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Applications of tangles of connectivity systems suggest a duality
between these, in which for two sets X and Y the elements x of X
map to subsets Yx of Y, and the elements y of Y map to subsets
Xy of X, so that x ∈ Xy if and only if y ∈ Yx for all x ∈ X and
y ∈ Y. We explore this duality, and relate the tangles arising from
the dual systems to each other.
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1. Introduction

Tangles are a relatively novel, indirect, notion of cluster in discrete struc-
tures. While originally introduced by Robertson and Seymour [12] for graphs
and matroids, they have since been generalised to a much wider range of set-
tings [2, 6].

Rather than specifying a cluster by naming its elements, tangles de-
scribe clusters indirectly by a set of pointers. This makes them particularly
well suited to capturing ‘fuzzy’ clusters: clusters that appear obvious when
viewed from a distance, but where allocating individual points to any of
them can present a problem.

More precisely, if C is a cluster in a data set V, a tangle will capture its
location by orienting some suitable bipartitions of V towards their side that
contains most of C. If S is a set of bipartitions of V each oriented towards C
in this way, we say that the partitions in S are oriented consistently : not
arbitrarily, but all towards that fixed cluster C.

Clearly, this can be done reliably only if each s ∈ S splits C unevenly, if
one of its sides contains noticably more of C than the other. If s has this prop-
erty with respect to every cluster in V, let us call it a bottleneck partition of V.

The idea behind tangles, now, is to offer axiomatic definitions of both
‘bottleneck partitions’ and ‘consistent’ that do not refer to any pre-conceived
clusters but still bear out this idea: definitions such that most concrete exam-
ples of a set C of points in a dataset V which most people would intuitively
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see as a cluster are divided unevenly by those bipartitions of V which the
axioms designate as ‘bottleneck partitions’, and hence orient them, and such
that the orientations of the bottleneck separations designated as ‘consistent’
are those induced in this way by some intuitively perceived cluster. With
such axiomatic definitions of bottleneck partitions, and of consistency for
their collective orientations, in place, a tangle is then defined as a consistent
orientation of all the bottleneck partitions.

In graphs, there are some natural notions of bottleneck partitions. For
example, one could take the vertex bipartitions that are crossed by few
edges.1 For bipartitions of an arbitrary data set it is not so clear how to
identify a set of bipartitions that will split any perceived cluster unevenly,
and can hence serve as ‘bottleneck partitions’, without referring to such
clusters. Indeed one of the challenges in defining tangles in such a general
setting lies in coming up with a notion of bottleneck partition that satisfies
the requirements of tangle theory, such as submodularity.

In a typical clustering application this is facilitated by the existence of
a natural similarity function σ : V 2 → N, which assigns to a pair (u, v) of
points a large value if these points are deemed to be similar and should
therefore be clustered together. For points in the Euclidean plane, for ex-
ample, this could be the multiplicative inverse of their Euclidean distance.
Note that although any such function appeals to some extrinsic notion of
similarity of pairs of points, assuming the existence of such a function is
much weaker than knowing how to cluster them, at least in the sense of
partitioning V into ‘groups of similar points’. Indeed the rationale of tangles
is that they offer a way to cluster V without the need to come up with such
a partition.2

As an example, consider the set V of items for sale in an online shop.
Two items u, v ∈ V might be considered similar if they are often bought
together. To measure this, we consult our sales records and let P be the
set of last year’s purchases: every p ∈ P partitions V into the set

→
p ⊆ V

of items bought in that purchase and the set
←
p ⊆ V of items not bought.

The similarity of two items u and v might then be defined as the number
σ(u, v) := |{ p ∈ P | u, v ∈ →

p }| of purchases that included both u and v.

1Tangles orienting these are known as edge-tangles of the graph. Its vertex-
tangles, those considered by Robertson and Seymour, orient bipartitions of the
edge set, the bottleneck partitions being those for which few vertices are incident
with edges on both sides.

2However, tangles give rise to a ‘fractional’ such partition, which assigns every
point v to every tangle τ with a weight between 0 and 1: the proportion of the
bottleneck partitions for which v lies on the side towards which τ orients them.
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We can then define the order of a bipartition s = {A,B} of V as the sum∑
a∈A,b∈B σ(a, b) over all pairs a ∈ A and b ∈ B, and call s a bottleneck

partition if its order is below some threshold k (which we are free to set): if
it does not divide many similar items. A k-tangle, then, will be a consistent
way of orienting all the bipartitions of V of order < k, with respect to some
formal notion of consistency depending on the type of tangle we consider.3

The order k of a k-tangle can be thought of as a measure of the coherence
of the cluster identified by this tangle: roughly, a tangle of order k cannot
be split into two roughly equal sized parts by a separation of order < k.

In the example just discussed, we have outlined a way of clustering the
items v ∈ V of our online shop by appealing to the set P of last year’s
purchases, each of which we interpreted as a bipartition of V. (These were
not the bottleneck partitions that our tangles ended up orienting, but bi-
partitions of V nonetheless: those we needed in order to determine which
other bipartitions s we wished to consider as bottlenecks and thus have ori-
ented by our tangles.) In the same way, however, we can view the shop items
as partitions of the set P of purchases: every v ∈ V partitions P into the
set

→
v ⊆ P of purchases that included v and the set

←
v ⊆ P of purchases

that did not include v. These partitions of P , then, can be used to define a
similarity measure on the pairs of purchases, where two purchases p, q ∈ P
are deemed to be similar if they share many items. Formally, we would set
σ(p, q) := |{ v ∈ V | p, q ∈ →

v }|, in analogy to our earlier scenario. And once
more, we can now proceed to use the similarity function on P ×P to define
bottleneck partitions of P , and consider the tangles of those partitions.

The two ways of describing the sales history of our online shop just out-
lined are not only analogous, they are dual in the formal sense that v ∈ →

p
if and only if p ∈ →

v . Their tangles are also related, but they are not the
same. While the tangles we considered first capture fuzzy clusters of shop
items that are similar in one way or another (with a tangle each for different
aspects under which items can be similar), the tangles we considered after-
wards describe fuzzy clusters of like-minded customers,4 again with a tangle
each for every aspect of taste or other type of our customers’ purchasing
motivation.

3The formal definition of consistency is key to any notion of a tangle [2, 6]. There
are some minimum requirements, but within these there is room for choices depend-
ing on the intended application, giving rise to different types of tangle. Consistency
is always defined in such a way that it is satisfied by any intuitively obvious cluster
C ⊆ V of points, in that orienting all the partitions of order < k towards where
most of C lies will meet this definition.

4Let us assume for simplicity that these are distinct for different purchases. This
can easily be achieved by congregating the purchases of a given customer into one.
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An application of tangles viewed most naturally as those of a dual rather
than a primal system will be given in [4]. Whether or not we view a sepa-
ration system as primal or dual is technically just a matter of choice, but
this choice has ramifications. For example, the order function used in [4],
which is based on the information-theoretic notion of mutual information
based on discrete entropy [13], has a direct interpretation in which the tech-
nical meaning of ‘information’ coincides with its natural meaning. There is
no such natural entropy-based order function for primal separation systems;
see [11] for more.

Our aim is to explore this duality between the bipartitions p ∈ P of V
and the bipartitions v ∈ V of P , and to investigate how their tangles may be
related. In this paper we take a first step towards this goal by relating, more
generally, arbitrary partitions (A,B) of V and (C,D) of P , and see how their
tangles are related. There is a natural way to do this: given (A,B), let C be
the set of purchases which contain more items from A than items from B, and
D the set of purchases containing more items fromB than fromA.5 Similarly,
for any oriented bipartition (C,D) of P we have a corresponding oriented
bipartition (A,B), where A is the set of items included in more purchases
from C than from D, and similarly for B. Whilst these two operations are
not inverse to each other, they are closely related. And we will show that they
relate the tangle structure of the bipartitions of V to that of the bipartitions
of P .

We begin in Section 2 by recalling the fundamental terminology and
instances of separation systems. More details about separation systems, and
in particular about their tangles, can be looked up in [6]. In Section 3 we
then state the duality of separation systems more formally.

Section 4, which contains our main results, relates the tangles of a pair of
separation systems as earlier to each other. That is, we shall find natural or-
der functions on the separations of V and of P such that the correspondence
between these separations outlined above gives rise to a correspondence be-
tween their tangles. More precisely, every 4k-tangle of V will give rise to a
k-tangle of P , and vice versa.

Moreover this correspondence is in some sense idempotent in that, if
we go from a tangle of V to a tangle of P and back again, we recover a
restriction of the original tangle to a lower order. Interpreted in the setting
of our online shop example, where V is the set of items in the shop and P is
the set of purchases in a given year, this implies that any coherent enough

5Our formal setup will take care also of purchases for which equality holds here,
see below.
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cluster of items will give rise to a cluster of purchases, and vice versa. Due
to the idempotence of our correspondence between separations of V and P ,

these two clusters should be related.

In Section 5, finally, we note that the duality of set partitions can be cast
in an algebraic framework, by defining a natural boundary operator on the

oriented bipartitions of a given set. It then becomes an instance of algebraic
duality, as between the homology and cohomology defined by this bound-
ary operator. This gives rise to a host of questions that can be addressed
purely algebraically. This is done in [7], while questions that are more di-

rectly related to clustering and tangles are addressed here. These include the
introduction of an inner product of set partitions, whose associated notion
of orthogonality agrees with geometric orthogonality in certain simple cases.
As this inner product is defined for arbitrary finite set partitions, such as in

our online shop example, it might therefore deserve further study.

2. Basic terminology

Throughout this paper, whenever we speak of ‘partitions’ of a set we shall

mean bipartitions, that is, partitions into two disjoint subsets. These subsets
are allowed to be empty, although sometimes we may require that they are
not.

We use the basic notions of abstract separation systems and their tangles
as defined in [6]. For the convenience of the reader, we recall those of these
concepts that are essential to this paper in this section.

An (abstract) separation system is a partially ordered set (�S,≤) with an
order-reversing involution ∗. That is to say,

→
r ≤ →

s if and only if
→
r
∗ ≥ →

s
∗
for

all
→
r ,

→
s ∈ �S. The image of

→
s under ∗ is usually denoted as

←
s . The elements

of �S are called oriented separations, and
←
s is the inverse of

→
s . Note that a

given element of �S can be denoted as either
→
s or

←
s according to context;

there are no ‘default orientations’.

An oriented separation
→
s together with its inverse

←
s form an unoriented

separation s = {→
s ,

←
s}, and we say that

→
s and

←
s are orientations of s. The

set of all unoriented separations of a given separation system �S is denoted
as S.

If such a separation system (�S,≤) happens to be a lattice, that is, if

there is a supremum
→
s ∨ →

t and an infimum
→
s ∧ →

t for any two
→
s ,

→
t ∈ �S,

then this separation system is a universe of separations.

