of odd edges by exactly one. An example is seen
in Figure 2.

Note that edge parity along a path in T from the root vertex to a leaf
must alternate, and all orphan edges are odd. Hence, if c(T ) = k, then the
maximum possible vertex degree in T is either k or n− k + 1. A tree which
achieves this is k orphans with one having n−k even children. Thus, c(T ) is
well-behaved under pairing exchanges, and yields an upper bound, seldom
tight, on vertex degree.

More precisely, we are interested in minimizing the maximum possible
vertex degree over paths in Gn. Define the skew of T to be |c(T ) − n+1

2 |.
This is maximal at both Un and Ln, and decreases to a minimum of 0 or
1/2 when the number of odd and even edges are most evenly balanced. The
skew of a path T = T0, T1, . . . , Tk = T ′ is max0≤m≤k|c(Tm)− n+1

2 |.
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Call a pairing exchange a forward move if c(T ) increases, and backward

otherwise. In Section 4, we characterize when there is a path from T to T ′

consisting only of forward moves. Call this a forward path, and the reverse

a backward one. Such a path has the least increase in skew possible given
the start and end.

Lemma 3 showed that, even if there is not a forward path from T to
T ′, they are still connected by a pair of forward paths through Un. Dually,

backward through Ln. More generally, we call a path from T to T ′ a forward
V-path (respectively backward) if there exists S ∈ Tn with S �= T, T ′ such
that there is a forward (resp. backward) path from T to S and also from T ′

to S. In Section 5, we characterize the minimal skew V-paths, and make ex-
plicit in Section 6 the connection with the well-studied lattice of noncrossing

partitions.

In Section 7, we show that when forward and backward moves are inter-

spersed, it is possible to have paths in Gn whose skew exceeds the start and
end by at most 1. We conclude in Section 8 by characterizing shortest paths,

and proving that their skew is similarly bounded under certain conditions.

3. Introducing tree partitions

Since a plane tree T is specified as a collection of paired half-edges {(i, j) |
1 ≤ i < j ≤ 2n}, we distinguish when a subset S ⊆ T is a subtree, denoted

S � T . When S is connected, by a generalization of Lemma 2, an edge in
T \ S has either both or neither indices in an interval between the ordered

indices of S. Hence, pairing exchanges on S and its subsequent images are

independent of all other edges in T .

Because each edge has exactly one odd index, subsets of T ∈ Tn are in
bijection with subsets of On = {1, 3, . . . , 2n− 1}. For P ⊆ On, let σ(T, P ) =

{(i, j) ∈ T | i ∈ P or j ∈ P}. Let P be a (set) partition of On. We distinguish

when the parts of P decompose T into subtrees.

Definition 1. Say P splits T if σ(T, P ) � T for every P ∈ P.

The trees Un and Ln are split by any P , since all edges are incident on
a common vertex. However, suppose there exists P ∈ P and odd integers

i < j < k (circularly ordered) such that i, k ∈ P and j /∈ P . Let T = μE(Un)
for E = {(j, j+1), (k, k+1)}. Then (j, k+1) obstructs (j+1, k) from (i, i+1)

in T , and so P does not split T . Hence, there are exactly two partitions

which split every T ∈ Tn: {On} and {{2i − 1} | 1 ≤ i ≤ n}. The latter will
be referred to as the singleton partition, and the former as the trivial one.
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To characterize paths in Gn from T to T ′, we consider partitions of On

which split both trees. However, we must insure that the even indices also
partition in the same way. For S ⊆ T , let α(S) =

⋃
(i,j)∈S{i, j} be the

collection of indices. Denote the odd ones by α1(S), respectively α2(S) for
the even.

Definition 2. The subsets S ⊆ T , S′ ⊆ T ′ are aligned if α(S) = α(S′).
The alignment is simple if no proper subsets of S and S′ are also aligned.

The simply aligned subsets correspond to connected components in the
graph with vertices in [1, 2n] and edges in T ∪ T ′. It is known [12] that
a pairing exchange either splits a connected component into two or joins
two disjoint ones. Hence, the number of simply aligned subsets changes by
exactly 1 across each edge {T, T ′} ∈ Gn.

Observe that if T and T ′ decompose into k pairs of aligned subtrees
Sm � T , S′

m � T ′, then there is a path in Gn from T = T0 to T ′ = Tk

through Tm = (Tm−1 \ Sm) ∪ S′
m. In other words, pairing exchanges on

distinct aligned subtrees are independent.
Since σ(T, P ) and σ(T ′, P ) have the same odd indices by definition, let

ε(T, P ) = α2(σ(T, P )). Then the induced subtrees are aligned exactly when
ε(T, P ) = ε(T ′, P ).

Definition 3. Let P be a partition of On and S ⊆ Tn. Suppose P splits
every T ∈ S. Suppose further that ε(T, P ) = ε(T ′, P ) for every T, T ′ ∈ S
and P ∈ P. Then P is a tree partition of S.

While the trivial partition meets the alignment criteria for any T and
T ′, the singleton one fails unless T = T ′.

