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Hessian Chain Bracketing

Uwe Naumann and Shubhaditya Burela

Second derivatives of mathematical models for real-world phenom-
ena are fundamental ingredients of a wide range of numerical sim-
ulation methods including parameter sensitivity analysis, uncer-
tainty quantification, nonlinear optimization and model calibra-
tion. The evaluation of such Hessians often dominates the overall
computational effort. The combinatorial Hessian Accumulation

problem aiming to minimize the number of floating-point opera-
tions required for the computation of a Hessian turns out to be
NP-complete. We propose a dynamic programming formulation for
the solution of Hessian Accumulation over a sub-search space.
This approach yields improvements by factors of ten and higher
over the state of the art based on second-order tangent and ad-
joint algorithmic differentiation.
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1. Motivation and introduction

We consider twice differentiable multivariate vector functions

(1) F : IRn → IRm : x �→ y = F (x)

implemented as computer programs evaluating sequences of q > 0 elemental
functions

Fi : IR
ni−1 → IRni : vi−1 �→ vi = Fi(vi−1)

for i = 1, . . . , q, v0 = x and y = vq. This layered structure of

(2) F = Fq ◦ Fq−1 ◦ Fq−2 ◦ · · · ◦ F1

is typical for many numerical simulations. Even if it is not explicit in the
given source program finding suitable vertex separators representing the
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vi in the directed acyclic data dependence graph is straightforward. We

set F[i,j) ≡ Fi ◦ · · · ◦ Fj+1 implying Fi = F[i,i−1) and F = F[q,0). We use

= to denote mathematical equality and ≡ in the sense of “is defined as.”

Elemental Jacobians

F ′
i = F ′

i (vi−1) ≡
dFi

dvi−1
(vi−1) ∈ IRni×ni−1

and Hessians

F ′′
i = F ′′

i (vi−1) ≡
d2Fi

dv2
i−1

(vi−1) ∈ IRni×ni−1×ni−1

are assumed to be given. For example, they can be computed by application

of Algorithmic Differentiation (AD) [19, 26] to a given implementation of

the Fi as a differentiable subprogram.

The chain rule of differential calculus yields

(3) F ′ = F ′(x) = F ′
q · F ′

q−1 · . . . · F ′
1

Differentiation of Equation (3) with respect to x yields

[
F ′′]

δ,α1,α2
=

q∑
j=1

[
F ′
[q,j)

]
δ,γ

·
[
F ′′
j

]
γ,β1,β2

·
[
F ′
[j−1,0)

]
β1,α1

·
[
F ′
[j−1,0)

]
β2,α2

=

q∑
j=1

⎡
⎣ q∏
i=j+1

F ′
i

⎤
⎦
δ,γ

·
[
F ′′
j

]
γ,β1,β2

·
[
j−1∏
k=1

F ′
k

]
β1,α1

·
[
j−1∏
k=1

F ′
k

]
β2,α2

.

(4)

We use index notation for tensor products. Tensors are enclosed in square

brackets and summation runs over the common index. Jacobians and Hes-

sians of subchains of Equation (2) are denoted as

F ′
[i,j) ≡

dF[i,j)

dvj
∈ IRni×nj and F ′′

[i,j) ≡
d2F[i,j)

dv2
j

∈ IRni×nj×nj .

In the following, we use the simplified notation

F ′′ =
q∑

j=1

(
F ′
[q,j) · F ′′

j · F ′
[j−1,0) ⊗ F ′

[j−1,0)

)
,
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where ⊗ denotes the outer product of two matrices as defined in Equa-
tion (4).

Equations (3) and (4) imply a range of combinatorial optimization prob-
lems due to the associativity of multiplication over the given elemental Ja-
cobians and Hessians. Different orders of application of the chain rule during
the evaluation of Equation (4) yield varying computational complexities in
terms of the number of scalar fused multiply-add (fma) operations required.
The minimization of this cost can be stated formally as the following decision
problem.

Problem 1.1 (Hessian Accumulation). Given are a layered twice dif-
ferentiable function F as in Equation (2) together with elemental Jacobians
F ′
i and Hessians F ′′

i for i = 1, . . . , q and a non-negative integer K.
Is there a sequence of fma operations of length less than or equal to K

over the individual entries of the given elemental Jacobians and Hessians
which results in the evaluation of the Hessian F ′′ of F?

Theorem 1. Hessian Accumulation is NP-complete.