An order function on a universe �U of separations is any real-valued
function |·| satisfying 0 ≤

∣∣→
s
∣∣ = ∣∣←

s
∣∣ for all →

s ∈ �U . We often abbreviate this
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as |s|. An order function on �U is submodular if

∣∣→
r ∨ →

s
∣∣+ ∣∣→

r ∧ →
s
∣∣ ≤ ∣∣→

r
∣∣+ ∣∣→

s
∣∣

for all
→
r ,

→
s ∈ �U . If a universe comes with a submodular order function, we

call it a submodular universe of separations.

Given a separation system �S, an orientation of S is a set O that contains
exactly one of

→
s and

←
s for every

→
s ∈ �S. A partial orientation of S is an

orientation of any subset of S.

Given a submodular order function on a universe �U of separations, a
separation system �S ⊆ �U , and a number k > 0, we denote as �Sk the separa-
tion system consisting of all the separations in �S that have order less than k.
If O is an orientation of some Sk and k′ < k, we say that the orientation
O′ := O ∩ �Sk′ of �Sk′ is the restriction of O to order k′.

In this paper, we consider only the two most basic instances of separation
systems: partitions and, more generally, ‘separations’ of sets. Given a set V,
an unoriented separation of V is a set {A,B} of subsets A,B of V such that
A ∪ B = V. The ordered pairs (A,B) and (B,A) are the two orientations
of this separation; the sets A and B are its sides . Conversely, any ordered
pair (A,B) of subsets of V with A ∪ B = V is an oriented separation of V ;
then {A,B} is its corresponding unoriented separation.

The oriented separations of a set come with a natural partial ordering:
let (A,B) ≤ (C,D) if both A ⊆ C and D ⊆ C. With this partial ordering,
and the involution ∗ mapping every (A,B) to (B,A), they form a separa-
tion system. The set of all the separations of a set V form a universe of
separations, in which (A,B) and (C,D) have supremum (A∪B,C ∩D) and
infimum (A ∩B,C ∪D).

The partitions6 of a set V form a subset of its separations: those whose
sides are disjoint. As the supremum and infimum of two partitions of V are
also partitions of V, these form their own universe inside the universe of all
the separations of V.

Generally a tangle is an orientation τ of a separation system �S which
satisfies some additional ‘consistency conditions’. The choice of the condition
depends on the context, not least on the type of the separation system �S
at hand. For example, the typical consistency condition for a system of
some separations of a set V is to ask that for any three oriented separations
(A1, B1), (A2, B2), (A3, B3) ∈ τ the union A1 ∪ A2 ∪ A3 is not the entirety
of V. This is the condition that we will use in Section 4.

6Recall that ‘partitions’ in this paper are always partitions into two sets.
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Finally, we use the usual graph theoretic notation from [1]. In particular,
given a graph G = (V,E), sets A,B ⊆ V of vertices, and a vertex v ∈ V, we

write N(v) for the set of neighbours of v in G and N(A) the set of neighbours
outside A of vertices in A. We write E(A,B) the set of edges from A to B,

and as E(A) the set E(A, V �A) of edges leaving A.

3. Duality of set separations

3.1. An example of duality for set partitions

Consider a bipartite graph G with partition classes X and Y. For

→
x := { y ∈ Y | xy ∈ E(G) } and

→
y := {x ∈ X | xy ∈ E(G) }

we then have

(∗) x ∈ →
y ⇔ y ∈ →

x

for all x ∈ X and y ∈ Y. With
←
x := Y �

→
x and

←
y := X �

→
y , the unoriented

pairs {→
x,

←
x} and {→

y ,
←
y } then form partitions of Y and X, respectively.

Given E(G), every x determines the set {→
x,

←
x}, and every y determines

the set {→
y ,

←
y }. If these correspondences are 1–1, i.e., if there are no x = x′

with {→
x,

←
x} = {→x′, ←x′},7 and similarly for the y, we may choose to ignore the

formal difference between x and {→
x,

←
x}, and between y and {→

y ,
←
y }. Then

X becomes a set of partitions of Y, and Y a set of partitions of X.

Let us consider
→
x as shorthand for the orientation (

←
x,

→
x) of the partition

x = {→
x,

←
x} of Y towards its side

→
x , and similarly for

←
x ,

→
y and

←
y . Then

�X := { →
x | x ∈ X } ∪ { ←

x | x ∈ X }

�Y := { →
y | y ∈ Y } ∪ { ←

y | y ∈ Y }

are the sets of all orientations of the elements of X or Y, respectively, and
( �X,≤) and (�Y ,≤) form separation systems in the sense of [6]. In view of (∗),
we think of these separation systems as dual to each other.

Let us next see how to dualise any given system of set partitions: how to
define another system of set partitions so that the two are instances of ( �X,≤)

and (�Y ,≤) for a suitable bipartite graph as above.

7Note that this can happen in two ways: that
→
x =

→
x′ or that

→
x =

←
x′.
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3.2. Dualising a given system of set partitions

Given any separation system (�S,≤) consisting of partitions of a set V, let us
define a separation system (�V ,≤) of partitions of S that is dual to (�S,≤) in
the sense of Section 3.1.

We start by picking for every s ∈ S a default orientation, which we
denote as

→
s (rather than

←
s ). If we think of

→
s = (A,B) as the side B ⊆ V to

which it points (so that
←
s is equated with A by the same token), then for

every v ∈ V the sets

→
v = { s ∈ S | v ∈ →

s } and
←
v = { s ∈ S | v ∈ ←

s }

form a partition of S. Let us assume that these partitions {→
v ,

←
v } differ for

distinct v ∈ V, just as the sets {→
s ,

←
s} differ for distinct s by definition

of s.8 Then they determine their v uniquely, and we may think of each v as
shorthand for {→

v ,
←
v }. This makes V into a set of partitions v = {→

v ,
←
v } of S

and
�V := { →

v | v ∈ V } ∪ { ←
v | v ∈ V }

into the set of all orientations of elements of V, and we have

(∗∗) v ∈ →
s ⇔ s ∈ →

v as well as v ∈ ←
s ⇔ s ∈ ←

v

for all the elements
→
s ,

←
s of �S and

→
v ,

←
v of �V.

Hence (�V ,≤) and (�S,≤) form an instance of a pair of dual separation
systems as in Section 3.1, based on a bipartite graph with vertex classes V
and S and edges vs whenever v ∈ →

s (equivalently, s ∈ →
v ).

3.3. Duality of set separations

Bipartitions are, and remain, the most important type of separation system
whose duals are relevant in applications; our online-shop example from the
introduction is a typical example. In order to develop our duality theory,
however, it will be easier to work in the more general context of set separa-
tions. These can even have a natural interpretation too: think of S as a set
of questions answered by a set V of people, whose answers can be ‘yes’, ‘no’
or ‘don’t know’.

8Recall from [6] that separation systems are formally defined in such a way that
their elements

→
s are given first, and s is then formally defined as {→

s ,
←
s }. Hence

if the s are distinct, as they are here by assumption, then this means that these
2-sets are distinct.
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Let us thus adapt the definitions from Section 3.2 to systems of general
set separations rather than just set partitions. Given a system (�S,≤) of
separations of a set V, let us define a dual system (�V ,≤) of separations
of S as follows. We start by picking for every s ∈ S a default orientation,
which we denote as

→
s . Unlike in the case of partitions, there is no longer a

1–1 correspondence between the separations
→
s = (A,B) and the sides B to

which they point, as the map
→
s �→ B may fail to be injective. However, if

we write v ∈ →
s for v ∈ B and v ∈ ←

s for v ∈ A informally, then for every
v ∈ V the sets

Cv = { s ∈ S | v ∈ ←
s } and Dv = { s ∈ S | v ∈ →

s }

form a separation of S. Let us assume that these separations {Cv, Dv} differ
for distinct v ∈ V, just as the sets {→

s ,
←
s} differ for distinct s by definition

of s. Then for
→
v := (Cv, Dv) and

←
v := (Dv, Cv) the set {→

v ,
←
v } determines

v uniquely, and we may think of v as shorthand for {→
v ,

←
v }. This makes

�V := { →
v | v ∈ V } ∪ { ←

v | v ∈ V }

into a separation system whose elements are oriented separations of S.
Equating these informally, as above, with the subsets of S to which they
point, we have

(∗ ∗ ∗) v ∈ →
s ⇔ s ∈ →

v as well as v ∈ ←
s ⇔ s ∈ ←

v

for all the elements
→
s ,

←
s of �S and

→
v ,

←
v of �V. We may thus call (�S,≤) and

(�V ,≤) dual systems of set separations.

3.4. The algebraic view

In Section 5 we shall point out that the duality defined in Section 3.2 is
an instance of the algebraic duality familiar from algebra or topology. Very
roughly, we may consider as a boundary operator the map that sends an
oriented separation of a set V to the formal sum of the of elements of V to
which it points minus the others. Then the associated coboundary operator
performs the dual operation of mapping the elements of V to (co-)chains of
oriented separations in a way that the two maps commute, just as in our
online shop example.

As we shall note in Section 5.2, our boundary operator gives rise to
an inner product on the separations of V modulo its kernel. The notion of
orthogonality associated with this inner product coincides with geometric
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orthogonality if our set V is the unit disc and our separations are the parti-
tions of V given by straight lines through the origin. But it is defined for all
finite set separations, and thus adds an interesting geometric perspective to
their study beyond this particular example.

4. Tangles from dual separation systems

In our running example of an online shop, we have found that each element
p ∈ P gives rise naturally to a partition of V, and vice versa. However, these
are not the only set of partitions, or separations, of V and P that we shall
have to consider.

In order to apply the main tools and theorems of tangle theory to our
given sets of partitions of V and P , we need to embed them in some richer
systems of set partitions or separations. For example, we might need that
the separation system we work with is submodular in the sense of [5], or
even arises as a set of all separations of V or P that have order less than
some constant k with respect to some submodular order function.

It will turn out that the dual nature of our given V and P will allow us
to define quite a natural order function on all the separations of V and P ,
respectively, which we will prove is submodular. This order function is quali-
tatively similar to, but not identical to (see [2]), the order function described
in the introduction.

We can then study the tangle structure of the set of separations of V or P
of order less than k for any fixed k ∈ N. We will show that the correspondence
mentioned in the introduction between arbitrary partitions of V and P will
extend to a correspondence between the low-order tangles of the separations
of V and P , allowing us to relate the tangle structure of V to that of P .

4.1. Tangles on the sides of a bipartite graph

Let us make the discussion from the start of this section more precise. Sup-
pose that we have a dual pair of separation systems ( �X,≤) and (�Y ,≤),
whose duality is witnessed by a bipartite graph G with partition classes X
and Y as in Section 3.1.