Recall that set partitions form a lattice, partially ordered under refine-
ment. Here we take the singleton partition of On as the minimum element
since it induces subtrees with the fewest number of edges. The trivial par-
tition, which is a tree partition for any S ⊆ Tn, is then the maximum. This
lattice will be denoted (On,∩).

Lemma 4. For S ⊆ Tn, there is a unique tree partition of S, denoted π(S),
minimal in (On,∩).

Proof. Suppose Q �= Q′ are both minimal and let P be their greatest lower
bound under refinement. Let P ∈ P . Then P = Q ∩ Q′ for some Q ∈ Q,
Q′ ∈ Q′.

Let T ∈ S, and suppose (k, l) ∈ T lies on the path between (i, j), (i′, j′) ∈
σ(T, P ). Since σ(T,X) � T for X = Q,Q′, then (k, l) ∈ σ(T, P ). Since the
edges in T with odd endpoints in P are connected, P splits T .
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Let i ∈ ε(T, P ). Let T ′ ∈ S, and suppose i pairs with j in T ′. Since
ε(T,Q) = ε(T ′, Q), then j ∈ Q. Likewise for Q′. Hence j ∈ P , and i ∈
ε(T ′, P ). Since the induced subtrees are aligned, P is a tree partition of S.
Contradiction.

When S = {T, T ′}, write π(T, T ′). To produce the minimal tree partition

π(T, T ′), we can start with the simply aligned subsets. For example, consider

T = {(1, 8), (2, 7), (3, 6), (4, 5)} and T ′ = {(1, 4), (2, 3), (5, 8), (6, 7)}. The

aligned subsets have α(S) = {1, 4, 5, 8}, α(S′) = {2, 3, 6, 7} and induce the

partition of On with parts α1(S), α1(S
′). However, σ(T, {1, 5}) �� T and

σ(T ′, {3, 7}) �� T ′. To obtain a partition which also splits these trees, it

suffices to take the union of α1(S) and α1(S
′).

More generally, let {Si} be the simply aligned subsets for S ⊆ Tn, i.e.
connected components in the graph on [1, 2n] with all edges from T ∈ S.
Then P = {α1(Si)} satisfies the tree partition alignment condition by defini-

tion. Moreover, any enlargement of P in (On,∩) is still aligned. If σ(T, P ) is

not connected for some T ∈ S, P ∈ P , then there is an edge (k, l) /∈ σ(T, P )

on the path in T between some (i, j), (i′, j′) ∈ σ(T, P ). But this can be ad-

dressed by enlarging P to include α1(Si) where (k, l) ∈ σ(T, α1(Si)). Induc-

tively, π(S) is the unique least enlargement of P where the induced subtrees

are all connected. Note also that π(S) is an enlargement of π(S′) for every
S′ ⊂ S.

4. Characterizing forward paths

We consider when T is connected to T ′ by a sequence of forward moves, i.e.

pairing exchanges which increase c(T ) by 1. As proved in Lemma 3, there is

a forward path from T to Un, and dually one backward down to Ln. Since

pairing exchange alters c(T ) by exactly 1, with c(Ln) = 1 and c(Un) = n,

then the former has length n− c(T ), and the latter c(T )− 1.

Call two trees, like Un and Ln, complementary if there is only one simply

aligned subset. Such trees will be considered more generally in Section 8.

Now we show there is a forward path from T to T ′ exactly when there is a

tree partition which splits them into pairs of complementary “star” subtrees.

For S ⊆ T , let c(S) denote the number of odd edges. If S is connected,

then S � T is isomorphic to S′ ∈ T|S| under an order-preserving bijection

on its indices. We distinguish whether edge parity is preserved or reversed,

denoted S �0 S′ or S �1 S′ respectively. When preserved, c(S) = c(S′). If
reversed, c(S) = |S| − c(S′).
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Definition 4. The tree T has a minmax decomposition with T ′, denoted
T → T ′, if there exists a tree partition P such that, for every P ∈ P with
|P | = p, σ(T, P ) �0 Lp, σ(T

′, P ) �0 Up or σ(T, P ) �1 Up, σ(T
′, P ) �1 Lp.

In other words, if the odd (and even) indices of T and T ′ partition so that
the induced subtrees are isomorphic to the star tree, with opposite choices of
root determined by the edge parity, then they have a minmax decomposition.
Note that T → T under the singleton partition and U1 = L1 = {(1, 2)}.
Dually, Ln → Un under the trivial partition. If T → T ′, then the induced
subtree of T ′ has p−1 more odd edges than the one in T . Hence, c(T ) ≤ c(T ′).

Call (i, j) ∈ T ∩ T ′ a common edge. Equivalently, {(i, j)} is a simply
aligned subset, or the induced subtree for a singleton part of π(T, T ′).

Theorem 1. There is a forward path from T to T ′ in Gn if and only if
T → T ′.

Proof. Let T = T0, T1, . . . , Tk−1, Tk = T ′ be a forward path in Gn. At each
step, either an odd parent/even child are converted into two odd siblings,
or two even siblings are changed into an even parent/odd child.

