
Journal of Combinatorics

Volume 14, Number 4, 559–601, 2023

Seven open problems in applied combinatorics∗

Sinan G. Aksoy, Ryan Bennink, Yuzhou Chen, José Fŕıas,

Yulia R. Gel, Bill Kay, Uwe Naumann, Carlos Ortiz Marrero,

Anthony V. Petyuk, Sandip Roy, Ignacio Segovia-Dominguez,

Nate Veldt, and Stephen J. Young

We present and discuss seven different open problems in applied
combinatorics. The application areas relevant to this compilation
include quantum computing, algorithmic differentiation, topolog-
ical data analysis, iterative methods, hypergraph cut algorithms,
and power systems.

AMS 2000 subject classifications: Primary 05C90; secondary 65Y04,

65D25, 05C65, 81P68, 62R40, 55N31, 65F10.

Keywords and phrases: Open problems, applied combinatorics, quan-
tum computing, quantum circuit, hypergraphs, algorithmic differenti-

ation, directed acyclic graphs, zero-forcing, topological data analysis,

Dowker complex, asynchronous updates, iterative methods.

While the development of combinatorial mathematics has always been

spurred by applied problems, in recent years both the scope and specificity

of applied combinatorics has increased dramatically. In concrete and varied

ways, combinatorial approaches are tackling problems across the sciences:

from using graph clustering to design reduced order models and controls for

complex fluid flows [3, 4], employing Ramanujan graphs as interconnection

topologies of linkages between elements of supercomputers [2, 7], predict-

ing drug interactions using graph neural networks (GNNs) [6], to detecting

anomalies in cybersecurity data using graph and hypergraph centrality mea-

sures [1, 5].

In celebration and promotion of this eclecticism, here we compile seven

open problems in applied combinatorics posed by researchers in academia

and government. The problems are organized in self-contained sections, au-

thored by the attributed submitters. Each consists of a problem statement,

discussion of relevant application areas, and any partial progress or prior

work. The problems are as follows:

∗Information Release PNNL-SA-182814.

559

https://www.intlpress.com/site/pub/pages/journals/items/joc/_home/_main/index.php

560 Sinan G. Aksoy et al.

1. The Dowker Complex in Metric Graphs: Fŕıas, Segovia-Dominguez,
Chen, and Gel propose problems in topological data analysis (TDA)
related to Dowker complexes.

2. An Application of Probabilistic Combinatorics to Quantum
Circuit Expressiveness: Kay and Bennink introduce a problem in
probabilistic combinatorics relevant to quantum circuits.

3. The Computational Complexity of the 4-uniform Hypergraph
Minimum s-t Cut Problem: Veldt outlines a problem on the com-
putational complexity of hypergraph minimum s-t cuts.

4-5. The Edge and Vertex Elimination Problems in Directed Acyclic
Graphs and Data Flow Reversal Problems: Naumann poses sev-
eral problems involving directed acyclic graphs, motivated by algorith-
mic differentiation of numerical programs.

6. Price of Asynchrony: Ortiz Marrero and Young pose problems to
study how asynchronous updates affect the convergence rate of itera-
tive methods for large-scale systems in scientific computing.

7. (n−k)-contingent Zero-Forcing for Power Grids: Aksoy, Petyuk,
Roy, and Young propose problems on a variant of graph zero-forcing
relevant to structural stability in power grids.

We have curated this sample of open problems with several criteria in
mind. First, we have chosen problems that are timely and new, in the sense
that they are motivated by recent research and not likely to be well-known
by the larger community. Second, while far from comprehensive, our varied
selection aims to illustrate the diversity of areas engaged by applied combi-
natorics. Third, while much of combinatorics plausibly “has applications”,
we have searched for problems having clear, specific impact to fields outside
pure mathematics, including computing, industry, data science, and scien-
tific software. We thank the reader for their interest.

References

[1] Sinan G Aksoy, Emilie Purvine, and Stephen J Young. “Direc-
tional Laplacian centrality for cyber situational awareness”. In: Digital
Threats: Research and Practice (DTRAP) 2.4 (2021), pp. 1–28.

[2] Sinan G Aksoy et al. “Ramanujan graphs and the spectral gap of super-
computing topologies”. In: The Journal of Supercomputing 77 (2021),
pp. 1177–1213.

[3] Muralikrishnan Gopalakrishnan Meena, Aditya G Nair, and Kunihiko
Taira. “Network community-based model reduction for vortical flows”.
In: Physical Review E 97.6 (2018), p. 063103.

Seven open problems in applied combinatorics 561

[4] Muralikrishnan Gopalakrishnan Meena and Kunihiko Taira. “Identify-
ing vortical network connectors for turbulent flow modification”. In:
Journal of Fluid Mechanics 915 (2021), A10. MR4233199

[5] Cliff A Joslyn et al. “Hypergraph analytics of domain name system
relationships”. In: Algorithms and Models for the Web Graph: 17th In-
ternational Workshop, WAW 2020, Warsaw, Poland, September 21–22,
2020, Proceedings 17. Springer. 2020, pp. 1–15.

[6] Carter Knutson et al. “Decoding the protein–ligand interactions using
parallel graph neural networks”. In: Scientific Reports 12.1 (2022), p.
7624.

[7] Stephen Young et al. “Spectralfly: Ramanujan graphs as flexible and
efficient interconnection networks”. In: 2022 IEEE International Par-
allel and Distributed Processing Symposium (IPDPS). IEEE. 2022, pp.
1040–1050.

1. The Dowker complex in metric graphs

José Fŕıas, Ignacio Segovia-Dominguez, Yuzhou Chen, Yulia R. Gel

Background Topological data analysis (TDA) is a set of methods in com-
putational topology that continues to receive increasing attention in data
sciences. One of the most relevant tools in TDA is persistent homology
(PH) [5, 9, 13]. The aim of PH is to obtain topological information of
a finite metric space using a filtered simplicial complex K with vertices
in the data set, namely, there exists a sequence of simplicial complexes
K0 ⊂ K1 ⊂ · · · ⊂ Kn−1 ⊂ Kn = K. A non-trivial element γ ∈ Hp(Ki), in the
p-dimensional homology group of Ki, is commonly called a p-dimensional
topological feature and is associated with a point (ib, jd) ∈ R2, where ib and
jd are the birth and death of γ, respectively (i.e., the indices of the simpli-
cial complex at which γ is first and last observed, respectively, that is, when
it becomes trivial in homology or is merged to another topological feature
that was born before). The lifespan of the topological feature is jd − ib. The
persistence diagram PD of the filtered simplicial complex K is the multiset
PD(K) = {(ib, jd) ∈ R2 | ib < jd}, where the multiplicity of (ib, jd) is the
number of topological features in the filtered simplicial complex K that are
born and die at ib and jd, respectively. A persistence diagram summarizes
the evolution of the homology groups of K along the filtration. Two persis-
tence diagrams can be compared using metrics such as the bottleneck or the
Wasserstein distances (please see [3, 5, 9, 13] for a detailed exposition on
persistence diagrams and distances in PH).

https://mathscinet.ams.org/mathscinet-getitem?mr=4233199

562 Sinan G. Aksoy et al.

Metric spaces induced by weighted graphs are particularly interesting
due to their combinatorial foundations and their applications in data anal-
ysis [1, 12]. A weighted graph G = (V, E , ω) contains a set of vertices V, an
edge set E ⊂ V ×V, and a weight function ω : E → R+. We say that a graph
G is simple if it does not contain self-edges nor multiple edges. Given a path
γ in a weighted graph G, the length of γ is the sum of the weights of the
edges in γ. A connected weighted graph G is then endowed with the geodesic
distance dG : V × V → R≥0, defined on a pair of vertices u, v ∈ V as the
minimum length among all the paths connecting u and v. The set (V, dG) is
a finite metric space.

One of the most widely used simplicial complexes in TDA is the Vietoris-
Rips simplicial complex [3, 13]. One important property of this complex is
that it is completely determined by its 1-skeleton, which makes it suitable
for computations.

Definition 1.1 (Vietoris-Rips Complex). Let G = (V, E , ω) be a weighted
simple graph with induced geodesic distance dG . For α ∈ R≥0, we define the
Vietoris-Rips complex V Rα(G) as the abstract simplicial complex with
vertices in V and, for k ≥ 2, a k-simplex σ = [x0, x1, . . . , xk] ∈ V Rα(G) if
and only if dG(xi, xj) ≤ α for 0 ≤ i ≤ j ≤ k.

However, if the cardinality of V is large, the number of simplices in
V Rα(G), for large values α, could be excessively large to be analyzed using
computational tools. An alternative to deal with the scalability problem is
to construct another simplicial complex with set of vertices L ⊂ V, where
|L| < |V|. One of such simplicial complexes is the witness complex [1, 2, 7, 8].

Definition 1.2 (Witness Complex). Let G = (V, E , ω) be a weighted simple
graph with induced geodesic distance dG , and take subsets L,W ⊂ V. For
α ∈ R≥0, let Witα(W,L) be the abstract simplicial complex with set of
vertices L, and a simplex σ ∈ Witα(W,L) if and only if for every τ ⊆ σ
there exists w ∈ W such that dG(w, l) ≤ dG(w, l′) + α for all l ∈ τ and
l′ ∈ L \ τ . The complex Witα(W,L) is called the witness complex of G
with set of witnesses W and landmarks L.

Given a sequence of non-decreasing values 0 ≤ α0 ≤ α1 ≤ · · · ≤
αn−1 ≤ αn, the associated Vietoris-Rips complexes constructed on G sat-
isfy V Rα0

(G) ⊆ V Rα1
(G),⊆ · · · ⊆ V Rαn

(G), namely, the sequence of scale
values define a filtered simplicial complex. If we select sets of landmarks
and witnesses L,W ⊂ V, there exists also a filtration Witα0

(L,W) ⊆
Witα1

(L,W) ⊆ · · · ⊆ Witαn
(L,W). Then persistent homology can be com-

puted in both filtered simplicial complexes. However, computation of witness

Seven open problems in applied combinatorics 563

Figure 1: Landmarks in a cycle graph.

complexes on graphs is challenging due to the difficulty to determine a wit-

ness of some simplexes, as the next illustrative example shows.

Example 1.3. Suppose we are interested in the 1-dimensional persistent ho-

mology of the 1-weighted cycle graph Cm, m ≥ 4, with vertices set V. Let
L ⊂ V be a set of landmarks and W = V be a set of witnesses (see Fig-

ure 1a). It is not difficult to determine the smallest scale value α > 0 such

that Witα(L,W) contains the 1-simplex {li, li+1}, for any two consecutive

landmarks li, li+1 ∈ L (in Figure 1b the 1-simplexes are represented by edges

connecting consecutive landmarks). These 1-simplexes form a 1-dimensional

topological feature γ that is born at α. However, given a sequence of three

consecutive landmarks li−1, li, li+1 ∈ L, it is combinatorially more difficult

to determine a witness and a scale value at which the 1-simplex {li−1, li+1}
(dotted edge in Figure 1b), appears in the filtered witness complex, or, even

more difficult, when γ vanishes.

The Dowker complex [3, 4] is a construction obtained after relaxing

the definition of the witness complex, Definition 1.2, to make it easier to

compute:

Definition 1.4 (Dowker Complex). Let G = (V, E , ω) be a weighted simple

graph with induced geodesic distance dG , and let L,W ⊂ V. For α ∈ R≥0,

let Dowα(W,L) be the abstract simplicial complex with set of vertices L

and a simplex σ ∈ Dowα(W,L) if and only if there exists w ∈ W such that

dG(w, l) ≤ α for all l ∈ σ. The simplicial complex Dowα(W,L) is called the

Dowker complex of G with sets of witnesses and landmarks W and L,

respectively.

564 Sinan G. Aksoy et al.

Note that witness and Dowker complexes constructions strongly depend
on the selection of the sets L and W . In [7], two algorithms to define the
set of landmarks L are developed: random and maxmin algorithms. More
recently, [1] proposes the ε-nets algorithm to obtain a set of landmarks L ⊂ V
satisfying both properties of sparsity and proximity to the set of points
V \ L, thereby allowing for a trade-off between computational complexity
and potential information loss.

Definition 1.5 (ε-net). Let (V, dG) be the finite metric space obtained from
the weighted graph G = (V, E , ω). Given L = {u1, u2, . . . , ul} ⊂ V and ε ≥ 0
then:

(i) The set L is an ε-sample of G if the collection {N (ui)}li=1 of closed
ε-neighborhoods of points in L covers V, i.e. for any v ∈ V there exists
uj ∈ L such that dG(v, uj) ≤ ε.