The proof of Theorem 1 builds on the same fundamental ideas as similar
arguments presented in [25]. It uses reduction from Ensemble Computa-

tion (EC) which was shown to be NP-complete in [9]. EC can be stated as
follows:

Given is a collection C = {Cν ⊆ A : ν = 1, . . . , |C|} of subsets Cν =
{cνi : i = 1, . . . , |Cν |} of a finite set A and a non-negative integer K. Is there
a sequence ui = si ∪ ti for i = 1, . . . , k of k ≤ K union operations, where
each si and ti is either {a} for some a ∈ A or uj for some j < i, such that
si and ti are disjoint for i = 1, . . . , k and such that for every subset Cν ∈ C,
ν = 1, . . . , |C|, there is some ui, 1 ≤ i ≤ k, that is identical to Cν?

Example 1.1 (from [25]). Consider an instance (A,C,K) of EC with A =
{a1, a2, a3, a4}, C = {{a1, a2}, {a2, a3, a4}, {a1, a3, a4}} and K = 4. It yields
a positive answer to the decision problem as C1 = u1 = {a1} ∪ {a2}, u2 =
{a3} ∪ {a4}, C2 = u3 = {a2} ∪ u2 and C3 = u4 = {a1} ∪ u2.

Proof. (Theorem 1) Consider an arbitrary instance (A,C,K) of EC and a
bijection A ↔ Ã, where Ã consists of |A| mutually distinct primes. A corre-
sponding bijection C ↔ C̃ ≡ {C̃ν}ν=1,...,|C| is implied. Create an extension

(Ã∪ B̃, C̃,K + |B̃|) by adding unique entries from a sufficiently large set B̃
of primes not in Ã to the C̃ν such that they all have the same cardinality
|C̃ν | = q, ν = 1, . . . , |C̃|. Note that a solution for this extended instance
of EC implies a solution of the original instance of EC as each entry of B̃
appears exactly once.
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Fix the order of the elements of the C̃ν arbitrarily yielding C̃ν = {c̃νi }i=1,...,q

for ν = 1, . . . , |C̃|. Let

F : IR → IR|C̃| : y = zq = F (x)

with F = Fq ◦ Fq−1 ◦ . . . ◦ F1 defined as

F1 : IR → IR|C̃| : z1 = F1(x) : z1j =
c̃j1
2

· x2

Fi : IR
|C̃| → IR|C̃| : zi = Fi(zi−1) : zij = c̃ji · zi−1

j

yielding

F ′
1 =

(
c̃j1 · x

)
∈ IR|C̃| = IR|C̃|×1 and F ′′

1 =
(
c̃j1

)
∈ IR|C̃| = IR|C̃|×1×1

as well as diagonal Jacobians

F ′
i = (dij,k) ∈ IR|C̃|×|C̃| ,

where

dij,k =

{
c̃ji if j = k

0 otherwise,

and vanishing Hessians F ′′
i = 0 for j = 1, . . . , |C̃| and i = 2, . . . , q. Equa-

tion (4) simplifies to

F ′′ =
q∏

i=2

F ′
i · F ′′

1 .

According to the fundamental theorem of arithmetic [10] the elements of C̃
correspond to unique (up to commutativity of scalar multiplication) factor-

izations of the |C̃| nonzero entries of F ′′ ∈ IR|C̃| = IR|C̃|×1×1. This uniqueness
property extends to arbitrary subsets of the C̃j considered during the ex-
ploration of the search space of the Hessian Accumulation problem. A
solution implies a solution of the associated extended instance of EC and,
hence, of the original instance of EC.

A proposed solution for Hessian Accumulation is easily validated by
counting the at most |C̃| · q scalar multiplications performed.

Example 1.2.

A = {a1, a2, a3, a4} ⇒ Ã = {2, 3, 5, 7}
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B̃ = {11}
C = {{a1, a2}, {a2, a3, a4}, {a1, a3, a4}} ⇒ C̃ = {{2, 3, 11}, {3, 5, 7}, {2, 5, 7}}
K + |B̃| = K + 1 = 5 .

The three nonzero entries of

F ′′ = F ′
3 · F ′

2 · F ′′
1 =

⎛
⎝11

7
7

⎞
⎠ ·

⎛
⎝3

5
5

⎞
⎠ ·

⎛
⎝2
3
2

⎞
⎠

are computed as

dz21
dx

=
dz21
dz11

· d
2z11
dx2

= 3 · 2 = 6

dz32
dz12

=
dz33
dz13

=
dz33
dz23

· dz
2
3

dz13
= 7 · 5 = 35

F ′′
1 = b̃1 ·

(
dz21
dz11

· d
2z11
dx2

)
= 11 · 6 = 66

F ′′
2 =

dz32
dz12

· d
2z12
dx2

= 35 · 3 = 105

F ′′
3 =

dz33
dz13

· d
2z13
dx2

= 35 · 2 = 70 .

at the expense of five fma (no additions involved) yielding a positive answer
to this instance of the decision version of Hessian Accumulation. A cor-
responding answer to the decision version of EC is implied.