Let P1 be the partition which is all singletons, except for a doubleton P
which consists of the odd indices involved in the pairing exchange on T . If the
exchange started with parent/child, then σ(T, P ) �0 L2 and σ(T1, P ) �0 U2.
Otherwise, σ(T, P ) �1 U2 and σ(T1, P ) �1 L2.

Assume after m steps that T has a minmax decomposition with Tm for
tree partition Pm. Then an induced subtree in Tm contains either no even
edges or exactly one even parent. Hence the next forward pairing exchange
necessarily involves edges associated with distinct parts. Let Tm+1 = μE(Tm)
for E = {(i, j), (i′, j′)}. Then (i, j) ∈ σ(Tm, P ) and (i′, j′) ∈ σ(Tm, P ′) for
P, P ′ ∈ Pm with P �= P ′, |P | = p and |P ′| = p′.

Suppose (i, j), (i′, j′) ∈ Tm are even siblings with i < j < i′ < j′. Then
j ∈ P and (i, j) is the parent in σ(Tm, P ) �1 Lp, and similarly for (i′, j′)
and P ′. After the pairing exchange, we have Tm+1 = (Tm \ {(i, j), (i′, j′)})∪
{(i, j′), (j, i′)}. The even edge (i, j′) is the parent of (j, i′) as well as of all
the odd children of (i, j) in σ(Tm, P ) and of (i′, j′) in σ(Tm, P ′). Hence
σ(Tm+1, P ∪ P ′) is a subtree of Tm+1 and by construction �1 Lp+p′ .

Consider the partition Pm+1 = (Pm \ {P, P ′}) ∪ {P ∪ P ′}. If the even
siblings comprising σ(T, P ) and σ(T, P ′) have the same parent, then σ(T, P∪
P ′) � T . By construction the subtree is aligned with σ(Tm+1, P ∪ P ′) and
�1 Up+p′ .

Otherwise, let (k, l) ∈ T be the odd parent of σ(T, P ) �1 Up. By the
alignment criteria, P ∪ ε(T, P ) ⊆ [i, j] since (i, j) ∈ σ(Tm, P ) is the even
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parent. Hence, 1 ≤ k < i < j < l ≤ 2n. Without loss of generality, (k, l)
is not an ancestor of σ(T, P ′). But then, since i < i′ by assumption, l ∈
[j + 1, i′ − 1].

Let Q ∈ Pm such that (k, l) ∈ σ(T,Q). By induction, an induced sub-
tree of T has either zero or one odd edge. Hence, σ(T,Q) �0 L|Q| and so
σ(Tm, Q) �0 U|Q|. Let K = [k, i − 1] and L = [j + 1, l]. Suppose there is
(k′, l′) ∈ σ(Tm, Q) with k′ ∈ K, l′ ∈ L. But this obstructs (i, j) from (i′, j′).
Hence there are an even number of indices from σ(Tm, Q) in K and in L.
But then by counting there is a child (k′, l′) ∈ σ(T,Q) with k′ ∈ K and
l′ ∈ L, contradicting the choice of (k, l). Thus, if the pairing exchange on
Tm began with two even siblings, then T → Tm+1.

Suppose instead (i, j) is the odd parent of (i′, j′) in Tm. Then i < i′ <
j′ < j and Tm+1 = (Tm \ {(i, j), (i′, j′)})∪ {(i, i′), (j′, j)}. Before the pairing
exchange, although σ(Tm, P ′) �1 Lp′ as before, σ(Tm, P ) may be either
�0 Up or �1 Lp. In either case, the new edges in Tm+1 are odd siblings,
along with the former odd siblings of (i, j) and odd children of (i′, j′). Hence,
σ(Tm+1, P ∪P ′) �1 Lp+p′ or �0 Up+p′ according to whether the even parent
of (i, j) is in σ(Tm, P ) or not.

If the edges of σ(T, P ∪ P ′) are not connected in T , then by the same
type of argument as above, we arrive at a contradiction. Since σ(T, P ∪P ′) �
T , then either �1 Up+p′ or �0 Lp+p′ respectively. Since all other parts of
the partition were unchanged, Pm+1 is a tree partition yielding a minmax
decomposition for T with Tm+1.

Conversely, suppose T → T ′ with tree partition P . Let S = σ(T, P )
and S′ = σ(T, P ′) for P ∈ P with |P | = p ≥ 2. Suppose S �0 Lp and
S′ �0 Up. There is a forward path of length p − 1 from Lp to Up in Gp.
Operating on the corresponding edges in S, while keeping T \S fixed, there
is a forward path from T to T ′′ = (T \ S) ∪ S′ in Gn. Dually, the backward
path in Gp becomes a forward one when S �1 Up and S′ �1 Lp. Then T ′′

has p more common edges with T ′ than T does. Inductively, the other pairs
of induced subtrees are unchanged. Hence T ′′ → T for the tree partition
Q = (P \ {P}) ∪ {{q} | q ∈ P}.