(ii) L is ε-sparse if for any two distinct points ui, uj ∈ L, their distance
dG(ui, uj) > ε.

(iii) The set L is an ε-net of G if it is an ε-sample of G and is ε-sparse.

Open problems Along the present section, G = (V, E , ω) is a weighted
simple graph and dG is the geodesic distance induce by G on V. The con-
struction of Dowker simplicial complexes on the metric space (V, dG) relies
on the selection of the sets of landmarks and witnesses. Usually the set of
witnesses is taken to be the set of vertices, W = V, or the complement of
landmarks, W = V \L. Furthermore, there are numerous possibilities of se-
lecting a set of landmarks. The existence of an ε-net defining the set of land-
marks guarantees some combinatorial and geometric properties, as shown
in [1]. Furthermore, [1] proved that for a weighted graph G = (V, E , ω) and
a particular ε, there exists an ε-net for (V, dG) whose cardinality admits a
bound depending on ε, the diameter of the graph and the number of ver-
tices (Theorem 3). However, this bound does not pretend to be any close to
a sharp bound, while its further analysis has a number of important impli-
cation for graph learning applications in machine learning and statistics. As
a result, we formulate the first open problem on the Dowker complexes on
graphs as follows:

Open Problem 1.1. Given a weighted simple graph G = (V, E , ω) and
ε > 0, determine optimal upper and lower bounds for the number of elements
of an ε-net for G.

Three different methods to obtain ε-nets in metric graphs, namely, the
greedy, iterative and SPTpruning algorithms, are proposed in [1]. These al-

Seven open problems in applied combinatorics 565

gorithms are experimentally compared with respect to the number of land-
marks they produce for the same graph, including their execution time. As
such, the next natural question arises:

Open Problem 1.2. For a weighted simple graph G = (V, E , ω), propose
an algorithm to construct an ε-net for G such that:

(i) It is based on a lower number of landmarks than that of the existing
algorithms;

(ii) The time of execution of the algorithm is lower than the existing al-
gorithms.

Since the real-world datasets are usually noisy and incomplete, a suit-
able choice of landmarks in the Dowker complexes has multi-fold potential
benefits in applications. First, it tends to improve performance of graph
learning algorithms by focusing on the most essential topological charac-
teristics (i.e. the “data skeleton”). Second, it helps enhance robustness to
noise/data perturbations. Third, by reducing computational costs, it opens
a perspective of utilizing TDA for downstream tasks in graph learning. In-
deed, as computing persistence homology on large graphs is often infeasible
due to prohibitive computational costs, the Dowker complex construction
offers a promising alternative by the means of the suitable landmark selec-
tion. Additionally, the data separation in landmarks and witnesses trigger an
intrinsic spatial decomposition that match with the natural local divisions
needed when dealing with modern massive parallel computing [11].

Given the current proliferation of the Vietoris-Rips complex in TDA,
the natural question to address is the comparison of persistent homology
obtained from the Vietoris-Rips and Dowker complexes constructions on the
same weighted graph G. We denote with PDi(K) the persistence diagram
of dimension i for the filtered simplicial complex K. In the case of metric
graphs, 1-dimensional homology is relevant. It is known that for a large
enough scale value α, the persistence diagram PD1(V Rα(G)) contains as
many points (counting multiple points) as the genus of G, the cardinality
of a minimal system of cycles of G [10]. A main concern on the selection
of landmarks to construct the witness or Dowker complexes is the loss of
relevant topological information. Then, the next question arises:

Open Problem 1.3. Let G = (V, E , ω) be weighted simple graph. Take the
set of witnesses W = V.

(i) Determine ε > 0 and the way to select an ε-net L ⊂ V such that
PD1(Dowα(W,L)) has cardinality equal to the genus of G, for a suf-
ficiently large value α.

566 Sinan G. Aksoy et al.

(ii) Assuming that an ε-net for G satisfying (i) is given. Find a bound
for dB(PD1(V Rα(G)), PD1(Dowα(W,L))), in terms of the lengths of
cycles in G and ε, where dB is the bottleneck distance in persistence
diagrams.

Finally, another important but largely unexplored topic for PH obtained
from the Dowker complexes is stability. Stability ensures that after applying
a “small perturbation” to a metric graph G in order to obtain a new met-
ric graph G′, the corresponding persistence diagrams are close with respect
to some distance, for instance the bottleneck or Wasserstein distance. By
perturbation we refer to any transformation that may include edge deletion,
addition, cleaving or contraction, or changing the weight function (which au-
tomatically modifies the distance dG). In the case of complexes depending on
a selection of landmarks and witnesses a perturbation could be changing the
selection of these two sets. For the Dowker complex, some stability results
have been obtained, including the Dowker interleaving and the Dowker dual-
ity [3, see Section 4.2.3]. In particular, Dowker duality can be interpreted as
the property such that if L,W ⊂ V are the sets of landmarks and witnesses
of G, then Dowα(W,L) and Dowα(L,W) have the same homotopy type
and, then, the two filtered simplicial complexes have the same persistent
homology.

Open Problem 1.4. Let G = (V, E , ω) be a weighted graph and let L,W ⊂
V be sets of landmarks and witnesses for G.
(i) Let G′ = (V, E , ω′) be the metric graph with the same set of vertices

and edges of G, but another weight function ω′. Find a bound for the
bottleneck distance of the persistence diagrams corresponding to the
Dowker complexes of G and G′ in terms of the supremum distance
between ω and ω′.

(ii) If two sets of landmarks L and L′ for G are ε-nets. Find conditions
on the landmarks, such that Dowα(W,L) and Dowα(W,L′) have the
same homotopy type.

Recent studies have addressed some properties of the Dowker complexes
in directed graphs. For instance, a complete characterization of the Dowker
persistence diagrams for cycle networks is presented, and some stability
properties have been proven for pair swaps by [4] and for conjugate and shift
equivalent relations [6]. While both the theoretical properties and practical
utility of the Dowker complexes on graphs yet remain largely unexplored,
we believe that the Dowker complexes have a potential to address many
bottlenecks that currently preclude broader applications of TDA in analysis
of real-world graph datasets.

Seven open problems in applied combinatorics 567

Acknowledgements This work was supported by the Office of Naval Re-

search (ONR) award N00014-21-1-2530. Any opinions, findings, conclusions,

or recommendations expressed in this paper are those of the authors and do

not necessarily reflect the views of ONR.

References

[1] N. A. Arafat, D. Basu, and S. Bressan. “ε-net Induced Lazy Witness

Complexes on Graphs”. In: (2020). doi: 10.48550/ARXIV.2009.13071.

url: https://arxiv.org/abs/2009.13071.

[2] J. D. Boissonnat, L. Guibas, and S. Oudot. “Manifold reconstruction in

arbitrary dimensions using witness complexes”. In: Proceedings of the

twenty-third annual symposium on Computational geometry. 2007, pp.

194–203. MR2469165

[3] F. Chazal, V. De Silva, and S. Oudot. “Persistence stability for geo-

metric complexes”. In: Geometriae Dedicata 173.1 (2014), pp. 193–214.

MR3275299

[4] S. Chowdhury and F. Mémoli. “A functorial Dowker theorem and per-

sistent homology of asymmetric networks”. In: Journal of Applied and

Computational Topology 2 (2018), pp. 115–175. MR3873182

[5] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. “Stability of persis-

tence diagrams”. In: Proceedings of the twenty-first annual symposium

on Computational geometry. 2005, pp. 263–271. MR2460372

[6] D. Côté. Dowker Complexes and filtrations on self-relations. 2023. doi:

10.48550/ARXIV.2301.03739. url: https://arxiv.org/abs/2301.03739.

[7] V. De Silva and G. Carlsson. “Topological estimation using witness

complexes.” In: PBG. 2004, pp. 157–166.

[8] T. K. Dey, F. Fan, and Y. Wang. “Graph induced complex on point

data”. In: Proceedings of the twenty-ninth annual symposium on Com-

putational geometry. 2013, pp. 107–116.

[9] H. Edelsbrunner, D. Letscher, and A. Zomorodian. “Topological per-

sistence and simplification”. In: Proceedings 41st annual symposium on

foundations of computer science. IEEE. 2000, pp. 454–463. MR1931842

[10] E. Gasparovic et al. “A complete characterization of the one-

dimensional intrinsic Čech persistence diagrams for metric graphs”. In:

Research in Computational Topology (2018), pp. 33–56. MR3905000

[11] R. Lewis and D. Morozov. “Parallel computation of persistent homology

using the blowup complex”. In: Proceedings of the 27th ACM Sympo-

sium on Parallelism in Algorithms and Architectures. 2015, pp. 323–331.

https://doi.org/10.48550/ARXIV.2009.13071
https://arxiv.org/abs/2009.13071
https://mathscinet.ams.org/mathscinet-getitem?mr=2469165
https://mathscinet.ams.org/mathscinet-getitem?mr=3275299
https://mathscinet.ams.org/mathscinet-getitem?mr=3873182
https://mathscinet.ams.org/mathscinet-getitem?mr=2460372
https://doi.org/10.48550/ARXIV.2301.03739
https://arxiv.org/abs/2301.03739
https://mathscinet.ams.org/mathscinet-getitem?mr=1931842
https://mathscinet.ams.org/mathscinet-getitem?mr=3905000

568 Sinan G. Aksoy et al.

[12] X. Liu et al. “Dowker complex based machine learning (DCML) models

for protein-ligand binding affinity prediction”. In: PLoS Computational

Biology 18.4 (2022), e1009943.

[13] A. Zomorodian and G. Carlsson. “Computing persistent homology”.

In: Proceedings of the twentieth annual symposium on Computational

geometry. 2004, pp. 347–356. MR2121296

2. An application of probabilistic combinatorics to quantum
circuit expressiveness

Bill Kay, Ryan Bennink

Introduction Quantum computing is a computing system in which certain

physical properties are leveraged for computational advantages for some

classes of problems. Recently, access to some quantum computing devices

has grown. Many of the accessible devices are small and noisy, and the

variational approach in which a traditional computer modifies parameters

of some quantum circuit towards maximizing a function of its output has

found success [3, 2, 5]. The purpose of this document is to introduce a

purely combinatorial problem, and to explain how it is related to a problem

in quantum computing. We note that we are casting the analysis in [1] to

a probabilistic setting regarding random binary vectors. Hence, progress in

the combinatorial problem has an interpretation which impacts quantum

computing. We then present a sequence of examples, preliminary results,

and open questions.

Commutative quantum circuits, originally introduced as “Instantaneous

Quantum Polytime” circuits [4], are a special class of quantum circuits that

are relatively simple yet exhibit non-trivial quantum behavior. For our pur-

poses a commutative quantum circuit may be described as a circuit that first

creates a uniform superposition of all 2n computational states of n qubits,

then applies parity-dependent phases to selected subsets of qubits. Each

subset is specified by a binary vector a ∈ {0, 1}n and its associated phase is

specified by a real angle θ.

Definition 2.1 (Commutative Quantum Circuit). A commutative quantum

circuit specified by the binary vectors a1, . . . , am ∈ {0, 1}n and associated

parameters θ1, . . . , θm ∈ R creates a quantum state of the form

1

2n/2

(
eiφ0...0 , . . . , eiφ1...1

)
∈ C

2n

https://mathscinet.ams.org/mathscinet-getitem?mr=2121296

Seven open problems in applied combinatorics 569

where

φx =

m∑
i=1

θi(−1)〈ai,x〉

and 〈·, ·〉 denotes the inner product in GF(2)n.

In the context of variational quantum computing, the vectors a1, . . . , am
specify a fixed circuit structure and the angles θ1, . . . , θm are the varia-
tional parameters. A fundamental question concerns the expressiveness of
such: given the vectors a1, . . . , am, how much can the output state be var-
ied by varying the angles θ1, . . . , θm? Intuitively, the expressiveness can be
quantified by the expected (dis)similarity of two output states with ran-
domly chosen parameter values: the more expressive the circuit, the more
likely two random output states will be dissimilar. As discussed in [1], for
commutative quantum circuits this expectation value can be reduced to a
combinatoric problem involving binary matrices described below. There it
is shown that in the special case that the circuit is maximal, i.e. there is
an independent phase for each nonempty subset of qubits, the expressive-
ness reduces to the problem of counting abelian squares. Here we consider
the more general problem of computing the expressiveness of commutative
quantum circuits involving arbitrary collections of qubit subsets. In the next
section we cast this problem in purely combinatorial language. We conclude
with some examples, special cases, and open problems.