The proof of Theorem 1 exploits potential algebraic dependences among
the entries of the elemental Hessians (equality in particular). The following
heuristic assumes these entries to be mutually independent (distinct). In-
sight gained from the proof does not enter the heuristic presented in this
paper. Moreover, it remains open if the purely structural version of Hessian

Accumulation, which ignores algebraic dependences among the entries of
the elemental Hessians, is also NP-complete. We conjecture this to be case.

The dynamic programming [3, 14] method to be proposed targets Hes-

sian Chain Bracketing formally defined as a combinatorial optimization
problem as follows:

Problem 1.2 (Hessian Chain Bracketing). Given a layered twice dif-
ferentiable function as in Equation (2) together with elemental Jacobians
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and Hessians, determine a bracketing of Equation (2) such that the number
of fma operations required by Equation (4) becomes minimal.

Example 1.3. To illustrate the potential for optimized instances of Hes-

sian Chain Bracketing consider F = F3 ◦ F2 ◦ F1 such that F3, F1 ∈
IRn → IRm and F2 ∈ IRm → IRn. Hence, F ′

3, F
′
1 ∈ IRm×n, F2 ∈ IRn×m and

F ′′
3 , F

′′
1 ∈ IRm×n×n, F2 ∈ IRn×m×m. Without loss of generality, all elemental

Jacobians and Hessians are assumed to be dense. Tracking of highly likely
sparsity would complicate the presentation of the example while not offering
any further conceptual insight.

There are two ways to split F yielding the following fma costs

• F = F3 ◦ (F2 ◦ F1): From F ′′ = F ′′
[3,0) = F ′

3 · F ′′
[2,0) + F ′′

3 · F ′
[2,0) ⊗ F ′

[2,0)

with F ′
[2,0) = F ′

2 · F ′
1 and F ′′

[2,0) = F ′
2 · F ′′

1 + F ′′
2 · F ′

1 ⊗ F ′
1 it follows

that fma(F ′
[2,0)) = mn2 and fma(F ′′

[2,0)) = 2mn3 + m2n2 and hence

fma(F ′′) = fma(F ′′
[3,0)) = 5mn3 +m2n2 +mn2.

• F = (F3 ◦ F2) ◦ F1: From F ′′ = F ′′
[3,0) = F ′′

[3,1) · F ′
1 + F ′

[3,1) · F ′
1 ⊗ F ′

1

with F ′
[3,1) = F ′

3 · F ′
2 and F ′′

[3,1) = F ′
3 · F ′′

2 + F ′′
3 · F ′

2 ⊗ F ′
2 it follows

that fma(F ′
[3,1)) = m2n and fma(F ′′

[3,1)) = 2m3n + m2n2 and hence

fma(F ′′) = fma(F ′′
[3,0)) = 3m3n+ 3m2n2 +m2n.

The cost of bracketing from the right grows as n3 and m2. The opposite
holds for the cost of bracketing from the left growing as m3 and n2. Linear
growth of the discrepancy suggests significant potential for further analysis
of Hessian Chain Bracketing. For example, n = 2 and m = 1 yield
costs of 48fma and 20fma when bracketing from right and left. Further re-
sults presented in Section 4 suggest that the theoretical savings also yield
corresponding speedups when evaluating the Hessian chains numerically.

The efficient evaluation of Hessians has been investigated actively in the
context of AD since the 1970s [33]. Particular focus has been set on the
detection [4] and exploitation of structure [15, 20] and sparsity [35]. More
recent contributions include [16] and [31].

This paper draws its motivation from our ongoing research into uncer-
tainty quantification for pruned (e.g., deep feed-forward) neural networks.
Such surrogate models are trained to replace a given computationally expen-
sive implementation of a multivariate vector function F as in Equation (1)
such that test data generated by sampling the relevant subdomain of F is re-
produced sufficiently well. The argument x of the at least twice continuously
differentiable surrogate model F̃ is assumed to follow a random distribution
with known moments up to fourth order (mean μx, variance σx, skewness Sx
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and kurtosis Kx). We are interested in the mean μy a the variance σy of the
(randomly distributed) result y = F̃ (x) assuming stochastic independence
of the entries of x.