Suppose T → T ′. Then the forward path’s branching skew is max{|c(T )−
n+1
2 |, |c(T ′)− n+1

2 |} depending on whether c(T )−1 < n−c(T ′). Hence, it has
the least possible barrier height given the start and end points. In this case,
by construction, there is a bijection between parts of π(T, T ′) and simply
aligned subsets. So the path’s length is

∑
|P | − 1 = n − k, when there are

k parts P ∈ π(T, T ′). This is the shortest possible, and is generalized to
geodesics between all trees in Section 8. However, bounding the branching
skew when T �→ T ′ is more challenging, and we consider several different
types of paths.
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5. Characterizing minimal skew V-paths

Even if T �→ T ′, they are still connected by a forward V-path of length
2n−c(T )−c(T ′) through Un, respectively backward of length c(T )+c(T ′)−2
through Ln. These paths have the maximum possible skew of n−1

2 , and hence
represent the highest barrier in branching thermodynamics. However, this
can be reduced in many cases by restricting the rearrangements to suitable
subtrees.

We beging by introducing some additional notation and terminology. Let
P be a tree partition of S ⊆ Tn. For P ∈ P , let minP be the least index
in P ∪ ε(T, P ) and maxP the greatest. By the alignment criteria, these are
well-defined. Note they have opposite parity. Call P odd if minP is, and
even otherwise. Let (i, j), (i′, j′) ∈ T . Call (i′, j′) the first child of (i, j) if
i′ = i + 1, respectively last if j′ + 1 = j. Say (i′, j′) is the next sibling of
(i, j) if i′ = j + 1, or previous if j′ + 1 = i.

Theorem 2. Suppose T → T ′. Then π(Ln, T
′) is a tree partition of T and

T ′.

Proof. Let P = π(T, T ′), Q = π(Ln, T
′), and Q ∈ Q. We show that Q is an

enlargement of P , which implies ε(T,Q) = ε(T ′, Q), and that σ(T,Q) � T .
To start, we characterize how Q splits T ′. Let S′ = σ(T ′, Q). Since

Ln → T ′, then S′ � T ′ consists of some odd siblings or an even parent
with some odd children. We claim that an odd edge is in the same induced
subtree as all its sibling along with its even parent (if it has one).

Let 1 ∈ Q. Then S′ �0 U|Q|. Consider orphan (i, j) ∈ T ′ \ S′ with
least i > 1. But then its previous sibling (k, i − 1) ∈ S′ which contradicts
alignment of Q since (i− 1, i) ∈ Ln. Hence S′ consists of all orphans in T ′.
By a similar argument, if 1 /∈ Q, then S′ �1 L|Q| consists of an even parent
and all its odd children.

Suppose (i, j) ∈ T ′ is an even edge with j ∈ P ∩ Q for P ∈ P . But
then σ(T ′, P ) �1 L|P | since T → T ′ by assumption. Hence (i, j) is the
parent in σ(T ′, P ) ⊆ S′, so P ⊆ Q. If P = Q, then σ(T,Q) � T also, and
ε(T,Q) = ε(T ′, Q).

Otherwise, let (i′, j′) ∈ S′\σ(T ′, P ) with least i′ > i, and consider P ′ ∈ P
with i′ ∈ P ′. Since (i′, j′) is an odd child of (i, j) ∈ T ′, then σ(T ′, P ′) �0

U|P ′|. Thus, P
′ ⊂ Q. Moreover, σ(T ′, P ∪ P ′) � T ′ and �1 L|P |+|P ′| by

construction.
We claim that σ(T, P∪P ′) � T also. Note minP ′ = i′ odd. Let maxP ′ =

j′′ for 1 < i < i′ < j′ ≤ j′′ < j < 2n. Since σ(T, P ′) �0 L|P ′|, then (i′, j′′) ∈
T is the odd parent. By choice of i′, there exists (i′−1, k) ∈ σ(T, P ) �1 U|P |



496 Christine Heitsch et al.

with j′′ < k ≤ j. Hence, (i′, j′′) is the first child of (i− 1, k), and σ(T, P ′) is
connected to σ(T, P ).

Inductively, Q is the union of P ∈ P . Since ε(T, P ) = ε(T ′, P ), then
σ(T,Q) is aligned with σ(T ′, Q). Connectivity of σ(T,Q) follows by building
the enlargement in order of the missing odd children of (i, j) ∈ T ′. Such a
child belongs to σ(T ′, P ) �0 U|P | for odd P ∈ P . But then σ(T, P ) �0 L|P |.
By choice of P , the odd parent in each additional σ(T, P ) must be the first
child of some even child, or the next sibling of an odd parent, already in the
growing induced subtree. The case when 1 ∈ Q proceeds along similar lines
beginning with P  1.

Corollary 3. Let S ∈ Tn. Then T → S and T ′ → S if and only if there exists
a tree partition P of T , T ′, and S such that, for P ∈ P, σ(S, P ) �0 U|P | for
P odd and �1 L|P | otherwise.