A combinatorial problem In this section we will have several defini-
tions where prescribed notations will aid in clarity. Here we fix several
such notations for the section for ease of exposition. Fix n, t ∈ Z+ and
let 1 ≤ m ≤ 2n − 1.

• Let x = (xT1 , . . . , x
T
t) where xi ∈ {0, 1}n for 1 ≤ i ≤ t.

• Let y = (yT1 , . . . , y
T
t) where yi ∈ {0, 1}n for 1 ≤ i ≤ t.

• A = (aT1 , . . . , a
T
m) where ai ∈ {0, 1}n for 1 ≤ i ≤ m. Moreover, the

{ai}mi=1 are non-zero and pairwise distinct.

For clarity, x and y are n × t binary matrices with specified column
labels, and A is an n × m binary matrix with distinct, non-zero columns
with specified labels. For our specific application, we take the columns of
A to be given in lexicographic order. We remark that each ai is a length n
binary vector and has a natural correspondence with subsets of indices of
length n vectors.

We now need the following definition:

570 Sinan G. Aksoy et al.

Definition 2.2 (Expressiveness Indicator). Given A,x as above and 1 ≤
i ≤ m, we define the ith expressiveness indicator mA

i (·) as:

mA
i (x) :=

t∑
j=1

〈ai, xj〉2

where the inner product 〈·, ·〉2 is mod 2 but the outer sum is integral.

When A is clear from context we simply write mi(·). As these are not
standard definitions, and there is a mix of modular and integral arithmetic,
we include a clarifying example:

Example 2.3. Let

A =

⎛
⎜⎜⎝
1 0 0 0 1 1 1
0 1 0 0 1 0 0
0 0 1 0 0 1 0
0 0 0 1 0 0 1

⎞
⎟⎟⎠ ;x =

⎛
⎜⎜⎝
1 0 1 0
1 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

Then we have:

m5(x) = 〈a5, x1〉2 + 〈a5, x2〉2 + 〈a5, x3〉2 + 〈a5, x4〉2
= 0 + 1 + 1 + 0

= 2

We are now ready to pose a general combinatorial question and relate it
back to computing expressiveness of commutative quantum circuits.

Computational Problem. Given A, let x and y be sampled uniformly at
random. Compute:

P ((mi(x) = mi(y)) ∀i)

While the Computational Problem is interesting in its own right, we
would like to clarify how it is related to computing expressiveness of com-
mutative quantum circuits. Recall from Definition 2.1 that the expressive-
ness of a commutative quantum circuit takes as input a collection of subsets
of indices of a state vector. Further, we have remarked that for a length n
state vector, there is a natural correspondence between a subset of indices
and binary length n vectors (namely, the indicator vector of which indices
are selected). Indeed, one can see in the analysis in [1] that if we encode
the subsets of indices in the state vector we are interested in as A, then the
computation given in Computational Problem is the critical computation

Seven open problems in applied combinatorics 571

for finding the desired expressiveness. In particular, it is shown that expres-
siveness of maximal commutative quantum circuits is equivalent to taking A
to be all 2n−1 non-zero length n binary vectors, and that the probability in
Computational Problem is precisely resolved by counting abelian squares.

Examples, preliminary results, and open problems Notice that for
each choice of A, there is a different instance of Computational Problem. For
some fixed choices of A, there is a natural interpretation of Computational
Problem.

Example 2.4. Let A be the collection of all weight 1 length n vectors (i.e.,
the n× n identity matrix). Let x and y be n× t binary matrices. Then

(mi(x) = mi(y)) ∀i

if and only if x and y have the same row sums.

This is clear, as 〈aj , xi〉2 = 1 if and only if xi is 1 in coordinate j. Using
this combinatorial interpretation, we can resolve Computational Problem
when A is the n× n identity matrix by the following (equivalent) lemma:

Lemma 2.5. Let x and y be n × t binary matrices sampled uniformly at
random. Then the probability that x and y have all the same row sums is(

2t

t

)n 1

22tn
.

Proof. We will argue for a single pair of uniform random binary vectors of
length t. Since we are computing row sums for x and y, we argue first for
a fixed row and conclude by taking a product of independent probabilities.
Summing over possible row sums, the probability that a pair of length t
binary vectors have the same row sum is given by:

t∑
k=0

(
t

k

)2

(1/2)2k(1/2)2(t−k) =
1

22t

t∑
k=0

(
t

k

)2

=
1

22t

t∑
k=0

(
t

k

)(
t

t− k

)

=
1

22t

(
2t

t

)

where the last equality can be seen by counting the number of length 2t
binary vectors with precisely t ones. The right hand side counts this quantity

572 Sinan G. Aksoy et al.

directly, while the left hand side counts the number of ways for k ones in
the first half with t− k ones in the second half. Taking the product over all
n (independent) rows of x and y gives the desired probability.

Each column of A provides an additional constraint on possible choices
of x and y in Computational Problem. In fact, the collections of (x,y) pairs
which satisfy the computation in Computational Problem are monotone in
the columns ofA, in that if the set of columnsA2 contains the set of columns
of A1, then

(mA2

i (x) = mA2

i (y)) ∀i ⇒ (mA1

i (x) = mA1

i (y)) ∀i.

For example, if A has among its columns all weight 1 length n vectors,
if x and y satisfy the condition in Computational Problem then x and y
necessarily have the same row sums. We provide combinatorial interpreta-
tion of Computational Problem for another choice of A, and then exploit
the monotonicity property to state and prove Computational Problem for
another choice of A.

Example 2.6. Let ai,j be the length n binary vector with a 1 in positions i
and j, 0 otherwise. Let x be any length n binary vector. 〈ai,j , x〉2 is 1 if the
ith and jth entries of x disagree, 0 otherwise. We call this an i, j-mismatch
in x. Hence, if A consists of all length n binary vectors of weight at most 2,
and x and y are n× t binary matrices, then

(mi(x) = mi(y)) ∀i

if and only if x and y have the same row sums, and for each pair of rows i
and j the number of columns in which x and y have an i, j-mismatch are
the same.

Computational Problem for the family presented in Example 2.6 remains
open. However, we present the following:

Lemma 2.7. Let A be the collection of binary vectors weight 1 and weight 2
with a 1 in the first coordinate. Let x and y be n×t binary matrices sampled
uniformly at random. Then:

P ((mi(x) = mi(y)) ∀i)

is given by:

1

22tn

t∑
k=0

((
2k

k

)(
2(t− k)

t− k

))n−1(t

k

)2

Seven open problems in applied combinatorics 573

Proof. For x and y sampled uniformly at random, we want to compute the
probability that x and y have the same row sums, and for each 1 < j ≤ n,
the number columns which have a 1, j-mismatch is the same. We claim that

t∑
k=0

(
t

k

)2
⎛
⎝ k∑

j=0

t−k∑
�=0

(
k

j

)2(t− k

)2
⎞
⎠

n−1

counts the number of (x,y) pairs for which

(mi(x) = mi(y)) ∀i

holds. We now count such pairs. First, fix a first row for each of x and y.
Since the row sums must be the same, these first rows have some number of
1s, say k. For each row 1 < r ≤ n, there are some number of 1s in x and y.
Since the row sums are the same for x and y, this number is the same. We
note that x and y need to have the same number of 1, r matches as well as
mismatches, and this can be counted by enumerating the number of ways to
place 1s in columns with a 1 in the first entry, and then columns with 0 in
the first entry. There are j +
 1s in row r, with j in columns with 1 in the
first entry and
 in columns with 0 in the first entry. Hence, for each fixed
choice of j and
 there are

(
k

j

)2(t− k

)2

ways to place these 1s. Summing over choices of j and
 we see that for each
fixed pair of first rows for x and y there are

k∑
j=0

t−k∑
�=0

(
k

j

)2(t− k

)2

choices to place the 1s in row r. These choices are independent for rows
1 < r ≤ n, and so there are

⎛
⎝ k∑

j=0

t−k∑
�=0

(
k

j

)2(t− k

)2
⎞
⎠

n−1

choices for x and y for a fixed first row. For each k, there are
(
t
k

)
ways to

place 1s in the first row of x and y. Summing over each k, the total number

574 Sinan G. Aksoy et al.

of desired (x,y) pairs is

t∑
k=0

(
t

k

)2
⎛
⎝ k∑

j=0

t−k∑
�=0

(
k

j

)2(t− k

)2
⎞
⎠

n−1

Applying analysis similar to that in the proof of Lemma 2.5 shows that
this is

t∑
k=0

((
2k

k

)(
2(t− k)

t− k

))n−1(t

k

)2

There are 22tn total possible pairs (x,y), and dividing through yields the
claim in the statement of Lemma 2.7.

The methods in the proofs of Lemmas 2.5 and 2.7 depend on row-wise
independence. However, these methods do not directly extend to A for, say,
all binary vectors of weight at most 2, as for 1 ≤ i < j < k ≤ m, the
configurations of i, j-mismatches and the configurations of j, k-mismatches
affect the possible configurations of i, k- mismatches. More broadly, once the
family A becomes rich enough, the step where we appeal to independence is
not applicable and more sophisticated analysis is required. Hence, we have
the following (open) questions:

Open Problem 2.1. Fix m and k ≤ m. Can we answer Computational
Problem when A consists of all vectors of weight at most k?

Lemma 2.5 answers Open Problem 2.1 when k = 1, and the maximal
case in [1] answers Open Problem 2.1 when k = m. These boundary cases
are the only values of k for which Open Problem 2.1 has been answered.

Open Problem 2.2. For which choices of A can we answer Computational
Problem exactly? For which choices of A can we answer Computational
Problem efficiently?

To rephrase the second part of Open Problem 2.2, we ask:

Open Problem 2.3. Is Computational Problem NP-Complete for arbitrary
A?

Finally, we remark that exact answers to Computational Problem pro-
vide answers to expressiveness of commutative quantum circuits, approxi-
mate answers to Computational Problem provide approximations to expres-
siveness of commutative quantum circuits. Hence we ask:

Open Problem 2.4. For which choices of A can we approximate answers
to Computational Problem?

Seven open problems in applied combinatorics 575

Acknowledgements This work was performed at Oak Ridge National
Laboratory, operated by UT-Battelle, LLC for the US Department of Energy
(DOE) under contract DE-AC05-00OR22725. Support for the work came
from the DOE Advanced Scientific Computing Research (ASCR) Acceler-
ated Research in Quantum Computing Program under field work proposal
ERKJ354.

References

[1] Ryan S. Bennink. Counting Abelian Squares for a Problem in Quan-
tum Computing. Aug. 2022. doi: 10.48550/arXiv.2208.02360. arXiv:
arXiv:2208.02360.

[2] Alicia B Magann et al. “From pulses to circuits and back again: A quan-
tum optimal control perspective on variational quantum algorithms”.
In: PRX Quantum 2.1 (2021), p. 010101.

[3] Jarrod R McClean et al. “The theory of variational hybrid quantum-
classical algorithms”. In: New Journal of Physics 18.2 (2016), p. 023023.

[4] Dan Shepherd and Michael J. Bremner. “Temporally Unstructured
Quantum Computation”. In: Proceedings of the Royal Society A: Math-
ematical, Physical and Engineering Sciences 465.2105 (Feb. 2009), pp.
1413–1439. doi: 10.1098/rspa.2008.0443. MR2500810

[5] Xiao Yuan et al. “Theory of variational quantum simulation”. In: Quan-
tum 3 (2019), p. 191.

3. The computational complexity of the 4-uniform
hypergraph minimum s-t cut problem

Nate Veldt

Introduction Finding a minimum s-t cut in a graph is one of the most
fundamental and well-known combinatorial optimization problems, studied
and applied widely in mathematics, computer science, operations research,
and data science. The input to the problem is a graph G = (V,E) with
a distinguished source node s and sink node t. The goal is to delete the
minimum number of edges to destroy all paths from s to t, or equivalently
partition the nodes in a way that separates s and t while minimizing a cut
penalty (see Figure 2). A polynomial time solution for this problem has
been known since the 1950s [1], and many other algorithms are now taught
regularly as a standard part of an undergraduate algorithms course.

https://doi.org/10.48550/arXiv.2208.02360
https://arxiv.org/abs/arXiv:2208.02360
https://doi.org/10.1098/rspa.2008.0443
https://mathscinet.ams.org/mathscinet-getitem?mr=2500810

576 Sinan G. Aksoy et al.

Figure 2: Graph s-t cut.