The first- and second-(and higher-)order moments can hence be approx-
imated by a second-order Taylor series expansion of F̃ , that is,

F̃ν(x) ≈ F̃ν(μx) +

n−1∑
i=0

∂F̃ν(μx)

∂xi
· (xi − μxi

)

+
1

2
·
n−1∑
i=0

n−1∑
j=0

∂2F̃ν(μx)

∂xi∂xj
· (xi − μxi

) · (xj − μxj
)

for ν = 0, . . . ,m− 1. It follows that

μyν ≈ F̃ν(μx) +
1

2
·
n−1∑
i=0

n−1∑
j=0

∂2F̃ν(μx)

∂x2i
· σ2

xi

and

σ2
yν,κ

≈
n−1∑
i=0

∂F̃ν(μx)

∂xi
· ∂F̃κ(μx)

∂xi
· σ2

xi

+
1

2
·
n−1∑
i=0

(
∂F̃ν(μx)

∂xi
· ∂

2F̃κ(μx)

∂x2i
+

∂2F̃ν(μx)

∂x2i
· ∂F̃κ(μx)

∂xi

)
· Sxi

· σ3
xi

+
1

2
·
n−1∑
i=0

n−1∑
j=0, j �=i

∂2F̃ν(μx)

∂xi∂xj
· ∂

2F̃κ(μx)

∂xi∂xj
· σ2

xi
· σ2

xj

+
1

4
·
n−1∑
i=0

∂2F̃ν(μx)

∂x2i
· ∂

2F̃κ(μx)

∂x2i
· (Kxi

− 1) · σ4
xi

;

see [2, 24] and references therein, including [8, 11, 30]. The full Hessian
tensor of F̃ is required. Alternatively, the computationally expensive terms
are sometimes omitted in practice, which is what we would like to avoid as
much as possible.

Over-parameterized neural networks are known to exhibit improved ro-
bustness with regard to the prevention of over-fitting [22, 36]. Subsequent
pruning [1, 6] results in a post-training reduction of the dimension of the
parameter space. Better run time efficiency of the surrogate model F̃ can be
achieved. Moreover, F̃ becomes a layered multivariate vector function as in
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Equation (2) with rectangular dense local Jacobians of varying dimensions.
The Hessian Chain Bracketing problem follows immediately.

The upcoming material is organized as follows: A dynamic program-
ming algorithm for Hessian Chain Bracketing is proposed in Section 2
including a detailed illustration of the individual steps performed by the
algorithm for the simple example introduced above. A case study from com-
putational finance is discussed in Section 3. Numerical results presented in
Section 4 show potential reductions of the operations count over the obvious
approaches (bracketing from left or right) by factors of ten and more on a
set of sample problems of growing size. The savings are shown to translate
into actual improvements in runtime. All results can be reproduced with
the open-source reference implementation presented in the appendix. Con-
clusions drawn in Section 5 are complemented with remarks on ongoing and
future research and development. A sample session of our proof-of-concept
implementation of the dynamic programming algorithm from Section 2 is
provided as an appendix.

2. Dynamic programming

The number of bracketings of F = F[q,0) is known to be equal to 1
q

(
2(q−1)
q−1

)
=

(2q−2)!
q!(q−1)! [7], which grows exponentially with q. Subproblems are defined by

recursive bisection as

F[i,k) = F[i,j) ◦ F[j,k) = (Fi ◦ . . . ◦ Fj+1) ◦ (Fj ◦ . . . ◦ Fk)

for i = 1, . . . , q, i− k = 1, . . . , q and k < j < i. An fma-optimal bracketing of
the Jacobian chain product in Equation (3) can be computed by dynamic
programming. Solutions to subproblems of growing length i−k are tabulated
as

fma(F ′
[i,k)) = min

k<j<i
(fma(F ′

[i,j)) + fma(F ′
[j,k)) + fma(F ′

[i,j) · F ′
[j,k))) .

The tabulated costs are used for the minimization of the numbers of fma
operations required for the computations of the Hessians F ′′

[i,k) ∈ IRni×nk×nk

as follows:

fma(F ′′
[i,k)) = min

k<j<i
(fma(F ′

[i,j)) + fma(F ′′
[j,k)) + fma(F ′

[i,j) · F ′′
[j,k))

+ fma(F ′′
[i,j)) + fma(F ′

[j,k)) + fma(F ′′
[i,j) · F ′

[j,k) ⊗ F[j,k))) .
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Correctness of the algorithm follows immediately from the optimal sub-
structure and overlapping subproblems properties [3] exhibited by both Ja-

cobian and Hessian Chain Bracketing.

Example 2.1. We use the same example as in Section 1 with n = 2 and
m = 1 for illustration of the individual steps of the dynamic programming
algorithm, that is, F = F3◦F2◦F1 such that F1, F3 : IR

2 → IR and F2 : IR →
IR2. Again, and without loss of generality we assume elemental Jacobians
and Hessians to be dense. The number of fma required for the product of
matrix with a vector is invariant with respect to potential symmetry of the
matrix. Hence, the exploitation of likely symmetry of the Hessians does not
lead to a reduction in the fma-cost.