Let us denote by S(X) the set of all separations of the set X, that is,
the set of all sets {A,B} with A,B ⊆ X such that A∪B = X. Similarly, we
denote by S(Y ) the set of all separations of the set Y, and we denote by �S(X)
and �S(Y ) the set of oriented separations from S(X) or S(Y ), respectively.

Then the structure of the bipartite graph G, which encodes the duality
between ( �X,≤) and (�Y ,≤), will allow us to relate the separations in �S(X)
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to the separations in �S(Y ). Indeed, each separation in �S(X) induces a sep-
aration in �S(Y ) and vice versa, in the following manner. Given a separation
(A,B) of X there will be some vertices in Y which are joined in G to more
vertices in A than in B, while other vertices in Y are joined to more vertices
in B than in A. This gives us a natural way to partition the vertices in Y. So,
given (A,B) ∈ �S(X) we define the separation (A,B)� := (A�

B, B
�
A) ∈ �S(Y )

by letting

A�
B := {y ∈ Y : |N(y) ∩A| ≥ |N(y) ∩B|}

and

B�
A := {y ∈ Y : |N(y) ∩A| ≤ |N(y) ∩B|}.

We call (A,B)� the shift of (A,B).

Similarly,9 a separation (C,D) of Y gives rise to a separation of X, which
we call its shift, (C,D)� := (C�

D, D
�
C) via

C�
D := {x ∈ X : |N(x) ∩ C| ≥ |N(x) ∩D|}

and

D�
C := {x ∈ X : |N(x) ∩ C| ≤ |N(x) ∩D|}.

We note that the maps (·)� and (·)� commute with the natural involu-
tions on �S(X) and �S(Y ), respectively. However, we also note that these two
maps are not inverses: there may exist separations (A,B) ∈ �S(X) such that
((A,B)�)� = (A,B).

The map (·)� between �S(X) and �S(Y ) induces an inverse ‘pull-back’

map �(·) between the power sets 2
�S(Y ) and 2

�S(X), sending every τ ⊆ �S(Y )
to

�τ := {(A,B) ∈ �S(X) : (A,B)� ∈ τ} ⊆ �S(X).

Similarly, the map (·)� : �S(Y )→ �S(X) induces a map �(·) : 2�S(X) → 2
�S(Y )

sending every τ ⊆ �S(X) to

�τ := {(C,D) ∈ �S(Y ) : (C,D)� ∈ τ} ⊆ �S(Y ).

9Informally, we think of the vertex classes X,Y of G as being its ‘left’ and ‘right’
class, respectively. Formally, however, {X,Y } is an unordered pair, so the operators
·� and ·� are formally the same: they map their argument, an oriented separation
of one of the sets X,Y, to an oriented separation of the other set. It is impor-
tant that we never treat X and Y differently in this paper: they are disjoint, but
indistinguishable.
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The question then arises, under which conditions on a tangle τ will the

subset �τ or �τ also be a tangle? In order for there to be any interesting

tangle structure we will have to restrict to some subset of �S(X) or �S(Y ),

and the most natural way to do so will be to choose some order function and

consider the set �Sk(X) or �Sk(Y ) of separations of order less than k. However,

then in order for the pullback to have any hope of being a tangle, it must

orient every separation in �Sk′(X) or �Sk′(Y ) for some k′. Hence, already for

this question to make sense, we will need to choose an appropriate order

function which behaves nicely with respect to the shifting operation.

In fact, we will define order functions on �S(X) and �S(Y ) so that shifting

a separation never increases its order. This will guarantee that if τ orients

all the separations of order less than k in �S(X), then �τ orients all the

separations of order less than k in �S(Y ). Indeed, if (C,D) ∈ �S(Y ) has

order less than k, then (A,B) := (C,D)� ∈ �S(X) has order less than k

and so precisely one of (A,B) or (B,A) is in τ by assumption. Then, since

(B,A) = (D,C)�, it follows that precisely one of (C,D) or (D,C) is in �τ .

Furthermore, these order functions are defined in a particularly natu-

ral way, determined only by the structure of G. Broadly, the order functions

measure in some way how evenly a separation of X or Y splits the neighbour-

hood of each vertex from the appropriate class. For example, in our online

shop example, the order of a separation (A,B) of V will be determined by

how evenly this separation splits the set of items bought in each purchase.

The more balanced the split, the larger the contribution of this vertex to the

order of the separation. In this way, separations for which most vertices in

the opposite partition class have a clear ‘preference’ of one side or the other

will have low order.

Explicitly, let us define the order function |·|X : �S(X) → 1
2N where

|A,B|X :=
∑
y∈Y

(min{|N(y) ∩A| , |N(y) ∩B|} − |N(y) ∩A ∩B| /2) .

Here the first term will be larger when N(y) is more evenly split by (A,B).

The extra term of − |N(y) ∩A ∩B| /2 is to adjust for double-counting:

We can think of the term min{|N(y) ∩A| , |N(y) ∩B|} as counting the num-

ber of edges from y to the smaller of N(y)∩A and N(y)∩B. However then, if

x is contained in both A and B, we would count all the edges incident with

x in
∑

y∈Y min{|N(y) ∩A| , |N(y) ∩B|}, and so moving x out of A or B

would not increase the order even if it made the separation more balanced.

With the extra term − |N(y) ∩A ∩B| /2 however, a neighbour x in A ∩ B
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is treated as lying half in A and half in B, in the sense that it is counted
with a factor of 1

2 in N(y). Similarly, we define |·|Y : �S(Y ) → 1
2N where

|C,D|Y :=
∑
x∈X

(min{|N(x) ∩ C| , |N(x) ∩D|} − |N(x) ∩ C ∩D| /2) .

Note that these functions are symmetric and non-negative, as required
of an order function for separation systems. Moreover, the function |·|X at-
tains its maximum value of |E(G)|/2 on the separation (X,X), and since
orientations of all of �S(X) are not enlightening, we will in the following
assume implicitly that any �Sk(X) we consider does not contain the sepa-
ration (X,X). In other words, there is an implicit assumption throughout
the paper that if a separation system �Sk(X) is mentioned in a claim, then
k < |E(G)|/2.

Less obviously, these order functions are submodular, and so �S(X) and
�S(Y ) equipped with these functions are submodular universes. Submodu-
larity is a fundamental property for order functions at the heart of tangle
theory, and so we include the proof even though it is straightforward. How-
ever, the reader is invited to skip the proofs of the next two lemmas at first
reading, to remain with the flow of the narrative.

Lemma 4.1. The order function |·|X is submodular.

Proof. We show that |·|X is a sum of submodular functions. For this consider,

for y ∈ Y, the order function on �S(X) given by

|A,B|y := min{|N(y) ∩A| , |N(y) ∩B|} − |N(y) ∩A ∩B| /2

and note that |A,B|X =
∑

y∈Y |A,B|y, thus it is enough to show that |·|y
is submodular for every y ∈ Y. Fix some y in Y. For Z ⊆ X we denote
NZ := |N(y) ∩ Z|.

Let {A1, B1} and {A2, B2} be unoriented separations in S(X), where
without loss of generality NAi

≤ NBi
for i = 1, 2. Let A′

i := Ai � Bi,
B′

i := Bi �Ai and Zi := Ai ∩Bi. Note that |Ai, Bi|y = NA′
i
+NZi

/2.
We observe that

|A1 ∩A2, B1 ∪B2|y = NA′
1∩A′

2
+

1

2
(NZ1∩Z2

+NZ1∩A′
2
+NA′

1∩Z2
),

and

|A1 ∪A2, B1 ∩B2|y = min{NA′
1∪A′

2
, NB′

1∩B′
2
}+1

2
(NZ1∩Z2

+NZ1∩B′
2
+NB′

1∩Z2
).
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Summing these two, we get

|A1 ∩A2, B1 ∪B2|y + |A1 ∪A2, B1 ∩B2|y

= NA′
1∩A′

2
+

1

2
(NZ1∩Z2

+NZ1∩A′
2
+NA′

1∩Z2
)

+min{NA′
1∪A′

2
, NB′

1∩B′
2
}+ 1

2
(NZ1∩Z2

+NZ1∩B′
2
+NB′

1∩Z2
)

≤ NA′
1∩A′

2
+NA′

1∪A′
2

+
1

2
(NZ1∩Z2

+NZ1∩A′
2
+NZ1∩B′

2
+NZ1∩Z2

+NA′
1∩Z2

+NB′
1∩Z2

)

= NA′
1
+NA′

2
+

1

2
(NZ1

+NZ2
)

= |A1, B1|y + |A2, B2|y .

Similarly,

|A1 ∩B2, B1 ∪A2|y = min{NA′
1∩B′

2
, NB′

1∪A′
2
}+1

2
(NZ1∩Z2

+NZ1∩B′
2
+NA′

1∩Z2
).

and

|A1 ∪B2, B1 ∩A2|y = min{NA′
1∪B′

2
, NB′

1∩A′
2
}+1

2
(NZ1∩Z2

+NZ1∩A′
2
+NB′

1∩Z2
).

Summing these two, we get

|A1 ∩B2, B1 ∪A2|y + |A1 ∪B2, B1 ∩A2|y

= min{NA′
1∩B′

2
, NB′

1∪A′
2
}+ 1

2
(NZ1∩Z2

+NZ1∩B′
2
+NA′

1∩Z2
)

+min{NA′
1∪B′

2
, NB′

1∩A′
2
}+ 1

2
(NZ1∩Z2

+NZ1∩A′
2
+NB′

1∩Z2
)

≤ NA′
1∩B′

2
+NA′

2∩B′
1

+
1

2
(NZ1∩Z2

+NZ1∩A′
2
+NZ1∩B′

2
+NZ1∩Z2

+NA′
1∩Z2

+NB′
1∩Z2

)

≤ NA′
1
+NA′

2
+

1

2
(NZ1

+NZ2
)

= |A1, B1|y + |A2, B2|y .

Thus |·|y is submodular and so is |·|X =
∑

y∈Y |·|y
Next, we show that the shifting operation does not increase the order of a

separation. For this we first show the following lemma, giving an alternative
representation of the order function:
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Lemma 4.2. For all (A,B) ∈ �S(X) we have

|A,B|X = |E(A�
B, B)|+ |E(B�

A, A)| − |E(A�
B ∩B�

A, X| /2
− |E(Y,A ∩B)| /2 + |E(A�

B ∩B�
A, A ∩B)| /2.

Proof. This can be calculated by rearranging sums:

|A,B|X =
∑
y∈Y

(
min{|N(y) ∩A| , |N(y) ∩B|} − |N(y) ∩A ∩B|

2

)

=
∑
y∈Y

|N(y)∩A|≥|N(y)∩B|

|N(y) ∩B|+
∑
y∈Y

|N(y)∩B|≥|N(y)∩A|

|N(y) ∩A|

−
∑
y∈Y

|N(y)∩A|=|N(y)∩B|

|N(y)|
2

+
∑
y∈Y

|N(y)∩A|=|N(y)∩B|

|N(y) ∩A ∩B|
2

−
∑
y∈Y

|N(y) ∩A ∩B|
2

= |E(A�
B, B)|+ |E(B�

A, A)| − |E(A�
B ∩B�

A, X)| /2
+ |E(A�

B ∩B�
A, A ∩B)| /2− |E(Y,A ∩B)| /2.