Two formulations of the graph s-t cut problem

1. Find a minimum size set of edges whose dele-
tion separates s from t (e.g., three blue edges in
Figure 2).

2. Partition V into S ⊆ V and S̄ = V \S (e.g.,
white and black nodes in Figure 2), with s ∈ S
and t ∈ S̄, in order to minimize the number of
cut edges (i.e., edges crossing the partition).

The s-t cut problem can also be defined when the input is a hypergraph
H = (V,E), in which case each edge e ∈ E can have two or more nodes.
If we generalize one way of formulating the graph s-t cut problem, the goal
is simply to delete a minimum sized set of hyperedges to separate a source
node s from a sink node t. A polynomial time solution for this problem
was given half a century ago by Lawler [3], which works by reducing the
hypergraph to an s-t cut problem in a directed graph with an augmented
node set. However, generalizing the second formulation of the graph s-t cut
problem (partition nodes to separate s and t while minimizing a cut penalty)
leads to alternative problems that are not equivalent to this edge-deletion
problem. When a hyperedge has more than two nodes, there is more than
one way to separate those nodes across two node sets S and S̄. In a 4-uniform
hypergraph (see Figure 3), we can treat 1-vs-3 hyperedge splits differently
from 2-vs-2 splits. Recently there has been a growing interest in solving
hypergraph cut problems under these generalized types of cut penalties [5,
6, 7, 8, 4], since different ways of splitting up the nodes of a hyperedge may

Figure 3: Optimal s-t cuts in a 4-uniform hypergraph, depending on the
penalty w2 assigned to 2-vs-2 hyperedge splits (i.e., two nodes on each side
of a bipartition). All 1-vs-3 hyperedge splits have a penalty w1 = 1. Previous
results have shown the problem is NP-hard for w2 ∈ [0, 1) and polynomial-
time solvable when w2 ∈ [1, 2]. The complexity of the problem remains open
for w2 > 2.

Seven open problems in applied combinatorics 577

be more or less desirable depending on the application. In many machine
learning and data mining applications, for example, hyperedges represent
evidence that a set of data objects are related and should be associated
with the same label or cluster. In these cases, it is more desirable to split
hyperedges in such a way that most (even if not all) nodes are on the same
side of a cut. At the same time, using different cut penalties leads to drastic
differences in the underlying computational complexity of the problem, even
when hyperedges are very small. We specifically consider an open question on
the computational complexity of a generalized hypergraph s-t cut problem
in 4-uniform hypergraphs.

The cardinality-based hypergraph s-t cut problem Let H = (V, E)
be a hypergraph with a source node s and sink node t. Given a bipartition
{S, S̄} of the nodes, hyperedges can be classified based on the number (i.e.,
cardinality) of nodes on the small side of the cut. Edges with i nodes on the
small side of the cut are denoted by ∂i(S) = {e ∈ E : min{|e∩S|, |e∩S̄|} = i}.
We take the minimum between |e ∩ S| and |e ∩ S̄| to ensure the resulting
hypergraph cut function is symmetric, generalizing the fact that a graph
cut function is symmetric. Let wi ≥ 0 be the penalty assigned to each
hyperedge in ∂i(S). The value w0 is set to 0 to ensure that a hyperedge only
has a penalty if it is actually cut. The cardinality-based hypergraph s-t cut
problem is given by

(1) min
S⊆V

∑
i

wi|∂i(S)|, subject to s ∈ S and t ∈ S̄.

When wi = 1 for every i > 0, this is equivalent to finding a minimum
number of hyperedges to remove to separate s from t, and can be solved in
polynomial time using the reduction of Lawler [3]. If H is 3-uniform, any way
of cutting a hyperedge places exactly one node in S or exactly one node in
S̄. Since all hyperedge cut penalties are the same, this is solved by Lawler’s
algorithm.

Results for 4-uniform hypergraphs When H is 4-uniform, there is a
distinction between 2-vs-2 splits (penalty of w2) and 1-vs-3 splits (penalty of
w1). As long as w1 > 0, parameters can be scaled without loss of generality
so that w1 = 1. For certain choices of w2, Veldt, Benson, and Kleinberg [7]
showed how to reduce the hypergraph problem to a graph s-t cut problem,
by replacing each hyperedge with a gadget involving auxiliary vertices and
directed edges. The aim is to design gadgets so that cut penalties in the

578 Sinan G. Aksoy et al.

reduced directed graph match cut penalties in the original hypergraph. In

the 4-uniform case, it turns out this is possible if and only if 1 ≤ w2 ≤ 2.

If 0 ≤ w2 < 1, the problem can be shown to be NP-hard via reduction from

the optimization version of maximum cut, one of Karp’s 21 NP-complete

problems [2]. If G = (V,E) is an unweighted graph representing an instance

of maximum cut, this reduction constructs a hypergraph with the same node

set plus two additional nodes s and t. For each edge (u, v) ∈ E, a hyperedge

{u, v, s, t} is introduced, which must be cut in the resulting hypergraph s-t

cut problem since it contains both s and t. If w2 < w1 = 1, then a 2-vs-2

split of the hyperedge is cheaper than a 1-vs-3 split. Therefore, the minimum

s-t cut is the cut maximizing the number of 2-vs-2 hyperedge splits, which is

equivalent to finding a bipartition of nodes in G that maximizes the number

of cut edges.

Open questions and motivation Given the above notation and termi-

nology, our open question can be stated formally as follows.

Open Problem 3.1. What is the complexity of the cardinality-based 4-

uniform hypergraph s-t cut problem when w2 > 2 and w1 = 1?

Nothing is known about the computational complexity of the problem

except that the graph reduction strategy no longer applies. A reasonable first

step is to address the special case obtained by setting w1 = 1 and taking the

limit as w2 → ∞. This limit converges to the No-Even-Split 4-uniform

s-t cut problem: minimize the number of 1-vs-3 hyperedge splits when sep-

arating s and t, without making any 2-vs-2 hyperedge splits. Placing node

s in a cluster by itself always provides one way to separate s from t without

having even splits, but the complexity of finding the minimum number of

1-vs-3 splits is unknown.

Open Problem 3.2. What is the complexity of the No-Even-Split 4-

uniform s-t cut problem?

This special case of Open Problem 3.1 is particularly interesting given

its close relationship to an s-t cut problem with a very simple solution. More

specifically, this problem at first appears equivalent to setting w2 = 1 and

taking a limit as w1 → 0, but there is a subtle and interesting difference.

Setting w2 = 1 and w1 = 0 results in a degenerate problem that is easily

optimized, since separating s from the rest of the nodes has a cut penalty of

0. However, if w1 = 1 and w2 → ∞, it may never be optimal to separate s

(or t) from all other nodes. Despite its close relationship to a degenerate and

Seven open problems in applied combinatorics 579

easily solved problem, it is not clear if No-Even-Split 4-uniform s-t cut is
NP-hard, or if there is a strategy leading to a polynomial time solution.

A solution to the No-Even-Split problem would hopefully shed light
on other polynomial time algorithms or hardness results for the parameter
region w2 ∈ (2,∞). In hypergraphs where the maximum hyperedge size is
greater than 4, there is an even larger gap between known NP-hardness re-
sults and polynomial time solutions. When hyperedges are of arbitrary size
and cut penalties satisfy wi = f(i) for some increasing concave function f ,
the hypergraph problem can be reduced to a directed graph s-t cut prob-
lem [7]. There are also some parameter regimes where the problem is known
to be NP-hard, but there are many parameter settings where neither hard-
ness results nor polynomial time solutions are known. New techniques for
the 4-uniform case would hopefully help close these gaps as well.

In addition to their theoretical value, answers to these questions have
the potential to advance the state of the art in practical hypergraph algo-
rithms for downstream applications. Generalized hypergraph cut problems
are already being used in data mining and machine learning applications
such as node classification [4, 5, 8] and image segmentation [6], but existing
methods focus only on the regime where cut penalties are submodular. Cut
penalties are also cardinality-based in most applications [7], in which case
this submodularity property exactly corresponds to cut penalties defined
by a concave function f . If, for example, penalties were instead chosen so
that wi = g(i) for an increasing and strictly convex function g, this would
provide even more incentive to assign nodes from the same hyperedge to
the same cluster or node label. However, the computational complexity of
finding minimum cuts in this setting is unknown. The 4-uniform hypergraph
s-t cut problem with w2 > 2 is the simplest example of this type of convex-
penalty hypergraph cut problem. An answer to Open Problem 3.1 would
provide a needed first step in understanding what is algorithmically possible
for this and many other types of generalized hyperedge cut penalties.

References

[1] Lester Randolph Ford and Delbert R Fulkerson. “Maximal flow through
a network”. In: Canadian Journal of Mathematics 8 (1956), pp. 399–
404. MR0079251

[2] Richard M Karp. Reducibility among combinatorial problems. Springer,
2010.

[3] E. L. Lawler. “Cutsets and partitions of hypergraphs”. In: Net-
works 3.3 (1973), pp. 275–285. doi: 10.1002/net.3230030306. eprint:

https://mathscinet.ams.org/mathscinet-getitem?mr=0079251
https://doi.org/10.1002/net.3230030306

580 Sinan G. Aksoy et al.

https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.3230030306. url:
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230030306.

[4] Pan Li and Olgica Milenkovic. “Submodular Hypergraphs: p-
Laplacians, Cheeger Inequalities and Spectral Clustering”. In: Pro-
ceedings of the 35th International Conference on Machine Learn-
ing. Vol. 80. ICML ’18. PMLR, 2018, pp. 3014–3023. url:
http://proceedings.mlr.press/v80/li18e.html.

[5] Nate Veldt, Austin R. Benson, and Jon Kleinberg. “Minimizing Local-
ized Ratio Cut Objectives in Hypergraphs”. In: Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. KDD ’20. 2020.

[6] Nate Veldt, Austin R Benson, and Jon Kleinberg. “Approximate De-
composable Submodular Function Minimization for Cardinality-Based
Components”. In: Advances in Neural Information Processing Systems
34 (2021).

[7] Nate Veldt, Austin R Benson, and Jon Kleinberg. “Hypergraph cuts
with general splitting functions”. In: SIAM Review 64.3 (2022), pp.
650–685. MR4461566

[8] Yu Zhu and Santiago Segarra. “Hypergraph cuts with edge-dependent
vertex weights”. In: Applied Network Science 7.1 (2022), pp. 1–20.

4. The edge and vertex elimination problems in directed
acyclic graphs

Uwe Naumann

Introduction Impressive progress in the development of computer hard-
and software has been made over the past decades. Consequently, numerical
simulation has become one of the pillars of science and engineering. Prac-
tically relevant real-world phenomena are modelled mathematically. Their
numerical evaluation yields multivariate vector functions F : IRn → IRm

implemented as often highly complex computer programs.
Algorithmic Differentiation [7, 11] of numerical programs plays a cen-

tral role in numerous areas of computational science and engineering in-
cluding error estimation, uncertainty quantification, parameter sensitivity
analysis, model calibration and optimization. The resulting derivative pro-
grams can be used, for example, to compute the Jacobian (matrix) of (a
differentiable) F .

The data flow in a numerical program induces a directed acyclic graph
(dag) G = (V,E) with integer vertices representing all input, intermediate

https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.3230030306
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230030306
http://proceedings.mlr.press/v80/li18e.html
https://mathscinet.ams.org/mathscinet-getitem?mr=4461566

Seven open problems in applied combinatorics 581

and output values vi, i = 1, . . . , |V | of the program and directed edges E ⊆
V × V modelling data dependence. Association of local partial derivatives
di,j =

∂vj

∂vi
with all edges yields the chain rule of differentiation as

(2)
dvt
dvs

=
∑
(s,∗,t)

∏
(i,j)∈(s,∗,t)

di,j ,

where summation is over all paths (s, ∗, t) connecting a vertex s with a
vertex t [1]. (Partial) Derivatives are thus defined for arbitrary pairs of values
represented by both vertices.