For a function composition of length three there are only two choices
corresponding to bracketing from the left at the computational cost of 20fma
or bracketing from the right at 48fma. The algorithm favors the former as
the result of performing the following steps:

The optimal bracketings of all Jacobian subchains are computed as

fma(F ′
[2,0)) = n ·m · n = m · n2 = 4; fma(F ′

[3,1)) = m · n ·m = m2 · n = 2

fma(F ′
[3,0)) = min(fma(F ′

[2,0)) + fma(F ′
3 · F ′

[2,0)), fma(F
′
[3,1)) + fma(F ′

[3,1) · F ′
1))

= min(m · n2 +m · n · n,m2 · n+m ·m · n)
= min(2 ·m · n2, 2 ·m2 · n) = min(8, 4) = 4 .

The whole chain for is evaluated with minimal fma cost of four as F ′ =
(F ′

3 · F ′
2) · F ′

1.
Dynamic programming for Hessian Chain Bracketing yields costs

for the two subchains of length two as

fma(F ′′
[2,0)) = fma(F ′

2 · F ′′
1 ) + fma(F ′′

2 · F ′
1 ⊗ F ′

1)

= n ·m · n · n+ n ·m · n · (m+ n)

= m · n3 +m · n2 · (m+ n) = 8 + 12 = 20

fma(F ′′
[3,1)) = fma(F ′

3 · F ′′
2 ) + fma(F ′′

3 · F ′
2 ⊗ F ′

2)

= m · n ·m ·m+m · n ·m · (m+ n)

= m3 · n+m2 · n · (m+ n) = 2 + 6 = 8

which are looked up during the optimization of fma(F ′′
[3,0)) as

fma(F ′′
[3,0)) = min

0<j<3
(fma(F ′

[3,j) · F ′′
[j,0)) + fma(F ′′

[3,j) · F ′
[j,0) ⊗ F ′

[j,0)))
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= min(

fma(F ′
[3,1) · F ′′

1 ) + fma(F ′′
[3,1) · F ′

1 ⊗ F ′
1),

fma(F ′
3 · F ′′

[2,0)) + fma(F ′′
3 · F ′

[2,0) ⊗ F ′
[2,0))

)

= min(

fma(F ′
[3,1)) + fma(F ′′

1 ) +m ·m · n2

+ fma(F ′′
[3,1)) + fma(F ′

1) +m ·m · n · (m+ n),

fma(F ′
3) + fma(F ′′

[2,0)) +m · n · n2

+ fma(F ′′
3 ) + fma(F ′

[2,0)) +m · n · n · (n+ n)

)

= min(

(m2 · n) + 0 + (m2 · n2)

+ (m3 · n+m2 · n · (m+ n))

+ 0 + (m2 · n · (m+ n)),

0 + (m · n3 +m · n2 · (m+ n)) +m · n3

+ 0 + n2 + 2 ·m · n3

)

= min(20, 48) = 20 .

This result validates the observations made in Section 1.

A detailed illustration of the dynamic programming algorithm for the
composite function F = F4◦F3◦F2◦F1 can be found in Figure 1 with further
comments provided in the corresponding caption. The solution to Hessian

Chain Bracketing for F1 : IR2 → IR5, F2 : IR5 → IR, F3 : IR → IR3,
F4 : IR3 → IR2 is computed based on F = (F4 ◦ F3) ◦ (F2 ◦ F1) with a total
cost of 156fma required for the accumulation of the Hessian F ′′. Again and
without loss of generality, all elemental Jacobians and Hessians are regarded
as dense.

3. Case study

As a real-world case study we consider the LIBOR1 market model intro-
duced in [5] and used in [12] as illustration of the benefits of adjoint AD for

1London Interbank Offered Rate
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F ′
4 ∈ IR2×3