Proof. Suppose T, T ′ → S. Let P = π(Ln, S). Then by the proof of The-
orem 2, P splits S as desired. Also σ(T, P ) � T , σ(T ′, P ) � T ′, and
ε(T, P ) = ε(S, P ) = ε(T ′, P ′). For the converse, it suffices to observe that
pairing exchanges on distinct aligned subtrees are independent.

Note that π(Ln, S) is an enlargement of both π(Ln, T ) and π(Ln, T
′).

However, it is not necessarily the least such in (On,∩). For example, consider
again T = {(1, 8), (2, 7), (3, 6), (4, 5)} and T ′ = {(1, 4), (2, 3), (5, 8), (6, 7)}.
Then π(Ln, T ) = {{1}, {3, 7}, {5}} whereas π(Ln, T

′) = {{1, 5}, {3}, {7}}.
Their only forward V-path is through Un.

Theorem 4. There is a unique S ∈ Tn with c(S) minimal such that T → S
and T ′ → S.

Proof. Let P = π(T, T ′). For P ∈ P with |P | = p, let P = {i1, . . . , ip} and
ε(T, P ) = {j1, . . . , jp} in increasing order. If P odd, then i1 < j1 < i2 <
. . . ip < jp. Otherwise, j1 < . . . < ip. Define λ(P ) = {(ik, jk) | 1 ≤ k ≤ p}
for P odd, else {(j1, ip)} ∪ {(ik, jk+1) | 1 ≤ k < p}. Let S =

⋃
P∈P λ(P ).

We claim S ∈ Tn. As constructed, each index from [1, 2n] appears in
exactly one ordered pair, and λ(P ) contains no crossing. Suppose there are
(i, j), (i′, j′) ∈ S with 1 ≤ i < i′ < j < j′ ≤ 2n for distinct P, P ′ ∈ P with
i, j ∈ P ∪ ε(T, P ), i′, j′ ∈ P ′ ∪ ε(T, P ′).

Let J = [i + 1, j − 1]. Consider (k, l) ∈ σ(T, P ′). Suppose either k ∈ J ,
l ∈ [j+1, 2n] or k ∈ [1, i−1], l ∈ J . However, such an edge obstructs the edge
in σ(T, P ) with index i from the one with j. Hence an edge from σ(T, P ′)
has both or neither indices in J which implies that σ(T, P ′ ∩ J) � T . The
same reasoning holds for T ′, contradicting minimality of P ′.
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By construction, P is a tree partition of S as well as T and T ′. More-
over, σ(S, P ) �0 Up for P odd, and �1 Lp otherwise. Hence T, T ′ → S.
Furthermore, S is the only tree which meets the isomorphism requirements
in Corollary 3 using P as the tree partition.

Let k be the number of even P ∈ P . Then c(S) =
∑

P odd p+
∑

P even(p−
1) = n− k. We claim this is least possible.

Suppose T, T ′ → S′ for S′ �= S. Let Q be a tree partition satisfying
Corollary 3 for S′. Then Q must be a strict enlargement of P in (On,∩).
Also c(S′) = n − k′ for Q with k′ even parts. Let Q = P ∪ P ′ for Q ∈ Q,
P, P ′ ∈ P . If P and P ′ are both odd, then σ(S′, Q) = λ(P ) ∪ λ(P ). Hence,
by choice of S′, k′ < k.

Exchanging backward moves for forward, and the roles of the star trees,
we have the following dual versions of these results.

Corollary 5. Suppose T → T ′. Then π(T, Un) is a tree partition of T and
T ′.

Proof. Subtrees in T induced by π(T, Un) consist of an odd parent and all
its even children. A similar argument to Theorem 2 shows that π(T, Un) is
an enlargement of π(T, T ′), and that the corresponding induced subsets of
T ′ are subtrees aligned with those in T .

Corollary 6. Let S ∈ Tn. Then S → T and S → T ′ if and only if there exists
a tree partition P of T , T ′, and S such that, for P ∈ P, σ(S, P ) �0 L|P | for
P odd and �1 U|P | otherwise.

Corollary 7. There is a unique S ∈ Tn with c(S) maximal such that S → T
and S → T ′.

Proof. Let P = π(T, T ′) and define γ(P ) = {(i1, jp)} ∪ {(jk, ik+1) | 1 ≤ k <
p} for odd P ∈ P , and {(jk, ik) | 1 ≤ k ≤ p} otherwise. A similar argument to
Theorem 4 for S =

⋃
P∈P γ(P ) holds with c(S) =

∑
P odd 1+

∑
P even 0 = k

where k is now the number of odd P .