Formal statement of the problem

Definition 4.1 (Edge Elimination). Let G = (V,E) and (i, j) ∈ E. Front-
elimination of (i, j) yields G− (i, j) ≡ Gf = (V f , Ef) such that

V f =

{
V if |Pi| > 1

V \ j otherwise
and Ef = E ∪ {(i, k) : k ∈ Sj}

at the cost of |Sj |.
Back-elimination of (i, j) yields G− (j, i) ≡ Gb = (V b, Eb) such that

V b =

{
V if |Si| > 1

V \ i otherwise
and Eb = E ∪ {(k, j) : k ∈ Pi}

at the cost of |Pi|.

Front-[back-]eliminatable edges are required to have non-empty succes-
sor [predecessor] sets. By the chain rule of differentiation, all complete edge
elimination sequences transform G into a bipartite DAG representing the
Jacobian matrix of the underlying numerical program. The cost of an edge
elimination sequence is the sum of the costs of the individual edge elimi-
nations. We aim to minimize the cost over all complete edge elimination
sequences.

Open Problem 4.1 (Edge Elimination). Given a directed acyclic graph
G and a positive integer k ≥ 0, is there a complete edge elimination sequence
with cost less than or equal to k?

The elimination of a vertex is equivalent to front-elimination of its in-
edges. Similarly, it is equivalent to back-elimination of its out-edges.

582 Sinan G. Aksoy et al.

Definition 4.2 (Vertex Elimination). Let G = (V,E) and j ∈ V . Elimina-
tion of j yields G− j ≡ G′ = (V ′, E′) such that

V ′ = V \ j and E′ = E ∪ {(i, k) : i ∈ Pj and k ∈ Sj}

at the cost of |Pj | · |Sj |.
Eliminatable vertices are required to have non-empty predecessor and

successor sets. By the chain rule of differentiation, all complete vertex elim-
ination sequences transform G into a bipartite DAG representing the Ja-
cobian matrix of the underlying numerical program. The cost of a vertex
elimination sequence is the sum of the costs of the individual vertex elimi-
nations. We aim to minimize the cost over all complete vertex elimination
sequences.

Open Problem 4.2 (Vertex Elimination). Given a directed acyclic
graph G and a positive integer k ≥ 0, is there a complete vertex elimination
sequence with cost less than or equal to k?

What is [not] known Both edge and vertex elimination terminate. Struc-
tural and numerical correctness follows by the chain rule [9].

Theorem 4.3. Jacobian Accumulation is NP-complete.

The proof, see [10], uses reduction from Ensemble Computation [4].
It exploits potential algebraic dependences (in particular, equality) among
local partial derivatives (labels on edges in the DAG). Under the same as-
sumptions both Edge Elimination and Vertex Elimination turn out
to be NP-complete. The computational complexity of the purely structural
formulations in Defs. 4.1 and 4.2 is unknown.

Exiting heuristics for computing good vertex and edge elimination se-
quences are based on the structural formulations, for example [2, 3, 5, 12].

Incomplete elimination sequences are required in the case of scarcity [6].
The computational complexity of the associated combinatorial Minimum

Edge Count problem asking for a (matrix-free) representation of the Ja-
cobian as a dag with a minimal number of edges is unknown [8]. Ultimately,
combinations Edge Elimination and Vertex Elimination with Mini-

mum Edge Count should be considered.

References

[1] W. Baur and V. Strassen. “The Complexity of Partial Derivatives”. In:
Theoretical Computer Science 22 (1983), pp. 317–330. issn: 0304-3975.
MR0693063

https://mathscinet.ams.org/mathscinet-getitem?mr=0693063

Seven open problems in applied combinatorics 583

[2] J. Chen et al. “An Integer Programming Approach to Optimal Deriva-
tive Accumulation”. In: Recent Advances in Algorithmic Differentia-
tion. Ed. by S. Forth et al. Vol. 87. Lecture Notes in Computational
Science and Engineering. Berlin: Springer, 2012, pp. 221–231. isbn: 978-
3-540-68935-5. doi: 10.1007/978-3-642-30023-3 20.

[3] S. Forth et al. “Jacobian Code Generated by Source Transformation
and Vertex Elimination can be as Efficient as Hand-Coding”. In: ACM
Transactions on Mathematical Software 30.3 (2004), pp. 266–299. url:
http://doi.acm.org/10.1145/1024074.1024076. MR2124393

[4] M. Garey and D. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness (Series of Books in the Mathematical
Sciences). First Edition. W. H. Freeman, 1979. MR0519066

[5] A. Griewank and U. Naumann. “Accumulating Jacobians as
chained sparse matrix products”. In: Mathematical Program-
ming, Ser. A 95.3 (2003), pp. 555–571. issn: 0025-5610. url:
http://dx.doi.org/10.1007/s10107-002-0329-7. MR1969765

[6] A. Griewank and O. Vogel. “Analysis and Exploitation of Jacobian
Scarcity”. In: Modeling, Simulation and Optimization of Complex Pro-
cesses. Ed. by H. Bock et al. Berlin: Springer, 2005, pp. 149–164.

[7] A. Griewank and A. Walther. Evaluating Derivatives: Principles and
Techniques of Algorithmic Differentiation. 2nd. Other Titles in Applied
Mathematics 105. Philadelphia, PA: SIAM, 2008. isbn: 978–0–898716–
59–7. MR2454953

[8] V. Mosenkis and U. Naumann. “On optimality preserving eliminations
for the minimum edge count and optimal Jacobian accumulation prob-
lems in linearized DAGs”. In: Optimization Methods and Software 27.2
(2012), pp. 337–358. MR2901965

[9] U. Naumann. “Optimal accumulation of Jacobian matrices by elimi-
nation methods on the dual computational graph”. In: Mathematical
Programming, Ser. A 99.3 (2004), pp. 399–421. issn: 0025-5610. url:
http://dx.doi.org/10.1007/s10107-003-0456-9.

[10] U. Naumann. “Optimal Jacobian accumulation is NP-complete”. In:
Mathematical Programming, Ser. A 112.2 (2008), pp. 427–441. issn:
0025-5610. url: http://dx.doi.org/10.1007/s10107-006-0042-z.

[11] U. Naumann. The Art of Differentiating Computer Programs: An In-
troduction to Algorithmic Differentiation. Software, Environments, and
Tools 24. Philadelphia, PA: SIAM, 2012. isbn: 978–1–611972–06–1. url:
http://bookstore.siam.org/se24. MR2894688

[12] J. Pryce and M. Tadjouddine. “Fast Automatic Differentiation Jaco-
bians by Compact LU Factorization”. In: SIAM Journal on Scientific

https://doi.org/10.1007/978-3-642-30023-3_20
http://doi.acm.org/10.1145/1024074.1024076
https://mathscinet.ams.org/mathscinet-getitem?mr=2124393
https://mathscinet.ams.org/mathscinet-getitem?mr=0519066
http://dx.doi.org/10.1007/s10107-002-0329-7
https://mathscinet.ams.org/mathscinet-getitem?mr=1969765
https://mathscinet.ams.org/mathscinet-getitem?mr=2454953
https://mathscinet.ams.org/mathscinet-getitem?mr=2901965
http://dx.doi.org/10.1007/s10107-003-0456-9
http://dx.doi.org/10.1007/s10107-006-0042-z
http://bookstore.siam.org/se24
https://mathscinet.ams.org/mathscinet-getitem?mr=2894688

584 Sinan G. Aksoy et al.

Computing 30.4 (2008), pp. 1659–1677. doi: 10.1137/050644847. url:
http://link.aip.org/link/?SCE/30/1659/1.

5. Data flow reversal problems

Uwe Naumann

Introduction Impressive progress in the development of computer hard-
and software has been made over the past decades. Consequently, numerical
simulation has become one of the pillars of science and engineering. Prac-
tically relevant real-world phenomena are modelled mathematically. Their
numerical evaluation yields multivariate vector functions F : IRn → IRm:
y = F (x) implemented as often highly complex computer programs.

Evaluation of a numerical program at a given input induces a directed
acyclic graph (DAG) G = (V,E). Its integer vertices V = (X,Z, Y) consist
of n ≥ 1 sources X = {1, . . . , n} representing x ∈ IRn, p ≥ 0 intermediate
vertices Z = {n + 1, . . . , n + p} and m ≥ 0 sinks Y = {n + p + 1, . . . , n +
p+m} representing y ∈ IRm. Intermediate vertices and sinks model calls to
elemental functions

vj = Fj(vi)(i,j)∈E for j = n+ 1, . . . , n+ p+m .

Directed edges E ⊆ V ×V are due to corresponding data dependence within
the program. A topological order of the vertices is implied. DAGs of numer-
ical simulations become very large. They are nonpersistent in the sense that
they cannot be stored in memory.

Algorithmic Differentiation (AD) [7, 13] of numerical programs in ad-
joint mode plays a central role in numerous areas of computational science
and engineering including error estimation, uncertainty quantification, pa-
rameter sensitivity analysis, model calibration and optimization. It yields
efficient (O(m)) gradients (m = 1) with machine accuracy which would
otherwise have to be approximated numerically with a cost of O(n) where
often n � 1. Refer to www.autodiff.org for links to AD projects and research
groups as well as for an extensive bibliography on the subject.

The algorithmic adjoint evaluates x̄ = x̄+ F ′(x)T · ȳ as

v̄i = v̄i + F ′
j(vi)(i,j)∈E · v̄j for j = n+ p+m, . . . , n+ 1

by accessing the nonpersistent vi in reverse order. Equivalently, the DAG
G is reversed by accessing its vertices in reverse order. Values lost due to

https://doi.org/10.1137/050644847
http://link.aip.org/link/?SCE/30/1659/1
www.autodiff.org

Seven open problems in applied combinatorics 585

overwriting of program variables in the given implementation of F need to
be recovered. Naively, all overwritten required [1, 9] values could be pushed
onto a stack. The persistent memory required for data flow reversal becomes
maximal (O(n + p)). Alternatively, all overwritten required values could
be recomputed from the persistent inputs, which yields minimal persistent
memory requirement (O(n)). Reversal of the flow of data in nonpersistent
memory results in quadratic computational cost (O(p2)). Each intermediate
value needs to be recomputed from x. Without loss of generality, unit cost
can be assumed for all Fj . The combinatorial DAG Reversal problem
aims to minimize the computational cost of data flow reversal in limited
(� O(p2)) persistent memory.

Applications of data flow reversal beyond algorithmic adjoints include
reverse debugging of large-scale numerical simulations [4] and checkpointing
for resilience of computer systems [16].

Formal statement of the problem

Open Problem 5.1 (DAG Reversal). Given a DAG G and two integers
M ≥ n and O ≥ 0 can G be reversed within persistent memory of size less
than or equal to M with computational cost less than or equal to O?

What is [not] known

Theorem 5.1. DAG Reversal is NP-complete.

The proof can be found in [12]. The related Call Tree Reversal

problem is also known to be NP-complete [11].
The state of the art in methods for data flow reversal is mostly driven

by solutions for special cases due to given simulation scenarios [3, 15, 17].
Optimal checkpointing methods for certain types of evolutions (DAG is a
simple chain) were developed [5, 6]. Generalizations include mixed-integer
programming for Call Tree Reversal [10] and divide-and-conquer ap-
proaches [14]. Refer to [8] for additional information.

The combinatorial data flow reversal problems are expected to benefit
from further formal theoretical analysis. In particular, there are no approx-
imation methods available.

References

[1] B. Dauvergne and L. Hascoët. “The Data-Flow Equations of Check-
pointing in Reverse Automatic Differentiation”. In: Computational Sci-
ence – ICCS 2006. Ed. by V. Alexandrov et al. Vol. 3994. Lecture Notes
in Computer Science. Heidelberg: Springer, 2006, pp. 566–573.

586 Sinan G. Aksoy et al.

[2] C. Bischof et al., eds. Advances in Automatic Differentiation. Lec-
ture Notes in Computational Science and Engineering (LNCSE) 64.
Springer, 2008.

[3] I. Charpentier. “Checkpointing Schemes or Adjoint Codes: Application
to the Meteorological Model Meso-NH”. In: SIAM Journal on Scientific
Computing 22.6 (2001), pp. 2135–2151. MR1856306

[4] J. Engblom. “A review of reverse debugging”. In: Proceedings of the
2012 System, Software, SoC and Silicon Debug Conference (2012), pp.
1–6.

[5] A. Griewank. “Achieving Logarithmic Growth of Temporal and Spatial
Complexity in Reverse Automatic Differentiation”. In: Optimization
Methods and Software 1 (1992), pp. 35–54.