F ′′
4 ∈ IR2×3×3

4

F ′
3 ∈ IR3×1

F ′′
3 ∈ IR3×1×1

3

F ′
2 ∈ IR1×5

F ′′
2 ∈ IR1×5×5

2

F ′
1 ∈ IR5×2

F ′′
1 ∈ IR5×2×2

1

F ′
[4,2) = F ′

4 · F ′
3

F ′
[4,2) ∈ IR2×1; fma(F ′

[4,2)) = 6

F ′′
[4,2) = F ′

4 · F ′′
3 + F ′′

4 · F ′
3 ⊗ F ′

3

F ′′
[4,2) ∈ IR2×1×1; fma(F ′′

[4,2)) = 30

5
F ′
[3,1) = F ′

3 · F ′
2

F ′
[3,1) ∈ IR3×5; fma(F ′

[3,1)) = 15

F ′′
[3,1) = F ′

3 · F ′′
2 + F ′′

3 · F ′
2 ⊗ F ′

2

F ′′
[3,1) ∈ IR3×5×5; fma(F ′′

[3,1)) = 165

6

F ′
[2,0) = F ′

2 · F ′
1

F ′
[2,0) ∈ IR1×2; fma(F ′

[2,0)) = 10

F ′′
[2,0) = F ′

2 · F ′′
1 + F ′′

2 · F ′
1 ⊗ F ′

1

F ′′
[2,0) ∈ IR1×2×2; fma(F ′′

[2,0)) = 90

7

F ′
[4,1) = F ′

[4,2) · F ′
2

F ′
[4,1) ∈ IR2×5

fma(F ′
[4,1)) = min(16, 45) = 16

F ′′
[4,1) = F ′

[4,2) · F ′′
2 + F ′′

[4,2) · F ′
2 ⊗ F ′

2

F ′′
[4,1) ∈ IR2×5×5

fma(F ′′
[4,1)) = min(146, 570) = 146

8

F ′
[3,0) = F ′

3 · F ′
[2,0)

F ′
[3,0) ∈ IR3×2

fma(F ′
[3,0)) = min(45, 16) = 16

F ′′
[3,0) = F ′

3 · F ′′
[2,0) + F ′′

3 · F ′
[2,0) ⊗ F ′

[2,0)

F ′′
[3,0) ∈ IR3×2×2

fma(F ′′
[3,0)) = min(450, 130) = 130

9

F ′
[4,0) = F ′

[4,2) · F ′
[2,0)

F ′
[4,0) ∈ IR2×2

fma(F ′
[4,0)) = min(28, 20, 36) = 20

F ′′
[4,0) = F ′

[4,2) · F ′′
[2,0) + F ′′

[4,2) · F ′
[2,0) ⊗ F ′

[2,0)

F ′′
[4,0) ∈ IR2×2×2

fma(F ′′
[4,0)) = min(342, 156, 230) = 156

10

Figure 1: Dynamic programming for Hessian Chain Bracketing: The
algorithm is visualized as a directed acyclic graph for F = F4 ◦ F3 ◦ F2 ◦ F1

with F4 : IR
3 → IR2, F3 : IR → IR3, F2 : IR

5 → IR, F1 : IR
2 → IR5. Vertices 1

to 4 (5 to 7 | 8 to 9) correspond to subchains of length one (two | three). The
optimal bracketing is represented by vertex 10. Vertices contain information
on the computation of Jacobians and Hessians of the respective subchains
corresponding to the optimal bracketing. The dimensions of the resulting
Jacobians and Hessian are stated as well as the numbers of fma required
for their computation. Edges visualize split positions by linking a chain to
its two subchains according to an optimal bracketing. For example, F ′′

[4,0) is

computed optimally based on the bracketing (F4 ◦F3) ◦ (F2 ◦F1) at the cost
of fma(F ′′

[4,2)) + fma(F ′
[4,2)) + fma(F ′′

[2,0)) + fma(F ′
[2,0)) + n4n2n

2
0 + n4n

2
2n0 +

n4n2n
2
0 = 30 + 6 + 90 + 10 + 8 + 4 + 8 = 156fma.
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simulations in finance. Over recent years adjoint AD has gained significant

importance in computational finance driven mainly by increasing gradient

sizes in the context of XVA calculations and documented by a large number

of related publications, e.g, [32, 23]. Considerable effort has been going into

the training of surrogate models based on artificial neural networks (ANN)

[21].

The LIBOR sample code simulates the evolution of the LIBOR rates for

a portfolio of swaptions with given swap rates and maturities. As in [12],

swaps of the floating forward rate L ∈ IRn and a given fixed swap rate are

considered for n = 80. Monte Carlo simulation with a normally distributed

random variable Z ∈ IRp×m performs p path calculations evolving L = L(t)

for m time steps to the target time t = T and starting from a given initial

state L(0). Refer to [13] for further discussion of the mathematical details

behind the LIBOR market model. All numerical results obtained by our

implementation were validated against the implementation used in [12].

