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The biker-hiker problem

Peter M. Higgins

There are n travellers who have k bicycles and they wish to com-
plete a journey in the shortest possible time. We investigate op-
timal solutions of this problem where each traveller cycles for k

n
of the journey. Each solution is represented by an n × n binary
matrix M with k non-zero entries in each row and column. We de-
termine when such a matrix gives an optimal solution. This yields
an algorithm deciding the question of optimality of complexity
O(n2 logn). We introduce three symmetries of matrices that pre-
serve optimality, allowing identification of minimal non-optimal
members of this class. An adjustment to optimal solutions that
eliminates unnecessary handovers of cycles is established, which
maintains all other features of the solution. We identify two mu-
tually transpose solution types, the first uniquely minimises the
number of handovers, while the second keeps the number of sep-
arate cohorts to three while bounding their overall separation, in
the case 2k ≤ n, to under 2

n of the journey.
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1. The problem: not enough bicycles

There are n friends who have k bicycles between them and the group needs
to reach its destination as soon as possible. How should they go about doing
this? An early allusion to this problem is in the novel The Great House
by Cynthia Harnett [2]. Here a pair of 17th century travelling companions
with only one horse between them adopt the ‘ride and tie’ method for their
journey from Henley-on-Thames to London.

Assumptions. Every person walks and cycles at the same speed as all the
others, and cycling is faster than walking. We assume that the time required
to swap from one form of locomotion to the other is negligible. For brevity,
individual travellers will sometimes be referred to as ‘he’ while a set of trav-
ellers will be referred to as ‘they’.
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Solution. Suppose that we devise a scheme, we shall call it an optimal
scheme, in which each traveller cycles for k

n of the length of the journey and
never stops moving forward at any stage. Each will then have cycled and
walked the same distance as each of their companions and so all n friends
will arrive at their destination simultaneously. We claim that, if it exists,
such a scheme is truly optimal in that it delivers the entire group to its
destination in the least possible time, and that any non-optimal scheme is
inferior in this respect.

It is convenient to consider the length of the journey to be n units,
(although we will consider divisors other than n). To see that a optimal
scheme is best, note that the maximum (net) forward progress by bicycle of
any scheme is kn. It follows that if one member of the group of n travellers
cycled more than k units, then some other member must cycle less than
k units. This latter traveller would then take longer than others who have
cycled k units (or more). Hence, any approach that involved any member
cycling forward a total distance other than k units would take longer to
deliver the entire group to their destination as opposed to an approach that
adopted an optimal scheme.

That cycling is faster than walking makes the problem more interesting,
a fact that is highlighted by considering the Backpack-hiker problem. Here
there are k heavy backpacks to be transported to the finish and any traveller
carrying a backpack walks more slowly than one that is unencumbered.
The change in relative speeds makes this problem much simpler and less
interesting as for any value of k (1 ≤ k ≤ n) the minimum time for the
group to complete the journey is the length of the journey divided by the
speed of a backpack walker.

In Section 2, we list the properties of optimal schemes more formally
through a discretised representation of the Biker-hiker problem based on
square binary matrices. In Section 3, we characterise those matrices that
correspond to optimal solutions and show that we may decide the question
of optimality for a given matrix with an algorithm that involves O(n2 log n)
comparisons of partial sums of the rows of the matrix. We identify three
symmetries of these optimal schemes, which leads to the discovery of minimal
schemes that assign k cycled stages to each traveller and k cyclists to each
stage but are nonetheless not optimal. In Sections 4 and 5, we identify
and investigate a certain mutually transpose pair of optimal matrices for
arbitrary values of the parameters n and k. Section 6 looks at certain facets
of these special schemes.
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2. k-uniform solutions

It will be convenient to allocate a measure of n units for the total length of
the road the travellers will take, which we may take to be either linear or a
circuit. Along the length of the journey we imagine there to be n+1 equally
spaced staging posts P0, P1, · · · , Pn, with P0 and Pn marking the beginning
and end of the trip respectively, so that the distance between successive
signposts is 1 unit. We assign numbered symbols to each of the n travellers
as we shall call them, t1, t1, · · · , tn.

Definition 2.1. (a) The problem of delivering the n travellers equipped
with k bicycles (0 ≤ k ≤ n) to their common destination in a way that
minimizes the time of the last arrival will be called the (n, k)-problem.

(b) The leg of the journey from Pj−1 to Pj is called stage j and is denoted
by sj (1 ≤ j ≤ n).