[6] A. Griewank and A. Walther. “Algorithm 799: Revolve: An Implemen-
tation of Checkpointing for the Reverse or Adjoint Mode of Computa-
tional Differentiation”. In: ACM Trans. Math. Softw. 26.1 (Mar. 2000),
pp. 19–45.

[7] A. Griewank and A. Walther. Evaluating Derivatives: Principles and
Techniques of Algorithmic Differentiation. 2nd. Other Titles in Applied
Mathematics 105. Philadelphia, PA: SIAM, 2008. isbn: 978–0–898716–
59–7. MR2454953

[8] L. Hascoët. “Reversal Strategies for Adjoint Algorithms”. In: From Se-
mantics to Computer Science. Essays in memory of Gilles Kahn. Ed.
by Y. Bertot et al. Cambridge University Press, 2009, pp. 487–503.

[9] L. Hascoët, U. Naumann, and V. Pascual. “To-Be-Recorded Analysis in
Reverse Mode Automatic Differentiation”. In: Future Generation Com-
puter Systems 21 (2005), pp. 1401–1417.

[10] J. Lotz, U. Naumann, and S. Mitra. “Mixed Integer Programming for
Call Tree Reversal”. In: Seventh SIAM Workshop on Combinatorial
Scientific Computing. Proceedings. SIAM, 2016, pp. 83–91.

[11] U. Naumann. “Call Tree Reversal is NP-complete”. In: [2]. Springer,
2008, pp. 13–22. MR2531676

[12] U. Naumann. “DAG Reversal is NP-complete”. In: Journal of Discrete
Algorithms 7 (2009), pp. 402–410. MR2558997

[13] U. Naumann. The Art of Differentiating Computer Programs: An In-
troduction to Algorithmic Differentiation. Software, Environments, and
Tools 24. Philadelphia, PA: SIAM, 2012. isbn: 978–1–611972–06–1. url:
http://bookstore.siam.org/se24. MR2894688

[14] J. Siskind and B. Pearlmutter. “Divide-and-conquer checkpointing for
arbitrary programs with no user annotation”. In: Optimization Methods
& Software 33.4–6 (2018), pp. 1288–1330. MR3853239

https://mathscinet.ams.org/mathscinet-getitem?mr=1856306
https://mathscinet.ams.org/mathscinet-getitem?mr=2454953
https://mathscinet.ams.org/mathscinet-getitem?mr=2531676
https://mathscinet.ams.org/mathscinet-getitem?mr=2558997
http://bookstore.siam.org/se24
https://mathscinet.ams.org/mathscinet-getitem?mr=2894688
https://mathscinet.ams.org/mathscinet-getitem?mr=3853239

Seven open problems in applied combinatorics 587

[15] W. Symes. “Reverse time migration with optimal checkpointing”. In:
GEOPHYSICS 72.5 (Sept. 2007), SM213–SM221.

[16] A. Walther and S. Narayanan. “Extending the Binomial Checkpointing
Technique for Resilience”. In: 2016 SIAM Workshop on Combinatorial
Scientific Computing (CSC16). extended abstract.

[17] Q. Wang, P. Moin, and G. Iaccarino. “Minimal Repetition Dy-
namic Checkpointing Algorithm for Unsteady Adjoint Calculation”.
In: SIAM Journal on Scientific Computing 31.4 (2009), pp. 2549–2567.
MR2520289

6. Price of asynchrony

Carlos Ortiz Marrero, Stephen J. Young

Introduction Finding the solution x∗ of a large-scale system of linear
equations Ax = b is one of the most common computation primitives in
scientific computation, forming the backbone of numerical approaches to a
variety of applications including computational fluid dynamics, optimiza-
tion, and atmospheric modeling. While there are many different approaches
to solve such systems (for example, Gaussian elimination, Krylov subspace
methods, or conjugate gradient methods), iterative approaches are popu-
lar because of their straight-forward nature and ease of implementation.
Broadly speaking, iterative methods proceed by cleverly selecting an auxil-
iary matrix M and using M to generate a sequence of approximate solutions
x(0), x(1), x(2), . . . with the recurrence Mx(k+1) = (M − A)x(k) + b. Thus if
systems of the form My = c can be easily solved, then the approximation
can be refined for essentially the cost of one matrix-vector multiplication.
For example, the (damped) Jacobi iteration is when M is chosen to be the
(scaled) diagonal of A and Gauss-Seidel iteration is when M chosen to be
the lower-triangular portion of M .

Typically, the analysis of these methods work with the sequence of resid-
uals r(k) = x(k) − x∗, rather than directly with the sequence of approximate
solutions. It is easy to see that the residual solutions satisfy a homoge-
neous version of the recurrence which defines the approximate solutions,
i.e. Mr(k+1) = (M − A)r(k). Indeed, if M is invertible, then the sequence
of residuals is given by r(k) = Ckr(0) where C = I − M−1A is known as
the iteration matrix. As a consequence, the iterative approaches to solv-
ing Ax = b can be understood in terms of repeated matrix multiplication.
Indeed, an iterative method converges independent of the initial approxi-
mate solution if and of if the spectral radius of C, ρ(C), is strictly less than

https://mathscinet.ams.org/mathscinet-getitem?mr=2520289

588 Sinan G. Aksoy et al.

1. Even more is true, specifically, if ρ(C) < 1 then − log10(ρ(C)) gives an
lower bound on the rate of increase (in terms of number of iterations) of
the approximate solutions, i.e. the number decimals of precision of x(k) is
approximately − log10(ρ(C))k + log10(

∥∥r(0)∥∥).
While iterative methods are quite effective and practical for solving lin-

ear systems, there are significant challenges that arise when considering large
scale systems Ax = b such as those that arise in many applications, such as
the modeling of wind turbines, the modeling of reactor processes, compu-
tational chemistry for catalysis design, and many others. In particular, the
matrix A can be so large that it can not be effectively stored in memory
(RAM) on a single compute node – this necessitates either taking a signifi-
cant performance hit by repeatedly transferring portions of A in and out of
memory or dividing the system into parts and using many compute nodes
to build the solution.

More concretely, suppose that A ∈ Rn×n and b ∈ Rn and we wish to use
compute nodes labeled 1, 2, . . . ,
 to solve the system Ax = b. One approach
is to partition the rows of A into
 sets resulting in rectangular matrices
Ai ∈ Rki×n and have a matching partition for M , x and b. In cases such as
Jacobi iteration it is easy to extend the iterative scheme by considering the

same partition on the diagonal matrix M , i.e. Mix
(k+1)
i = (Mi−Ai)x

(k)+bi,
where x(k) is the approximate solution at iteration k reconstructed from the

local solutions x
(k)
1 , . . . , x

(k)
� . For non-diagonal M , such as with Gauss-Seidel

iteration, the näıve approach would be to iteratively solve for the x
(k+1)
i

using the lower-triangular form and then “pass” the information on x
(k+1)
i

onto the subsequent compute nodes so that the lower-triangular form can be

used to solve x
(k+1)
i+1 , x

(k+1)
i+2 , . . . , x

(k+1)
� . However, both of these approaches

result in computational delays resulting from the time need to communicate
between different compute nodes.

The problem is especially acute in large high-performance computing
(HPC) systems such as Aurora, Fugaku, and LUMI, where size of the sys-
tem and over all network congestion can cause significant inter-node com-
munication delays. Indeed, for some scientific computations it is estimated
that over 50% of the computational time is taken up by communication
requirements [1]. In other contexts it is known that by performing work
asynchronously, that is, without waiting for the results of computation or
work on remote nodes, can significantly increase the performance of HPC
systems [3, 4, 2]. However, little is known about how iterative methods for
solving linear systems are effected by asynchrony. More generally, we wish
to understand the price of asynchrony, that is, the effect of asynchronous
updates on the convergence rate of iterative methods.

Seven open problems in applied combinatorics 589

Problem statement As a first step towards understanding the price of
asynchrony, we propose a simple model of asynchronous updates. To begin,
we assume that the iterative method can be viewed through the recurrence
x(k+1) = Mx(k) where M is a n × n real matrix with ρ(M) < 1. To build
a simple model of asynchronous updates for M , we partition the matrix M
into an
×
 array of blocks and for each i ∈ [
] define the update scheme

x̃
(k+1)
i =

∑
j

Mij x̃
(k−δji)
j ,

where δji represents the “delay” in information from compute node j reach-
ing compute node i (and so we assume that δii = 0). The price of asyn-
chrony can be viewed as the difference between the rates at which

∥∥x(k)∥∥
and

∥∥x̃(k)∥∥ converge to 0. With this framing, for any κ ≥ maxi,j δij the asy-

chronous updates can be viewed as a linear operator on R(κ+1)n defined by

(x̃(κ), . . . , x̃(0)) is mapped to (x̃(κ+1), . . . , x̃(1)) where x̃
(κ+1)
i =

∑
j Mij x̃

(κ−δji)
j

for all blocks i. We denote the matrix for this linear operator by M (δ,κ) and
note that M (0,κ) corresponds to the synchronous update which maintains a
history of κ steps.

Lemma 6.1. Let M be a n× n real matrix with ρ(M) < 1 partitioned into
an
 ×
 array of blocks. Let δ be an element of N�×� such that δii = 0 for
all i. Suppose that maxij δij ≤ κ ≤ κ′, then ρ(M (δ,κ)) = ρ(M (δ,κ′)).

Proof. Suppose that (μ, v) is an eigenpair of M (δ,κ). Since M (δ,κ) takes
(x̃(κ), . . . , x̃(0)) to (x̃(κ+1), . . . , x̃(1)), there is some vector v0 ∈ Rn such
that v = (μκv0, μ

κ−1v0, . . . , μv0, v0). Further, since v is an eigenvector of
M (δ,κ) we have that μκ+1(v0)i =

∑
j μ

κ−δjiv0. Now define the vector v′ =

(μκv0, μ
κ−1v0, . . . , μv0, v0, μ

−1v0, . . . , μ
κ−κ′

v0) and considerM (δ,κ′)v′. By con-
struction, we have that construction M (δ,κ′)v′ = (w′, μκv0, . . . , μ

κ−κ′+1v0)
for some w′ ∈ Rn. Furthermore, w′

i =
∑

j μ
κ−δjiv0 = μκ+1(v0)i. As a con-

sequence (μ, v′) is a eigenpair for M (δ,κ′). A similar argument shows that
any eigenpair for M (δ,κ′) has a corresponding eigenpair for M (δ,κ). In par-
ticular, the two matrices are co-spectral and hence have the same spectral
radius.

As an immediate consequence of Lemma 6.1, we have that ρ(M (0,κ)) =
ρ(M) for any κ. Furthermore, it suffices to restrict our attention to the
spectral radius of M (δ,κ) for any system of delays δ and κ = max δ. Thus,
we will abuse notation slightly denote by M (δ) any member of the family{
M (δ,k) | k ≥ max δ

}
.

590 Sinan G. Aksoy et al.

Intuitively, it seems that if we fix a maximum delay k, then ρ(M (δ)) is
maximized when the delay between any pair of nodes achieves the maximum
delay. In this case, uniformity of the delays allows for an explicit calculation
of ρ(M (δ)).

Lemma 6.2. Let M be an n×n real matrix with ρ(M) < 1 partitioned into
an
 ×
 array of blocks. Let δ be an element of N�×� such that δij = k for
all non-zero blocks of M , then ρ(M (δ)) = ρ(M)

1/k+1.

Proof. As noted in Lemma 6.1, any eigenpair (μ, v) of M (δ,κ) has the form
v = (w, μ−1, . . . , μ−κw), where μwi =

∑
j μ

−δijMijwj . However, since δij =

k for any non-zero block of M , this implies that μw = μ−kMw and (μk+1, w)
is an eigenpair for M . It is easy to see that a similar construction will take
an eigenpair for M to an eigenpair for M (δ,κ). The desired result on the
spectral radius follows immediately.

This leads naturally to the following open questions:

Open Problem 6.1. Let M be a n × n real matrix with p(M) = λ < 1
partitioned into an
×
 array of blocks. Is it the case that for all elements δ
of [k]�×� with zero diagonals, ρ(M (δ)) ≤ λ

1/k+1? If not, is there some function
f : (0, 1)×N → (0, 1) such that ρ(M (δ)) ≤ f(λ, k)?

Intuitively, it seems as if this is the worst possible case for the conver-
gence rate, that is, if the all the delays are at most k.