On the given computer the run time of p = 104 primal Monte Carlo path

simulations is 1.9s. We consider the accumulation of the Hessian d2L(T )
dL(0)2 ∈

IR80×80×80 based on a surrogate model in form of an ANN with 11 layers

and 80 nodes per layer trained to 99% accuracy in terms of mean squared

error. Subsequent pruning eliminates insignificant nodes from hidden layers

as described in [1] and based on the results an interval adjoint significance

analysis introduced in [34]. A layered function is generated as in Equation (2)

with q = 11 and n0 = 80, n1 = 32, n2 = 65, n3 = 64, n4 = 55, n5 = 46,

n6 = n7 = 49, n8 = 53, n9 = 62, n10 = 48, n11 = 80. The pruned ANN

preserves the 99% target accuracy on the given test set.

Based on the measured primal runtime of 1.9s the accumulation of the

Hessian in second-order tangent mode of AD is estimated to take approx-

imately 1.5 · 802 · 1.9 = 18, 240s or 5 hours. The factor 1.5 is due to the

overhead of a tangent (directional derivative) propagation induced by our

AD library dco/c++ [29]. A total of 802 tangents need to be evaluated.

The runtime of the surrogate is negligible (a few milliseconds; ms). So

is the cost of evaluation of the elemental Hessians (a few seconds). Our

runtime measurements assume the latter to be given. Different bracketing

of Equation (2) are compared. Bracketing from the left [right] performs

388, 844, 400fma [517, 283, 120fma] in 855ms [1, 125ms]. A greedy heuristic

based on locally optimal decisions results in 298, 631, 368fma taking 638ms.

Dynamic programming yields an optimal bracketing with 149, 061, 728fma

performed in 311ms. The reduction in the number of fma by a factor of

almost three carries over to the runtime. The optimal bracketing evaluates
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Table 1: Random Test Cases

q optimized bracketing bracketing from left ... from right fmarel

3 20 20 48 1
4 156 342 230 1.47
5 1218 2210 1860 1.52
10 11,220 53,118 20,952 1.86
15 10,200 217,555 51,152 5.01
20 56,830 1,057,665 1,053,117 18.53
25 286,366 3,953,376 1,345,312 4.69
30 195,620 1,655,596 8,615,838 8.46
35 614,499 23,461,452 4,440,564 7.22
40 2,254,794 24,388,365 66,718,064 10.81
45 1,787,606 28,170,189 139,760,800 15.75
50 8,271,082 170,383,616 65,760,913 7.95

Table 2: Run times for Larger Random Test Cases

q optimized bracketing best unidirectional bracketing fmarel trel

60 37,989,141 331,166,304 8.71 5.54
70 9,241,074 554,021,568 59.95 14.05
80 33,796,544 200,622,919 5.93 2.44
90 19,058,174 251,632,865 13.20 2.36
100 22,951,156 2,313,419,043 100.79 16.20
150 502,245,226 16,928,546,112 33.70 13.53
200 816,938,109 4,620,627,490 5.65 1.42

the Hessian based on

F = (F11 ◦ (F10 ◦ (F9 ◦ (F8 ◦ (F7 ◦ (F6 ◦ (F5 ◦ (F4 ◦ (F3 ◦ F2))))))))) ◦ F1 .

All results can be reproduced (run times qualitatively) using the reference
implementation described in the appendix.

4. Further numerical results

Table 1 lists the results obtained by applying the dynamic programming
heuristic for Hessian Chain Bracketing to chains of elemental func-
tions of growing length q. The latter also serves as an upper bound for the
randomly generated dimensions of domains and images of the individual
elemental functions. We compare the numbers of fma required for the accu-
mulation of the Hessian when bracketing from the left or from the right with
the numbers resulting from optimized bracketing. The factor quantifying the
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Figure 2: Run Times of the Dynamic Programming Algorithm.

improvement due to optimized bracketing over the better out of the uniform
bracketings is shown in the last column. Relative savings in the fma count of
up to eighteen can be observed.

Savings in the number of fma required for the accumulation of the Hessian
can be expected to yield adequate reductions in runtime. A set of larger
problem instances is presented for this purpose in Table 2. Relative savings
in the fma count of up to one hundred result in speedups of up to sixteen
as shown in the last column. Our reference implementation is not tuned
for speed. It uses Eigen2 for the matrix products. While we consider this
approach to be a realistic scenario further optimization is likely to yield
even better efficiency. For example, the use of GPGPU has been shown to
be beneficial [17, 18].

The computational complexity of the dynamic programming algorithm
is cubic in q. For illustration we report and plot run times3 for even larger
random instances in Figure 2. Relative savings in the fma count become even
more pronounced. Again, these results can be reproduced with the help of
the reference implementation described in the appendix.