(c) An n-scheme S is one in which each traveller ti is directed to travel
each stage sj (1 ≤ j ≤ n) either on foot, or by bicycle.

(d) The incidence matrix M = M(S) of an n-scheme S is the n×n binary
matrix M = (mi,j) (1 ≤ i, j ≤ n) where mi,j = 0 or mi,j = 1 according
as traveller ti is directed to walk or cycle respectively stage sj from
Pj−1 to Pj . We shall write Ri and Cj for the ith row and jth column
of M respectively.

(e) The scheme S = S(M) of an n × n binary matrix M = (mi,j) is
that in which traveller ti travels sj on foot or by bicycle according as
mi,j = 0 or mi,j = 1 (1 ≤ i, j ≤ n). Note that S(M(S)) = S and
M(S(M)) = M .

Definition 2.2. An n × n binary matrix M = (mi,j) is k-uniform if each
row and each column contains exactly k entries equal to 1.

Proposition 2.3. A scheme S is optimal if and only if

(i) M(S) is k-uniform and
(ii) whenever a set of travellers C arrives at a post Pj, the number of cycles

at Pj is at least as great as the number of ti ∈ C such that mi,j+1 = 1.

Proof. If S is optimal then each traveller ti rides exactly k stages so that Ri

has exactly k entries which equal 1. There are then nk entries of M equal
to 1. If it were not the case that each column had exactly k non-zero entries,
then some column would contain more than k 1′s, which is impossible as no
cycle may travel twice through the same stage. Therefore, M is k-uniform.
As for Condition (ii), if it were violated then some traveller would have to
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stop at some stage to wait for a bicycle to arrive for their use. The time
taken for their journey would then exceed the optimal time unless he cycled
more than k stages, in which case some other traveller would cycle fewer
than k stages, and the overall time for the group to complete the journey
would exceed the optimal time. Hence, if S is optimal, both Conditions (i)
and (ii) must be met.

Conversely, any scheme S represented by a k-uniform matrix M has
exactly k entries of 1 in each row so that each traveller is scheduled to ride
k stages. Condition (ii) ensures that the progress of each traveller is never
stalled by a required cycle being unavailable upon arrival at a staging post.
Therefore, S represents an optimal solution.

Definition 2.4. We call a square k-uniform binary matrix M optimal if
S(M) is optimal.

3. Optimal matrices and their symmetries

Assignment mappings

We will now introduce assignment mappings φj for the each stage sj (1 ≤
j ≤ n− 1) of a scheme S. Suppose mi,j = 1, meaning that ti cycles sj . Then
φj(i) = p conveys the information that tp will cycle sj+1 on the cycle left
behind at Pj by ti.

Definition 3.1. Let S denote an n× n scheme with matrix M = M(S) =
(mi,j). A one-to-one partial mapping φj (1 ≤ j ≤ n − 1) is an assignment
mapping for S if

domφj = {i : mi,j = 1}, ranφ = {i : mi,j+1 = 1}.

The main result of this section characterises optimal schemes in terms
of the existence of a collection of assignment mappings that satisfy two
constraints. The first is the optional constraint that allows a rider to stay
on the same bike if he is required to ride two successive stages. The second
constraint ensures that S is in accord with Proposition 2.3.

Theorem 3.2. Let M be an n × n binary matrix. Then S(M) is optimal
if and only if M is k-uniform for some k (0 ≤ k ≤ n) and for each j,
(1 ≤ j ≤ n− 1) there exist assignment mappings φj such that

(1) φj(i) = i ⇔ (mi,j = mi,j+1 = 1) and
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(2)

j∑

l=1

mi′,l ≤
j∑

l=1

mi,l, where i′ denotes φj(i).

Proof. Suppose that M is k-uniform and satisfies Conditions (1) and (2).
Suppose inductively that the scheme S(M) has not failed up to stage sj ,
which holds when j = 1 as C1 has k entries that equal 1, and so travellers
assigned to cycle s1 may do so.

Next consider stage sj+1 from Pj to Pj+1. For each i′ such that mi′,j+1 =
1 there exists a unique i such that mi,j = 1 and φj(i) = i′. By the inductive
hypothesis, ti has arrived at Pj by cycle without stalling. Condition (2) is
then exactly the requirement that ensures that this has occurred no later
than the arrival of ti′ at Pj . Hence, S may continue with ti′ riding sj+1 on the
cycle that ti has ridden on sj . Therefore, sj+1 may be completed without
stalling, and the induction continues. The process will therefore end with
S(M) being fully executed without stalling, and so S(M) is indeed optimal.