Experimental results As a first pass towards resolving this problem,
consider a random matrix M selected from one of three different ensem-
bles derived from a matrix X with independent normally distributed en-
tries with mean zero; M = X, the Gaussian Orthonormal Ensemble where
M = X +XT , and the Wishart ensemble where M = XXT . For notational
convenience, we assume that M is re-scaled to having unit spectral radius.
We also consider, for each of these matrix ensembles, the iteration matrix
associated with a block Jacobi iteration (again, normalized to have norm 1),
that is, the diagonal blocks are zero and the off-diagonal blocks are given
by M−1

ii Mij where Mxy denotes the x, y block in M . In each of these six,
cases we also consider two different delay patterns with 4 compute nodes; a
single node with a delay of 5 and all others having a delay of 0 (Figure 4a)
and randomly generated Poisson delays with a mean of 3 (Figure 4b). In
Figure 5, we plot the relationship between ρ((cM)(δ)) versus c ∈ (0, 1) for
each of these graphs over 50 different trials.

These experiments would seem to provide at least some support for the
conjecture that ρ(M (δ)) ≤ ρ(M)

1/max δ, at least when ρ(M) is sufficiently

Seven open problems in applied combinatorics 591

4

3

2

1

5

5

5

1

(a) Single Delays

4

3

2

1

1

3

2 4

2

5

2

1

2

4

2

5

(b) Poisson Delays

Figure 4: Delay patterns for asynchronous computation. A weight d edge
directed from j to i represents a delay of d time steps in information prop-
agating from j to i, i.e. δji = d.

small. In the case where ρ(M) is close to one, we expect that at least part of
the violation of the conjecture may be as a result of numerical instabilities in
the spectral radius calculation. In particular, from the proofs of Lemma 6.1
and 6.2, it easy to see that despite M (δ,κ) being an (κ+1)n×(κ+1)n matrix,
the sum of the geometric multiplicities is at most n. To further complicate
matters, M (δ) is non-Hermitian and has entries of both positive and negative
signs, increasing the likelihood that the eigenvalue which yields the spectral
radius is complex.

It is also interesting to note that there is relatively little difference be-
tween the behavior of the full matrix iteration and the block Jacobi iteration
when there is a single constant delay, while for Poisson delays the block Ja-
cobi iteration has a significantly higher spectral radius. One possible expla-
nation is to consider the average effective delays (define as the mean delay
over non-zero blocks of M) which is 15/16 for a single delayed node, 15/12 for
Jacobi iteration with a single delayed node, 33/16 for Poisson delays, and 33/12
for Jacobi iteration with Poisson delays. As a result, one might speculate
that the important parameter for understanding ρ(M (δ)) is the mean delay,
perhaps weighted by the spectral radius of the individual blocks.

Acknowledgements The authors gratefully acknowledge the funding sup-
port from the Applied Mathematics Program within the U.S. Department of
Energy’s Office of Advanced Scientific Computing Research as part of RAn-
domized Techniques For Iterative Solvers in Heterogeneous environments

592 Sinan G. Aksoy et al.

Figure 5: Price of Asynchrony. For each of the three matrix ensembles, the
solid line represents the average spectral radius over 50 different samples
from the ensemble, while the shaded area represents a range of two standard
deviations. The dashed line is the conjectured upper bound in terms of the
spectral radius of the synchronous update matrix.

(RATFISH). Pacific Northwest National Laboratory is operated by Battelle

for the DOE under Contract DE-AC05-76RL01830.

References

[1] Nikhil Jain. “Optimization of communication intensive applications

on HPC networks”. PhD thesis. University of Illinois at Urbana-

Champaign, 2016.

[2] Joshua D. Suetterlein et al. “Extending the Roofline Model for Asyn-

chronous Many-Task Runtimes”. In: 2016 IEEE International Con-

ference on Cluster Computing (CLUSTER). 2016, pp. 493–496. doi:

10.1109/CLUSTER.2016.47.

https://doi.org/10.1109/CLUSTER.2016.47

Seven open problems in applied combinatorics 593

[3] Joshua Suetterlein et al. “Asynchronous Runtimes in Action: An In-

trospective Framework for a Next Gen Runtime”. In: 2016 IEEE In-

ternational Parallel and Distributed Processing Symposium Workshops

(IPDPSW). 2016, pp. 1744–1751. doi: 10.1109/IPDPSW.2016.191.

[4] Joshua Suetterlein et al. “On the Marriage of Asynchronous Many

Task Runtimes and Big Data: A Glance”. In: 2020 IEEE 27th Interna-

tional Conference on High Performance Computing, Data, and Analyt-

ics (HiPC). 2020, pp. 233–242. doi: 10.1109/HiPC50609.2020.00037.

7. (n − k)-contingent zero-forcing for power grids

Sinan G. Aksoy, Anthony V. Petyuk, Sandip Roy, Stephen J. Young

Introduction With the increasing penetration of microgrids, renewable

energy sources, power-generation at the edge, and distributed energy re-

sources, maintaining the stability of power grid transmission has changed

dramatically. For example, the majority of grid power generation used to

be achieved by spinning large turbines (e.g. hydro-electric turbines spun by

falling water, steam powered turbines in gas/coal/nuclear power plants).

However, in 2022 almost 14% of the utility scale generation was from wind

or solar [14]. In contrast to turbine-based generation, neither wind nor so-

lar power has any “inertia” and so is subject to rapid changes in the total

generation which are not controlled by operators. This puts significant pres-

sure on control schemes designed to manage the stability of the power grid

through the regulation of power generation. Such control schemes are also

made challenging by the increasing penetration of microgrids in the power

system: these are small, regional areas of the power grid which contain suffi-

cient internal generation that disconnect themselves from the broader power

grid in order to improve local stability. As microgrids change their connec-

tivity to the power grid, the fundamental electrical equations which govern

power flow on the grid also change, impacting control schemes.

The changing grid not only poses challenges for stable control, but also

presents several opportunities to increase both resilience and efficiency. For

example, phasor measurement units (PMUs) have been deployed at selected

places within the power-grid over the last 25 years, providing measures of

the local power grid state (i.e., voltage magnitude and phase angle) up to

120 times a second – a significant increase over previous methods yielding

one measurement every few seconds. Another opportunity to increase the

resilience and stability of the grid is afforded by the increasing penetration

https://doi.org/10.1109/IPDPSW.2016.191
https://doi.org/10.1109/HiPC50609.2020.00037

594 Sinan G. Aksoy et al.

of distributed energy resources (DERs), such as grid-scale battery instal-
lations. Not only do these large battery installations provide a means to
temporally arbitrage power from renewable sources (e.g., store excess power
generated during the day by solar panels to use at night), they also pro-
vide alternative points of control for the power grid via selective charging,
islanding, and discharging to rapidly inject power from the overall grid sys-
tem. Furthermore, because of the significantly smaller footprint of grid-scale
batteries (as compared to traditional power plants) it is possible to deploy
these resources in locations which are advantageous to control and stability.

Given this variety of power-grid structures and operating points, it might
seem nearly intractable to decide whether a collections of PMUs provide
sufficient observability of the state of grid, or whether a collection DERs
are able to provide stabilization for the grid. Fortunately, both of these
problems can be reduced to a combinatorial problem on the structure of the
grid known as zero-forcing.

Definition 7.1 (Zero-Forcing Move). Given a graph G = (V,E) and a set
S ⊆ V of vertices colored blue. A vertex v ∈ V − S can be colored by a
zero-forcing move if there is a vertex s such that {v} = N(s)−S, that is, if
there is a vertex s ∈ S such that v is the unique neighbor of s not colored
blue. If v is colored via a zero-forcing move that relies on s, we will say that
s is used to color v.

Definition 7.2 (Zero-Forcing Set). Given a graph G = (V,E), a set Z ⊆ V
is called a zero-forcing set if there is a sequence of zero-forcing moves such
that all vertices in V are colored.

There is an extensive literature around determining the size and struc-
ture of minimal zero-forcing sets (see for instance [9] and the references
therein). Concerning power-grid applications, [11] shows the linear dynam-
ics associated to the power-flow equations are controllable by controllers at
a zero-forcing set, and [4, 13] shows if phasor-measurement units are placed
at a power-dominating set1 then the phase of every bus in the network is
recoverable. Consequently, distributed energy resource placement (such as
grid-scale batteries) and phasor-measurement units may enable the real-time
steering of the power-grid to increase efficiency and resiliency. In addition,
recent work [12] has shown zero-forcing sets can be used to identify control
points for microgrids. However, these efforts fail to take into account the
dynamic nature of the grid. In particular, zero-forcing is defined for a static

1A power-dominating set is a set of vertices S such that, combined with their
neighborhood, they form a zero-forcing set.

Seven open problems in applied combinatorics 595

graph which does not allow for changes in the underlying network topology,
limiting its applicability to the observability and control of the power grid.

Contingent zero-forcing To address the limitations of zero-forcing in
the context of the power grid, we propose the following extension of the
zero-forcing to identify resilient sets which can achieve the observability and
control of the grid.

Definition 7.3 ((n − k)-contingent Zero Forcing). Given a graph G =
(V,E), a set Z ⊆ V is a (n − k)-contingent zero-forcing set if for every set
of edges E′ of size at most k, Z is a zero-forcing set for G′ = (V,E − E′).

We note the edge-leaky zero-forcing number introduced independently
by Alameda, Kritschgau, and Young [2] is essentially equivalent to this def-
inition2. Since the transmission and distribution level of power grids fre-
quently exhibit “tree-like” structure, it is natural to first consider nature of
the (n − k)-contingent zero-forcing sets on trees. To explore this, we first
recall the following fact about the zero-forcing sets of trees.

Theorem 7.4 ([6]). If T is a tree with t ≥ 2 leaves, then any collection of
at least t− 1 leaves is a zero-forcing set for T .

In the setting of (n− k)-contingent zero-forcing, we apply this to prove
the following lemma.

Lemma 7.5. Let T = (V,E) be a tree. For any k ≥ 1, a set Z ⊆ V is a
(n − k)-contingent zero-forcing set if and only if Z contains all vertices of
degree at most k.

Proof. If Z is a (n − k)-contingent zero-forcing set for any graph, then it
must contain all vertices of degree at most k. In particular, if any vertex v
of degree at most k is not in Z then removing all of the incident edges to v
results in a graph where Z is not a zero-forcing set.

Now let Z be the set of vertices of degree at most k in T and let F be
the forest formed by removing a set of k edges from T . We first note that
any isolated vertex in F has degree at most k in T as we removed at most k

2In contrast to (n − k)-contingent zero-forcing, edges in the edge-leaky zero-
forcing process aren’t removed from the graph, rather their use is prohibited. Con-
sequently, it is possible that in some stage of the zero-forcing process the contingent
zero-forcing process can force a strict superset of the vertices forcible in the equiv-
alent edge-leaky process. However, Alameda, Kritschgau, and Young go on to show
the
-edge-leaky zero-forcing sets are the same as
-leaky zero-forcing sets. Thus, by
Lemma 7.7
-edge leaky zero-forcing is equivalent to (n−
)-contingent zero-forcing.

596 Sinan G. Aksoy et al.

edges. Suppose there is some tree T ′ which has two leaves u, v �∈ Z. We note
that since u and v are in the same tree in F , there edge {u, v} is not in T .
Thus, in order for both u and v to be leaves in F at least k + k > k edges
must be removed, contradicting the construction of F . Thus, every tree in
F is either an isolated vertex belong to Z or a tree with at most one leaf
not in Z. Thus, by Theorem 7.4, every tree in F is forcible by Z.

The idea of (n−k)-contingent zero-forcing is the not the first attempt to
develop a notion of zero-forcing that is resilient to changes in the underling
graph. For example, Dillman and Kenter [6] consider the resilience in the
context of water flows where water can “leak” out at the joints preventing
vertices from participating in the forcing process. More formally, they give
the following definition:

Definition 7.6 (
-leaky Zero-Forcing). Given a graph G = (V,E), a set
Z ⊆ V is an
-leaky zero-forcing set if for every set of vertices L ⊆ V of
size at most
, Z is a zero-forcing set of G′, where G′ is formed by adding a
pendant vertex to each vertex in L.

Observe that any vertex v ∈ L can not be used to color any other vertex
via a zero-forcing move. In other words, the zero-forcing process “leaks” out
of the graph on the vertices in L so they are only able to result in the col-
oring of new pendant vertices. In many ways, the leaky zero-forcing process
can be thought of as an vertex version of the contingent zero-forcing pro-
cess: in leaky zero-forcing an unknown set of vertices can not participate in
the zero-forcing process, while in the contingent zero-forcing process an un-
known set of edges can not participate in the zero-forcing process. With this
observation, it is unsurprising these two processes are effectively equivalent,
as we show below.