Let λ(T, T ′) denote the tree from Theorem 4 and γ(T, T ′) the one from
Corollary 7. Then these are the “apex” of the forward and backward V-
paths with the lowest branching barrier. If the apex of a V-path is S, then
its branching skew is |c(S) − n+1

2 | and length is |c(T ) + c(T ′) − 2 · c(S)|.
Hence, the minimal skew one is a function of the number of even and odd
parts in π(T, T ′), and so is the length. At least one of the V-paths through
λ(T, T ′) or γ(T, T ′) has length at most n−1, although the other orientation
(i.e. forward/backward) could be longer.
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6. Connection with noncrossing partitions

The relation T → T ′ is a partial order on Tn with Gn as its Hasse diagram
and c(T ) as a rank function. In other words, T ′ covers T if T ′ = μE(T )
where E is either an odd parent and even child or two even siblings, i.e. the
pairing exchange is a forward move and c(T ′) = c(T ) + 1. When viewed as
a poset, λ(T, T ′) and γ(T, T ′) are the least upper bound and greatest lower
bound, respectively. It is worth noting the symmetry in their construction.

We show that this partial order is isomorphic to the well-known lattice
of noncrossing partitions, NC(n). A partition of [1, n] is noncrossing if there
does not exists 1 ≤ a < b < c < d ≤ n such that a, c are in one part and b, d
in another. Noncrossing partitions are still ordered under refinement. The
greatest lower bound remains the largest refinement. However, the least
upper bound is the smallest enlargement that is also noncrossing.

Theorem 8. There is an order preserving bijection from Tn under T → T ′

to NC(n).

Proof. Let NT be the partition of [1, n] obtained by projecting π(Ln, T )
down under θ : 2i− 1 → i. Let P, P ′ ∈ π(Ln, T ). Recall that σ(T, P ) consist
of an even parent and all its odd children, or all the orphan edges.

Suppose NT has a crossing 1 ≤ a < b < c < d ≤ n with a, c ∈ θ(P ),
b, d ∈ θ(P ′), and a, b least possible. Let i′ = minP ′, j′ = maxP ′. Then
(i′, j′) is the even parent in σ(T, P ′) �1 L|P ′| with 2a− 1 < i′ = 2b− 2 and
2d− 1 ≤ j′ ≤ 2n− 1. But then (i′, j′) obstructs the edge with index 2c− 1
from the one with 2a−1 in σ(T, P ) � T . Contradiction. Hence NT ∈ NC(n).

Suppose now N ∈ NC(n). Let N ∈ N and consider IN = {2i− 1, 2i− 2
(mod 2n) | i ∈ N}. Then min IN is odd exactly when 1 ∈ N . Define the
pairings λ(N) on the ordered indices in IN as in the proof of Theorem 4,
and let TN =

⋃
N∈N λ(N). We claim that TN ∈ Tn. If so, then π(Ln, TN )

projects down to N by construction since λ(N) �0 U|N | when 1 ∈ N and
�1 L|N | otherwise.

Suppose there is (i, j) ∈ λ(N), (k, l) ∈ λ(N ′) with 1 ≤ i < k < j < l ≤
2n. For x ∈ {i, j, k, l}, let x′ be x+1

2 if x is odd, and x+2
2 (mod n) otherwise.

Then i′, j′ ∈ N , k′, l′ ∈ N ′ and either 1 ≤ i′ < k′ < j′ < l′ ≤ n if l �= 2n
or 1 = l′ < i′ < k′ < j′ ≤ n otherwise. Contradiction. Thus TN ∈ Tn is the
unique pre-image of N .

Let E be two unobstructed edges in T and T ′ = μE(T ). Given how
π(Ln, T ) splits T , this is a forward move if and only if distinct P, P ′ ∈
π(Ln, T ) are involved. As in the proof of Theorem 1, π(Ln, T

′) \ π(Ln, T ) =
{P ∪ P ′} as a result. But then NT ′ covers NT in NC(n), and the bijection
is order-preserving.
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An immediate consequence is that plane trees with k odd edges are

equinumerous with noncrossing partitions with n − k + 1 parts, which are

counted by the Narayana number N(n, k) = 1
n

(
n
k

)(
n

k−1

)
. This partition of

Tn differs from the common one according to k leaves [5], yielded by the

classic bijections [6, 22] with NC(n). However, a more recent enumerative

result [17] gives a bijection via vertices of odd distance from the root, and

hence a Narayana decomposition with the same sets.

The correspondence has three related bijections: taking the minimal tree

partition with Un and/or using the even indices to partition T ∈ Tn. More-

over, the connection between π(Ln, T ) and π(T, Un) yields insight into count-

ing orbits in NC(n) under Kreweras complementation [9, 15].

7. Existence of bounded skew paths

Although V-paths are well-characterized mathematically, their branching

skew is biologically unfavorable. Hence, we now show there are paths in Gn,

other than forward ones, having the minimum possible branching skew.

Call a path from T to T ′ through Tm bounded if c(T ) − 1 ≤ c(Tm) ≤
c(T ′) + 1 and tightly bounded if c(T ) ≤ c(Tm) ≤ c(T ′). The distinction

accounts for c(T ′)− c(T ) ≤ 1. In other words, such a path is bounded away

from high branching skew trees to the extent possible given its start and

end.

A planted plane tree T has a monovalent root vertex so (1, 2n) ∈ T . Call

T doubly planted if (2, 2n− 1) ∈ T also.