Conversely, suppose that S(M) is optimal. Then at stage sj+1 (j ≥ 0),
for each i′ such that mi′,j+1 = 1, it is possible for ti′ to ride sj+1 on a cycle
that has been left at Pj by some traveller ti. It follows that Condition (2) is
then met. This correspondence defines a partial one-to-one mapping:

φ−1
j : {i : mi,j+1 = 1} → {i : mi,j = 1}.

By uniformity, φ−1
j is also surjective and so the partial one-to-one mapping

φj is an assignment mapping which satisfies Condition (2). We now show
that φj may be modified so that it also satisfies Condition (1). The forward
direction of the implication in (1) follows from the definition of an assignment
map, but the reverse implication does not follow from the optimality of
S(M).

Let us write φ for φj and, as before, abbreviate φj(i) to i′. Suppose
then that mi,j = mi,j+1 = 1 but i �= i′. We consider the sequence I =
i, φ(i), φ2(i), · · · . If I is a cycle, so that for some positive integer p, φp(i) = i,
then it follows that mt,j = 1 = mφ(t),j for all t = φk(i) (k ≥ 0). In this
case we may modify φ (while retaining the same symbol φ for the mapping)
such that φ(t) = t for all t = φk(i), in accord with Condition (1). Moreover,
applying Condition (2) repeatedly yields a cycle of inequalities that begins
and ends with the same sum, and so are in fact equalities, indicating that
all the travellers ti, tφ(i), · · · , tφp(i) = ti arrive at Pj simultaneously. The
original assignment mapping φ instructed this set of travellers to exchange
bicycles in accord with the cycle I. The modified mapping simply allows
each traveller to remain on the bike he is currently riding.
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Alternatively, the sequence I does not generate a cycle. Then by defini-
tion of φ there exists a sequence of maximal length:

i−r, i−r+1, · · · i0 = i, i1 = φ(i), i2, · · · , is−1, is

(3) such that φ(ip) = ip+1, (−r ≤ p ≤ s− 1), (r, s ≥ 1).

In (3), mi−r,j+1 = 0 = mis,j and mt,j = mt,j+1 = 1 for all −r+1 ≤ t ≤ s−1.
We now modify φ by putting

(4) φ(t) = t ∀ − r + 1 ≤ t ≤ s− 1

(5) φ(i−r) = is,

for then Condition (2) holds trivially for i = t as in (4), and (2) also holds
for (5) for i = i−r, i

′ = is as applying Condition (2) repeatedly for φ we
have:

j∑

l=1

mi−r,l ≥
j∑

l=1

mi−r+1,l ≥ · · · ≥
j∑

l=1

mis−1,l ≥
j∑

l=1

mis,l,

which, in the notation of Theorem 3.2, provides the required inequality con-
cerning i−r and is = φj(i−r) = i′−r:

j∑

l=1

mi′−r,j ≤
j∑

l=1

mi−r,l.

We modify φ for each such i, which is possible as the sequences as in
(3) that arise are pairwise disjoint as φ is one-to-one, ir is not in the range
of φ, and is is not in the domain of φ. Modifying φ as necessary for each i
such that mi,j = mi,j+1 = 1 ensures that the partial one-to-one mapping φ
satisfies both Conditions (1) and (2), thereby completing the proof.

Definitions 3.3. Let M be a k-uniform matrix.

(i) For any j (1 ≤ j ≤ n − 1) we shall call an assignment mapping φj

optimal if φj satisfies Conditions (1) and (2) of Theorem 3.2.
(ii) For any j (1 ≤ j ≤ n− 1) consider the partition of Xn = {1, 2, · · · , n}

induced by M into the following four (possibly empty) disjoint sub-
sets:
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(6) X1,1 = {i : mi,j = mi,j+1 = 1}, X1,0 = {i : mi,j = 1,mi,j+1 = 0},

X0,1 = {i : mi,j = 0,mi,j+1 = 1}, X0,0 = {i : mi,j = mi,j+1 = 0}.
When necessary, we write Xj

1,0 etc. to indicate that the set refers to
column Cj .
An assignment mapping φj then satisfies the conditions that:

(7) domφj = X1,1 ∪X1,0, ranφj = X1,1 ∪X0,1

with φj acting identically on X1,1 if φj is optimal.
(iii) We shall denote the ith row sum up to column Cj by Si,j :

(8) Si,j =

j∑

l=1

mi,l (1 ≤ i, j ≤ n).