Lemma 7.7. A set S is a (n− k)-contingent zero-forcing set if and only if
it is an k-leaky zero-forcing set.

Proof. Let G be a graph and suppose Z is a (n− k)-contingent zero-forcing
set for G. Fix an arbitrary set of L leaks in the graph G, where |L| ≤ k. We
will identify a set E of at most
 edges such that there is a forcing sequence
of G−E which does not use any vertex in L. To this end, we iteratively build
the set E of removed edges based on Z. Note that as long as |E| ≤ k, the
forcing process from Z can continue as Z is a (n−k)-contingent zero-forcing
set. Now, to identify these edges of E , consider sequentially applying the
forcing process until the first time a vertex v ∈ L is used to color u. At this
point, add the edge {v, u} to E and remove it from the graph G. Since all

Seven open problems in applied combinatorics 597

of the neighbors of v are now colored, there is no future step in the forcing
process in which v colors a neighbor. Thus we may effectively remove v from
L. Repeating this process results in a set E of size at most k and a sequence
of zero-forcing moves for G − E , such that no vertex in L forces any other
vertex. Thus S is a forcing set for G with leaks at all the vertices in L.

The converse proceeds similarly. Let Z be a k-leaky zero-forcing set for
G and fix an arbitrary set of E edges in G. We again interatively apply the
zero-forcing process and build a set of leaks L as needed. Specifically, for
each edge {u, v} ∈ E we add the first vertex from the edge that is colored
to the set of leaks L. Clearly, this ensures that the edge {u, v} is not used
in the forcing process and adds at most k vertices to the set L.

In general, determining the size of the minimal zero-forcing set is NP-
complete, even for highly-restricted classes of graphs (see [8], for instance).
Thus, it is exceedingly likely that determining the size of the minimal (n−k)-
contingent zero-forcing number is also NP-complete. However, the class of
graphs corresponding to power-grid networks is known to have a number of
unusual structural properties (see, for instance [1, 15]), including average
degree between 1 and 2, diameter scaling like the square root of the number
of vertices, and the presence of long-cycles. In other words, typical power-
grid networks are tree-like by Lemma 7.5 the minimal (n − k)-contingent
zero-forcing sets are known exactly for trees. This leads naturally to our
first two open problems:

Open Problem 7.1. Is there a structural characterization of the minimal-
sized (n − k)-contingent zero-forcing sets for graphs with few cycles? For
sparse graphs with large diameter?

Open Problem 7.2. Is there an efficient algorithm to determine the minimal-
sized (n − k)-contingent zero-forcing set for graphs with few cycles? For
sparse graphs with large diameter?

Even if the structural properties of power-grid networks are insufficient
to yield an efficient means of computing a minimal, or nearly so, (n − k)-
contingent zero-forcing set, if such a set is sufficiently small the additional
computational effort may be worth while. However, in order to assess the
value of identifying the minimal (n−k)-contingent zero-forcing sets, it would
be helpful to have a rough estimate of size of the resulting set.

Open Problem 7.3. What is the typical size, in terms of the number of
vertices and edges, of the minimal (n − k)-contingent zero-forcing sets in
graphs exhibiting structural properties characteristic of power grids?

598 Sinan G. Aksoy et al.

While this question may be answerable by restricting attention to the

class of graphs with a few hallmark structural properties (e.g., limitation on

density, diameter, maximum degree, etc.) it may be more useful to build off

the recent work characterizing the zero-forcing number for the Erdős-Renýı

random graph [7] and random regular graphs [3, 10]. While the structural

properties of these random graph models are far from those of the power-

grid, there are a few recent models such as the Chung-Lu Chain [1] and the

Geometric Delaunay [5] models which have been shown to capture an array

of structural properties of the power grid.

Acknowledgements Sinan G. Aksoy, Anthony V. Petyuk, and Stephen J.

Young were supported by the Resilience through Data-driven Intelligently-

Designed Control (RD2C) Initiative, under the Laboratory Directed Re-

search and Development (LDRD) Program at Pacific Northwest National

Laboratory (PNNL). PNNL is a multi-program national laboratory oper-

ated for the U.S. Department of Energy (DOE) by Battelle Memorial Insti-

tute under Contract No. DE-AC05-76RL01830. Sandip Roy conducted this

research during an appointment at the U.S. National Science Foundation,

supported by an Intergovermental Personnel Act agreement with Washing-

ton State University.

References

[1] Sinan G Aksoy et al. “A generative graph model for electrical infras-

tructure networks”. In: Journal of Complex Networks 7.1 (Aug. 2018),

pp. 128–162. MR3910485

[2] Joseph S Alameda, Juergen Kritschgau, and Michael Young. “General-

izations of Leaky Forcing”. In: arXiv preprint arXiv:2009.07073 (2020).

[3] Deepak Bal et al. “Zero-forcing in random regular graphs”. In: J.

Comb. 12.1 (2021), pp. 85–116. issn: 2156-3527. doi: 10.4310/JOC.

2021.v12.n1.a4. url: https://doi.org/10.4310/JOC.2021.v12.n1.a4.

MR4195585

[4] Dennis J. Brueni and Lenwood S. Heath. “The PMU place-

ment problem”. In: SIAM J. Discrete Math. 19.3 (2005), pp.

744–761. issn: 0895-4801. doi: 10.1137/S0895480103432556. url:

https://doi.org/10.1137/S0895480103432556.

[5] Asim K. Dey, Stephen J. Young, and Yulia R. Gel. “From Delaunay Tri-

angulation to Topological Data Analysis: Generation of More Realistic

Synthetic Power Grid Networks”. under review. 2023.

https://mathscinet.ams.org/mathscinet-getitem?mr=3910485
https://doi.org/10.4310/JOC.2021.v12.n1.a4
https://doi.org/10.4310/JOC.2021.v12.n1.a4
https://doi.org/10.4310/JOC.2021.v12.n1.a4
https://mathscinet.ams.org/mathscinet-getitem?mr=4195585
https://doi.org/10.1137/S0895480103432556
https://doi.org/10.1137/S0895480103432556

Seven open problems in applied combinatorics 599

[6] Shannon Dillman and Franklin Kenter. “Leaky forcing: a new variation
of zero forcing”. In: arXiv preprint arXiv:1910.00168 (2019).

[7] Sean English, Calum MacRury, and Pawe�l Pra�lat. “Probabilistic zero
forcing on random graphs”. In: European Journal of Combinatorics 91
(2021), p. 103207. MR4161801

[8] Shaun Fallat, Karen Meagher, and Boting Yang. “On the com-
plexity of the positive semidefinite zero forcing number”. In: Lin-
ear Algebra Appl. 491 (2016), pp. 101–122. issn: 0024-3795. doi:
10.1016/j.laa.2015.03.011. url: https://doi.org/10.1016/j.laa.2015.03.
011. MR3440126

[9] Leslie Hogben, Jephian C.-H. Lin, and Bryan L. Shader. Inverse prob-
lems and zero forcing for graphs. Vol. 270. Mathematical Surveys
and Monographs. American Mathematical Society, Providence, RI,
2022, pp. xi+287. isbn: 978-1-4704-6655-8. doi: 10.1090/surv/270. url:
https://doi.org/10.1090/surv/270. MR4478249

[10] Thomas Kalinowski, Nina Kamčev, and Benny Sudakov. “The
zero forcing number of graphs”. In: SIAM J. Discrete Math. 33.1
(2019), pp. 95–115. issn: 0895-4801. doi: 10.1137/17M1133051. url:
https://doi.org/10.1137/17M1133051.

[11] Nima Monshizadeh, Shuo Zhang, and M Kanat Camlibel. “Zero forcing
sets and controllability of dynamical systems defined on graphs”. In:
IEEE Transactions on Automatic Control 59.9 (2014), pp. 2562–2567.
MR3254556

[12] Sandip Roy et al. “Structural Controllability Assessment for Inverter-
Based Microgrids”. In: 2021 North American Power Symposium
(NAPS). 2021, pp. 1–6. doi: 10.1109/NAPS52732.2021.9654687.

[13] Logan A Smith and Illya V Hicks. “Optimal Sensor Placement in
Power Grids: Power Domination, Set Covering, and the Neighborhoods
of Zero Forcing Forts”. In: arXiv preprint arXiv:2006.03460 (2020).
MR4421294

[14] Brady Tyra et al. Electric Power Monthly. Tech. rep. U.S. Energy
Information Administration, Feb. 2023. url: https://www.eia.gov/
electricity/monthly/current month/february2023.pdf.

[15] Stephen J. Young et al. “Topological Power Grid Statistics from a
Network-of-Networks Perspective”. In: 2018 IEEE Power Energy So-
ciety General Meeting (PESGM). 2018, pp. 1–5.

Sinan G. Aksoy

Pacific Northwest National Laboratory

USA

E-mail address: sinan.aksoy@pnnl.gov

https://mathscinet.ams.org/mathscinet-getitem?mr=4161801
https://doi.org/10.1016/j.laa.2015.03.011
https://doi.org/10.1016/j.laa.2015.03.011
https://doi.org/10.1016/j.laa.2015.03.011
https://mathscinet.ams.org/mathscinet-getitem?mr=3440126
https://doi.org/10.1090/surv/270
https://doi.org/10.1090/surv/270
https://mathscinet.ams.org/mathscinet-getitem?mr=4478249
https://doi.org/10.1137/17M1133051
https://doi.org/10.1137/17M1133051
https://mathscinet.ams.org/mathscinet-getitem?mr=3254556
https://doi.org/10.1109/NAPS52732.2021.9654687
https://mathscinet.ams.org/mathscinet-getitem?mr=4421294
https://www.eia.gov/electricity/monthly/current_month/february2023.pdf
https://www.eia.gov/electricity/monthly/current_month/february2023.pdf
mailto:sinan.aksoy@pnnl.gov

600 Sinan G. Aksoy et al.

Ryan Bennink

Oak Ridge National Laboratory

USA

E-mail address: benninkrs@ornl.gov

Yuzhou Chen

Temple University

USA

E-mail address: yuzhou.chen@temple.edu

José Fŕıas

University of Texas at Dallas

USA

E-mail address: frias4@cimat.mx

Yulia R. Gel

University of Texas at Dallas

USA

E-mail address: ygl@utdallas.edu

Bill Kay

Pacific Northwest National Laboratory

USA

E-mail address: william.kay@pnnl.gov

Uwe Naumann

RWTH Aachen University

Germany

E-mail address: naumann@stce.rwth-aachen.de

Carlos Ortiz Marrero

Pacific Northwest National Laboratory

USA

E-mail address: carlos.ortizmarrero@pnnl.gov

Anthony V. Petyuk

Hanford High School

USA

E-mail address: anthony.petyuk@gmail.com

Sandip Roy

Washington State University

USA

E-mail address: sandip@wsu.edu

mailto:benninkrs@ornl.gov
mailto:yuzhou.chen@temple.edu
mailto:frias4@cimat.mx
mailto:ygl@utdallas.edu
mailto:william.kay@pnnl.gov
mailto:naumann@stce.rwth-aachen.de
mailto:carlos.ortizmarrero@pnnl.gov
mailto:anthony.petyuk@gmail.com
mailto:sandip@wsu.edu

Seven open problems in applied combinatorics 601

Ignacio Segovia-Dominguez

University of Texas at Dallas

Jet Propulsion Laboratory, Caltech

USA

E-mail address: Ignacio.SegoviaDominguez@UTDallas.edu

Nate Veldt

Texas A&M University

USA

E-mail address: nveldt@tamu.edu

Stephen J. Young

Pacific Northwest National Laboratory

USA

E-mail address: stephen.young@pnnl.gov

Received March 9, 2023

mailto:Ignacio.SegoviaDominguez@UTDallas.edu
mailto:nveldt@tamu.edu
mailto:stephen.young@pnnl.gov

	References
	The Dowker complex in metric graphs
	References
	An application of probabilistic combinatorics to quantum circuit expressiveness
	References
	The computational complexity of the 4-uniform hypergraph minimum s-t cut problem
	References
	The edge and vertex elimination problems in directed acyclic graphs
	References
	Data flow reversal problems
	References
	Price of asynchrony
	References
	(n-k)-contingent zero-forcing for power grids
	References