With this we can now prove that shifting a separation indeed cannot
increase the order of a separation:

Lemma 4.3. Let (A,B) be a separation of X, then |A,B|X ≥ |A�
B, B

�
A|Y .

Similarly if (C,D) is a separation of Y, then |C,D|Y ≥ |C�
D, D

�
C |X .

Proof. This is true by the following calculation:

|A�
B, B

�
A|Y =

∑
x∈X

(min{|N(x) ∩A�
B, N(x) ∩B�

A|} − |N(x) ∩A�
B ∩B�

A| /2)

≤
∑
a∈A

|N(a) ∩B�
A|+

∑
b∈B

|N(b) ∩A�
B|

−
∑

x∈A∩B
|N(x) ∩ Y | /2 +

∑
x∈A∩B

|N(x) ∩A�
B ∩B�

A| /2

−
∑

y∈A�
B∩B�

A

|N(y)| /2

=
∑
b∈B�

A

|N(b) ∩A|+
∑
a∈A�

B

|N(a) ∩B|
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−
∑

x∈A∩B
|N(x) ∩ Y | /2 +

∑
x∈A∩B

|N(x) ∩A�
B ∩B�

A| /2

−
∑

y∈A�
B∩B�

A

|N(y)| /2

= |E(B�
A, A)|+ |E(A�

B, B)| − |E(Y,A ∩B)| /2
+ |E(A�

B ∩B�
A, A ∩B)| /2− |E(A�

B ∩B�
A, X)| /2

= |A,B|X .

Finally, in order to define the tangles of �S(X) and �S(Y ) we need to define
the notion of consistency that we require our orientations to satisfy. There
are a few natural choices that one could make here, however in most contexts
it turns out that these definitions are in some sense weakly equivalent, in
that tangles under any one definition tend to induce tangles of slightly lower
order under the other definitions.

With that in mind, let us define a tangle of �Sk(X) (in G) as an orienta-
tion τ of �Sk(X) which satisfies the following property:

(†) There are no (A1, B1), (A2, B2), (A3, B3) ∈ τ with A1 ∪A2 ∪A3 = X.

We define tangles of �Sk(Y ) in G in a similar manner. This is perhaps the
simplest definition to take, and is a direct analogue of the corresponding
notion of ‘consistency’ used to define tangles in matroids. We will discuss
later in more detail the extent to which our results hold for tangles defined
in terms of other notions of ‘consistency.’

We are now ready to state the main results of this section. We will show
that, with the aid of this order function, we can relate the tangles of �S(X)
to those of �S(Y ).

Theorem 4.4. Let τ be a tangle of �S4k(X), then τ ′ := �τ∩ �Sk(Y ) is a tangle
of �Sk(Y ).

By symmetry, we then obtain a similar conclusion as in Theorem 4.4
when we shift a 4k-tangle of Y.

A natural question then to ask at this point, is, even if the shifting op-
eration itself is not idempotent, whether the operation it induces on tangles
is in some way ‘idempotent’: That is, if we shift a tangle twice, do we end
up with the original tangle? It turns out that, again up to a constant factor,
this is indeed the case.

Theorem 4.5. Let τ be a tangle of �S16k(X), let τ ′ = �τ ∩ �S4k(Y ), and let
τ ′′ = �τ ′ ∩ �Sk(X). Then τ ′′ ⊆ τ .
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It is possible to prove Theorems 4.4 and 4.5 directly. However, there is
perhaps a more interesting way to prove them indirectly, which potentially
gives slightly more illumination to the connection between these two types
of tangles, albeit at the cost of a slight increase in the factors of k. The idea
is to view the tangles of the two partition classes as two different facets of
tangles on the edge set of the bipartite graph.

We give these proofs in the next section. Direct proofs of Theorems 4.4
and 4.5 are given in the extended version of this paper [3].

4.2. Tangles of the edges

We will show that the tangles on the sides of a bipartite graph are closely
related to a third type of tangle – one defined on the separations of the
edges. Let us briefly introduce some new notation for this purpose.

We denote the set of all separations of E, the edge set of our bipartite
graph, as �S(E), and the set of the corresponding unoriented separations as
S(E). The following order function on the separations in �S(E) is a natural
variation on our previous order function for separations in �S(X):

|C,D|E :=
∑
v∈V

(min(|E(v) ∩ C| , |E(v) ∩D|)− |E(v) ∩ C ∩D| /2) ,

where E(v) denotes the set of incident edges of v. We will again assume that
any �Sk(E) we consider does not contain (E,E).

We say that an orientation τ of a subset �Sk(E) of �S(E) is a tangle of
�Sk(E), if τ is an orientation of �Sk(E) with the following property:

(†E) There are no (C1, D1), (C2, D2), (C3, D3) ∈ τ with C1∪C2∪C3 = E.

Given a separation in �S(X), there is a reasonably natural candidate for
a separation in �S(E) which it ‘induces’: A separation (A,B) of X naturally
defines a separation (A,B)E := (E(A), E(B)) of E, where E(A) denotes the
set of all edges of G which have an end vertex in A. Note that ((A,B)E)∗ =
(B,A)E .

The other way around is less obvious, but it will be necessary to associate
to each separation in �S(E) a separation in �S(X) and �S(Y ). We will do so
similarly to how we associated to each separation in �S(Y ) a separation in
�S(X). There we obtained, given a separation (A,B) ∈ �S(Y ), a separation
in �S(X) by asking for every vertex in X whether that vertex has more
neighbours in A or in B. In a similar manner we will now ask, given a
separation (C,D) in �S(E), for each vertex inX whether more of the adjacent
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edges lie in C or in D. Formally, given a separation (C,D) of E, we obtain
a separation (C,D)� := (C�

D , D�
C ) of X by defining

C�
D = {x ∈ X : |E(x) ∩ C| ≥ |E(x) ∩D|}

and

D�
C = {x ∈ X : |E(x) ∩ C| ≤ |E(x) ∩D|}.

In an analogous manner we can define a separation (C,D)� of Y, however
by the symmetry of the situation we will only ever need to talk about the
map (·)�.

We will also think of these two maps (·)E and (·)� as determining a
shifting operation between the separations in �S(E) and �S(X). We first note
that, at least in one direction, this shifting operation preserves the partial
order on the separations.

Lemma 4.6. If (C,D) ≤ (C ′, D′), then (C,D)� ≤ (C ′, D′)�

Proof. If (C,D) ≤ (C ′, D′), then C ⊆ C ′ and D ⊇ D′. Thus, for x ∈ X, we
have that |E(x) ∩ C| ≤ |E(x) ∩ C ′| and |E(x) ∩D| ≥ |E(x) ∩D′|.

Now if x ∈ C�
D , then |E(x) ∩ C| ≥ |E(x) ∩D| and thus

∣∣E(x) ∩ C ′∣∣ ≥ |E(x) ∩ C| ≥ |E(x) ∩D| ≥
∣∣E(x) ∩D′∣∣ ,

hence x ∈ C ′�
D′ . Similarly, if x ∈ D′�

C′ , then |E(x) ∩D′| ≥ |E(x) ∩ C ′| and
thus

|E(x) ∩D| ≥
∣∣E(x) ∩D′∣∣ ≥ ∣∣E(x) ∩ C ′∣∣ ≥ |E(x) ∩ C| ,

hence x ∈ C�
D . Thus C�

D ⊆ C ′�
D′ and D′�

C′ ⊆ D�
C , i.e. (C,D)� ≤ (C ′, D′)�.

Unlike the shifting operation considered in the previous section, there
is less of a symmetry here: the separation (A,B)E fully determines the sep-
aration (A,B), whereas the separation (C,D)� in some way ‘compresses’
the information in the separation (C,D) into a rough estimate. Generally
there are multiple different separations (C,D) in �S(E) for which the (C,D)�

coincide, and so the map (·)� is not injective.
As with (·)�, this map induces a pullback map: given a subset τ of �S(X),

we define

τE := {(C,D) : (C,D)� ∈ τ}.
Note that, since, assuming the graph is connected,

(
(A,B)E

)�
= (A,B),

the set of all the separations of the form (A,B)E with (A,B) ∈ τ is a subset
of τE .



Duality and tangles of set separations 19

For shifting tangles in the other direction we take a slightly different
notion. Given a subset τ of �S(E), let us define

τX := {(C,D)� : (C,D) ∈ τ},

and let τY be defined analogously. Note that this is a genuinely different way
to move between tangles of �S(E) and �S(X); rather than ‘pulling back’ the
tangle from �S(X) to �S(E) via the map (·)E , giving rise to a set of separations

Xτ := {(A,B) ∈ �S(X) : (A,B)E ∈ τ},

we’re ‘pushing forward’ via the map (·)�.
We note that in this particular case, since

(
(A,B)E

)�
= (A,B), we

have that τX ⊇ Xτ and so, since Xτ is automatically a partial orientation

of �S(X), if the restriction of τX to some lower order is a tangle, then the
restriction of Xτ to the same order will also satisfy (†). In particular, working
with this definition results in slightly stronger results than working with Xτ .
However, the main purpose of this change is that it will result in slightly
simpler proofs, see for example Corollary 4.15.

We will show that given a tangle τ of �S4k(X), the set τE ∩ �Sk(E) is
in fact a tangle of �Sk(E) and dually, given a tangle τ is of �S2k(E), the set
τX ∩ �Sk(X) is a tangle of �Sk(X). We will then be able to use this to obtain
proofs of Theorem 4.4 and Theorem 4.5 from the symmetry between X and
Y.

We note first that, as is the case for |·|X and |·|Y , the order function |·|E
is submodular.

However, since we will not use this fact, and its proof is almost identical
to that of Lemma 4.1, the proof is included only in the extended version of
the paper.

Lemma 4.7. The order function |·|E is submodular.