5. Conclusion and outlook

The results presented in this paper are promising. Reductions in the number
of fma required for the accumulation of Hessian tensors yield corresponding
speedups. Nevertheless, significant effort is required to bridge the present gap

2https:://eigen.tuxfamily.org
3All numerical experiments were performed on a standard PC with Intel R© CORE

i7 processor.
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to seamless integration into software tools for AD. A matrix-free formula-
tion in particular is necessary to handle computationally complex elemental
functions similar to the first-order scenario investigated in [27]. The assump-
tion about elemental Hessians being given turns out to be infeasible in many
practical applications. ANN represent an exception as differentiation of the
individual layers often turns out to be relatively straightforward.

Dynamic programming for Jacobian and Hessian Chain Bracket-

ing generalizes to arbitrary order. So does the proof of NP-completeness of
Jacobian and Hessian Accumulation as shown in [28]. The obvious dis-
crepancies between the respective formulations give rise to further ongoing
investigations into the combinatorics induced by the chain rule of differen-
tiation.

Appendix A. Implementation

An open-source reference implementation is provided for easy reproduction
of our computational results; see

git@github.com:un110076/HessianChainBracketing.git .

The software consists of three separate executables resulting from implemen-
tations given as three C++ source files. Problem instances are generated
randomly by generate.exe for given length of the chain and upper bound
on the dimensions of domains and images of the elemental functions. The
resulting text file serves as input for solve.exe which computes a solution
for the corresponding instance of (dense) Hessian Chain Bracketing.
Both the problem formulation and the solution can be passed to run.exe

to perform the numerical evaluation of the Hessian chain product for given
randomly initialized elemental Jacobians and Hessians. Eigen is expected to
be installed in ./Eigen. The code has been tested with the GNU C++ com-
piler under Linux. A Makefile is provided. Essential information on how to
build and run the software is given in README.md.

A sample session could proceed as follows:

1. Running

generate.exe 4 4

might yield the output

4
5 2
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1 5
3 1
2 3

corresponding to the example from Figure 1. The chain F4◦F3◦F2◦F1

of length four (first line) consists of elemental functions F1 : IR
2 → IR5

(line two), F2 : IR5 → IR (line three), F3 : IR → IR3 (line four),
F4 : IR

3 → IR2 (line five). Let this output be stored in problem.txt.
2. The dynamic programming algorithm is executed as illustrated in Fig-

ure 1 by running

solve.exe problem.txt

Diagnostic output is generated.

l e f t b racke t ing fma = 342
r i g h t bracke t ing fma = 230
h e u r i s t i c bracke t ing fma = 156
opt imized bracke t ing fma = 156

Dynamic Programming Table :
fma (F’ ’ ( 1 , 0 ) )=90 ; s p l i t b e f o r e 1 ; dim(F’ ’ ( 1 , 0 ) )=1 x2x2
fma(F’ ’ ( 2 , 1 ) )=165 ; s p l i t b e f o r e 2 ; dim(F’ ’ ( 2 , 1 ) )=3 x5x5
fma(F’ ’ ( 2 , 0 ) )=130 ; s p l i t b e f o r e 2 ; dim(F’ ’ ( 2 , 0 ) )=3 x2x2
fma (F’ ’ ( 3 , 2 ) )=30 ; s p l i t b e f o r e 3 ; dim(F’ ’ ( 3 , 2 ) )=2 x1x1
fma(F’ ’ ( 3 , 1 ) )=146 ; s p l i t b e f o r e 2 ; dim(F’ ’ ( 3 , 1 ) )=2 x5x5
fma(F’ ’ ( 3 , 0 ) )=156 ; s p l i t b e f o r e 2 ; dim(F’ ’ ( 3 , 0 ) )=2 x2x2

The number of fma required by the optimized bracketing is compared
with the numbers resulting from uniform bracketing from the left and
from the right as well as with the result of the greedy heuristic. More-
over, the optimized bracketing is stored in a text file solution.txt as
follows:

3 3 2
1 1 0
3 2 0

Visiting the lines in reverse order we find that the first split position
is set before F3 yielding (F4 ◦ F3) ◦ (F2 ◦ F1). The remaining two lines
indicate (unique) split positions before F2 and before F4 within the
two subchains (of length two).

3. Passing both problem.txt and solution.txt as command line argu-
ments to run.exe as
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run.exe problem.txt solution.txt heuristic_solution.txt

run times for the numerical evaluation of the uniform bracketings are
compared with the run time of computing the Hessian based on the
optimized bracketing yielding, for example,

Elapsed time ( in microseconds ) :
l e f t b racke t ing : 69
r i g h t bracke t ing : 52
h e u r i s t i c bracke t ing : 48
opt imized bracke t ing : 48

Obviously, the numbers become more reliable for larger problems.
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