Lemma 5. If 1 < c(T ) < n, then there is a bounded path from T to a doubly

planted T ′ with c(T ′) = c(T ).

Proof. Suppose (1, 2n) ∈ T . If (2, 2n − 1) /∈ T , then a forward move on

(2, i), (j, 2n−1) ∈ T yields a doubly planted T ′′ with c(T ′′) = c(T )+1. There

is a backward move on T ′′ to yield a suitable T ′ unless T ′′ \{(1, 2n), (2, 2n−
1)} �0 Ln−2. But then T = Ln and c(T ) = 1.

Otherwise, a backward move on (1, i), (j, 2n) ∈ T yields a planted T ′′

with c(T ′′) = c(T ) − 1. If T ′′ is doubly planted, there is a suitable forward

move unless T ′′ \ {(1, 2n), (2, 2n − 1)} �0 Un−2. But then T = Un and

c(T ) = n. Else, 2 < i < j < 2n− 1 and a forward move on the first and last

children of (1, 2n) ∈ T ′′ yields T ′.

Lemma 6. If c(T ′)− c(T ) ≤ 1, then there is a bounded path from T to T ′.
Otherwise, there is a tightly bounded one.
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Proof. Any forward path is tightly bounded. Hence, consider T �→ T ′ where
c(Ln) = 1 < c(T ) ≤ c(T ′) < n = c(Un). The result holds for n = 3, 4
since there is either a bounded forward V-path through Un or backward one
through Ln.

Suppose c(T ′) − c(T ) > 1. Then there are S, S′ ∈ Tn with T → S,
S′ → T ′, and c(T ) < c(S) = c(S′) < c(T ′). The existence of a bounded path
from S to S′ implies a tightly bounded one from T to T ′. By the previous
lemma, we may assume S and S′ are doubly planted. Keeping (1, 2n) and
(2, 2n− 1) fixed, inductively there is a bounded path from Gn−2 connecting
S and S′ in Gn. If c(T

′) = c(T ) + 1, then the same reasoning holds as for
c(S) = c(S′).

While the skew of these paths is well-characterized, the length is not
straightforward since the recursion has various dependencies. A forward path
not involving Ln or Un has length at most n − 3. Let gn be the maximum
length of a bounded path, or tightly bounded if possible, for T �→ T ′ in Gn.
Then g3 = 2, g4 = 3, and gn ≤ (n− 3) + 4 + gn−2.

8. Existence of geodesics with bounded skew

Finally, we consider shortest paths, also called geodesics, in Gn. We show
their length is determined by the number of simply aligned subsets, which
ranges from n (when T = T ′) down to 1.

When there is only one, the two trees are called complementary, consis-
tent with lattice terminology. The simplest example is Un and Ln, and all
other complementary pairs likewise [12] have c(T ) + c(T ′) = n + 1. More-
over [12], the diameter of Gn is n−1, and is achieved by complementary trees.
Their V-paths necessarily pass through Un and Ln, so we are interested in
alternative geodesics with bounded skew.

Note that removing the edge (i, j) splits T into two subtrees — its de-
scendents and the rest of T . Denote the former as δT (i, j) and latter as
δ̄T (i, j). One may be empty; vacuously ∅ � T .

Lemma 7. Let (i, j) ∈ T \ T ′. Suppose either δT (i, j) � T ′ or δ̄T (i, j) � T ′.
Then the edges in T ′ with indices i and j are unobstructed.

Proof. Suppose i pairs with k and j with l in T ′. If δ̄T (i, j) � T ′, then
i < k < l < j. An obstructing edge must have one index in [k + 1, l − 1]
and the other in [1, i − 1] ∪ [j + 1, 2n]. But the latter is not possible, since
any edges in T ′ with an index < i or > j agrees with T by assumption.
When the ordering of indices is considered circularly, the case δT (i, j) � T ′

is symmetric.
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Lemma 8. If T and T ′ have k simply aligned subsets, then their geodesic
has length n− k.

Proof. Construct a path T = T0, T1, . . . , Tn−k = T ′ inductively by con-
sidering (i, j) ∈ T ′ \ Tm with minimal j − i ≥ 1. Then δT ′(i, j) � Tm. Let
E ⊂ Tm have i, j ∈ α(E). Hence (i, j) ∈ Tm+1 = μE(Tm). Since the number
of common edges increases monotonically to n, the path is a geodesic with
length

∑
S(|S| − 1) = n − k where S ⊆ T are the k original simply aligned

subsets with T ′.

Call an edge (k, k + 1) a stem. Also define (1, 2n) to be one. Let e be
a pairing between index 1 ≤ i ≤ 2n and j = i + 1 (mod 2n). If e /∈ T ,
then Lemma 7 applies. Call e a forward stem if i is odd, since the move is
a forward one. Dually, e and the move are both backward if i is even. Note
that (1, 2n) is an odd edge but a backward stem.

For technical reasons, T = {(1, 2)} is considered both a forward and
backward stem. Since every unrooted tree has at least two leaves, T ∈ Tn
has two or more stems when n > 1.