However, unlike in Lemma 4.3, we are no longer able to show that shifting

does not increase the order of a separation. However, for the map (·)E in
one direction, the order of the shifted separation will still be quite close to
the order of the original separation. More precisely, simple calculations show
that:

Proposition 4.8. Given a separation (A,B) of X, we have

|A,B|X ≤
∣∣(A,B)E

∣∣
E
≤ 2 |A,B|X .
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Proof. For the first inequality we note that:

|A,B|X =
∑
y∈Y

(
min{|N(y) ∩A| , |N(y) ∩B|} − |N(y) ∩A ∩B| /2

)

=
∑
y∈Y

(
min{|E(y) ∩ E(A)| , |E(y) ∩ E(B)|}

− |E(y) ∩ E(A) ∩ E(B)| /2
)

≤
∑
v∈V

(
min{|E(v) ∩ E(A)| , |E(v) ∩ E(B)|}

− |E(v) ∩ E(A) ∩ E(B)| /2
)

=
∣∣(A,B)E

∣∣
E

For the second inequality we observe that, for x ∈ X we have, since x ∈ A
or x ∈ B, that

min{|E(x) ∩ E(A)| , |E(x) ∩ E(B)|} = |E(x) ∩ E(A) ∩ E(B)|

and thus

∑
x∈X

(min{|E(x) ∩ E(A)| , |E(x) ∩ E(B)|} − |E(x) ∩ E(A) ∩ E(B)| /2)

= |E(A) ∩ E(B)| /2.

As clearly |A,B|X ≥ |E(A) ∩ E(B)| /2 it follows that

∣∣(A,B)E
∣∣
E

=
∑
v∈V

(min{|E(v) ∩ E(A)| , |E(v) ∩ E(B)|} − |E(v) ∩ E(A) ∩ E(B)| /2)

=
∑
x∈X

(min{|E(x) ∩ E(A)| , |E(x) ∩ E(B)|} − |E(x) ∩ E(A) ∩ E(B)| /2)

+
∑
y∈Y

(min{|E(y) ∩ E(A)| , |E(y) ∩ E(B)|} − |E(y) ∩ E(A) ∩ E(B)| /2)

= |E(A) ∩ E(B)| /2+
∑
y∈Y

(min{|N(y) ∩A| , |N(y) ∩B|}−|N(y)∩A ∩B| /2)

≤ 2 |A,B|X

For the map (·)� in the other direction, it is still true that shifting does
not increase the order of a separation.
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Lemma 4.9. Let (C,D) be a separation of E, then |C,D|E ≥
∣∣C�

D , D�
C

∣∣
X
.

For the proof of Lemma 4.9 we will need to carefully analyse how we can
‘locally’ change a separation in �S(E) without changing the shift. Recall that,
given a separation (A,B) in �S(X), there are other separations apart from
(A,B)E in �S(E) which still shift to (A,B). So, in order to prove Lemma 4.9
we will analyse what these different separations of E inducing the same
separation (A,B) of X look like. For this, we will show which ‘local’, i.e.
single-edge, changes we can make to a given separation (C,D) to bring it
closer to one of the type (A,B)E , without increasing its order.

So, let us start analysing these ‘local’ changes. Firstly, in the next lemma
we show that we can move a single edge from D to C without increasing
the order of (C,D) or changing its shift (C,D)�, if at the end vertex in X
of that edge there are fewer incident edges in D than in C.

Lemma 4.10. Let (C,D) be a separation of E and let e ∈ E be incident
with C�

D �D�
C . Then

|C ∪ {e}, D � {e}|E ≤ |C,D|E and (C ∪ {e}, D � {e})� = (C,D)�.

Proof. We may suppose that e ∈ D, as otherwise there is nothing to show.
Let e = vw. We observe that, since v ∈ C�

D �D�
C , we have

min(|E(v) ∩ C| , |E(v) ∩D|)− |E(v) ∩ C ∩D| /2
= |E(v) ∩D| − |E(v) ∩ C ∩D| /2
≥ |E(v) ∩ (D � {e})| − |E(v) ∩ (C ∪ {e}) ∩ (D � {e})| /2 + 1,

and

min(|E(w) ∩ C| , |E(w) ∩D|)− |E(w) ∩ C ∩D| /2
≥min(|E(w) ∩ (D � {e})| , |E(w) ∩ (C ∪ {e})|)

− |E(w) ∩ (C ∪ {e}) ∩ (D � {e})| /2− 1.

Thus |C ∪ {e}, D � {e}|E ≤ |C,D|E . Moreover, v ∈ C�
D �D�

C and therefore
also v ∈ (C ∪ {e})�D�{e} � (D � {e})�C∪{e} and so it follows that (C,D)� =

(C ∪ {e}, D � {e})�.
Using this, we can show that from within the set of those separations of

E with the same shift (A,B), we can always find some (C,D) of minimal
order which is ‘close’ to (A,B)E , in the sense that every edge incident with
A�B is contained in C�D and every edge incident with B�A is contained
in D � C:
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Lemma 4.11. Let (C,D) ∈ �S(E). Then there exists a separation (C ′, D′) of
E with |C ′, D′|E ≤ |C,D|E and (C ′, D′)� = (C,D)� such that every edge e
incident with C�

D�D�
C lies in C ′�D′ and every edge incident with D�

C �C�
D

lies in D′ � C ′.

Proof. Suppose (C ′, D′) is chosen such that (C ′, D′)� = (C,D)�, such that
the order of (C ′, D′) is at most the order of (C,D), i.e. |C ′, D′|E ≤ |C,D|E ,
and such that over all such separations (C ′, D′) minimises the sum of the
number of edges incident with C�

D �D�
C which do not lie in C ′�D′ and the

number of edges incident with D�
C � C�

D which do not lie in D′ � C ′.
Suppose that there exists some such edge e incident with C�

D�D�
C which

does not lie in C ′ �D′ or some such edge e incident with D�
C � C�

D which
does not lie in D′ � C ′. Let us assume we are in the former case, as the
argument in the latter case is identical.

Since (C ′, D′)� = (C,D)�, by Lemma 4.10 we could then consider the
separation (C ′∪{e}, D′�{e}) which satisfies (C ′ ∪ {e}, D′�{e})�=(C ′, D′)�

and |C ′ ∪ {e}, D′ � {e}| ≤ |C ′, D′| ≤ |C,D|, contradicting the choice of
(C ′, D′).

This observation enables us to perform the necessary calculations to
prove Lemma 4.9.

Proof of Lemma 4.9. By Lemma 4.11 we may suppose that every edge in-
cident with C�

D �D�
C lies in C �D and every edge incident with D�

C �C�
D

lies in D � C.
In this case, we can calculate |C,D|E as follows.

|C,D|E
=
∑
v∈V

(min(|E(v) ∩ C| , |E(v) ∩D|)− |E(v) ∩ C ∩D| /2)

=
∑
v∈Y

(min(|E(v) ∩ C| , |E(v) ∩D|)− |E(v) ∩ C ∩D| /2) +
∑

v∈C�
D∩D�

C

1

2
|E(v)|

≥
∑
v∈Y

(
min(

∣∣N(v) ∩ C�
D

∣∣ , ∣∣N(v) ∩D�
C

∣∣)− 1

2

∣∣N(v) ∩ C�
D ∩D�

C

∣∣)

− 1

2

∣∣E(C�
D) ∩ E(D�

C )
∣∣+ ∑

v∈C�
D∩D�

C

1

2
|N(v)|

≥
∑
v∈Y

(
min(

∣∣N(v) ∩ C�
D

∣∣ , ∣∣N(v) ∩D�
C

∣∣)− ∣∣N(v) ∩ C�
D ∩D�

C

∣∣ /2)

=
∣∣C�

D , D�
C

∣∣
X
.
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Analysing local changes will also play a crucial role in showing that,
given a tangle τ in �S(E), the restriction of τX to a lower order is actually
an orientation. For this we will need to make sure that separations obtained
from one another by local changes cannot be oriented differently in τE .
However, whereas Lemma 4.10 allows us to move certain edges from C �D
to D � C without changing the shift or increasing the order, for showing
that the restriction of τX to a lower order actually is an orientation we will
need to analyse a different type of local change.

More precisely, the next lemma will allow us to move certain edges from
D � C (or, symmetrically, C �D), to C ∩D without increasing the order.
Such an operation might change the shift of a separation, but, by Lemma 4.6,
it does so only in a controlled way: moving an edge from D � C to D ∩ C
will only result in a shift that is larger, in the sense of the partial order on
the separation system, than the shift of the original (C,D). Moreover, such
a local change does not change the way a separation is oriented by a tangle.

Lemma 4.12. Let (C,D) be a separation of E and let e ∈ E be incident
with C�

D . Then |C ∪ {e}, D|E ≤ |C,D|E and (C ∪ {e}, D)� ≥ (C,D)�.

Proof. If e ∈ C, then it is nothing to show, so suppose that e ∈ D � C. Let
e = vw. We observe that, since v ∈ C�

D , we have

min(|E(v) ∩ C| , |E(v) ∩D|)− |E(v) ∩ C ∩D| /2
= |E(v) ∩D| − |E(v) ∩ C ∩D| /2

= |E(v) ∩D| − |E(v) ∩ (C ∪ {e}) ∩D| /2 + 1

2

and

min(|E(w) ∩ C| , |E(w) ∩D|)− |E(w) ∩ C ∩D| /2

≥min(|E(w) ∩ (C ∪ {e})| , |E(w) ∩D|)− |E(w) ∩ (C ∪ {e}) ∩D| /2− 1

2
.

Thus |C ∪ {e}, D|E ≤ |C,D|E . We have (C,D)� ≤ (C∪{e}, D)� by Lemma
4.6.

We now have all the ingredients at hand needed to show that the shift
of a tangle, restricted to an appropriate order, is still a tangle. Let us start
by considering the shift τX of a tangle τ of �S(E).

Theorem 4.13. If τ is a tangle of �S2k(E), then τX ∩ �Sk(X) is a tangle
of �Sk(X).
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Proof. We first note that the set τX ∩ �Sk(X) contains at least one of (A,B)

and (B,A) for every separation (A,B) ∈ �Sk(X). Indeed, by Proposition 4.8∣∣(A,B)E
∣∣
E
≤ 2 |A,B|X , and so since τ is a tangle of �S2k(E) either (A,B)E ∈

τ or (B,A)E ∈ τ .

Let us now show that for no separation {A,B} we have both (A,B)

and (B,A) in τX ∩ �Sk(X). Suppose otherwise, then τ contains separa-

tions (C1, D1) and (C2, D2) such that (C1, D1)
� = (A,B) and (C2, D2)

� =

(B,A).

Note that, by Proposition 4.8, we have that
∣∣(A,B)E

∣∣
E
≤ 2 |A,B|X < 2k,

hence (A,B)E ∈ τ or (B,A)E ∈ τ . As
(
(A,B)E

)�
= (A,B), we may suppose

without loss of generality that either (C1, D1)=(A,B)Eor(C2, D2)=(B,A)E .

We suppose the former one, the latter case is similar.

Now pick a separation (C,D) ∈ τ such that (C,D)� ≥ (C2, D2)
� =

(B,A) and the set (D1 ∩D)� (C1 ∪ C) is as small as possible. Then, since

τ satisfies (†E), we have C1 ∪ C = E. Hence there exists some edge e ∈
(D1 ∩D)� (C1 ∪ C).

Let x be the end vertex of e in X. Note that e ∈ E(B) � E(A) since

E(A) = C1 and e /∈ C1. Thus x ∈ B �A. Moreover, as B = C2
�
D2

⊆ C�
D , we

have that x ∈ C�
D . Thus e is incident with C�

D .

Consequently, we can apply Lemma 4.12 to get that |C ∪ {e}, D|E ≤
|C,D|E . Thus τ orients (C ∪ {e}, D) and therefore (C ∪ {e}, D) ∈ τ , as

(D,C∪{e}) ∈ τ would contradict (†E) because of (C,D) ∈ τ andD∪C = E.

But this implies that (C ∪{e}, D) ∈ τ is a better choice for (C,D), since

(C ∪ {e}, D)� ≥ (C,D)� by Lemma 4.6 and

(D1 ∩D)� (C1 ∪ C) � (D1 ∩D)� (C1 ∪ (C ∪ {e}))

as e ∈ (D1 ∩D)� (C1 ∪ C).

Thus τX ∩ �Sk(X) is indeed an orientation. That τX ∩ �Sk(X) satisfies the

tangle property (†) now follows like this: If (A1, B1), (A2, B2), (A3, B3) would

be a triple in τX∩ �Sk(X) contradicting the tangle property (†), then τ would

need to orient (A1, B1)
E ,(A2, B2)

E and (A3, B3)
E by Proposition 4.8. By the

above observation τ orients them as (A1, B1)
E ,(A2, B2)

E and (A3, B3)
E ,

since τX ∩ �Sk(X) does not contain any (((Ai, Bi)
E)∗)� = (Bi, Ai). However,

the three separations (A1, B1)
E ,(A2, B2)

E and (A3, B3)
E in τ then contra-

dict the tangle property (†E), as every edge in E is incident with at least

one of the sets A1, A2, A3.

A similar conclusion holds for the shift τE of a tangle τ of �S4k(X).
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Theorem 4.14. Given a tangle τ of �S4k(X), then τE ∩ �Sk(E) is a tangle
of �Sk(E).

Proof. By Lemma 4.9, given some separation (C,D) ∈ �Sk(E) we have that
|(C,D)�|X ≤ |(C,D)|E , thus τ contains exactly one of the two separations

(C,D)� and ((C,D)�)∗ = (D,C)�, and consequently τE ∩ �Sk(E) contains
exactly one of (C,D) and (D,C), i.e. τE ∩ �Sk(E) is an orientation of �Sk(E).

So, it remains to show that τE∩ �Sk(E) satisfies the tangle property (†E).
Let us suppose for a contradiction that there is some set

{(C1, D1), (C2, D2), (C3, D3)} ⊆ τE ∩ �Sk(E)

such that C1 ∪ C2 ∪ C3 = E.

Let (Ai, Bi) = (Ci, Di)
� for each i = 1, 2, 3. Then, since (Ai, Bi) ∈ τ for

each i, and τ is a tangle, it follows that the set Z = X \ (A1 ∪ A2 ∪ A3) is
non-empty.

Since Z ⊆ Bi = Di
�
Ci

for each i, we have that |E(z) ∩Di| ≥ |E(z) ∩ Ci|
for all z ∈ Z and i = 1, 2, 3. However, since C1 ∪ C2 ∪ C3 = E,

3∑
i=1

|Ci, Di|E=

3∑
i=1

∑
v∈V

(
min{|E(v) ∩ Ci| , |E(v) ∩Di|}−

1

2
|E(v) ∩ Ci ∩Di|

)

≥
3∑

i=1

∑
z∈Z

(
min{|E(z) ∩ Ci| , |E(z) ∩Di|}−

1

2
|E(z) ∩ Ci ∩Di|

)

=
∑
z∈Z

3∑
i=1

(
|E(z) ∩ Ci| −

1

2
|E(z) ∩ Ci ∩Di|

)

≥
∑
z∈Z

d(z)/2 = |E(Z, Y )| /2.

As |Ci, Di|E < k for every i = 1, 2, 3, this gives us |E(Z,X)| < 6k and thus

|Z,X|X = |E(Z, Y )| /2 < 3k.

Hence, τ needs to orient (Z,X). As (X,Z) ∈ τ would contradict (†), it
follows that (Z,X) ∈ τ .

Finally, since |A3, B3|X ≤ |C3, D3|E < k by Lemma 4.9, we can conclude
by submodularity, that

|A3 ∪ Z,B3 ∩X|X ≤ |A3, B3|X + |Z,X|X < 4k.
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Hence, it follows that τ needs to orient (A3 ∪ Z,B3) and as (A3, B3) ∈ τ it
follows from (†) that (A3 ∪ Z,B3) ∈ τ , as A3 ∪B3 = X. However, then

{(A1, B1), (A2, B2), (A3 ∪ Z,B3)} ⊆ τ

and A1 ∪A2 ∪ (A3 ∪ Z) = X, contradicting (†).

Corollary 4.15. Let τ be a tangle of �S8k(E), then

τ ′′ :=
(
τX ∩ �S4k(X)

)
E
∩ �Sk(E)

is a subset of τ . Similarly, let τ ′ be a tangle of �S8k(X), then

τ ′′′ :=
(
τ ′E ∩ �S2k(E)

)
X
∩ �Sk(X)

is a subset of τ ′.

Proof. By Theorems 4.13 and 4.14, τ ′′ is a tangle of �Sk(E). Now, given any
separation (C,D) ∈ �Sk(E) ∩ τ , we have that (C,D)� ∈ τX ∩ �S4k(X) and
thus (C,D) is in τ ′′. As τ ′′ is an orientation of �Sk(E), we then have that
τ ′′ ⊆ τ .

For the second part we note that, again by Theorems 4.13 and 4.14, τ ′′′

is a tangle of �Sk(X). Given (A,B) ∈ �Sk(X)∩τ ′ we have, since ((A,B)E)� =
(A,B), that (A,B)E is in τ ′E ∩ �S2k(E) and thus (A,B) is in τ ′′′. As τ ′′′ is an

orientation of �Sk(X), we then have that τ ′′′ ⊆ τ ′.

Putting these together, we obtain versions of Theorem 4.4 and Theo-
rem 4.5, with slightly worse factors:

Corollary 4.16. Let τ be a tangle of �S8k(X). Then τ ′ := �τ ∩ �Sk(Y ) is a
tangle of �Sk(Y ).

Proof. Let us consider the set of separations

τ ′′ =
(
τE ∩ �S2k(E)

)
Y
∩ �Sk(Y ).

We first note that τ ′′ is a tangle of �Sk(Y ), by Corollary 4.15. We will show
that τ ′ = τ ′′, and hence τ ′ is a tangle of �Sk(Y ), as claimed. Note that,
informally, this is saying that we can express the map �(·) as the composition
of the two maps (·)Y ◦ (·)E , at least if we restrict to separations of a low
enough order.
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Indeed, suppose that (C,D) ∈ �τ , and so (C,D)� ∈ τ . It is clear

that ((C,D)E)� = (C,D)�, and so (C,D)E ∈ τE , and hence (C,D) =

((C,D)E)� ∈ (τE)Y . Furthermore, note that if |C,D|Y < k, then |(C,D)E | <
2k by Proposition 4.8. It follows that τ ′ ⊆ τ ′′.

The converse direction will follow from the fact that both τ ′ and τ ′′

are orientations of �Sk(Y ). Indeed, τ ′′ is a tangle, and hence an orientation

of �Sk(Y ). On the other hand, if (C,D) ∈ �Sk(Y ) \ τ ′, then by definition

(C,D)� ∈ τ . However, by Lemma 4.3, |(C,D)�|X ≤ |C,D|Y < k and so, since

τ is an orientation of �S8k(Y ) ⊇ �Sk(Y ), it must contain (D,C)� = ((C,D)�)∗.
It follows that (D,C) ∈ τ ′, and so τ ′ is an orientation of �Sk(Y ).

Then, since τ ′ and τ ′′ are both orientations of �Sk(Y ), and τ ′ ⊆ τ ′′, it
follows that τ ′ = τ ′′.

Corollary 4.17. Let τ be a tangle of �S64k(X), let τ ′ = �τ ∩ �S8k(Y ), and let

τ ′′ = �τ ′ ∩ �Sk(X). Then τ ′′ ⊆ τ .

Proof. Consider τE ∩ �S16k(E). By Corollary 4.16, we have that

τ ′ =
(
τE ∩ �S16k(E)

)
Y
∩ �S8k(Y ).

Moreover, again by Corollary 4.16 we have that

τ ′′ =
(
τ ′E ∩ �S2k(E)

)
X
∩ �Sk(X).

But now, by Corollary 4.15, we note that

((
τE ∩ �S16k(E)

)
Y
∩ �S8k(Y )

)
E
∩ �S2k(E) ⊆ τE ∩ �S16k(E)

and thus,

τ ′′ =
(((

τE ∩ �S16k(E)
)
Y
∩ �S8k(Y )

)
E
∩ �S2k(E)

)
X
∩ �Sk(X)

⊆
(
τE ∩ �S16k(E)

)
X
∩ �Sk(X).

Again by Corollary 4.15 we have that

(
τE ∩ �S16k(E)

)
X
∩ �Sk(X) ⊆ τ,

which shows the claim.
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4.3. Variations, generalisations and open problems

A natural question to consider at this point is how much these results depend
on the very specific set up we have here.

For example, whilst we considered a very specific type of tangle, there
are other types of ‘tangle-like’ clusters which one might wish to consider.
Perhaps the most general condition one could consider here would be that
of a regular profile. A profile of a set separation system is an orientation
which neither contains any two separations pointing away from each other –
i.e., if (A1, B1) ≤ (A2, B2) for distinct separations {A1, B1}, {A2, B2} then a
profile cannot contain both, (B1, A1) and (A2, B2) ∈ P – nor does it contain
any triple of separations of the form

{(A1, B1), (A2, B2), (B1 ∩B2, A1 ∪A2)}.

A regular orientation is one which does not contain any cosmall separations,
that is a separation (V,B) where V is the underlying set and B ⊆ V. Tangles
are regular profiles, but regular profiles model a broader class of clusters.

Similar statements as in Theorems 4.4 and 4.5 can be shown to hold via
similar arguments for regular profiles. In particular the following Theorems
hold:

Theorem 4.18. Let P be a regular profile of �S3k(X), then P ′ := �P ∩ �Sk(Y )
is a regular profile of �Sk(Y ).

Theorem 4.19. Let P be a regular profile of �S9k(X), P ′ = �P ∩ �Sk(Y ) and
P ′′ = �P ′ ∩ �Sk(X), then P ′′ ⊆ P .

We can also deduce statements analogue to Theorem 4.13 and Theo-
rem 4.14 for profiles, i.e. we can consider regular profiles on subset of the
set �S(E) of separations of the edges of our bipartite graph and show the
following:

Proposition 4.20. Let P be a regular profile of �S2k(E), and let us denote
PX := {(C,D)� : (C,D) ∈ P}. Then, the set PX∩�Sk(X) is a regular profile
of �Sk(X).