Lemma 9. If c(T ) ≥ n+1
2 , then T has at least one forward stem. Dually, T

has a backward stem when c(T ) ≤ n+1
2 .

Proof. Let n ≥ 2. Suppose c(T ) ≥ n+1
2 , and consider T ′ = {(1, 2k)} ∪

δT (1, 2k). Assume T ′′ = T \ T ′ �= ∅. If c(T ) ≥ n
2 + 1, then the result holds

by induction on either c(T ′) ≥ k+1
2 or c(T ′′) ≥ n−k+1

2 . If c(T ) = n+1
2 , then n

is odd and, we may assume, so is k. Then c(T ′) < k+1
2 and c(T ′′) < n−k+1

2

implies c(T ′) ≤ k−1
2 and c(T ′′) ≤ n−k

2 , a contradiction. When k = n, the
result holds by induction on δT (1, 2n) �1 T

′′ ∈ Tn−1 with c(T ′′) = n−c(T ) ≤
n−1
2 . The dual result follows from the mapping i → i + 1 (mod 2n) on the

half-edge indices, which is a bijection on Tn. The image has n−c(T )+1 odd
edges, and the forward/backward orientation of stems reversed.

Lemma 10. If T, T ′ are complementary with c(T ) = c(T ′), then they have
a bounded geodesic.

Proof. Since c(T )+ c(T ′) = n+1, consider odd n ≥ 3. By Lemma 9, T ′ has
both a forward and backward stem. The corresponding moves on E ⊂ T and
F ⊂ μE(T ) yield T ′′ = μF (μE(T )) with c(T ′′) = n+1

2 . Then π(T ′′, T ′) has
three parts, two of which are singletons. Let P be the non-singleton. Then
σ(T ′′, P ) and σ(T ′, P ) are complementary with n−1

2 odd edges. Inductively,
their images in Gn−2 have a bounded geodesic. Keeping common edges fixed,
so do T and T ′.
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In other words, it is possible to “zigzag” between complementary T and
T ′ when c(T ) = c(T ′). Since the two moves can be made in either order,
when c(T ) < c(T ′), they can be sequenced not to exceed the original skew.

Lemma 11. If T, T ′ are complementary with c(T ) �= c(T ′), they have a
tightly bounded geodesic.

Proof. Suppose n ≥ 4 and c(T ) < n+1
2 < c(T ′). There is a forward move on

E ⊂ T corresponding to (i, i + 1) ∈ T ′. Let S = μE(T ) \ {(i, i + 1)} and
S′ = T ′ \ {(i, i + 1)} be the resulting complementary subtrees. If c(T ) =
c(S) < n

2 < c(S′) = c(T ′) − 1, the result holds inductively. Else, μE(T ) =
n
2 +1 = c(T ′), and Lemma 10 applies to S and S′. By applying the backward
move first to μE(T ), the geodesic from T to T ′ will be tightly bounded.

These results extend directly when there is a bijection between simply
aligned subsets and parts of the minimal tree partition. Call simply aligned
S ⊆ T , S′ ⊆ T ′ a block if S � T and S′ � T ′. Say T and T ′ have a block
decomposition when the induced subtrees from π(T, T ′) are simply aligned,
i.e. complementary. Call a pairing exchange a geodesic move if it maintains
a block decomposition while increasing the number of common edges.

Lemma 12. Suppose T and T ′ have a block decomposition. If c(T ′) = c(T ),
then there is a bounded geodesic from T to T ′. Otherwise, there is a tightly
bounded one.

Proof. Let Si ⊆ T , S′
i ⊆ T ′ be the simply aligned pairs. Since Si � T and

S′
i � T ′, each pair can be treated independently.

Suppose c(T ) = c(T ′). If c(Si) �= c(S′
i), then Lemma 11 applies. Since∑

c(Si) =
∑

c(S′
i), alternate a geodesic forward move for T on Si where

c(Si) < c(S′
i) with a backward one on Sj where c(Sj) > c(S′

j) until Lemma 10
applies to all pairs.

If c(T ) = c(T ′)− 1, again alternate moves until Lemma 10 applies to all
pairs but c(Si) = c(S′

i)−1. Then, as in the proof of Lemma 11, the geodesic
moves on Si and the other pairs can be sequenced so that the path is tightly
bounded.

Suppose c(T ′)− c(T ) > 1. Then either c(Si) + 2 ≤ c(S′
i) or c(Si) + 1 ≤

c(S′
i) and c(Sj) + 1 ≤ c(S′

j). But then there is a geodesic forward move on
T and a backward one on T ′ which decreases c(T ′) − c(T ) by 2. Keeping
common edges fixed, inductively applying any of these cases will not increase
the skew beyond the original bounds.

The case when c(T ′)−c(T ) = 1 differs from Lemma 6 because the moves
for Lemma 5 are ordered, unlike Lemma 10. When T and T ′ do not have
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a block decomposition, moves on simply aligned subsets are not necessarily
independent. Hence, the sequencing becomes more complicated, and such
bounds may not hold in general.
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