Proposition 4.21. Let P be a regular profile of �S3k(X) and let us define
PE := {(C,D) ∈ �S3k(E) : (C,D)� ∈ P}. Then PE∩ �Sk(E) is a regular pro-
file of �Sk(E).

However, since the arguments are similar to those in Section 4.2 we refer
interested readers to the extended version of this paper.
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Another possible variation of the problem is to consider other ways to
relate tangles of the different systems to each other. Given our shifting op-
eration between the two separation systems �S(X) and �S(Y ) we defined a
‘pull-back’ type operation that maps subsets of �S(X) to subsets of �S(Y ) and
investigated its action on tangles. However, as in the definition of τX there
is another way to extend our shifting operation from acting on single sepa-
rations to acting on subsets via a ‘push-forward’ type action. It is perhaps
equally natural to ask how the tangles of �Sk(X) and �Sk(Y ) behave under
these operations.

Given a tangle τ of �Sk(X) one may define the set

τ� := {(A,B)� : (A,B) ∈ τ} ⊆ �Sk(Y ),

and similarly, if τ is a tangle of �Sk(Y ), we may define

τ� := {(A,B)� : (A,B) ∈ τ} ⊆ �Sk(X).

Note that τ� and τ�, generally, are no more than subsets of �Sk(Y ) or �Sk(X),
respectively, they need not be an orientation, not even a partial orientation.

However, we can show that this push-forward τ� is, when restricted
appropriately, contained in a corresponding pull-back �τ and thus needs to
be a partial orientation satisfying (†).

Proposition 4.22. Let τ be a tangle of �S16k(X), then

(τ ∩ �Sk(X))� ⊆ �τ.

Proof. The only way in which this may fail is that for some (C,D) ∈ �τ
we have (D,C) ∈ (τ ∩ �Sk(X))�. Let us say this happens because of some
(A,B) ∈ τ ∩ �Sk(X) with (A,B)� = (D,C).

Then also (A,B) ∈ �
(�τ ∩ �S4k(Y )) ∩ �Sk(X) by Theorem 4.5, and hence

(A,B)� = (D,C) ∈ �τ ∩ �S4k(Y ), contradicting the fact that �τ ∩ �S4k(Y ) is
a tangle.

A third variation of this idea is motivated by applications, see for exam-
ple [10]. There we often wish to work with systems of set partitions, rather
than more general set separations. Again here much of the work in previous
sections remains true in this setting, with slight tweaks to the definitions
and results.

More explicitly, given as before a bipartite graph G on partition classes
X and Y let �B(X) and �B(Y ) be the universe of all the partitions of X and Y,
respectively.
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Given a partition (A,B) ofX, we can define, as before, the shift of (A,B)
to be the partition (C,D) of Y where C is the set of all elements of Y with
more neighbours in A than in B and D is the set of all elements of Y with
more neighbours in B than in A. However, a small issue arises here as to
what to do with those vertices which have an equal number of neighbours in
A and B. Since we need the shift of a partition to be a partition we need to
break the symmetry in some way here and we define our shifting operation
not for unoriented, but for oriented partitions, namely we define a partition
(A,B)� := (C,D) of Y by letting

C := {y ∈ Y : |N(y) ∩A| ≥ |N(y) ∩B|}

and

D := {y ∈ Y : |N(y) ∩A| < |N(y) ∩B|}.
In particular, in general these maps may not commute with the natural
involutions on �B(X) and �B(Y ), i.e., it may be the case that (A,B)� =
((B,A)�)∗.

There is again a natural order function for these partitions given by

|A,B|X :=
∑
y∈Y

min{|N(y) ∩A| , |N(y) ∩B|},

which can again be seen to be submodular, and for a suitable definition of a
tangle we can show that analogues of Theorems 4.4 and 4.5 hold for tangles
of �B(X) and �B(Y ). In particular the following is true:

Theorem 4.23. Let τ be a tangle of �B4k(X), then τ ′ := �τ ∩ �Bk(Y ) is a
tangle of �Bk(Y ).

Theorem 4.24. Let τ be a tangle of �B16k(X), let τ ′ = �τ ∩ �B4k(Y ), and let
τ ′′ = �τ ′ ∩ �Bk(X), then τ ′′ ⊆ τ .

Again the arguments closely follow the proofs of Theorems 4.4 and 4.5,
so we refer an interested reader to the extended version of this paper.

It would be nice if one could find a unified result implying these different
variations. Unfortunately, it seems that the nature of the result means that
strengthening or weakening the notion of tangle we consider does not make
the statement stronger or weaker, but rather incomparable. Indeed, since
we wish to show that tangles on X shift to tangles on Y, if we consider a
stronger notion of tangle, then fewer orientations are tangles, and so it is
required to show that a stronger property holds for the shifts, but under a
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stronger assumption on the original orientations. Similarly, if we consider a
weaker notion of tangles, then more orientations will be tangles, and so it
is required to show that a weaker property holds for the shifts, but we only
have weaker assumptions on the original orientations.

A similar problem arises if one wants to relate the statements for set
partitions to the statements about set separations: In principle, every tangle
of separations of a set induces a tangle of its partitions. And conversely,
every tangle of partitions of a set induces a tangle of separations of that set
of lower order, except that the ‘regularity’ conditions of these two types of
tangles are not compatible: For set separations we just require that we do
not contain any cosmall separations, whereas for partitions we want more,
namely that the big side of our partition of the vertices in X not only
contains more than one vertex, but also its neighbourhood contains at least
two vertices from Y. Thus the statements for these two types of tangles are,
formally, independent from each other, although most of the proof strategy
is very similar.

5. A homological view of duality

Our aim in this section is to point out that the duality of set partitions out-
lined in Section 3.2 can be viewed naturally as a case of algebraic duality.
The algebraic approach leads to some immediate questions, whose interpre-
tations for set partitions illuminates these from a new angle.

Although motivated by the naive duality of set partitions as in Sec-
tion 3.2, we shall set up our algebraic framework for the slightly larger class
of set separations, in line with the rest of this paper. The homology of set
separations is tantamount to that of hypergraphs [7], to which we refer for
algebraic details.

In this section, S is always a set of oriented separations of some fixed
finite set V.10 We assume that S is antisymmetric: that no two elements
of S are inverses of each other as oriented separations. The reason for this
restriction is not that we cannot deal with pairs of inverse separations, but
that we do not want the inverse of a separation s to carry an independent
name that cannot be traced back to s. If necessary, we can always refer to
the inverse of s as s∗, but in our algebraic context this will not normally be
necessary.11 Let us call the elements of S the default orientations of their
underlying unoriented separations of V.

10We shall never consider unoriented separations in a homological context such
as here, and need to fix default orientations anyhow, as in Section 3.2. So we may
as well drop the arrows.

11Elements of S will occur as 1-chains, and thus have a natural inverse in this
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Figure 1: Boundary coefficients for a separation s = (A,B).

5.1. Chains and cochains

Let C0, C1 and C2 denote the free abelian groups, or Z-modules, with bases
V, S, and ∅, respectively. We write the elements of C0, the 0-chains of our
separation system, as sums

∑
nivi of elements vi of V with integer coef-

ficients ni ∈ Z. The elements of C1, its 1-chains , are the sums
∑

nisi of
separations si ∈ S with integer coefficients. The set C2 = {0} of ‘2-chains’
consists only of the empty sum.

As boundary homomorphisms we take the map ∂2 : 0 �→ 0 from C2 to C1

and the homomorphism ∂1 : C1 → C0 that sends every s = (A,B) ∈ S to
the 0-chain

∑
v∈B�A v −

∑
v∈A�B v (and extends linearly to all of C1). An

arbitrary v ∈ V thus has a coefficient in ∂1(A,B) of −1 if v ∈ A � B, of 0
if v ∈ A ∩ B, and of 1 if v ∈ B � A. In the informal language of Section 3,
the boundary of a separation s assigns the coefficient 1 to the elements of V
that s points to, coefficient −1 to those it points away from, and 0 to those
in the middle (Figure 1).

If desired, the boundary homomorphism ∂1 can be described by an n×m
matrix B with entries 1, 0,−1, where n = |V | and m = |S|. For a 1-chain
x =

∑m
j=1 αjsj we then have ∂1x =

∑n
i=1 βivi for Ba = b, where a =

(α1, . . . , αm) and b = (β1, . . . , βn).
Graph homology is a special case of this. Indeed, given a graph G on V,

define for every oriented edge ab of G the separation sab = (A,B) of V given
by A � B = {a} and B � A = {b}, and let S = { sab | ab ∈ G }. Then
∂1(sab) = b − a, which is the usual boundary of the edge ab in simplicial
homology. Conversely, any system S of separations of a set V as considered
here can be viewed as a hypergraph on V, with oriented edges (A�B,B�A)
for the separations (A,B) of V in S. So the homology of set separations
reduces to hypergraph homology, which is studied in its own right, and from
a graph-theoretic perspective, in [7].

chain group. If desired, one may think of the chain −s as the separation inverse
to s.
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For n = 0, 1, 2, the elements of Cn = Hom(Cn,Z) are the n-cochains
of our separation system. We usually define these homomorphisms explictly
only on the singleton chains in Cn, i.e., on individual elements of V or of S
when n = 0 or n = 1, and extend these maps linearly to all of Cn. We write
C2 = {0}, where 0 denotes the unique homomorphism 0 �→ 0 from C2 = {0}
to Z.

The coboundary homomorphisms for n = 0, 1 are the maps δn : Cn →
Cn+1 that send an n-cochain ϕ : Cn → Z to the (n + 1)-cochain (ϕ ◦
∂n+1) : Cn+1 → Z. For example, δ0 sends ϕ ∈ C0 to the unique homo-
morphism ψ : C1 → Z in C1 that maps every s ∈ S ⊆ C1 to the image of ∂1s
in Z under ϕ. If ∂1 is described by a matrix B as earlier, then δ0 is described
by its transpose B�. We write ϕv for the element of C0 that sends v ∈ V
to 1 and all the other elements of V to 0, and ψs for the element of C1 that
sends s ∈ S to 1 and all the other elements of S to 0.

Chains can be turned into cochains simply by interpreting their coeffi-
cients as images of the basis element to which they are assigned. Let γ0 be
the isomorphism C0 → C0 that maps every v ∈ V to ϕv, and γ1 the isomor-
phism C1 → C1 that maps every s ∈ S to ψs. Thus, γ0 maps

∑
v∈V nvv ∈ C0

to the 0-cochain that sends each v ∈ V to nv (and extends linearly to all
of C0), and similarly for γ1.

To avoid clutter, we shall drop the indices 0, 1 or 2 of the maps ∂, δ
and γ when they can be understood from the context, as in Figure 2.

0 C1 C0 0

0 C1 C0 0

∂

γ γ

δ

Figure 2: Boundary and coboundary maps.

For x ∈ C1 we shall use the abbreviations of

ϕ∂x := (γ ◦ ∂)(x) ∈ C0 and ψ∂x := (δ ◦ γ ◦ ∂)(x) = δ(ϕ∂x) ∈ C1.

For s ∈ S ⊆ C1 we thus have ϕ∂s(v) = 1 if s points towards v, and
ϕ∂s(v) = −1 if s points away from v. This is compatible with our earlier
definition of ϕv, since if ∂x = v ∈ V ⊆ C0 then ϕ∂x coincides with ϕv as
defined earlier.

In Section 3 we saw that, if S consists of partitions of V, the elements of V
could in turn be viewed as partitions of S so that the (oriented) ‘partition’
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v of S points to s ∈ S if and only if the (oriented) partition s of V points
to v.

Our homological setup reflects this informal duality formally in the dual-
ity between the boundary and coboundary operators ∂ and δ, and extends it
in this form to set separations that are not partitions. This is done in Propo-
sition 5.1 below. Its proof is straightforward from the definitions, but since
these are somewhat complex, we provide it for the convenience of readers
unfamiliar with homological terms.

Proposition 5.1. For all v ∈ V and s ∈ S, the coefficient of v in ∂(s) ∈ C0

equals the coefficient of s in (γ−1 ◦ δ ◦ γ)(v) ∈ C1.

Proof. Let us determine the coefficient of s in (γ−1◦δ◦γ)(v) = γ−1(δ(γ(v))).
By definition of γ1, it is the image of s ∈ C1 in Z under δ(γ(v)) ∈ C1. This
is, by definition of δ, the image of ∂s ∈ C0 under γ(v) ∈ C0.

The 0-chain ∂s assigns coefficients of −1, 0 or 1 to all the elements of V,
as in Figure 1. However only the coefficient of v in the 0-chain ∂s matters
when γ(v) ∈ Hom(C0,Z) is applied to it, since this homomorphism sends all
v′ ∈ V �{v} to 0. Hence the image of ∂s under γ(v) is just the product in Z

of γ(v)(v), which is 1 ∈ Z, with the coefficient of v in ∂s, and thus equals
this coefficient (as claimed).

It is not clear, but maybe worth following up, how much homology theory
can inform the theory of tangles beyond the observation of Proposition 5.1.
Every orientation of a set S of separations of a set V, and in particular every
tangle τ of S, can be viewed as a chain x =

∑
s∈S λss or a cochain ψ : s �→ λs,

with λs = 1 if τ orients s in its default direction and −1 otherwise.

Can H1, which in our case is just the kernel of ∂1, contain any tangles?
A simple double-counting argument shows that it cannot contain tangles τ
that have a decider [9, 8], a set Z ⊆ V such that τ orients every s ∈ S towards
the side that contains more of X than the other side, possibly calculated
with weights.

But it might be instructive to compare the tangles of S to the cosets
in C1/Ker ∂. This quotient is isomorphic to the annihilator of Ker ∂1 in C1,
which contains the image of δ0 in C1 and is often equal to it [7].

Conversely, given a 0-chain ϕ : V → Z let τϕ be the partial orientation
of S that orients each s ∈ S by its default orientation if ϕ(∂s) > 0, by its
other orientation if ϕ(∂s) < 0, and not at all if ϕ(∂s) = 0. If τϕ orients all
of S, then ϕ is, in tangle terms [9], a decider for τϕ.

But the coboundary ψ = ϕ◦∂ preserves more of the information inherent
in ϕ than τϕ does. For example, if ψ(s) is not just positive but large, because
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the v ∈ V on the side of s to which it points carry a lot of weight under ϕ, then

this says more than just knowing that τϕ orients s forward. This additional

information might be relevant when we seek to understand tangles with

deciders.

If we are interested specifically in finding tangles with deciders, our prob-

lem is to determine the coboundaries x =
∑

λss with λs ∈ {−1, 1} for which

there exists ϕ ∈ C0 such that λsϕ(∂s) > 0 for all s. Equivalently, if we write

B for the (|V | × |S|)-matrix with entries −1, 0, 1 that describes ∂, we are

looking for λ ∈ {−1, 1}|S| and μ ∈ Z|V | or μ ∈ R|V | such that [Bλ]tμ > 0.

This might be approachable from an optimisation point of view, perhaps

with some constraints on the weights μv of ϕ =
∑

μvv such as μv ≥ 0 or

μv ∈ {0, 1} or
∑

μv = 1, or by relaxing the requirement that λ ∈ {−1, 1}|S|.
Which of these λ define tangles then still has to be seen, and will depend

on the notion of tangle used, but every tangle with a decider will come from

such a λ.

5.2. An inner product for set separations

Given a chain x ∈ C1, consider ψ∂x = (δ ◦ γ ◦ ∂)(x). This is a 1-cochain,

a homomorphism C1 → Z. Thus, ψ∂x maps every chain y ∈ C1 to some

integer ψ∂x(y) ∈ Z. Let us denote this integer by

〈x, y〉∂ := ψ∂x(y) ∈ Z.

The form 〈 , 〉∂ is easily seen to be bilinear. It is also symmetric:

Lemma 5.2. [7] Let x, y ∈ C1. Write αv and βv for the coefficients of all

the v ∈ V in ∂x and ∂y, respectively, so that ∂x =
∑

v αvv and ∂y =
∑

v βvv.

Then 〈x, y〉∂ =
∑

v∈V αvβv = 〈y, x〉∂.

Figure 3 illustrates Lemma 5.2 when x and y are single separations of V.

In this case 〈x, y〉∂ measures how similar x and y are: it counts the v ∈ V

on which x and y agree (by both pointing towards v or both pointing away

from v) and deducts the number of v ∈ V on which they disagree, while

ignoring those v that lie in the middle for at least one of the separations x

and y.

The intuition that when x, y ∈ C1 are single separations then 〈x, y〉∂
measures their similarity is borne out most clearly when x and y are parti-

tions of V. For x = y we then have 〈x, y〉∂ = |V |; when x and y cross sym-

metrically as in Figure 3 we get 〈x, y〉∂ = 0; and when y is the inverse of x
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Figure 3: The values of αvβv for x = (A,B) and y = (C,D).

(as a separation)12 the definition of 〈 , 〉∂ gives 〈x, y〉∂ = 〈x,−x〉∂ = −|V |.
It is perhaps instructive to compare this with the canonical inner prod-

uct, or ‘dot product’, 〈 , 〉 on C1. For x, y ∈ C1 with x =
∑

i λisi and
y =

∑
i μisi, where the si run over S, we have 〈x, y〉 = γ(x)(y) =

∑
i λiμi.

When x, y ∈ S, then this just indicates whether or not x and y are identical:
〈x, y〉 = δxy. As a similarity measure for two separations x and y, it is rather
cruder than 〈x, y〉∂ which, by Lemma 5.2, is the dot product of ∂x and ∂y
rather than of x and y.

Our 〈 , 〉∂ is not an inner product on C1: when x or y is a cycle, an
element of Ker ∂, then clearly 〈x, y〉∂ = 0.

However, setting 〈[x], [y]〉∂ := 〈x, y〉∂ yields a well-defined symmetric
bilinear form on C1/Ker ∂, which is an inner product there:

Lemma 5.3. [7] On C1/Ker ∂, the form 〈 , 〉∂ is an inner product.

It would be interesting see how the definition of 〈 , 〉∂ plays out in
some concrete natural separation systems – e.g., whether orthogonality has
a natural interpretation in that context. Here is one example.

When S is the set of partitions of the unit disc D by straight lines
through the origin, orthogonality for 〈 , 〉∂ agrees with geometric orthog-
onality. Indeed, if V is some suitable discretisation of D then, as Figure 3
indicates, we have 〈x, y〉∂ = 0 for two such partitions x and y if and only if
V has equally many elements in the two opposite quadrants marked 1 as in
the two quadrants marked −1. Clearly, this will be the case if and only if
the straight lines through the origin that determine the partitions x and y
are geometrically orthogonal.

12By our convention, S does not contain inverse pairs of separations, so this does
not actually happen. But the point here is to illustrate the definition of 〈 , 〉∂ as
given explicitly above. And that could be applied to a pair of inverse separations.
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If we think of 〈 , 〉∂ as taking real values, its associated norm
‖x‖ =

√
〈x, x〉∂ is also interesting when x is a single separation. Indeed,

for s = (A,B) ∈ S and ∂s =
∑

v αvv we have 〈s, s〉∂ =
∑

v α
2
v with αv = 0

for v ∈ A ∩ B and α2
v = 1 for all other v. Hence ‖s‖ =

√
|V | − |s|, where

|s| := |A ∩B| is the order of the separation s.
In other words, for general set separations our algebraic setup encodes

their standard submodular order function s �→ |s| without this having been
written into the setup in any way.

Our function 〈s, s〉∂ is also submodular (as well as supermodular) on S,
if S is a sublattice of the lattice (or universe) U of all the separations of V.
Indeed, if for all r, s ∈ S their infimum r ∧ s and their supremum r ∨ s in U
is again in S, and thus has a norm, then

‖r ∧ s‖2 + ‖r ∨ s‖2 = 2|V | − |r ∧ s| − |r ∨ s| = 2|V | − |r| − |s| = ‖r‖2 + ‖s‖2

for all r, s ∈ S.
The norm ‖ ‖ itself is not submodular on S: one can easily construct

separations r, s of V such that ‖r ∧ s‖ + ‖r ∨ s‖ > ‖r‖ + ‖s‖. However, as
we shall see in a moment, we do have for ‖ ‖ the most important structural
implication of the submodularity of an order function, which is that for all
r, s of order less than some integer k either r ∧ s or r ∨ s also has order < k.

Separation systems with this property, i.e., which contain for any two of
their elements also their infimum or supremum in some given universe, are
called (structurally) submodular [6]. In our context, the separation systems

Sk,‖ ‖ := { s ∈ S : ‖s‖ < k }

for fixed k ∈ N are submodular:

Proposition 5.4. If S contains both r∧s ∈ U and r∨s ∈ U whenever r, s ∈
S, then for every integer k the separation system Sk,‖ ‖ ⊆ S is submodular.

Proof. As 〈 , 〉∂ is submodular, we have ‖r∧s‖2+‖r∨s‖2 ≤ ‖r‖2+‖s‖2 for all
r, s ∈ S. Assume that ‖r‖2 ≤ ‖s‖2. Then ‖r∧ s‖2 ≤ ‖s‖2 or ‖r∨ s‖2 ≤ ‖s‖2,
and correspondingly ‖r ∧ s‖ ≤ ‖s‖ or ‖r ∨ s‖ ≤ ‖s‖. Hence if r and s lie
in Sk,‖ ‖ then so does r ∧ s or r ∨ s.
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