Suppress the second subscript j by writing Si for Si,j , and form ordered
sets, written in ascending order as:

X1,0 = {(i1, Si1), · · · , (ip, Sip), Si1 ≤ · · · ≤ Sip,, it ∈ X1,0, (1 ≤ t ≤ p)}.
(9)

(10)
X0,1 = {(j1, Sj1), · · · , (jp, Sjp), Sj1 ≤ · · · ≤ Sjp , jt ∈ X0,1, (1 ≤ t ≤ p)}.

To make each order unique, in the case of ties, we order by subscript
value, so if Si1 = Si2 then (i1, Si1) < (i2, Si2) for X1,0 if i1 < i2,
and similarly for X0,1. We now meld these two lists to define a to-
tal order on Y = X1,0 ∪ X0,1. The order (Y,≤) is equal to the or-
der defined in (9) and (10) when restricted to X1,0 and to X0,1 re-
spectively. For (i, Si) ∈ X1,0 and (j, Sj) ∈ X0,1 we define (i, Si) <
(j, Sj) if |Si| ≤ |Sj | and (i, Si) > (j, Sj) if |Si| > |Sj |. In this way
≤ is indeed a linear order on Y as transitivity is readily checked by
cases.

Definition 3.4. (i) The reverse order, (Y,≥) of the linear order (Y,≤) is
the canonical order of Y .
Let A = {a, b} be a two-letter alphabet.

(ii) The canonical word w = a1a2 · · · a2p ∈ A2p (ar ∈ A, 1≤ p ≤ k) is
defined by ar = a or ar = b according as the rth entry in the canonical
order belongs to X1,0 or to X0,1.
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(iii) For any word w ∈ Am(m ≥ 0) we write |w|c for the number of instances
of c ∈ A in w. The length of w, denoted by |w|, is then |w| = |w|a+|w|b.

(iv) If w ∈ Am (m ≥ 0) has a factorization w = uv, we call u a prefix and
v a suffix of w.

(v) A word w ∈ A2m (m ≥ 0) such that |w|a = |w|b is called a Dyck word
if for every prefix u of w, |u|a ≥ |u|b.

(vi) For w ∈ Am(m ≥ 0), the dual reverse word w is formed by taking the
reverse word wR of w and interchanging all instances of the letters a
and b.

Remark 3.5. The set of all words of any length that satisfy the condi-
tions of (v) is called the Dyck language. This is the language of well-formed
parentheses in that replacing a and b by the left and right brackets ‘(’ and ‘)’
respectively, a Dyck word corresponds to a string of brackets that represents
a meaningful bracketing of some binary operation. For further information,
see [3].

Proposition 3.6. (i) The dual reverse word w of a Dyck word w is also
a Dyck word.

(ii) There exists an optimal assignment mapping φj (1 ≤ j ≤ n−1) if and
only if the canonical word w = wj is a Dyck word.

Proof. (i) Let w = uv, whence w = w = v u. Since w is a Dyck word,
|v|a ≥ |v|b, whence |u|a ≤ |u|b, and so |u|a ≥ |u|b. Hence, w is a Dyck
word.

(ii) Suppose that φ = φj is an optimal assignment mapping. The action of
this mapping induces a bijection from letters as = a in the canonical
word w to letters at = b in w, which acts, by Condition (2) of Theorem
3.2, so that as lies to the left of at in w. It follows that for any initial
prefix u of w = uv, we must have |u|a ≥ |u|b, for if |u|a < |u|b, there
would be some instance of b in u that was not in the range of the
induced mapping, contradicting that φj is one-to-one. Hence, w is a
Dyck word.

Conversely, given that w is a Dyck word, we map i ∈ X1,0 to i′ ∈ X0,1

whereby if i corresponds to the rth instance of a in w, then i′ corresponds
to the rth position of b in w. By the given condition, the rth a in w lies to
the left of the rth b in w, whence |Si| ≥ |Si′ |. The map φ thereby defined
satisfies Condition (2) of Theorem 3.2. Extending φ to act identically on
X1,1 then produces a required optimal assignment map.

Theorem 3.7. Algorithm to decide optimality of a k-uniform matrix M .
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For the columns Cj (1 ≤ j ≤ n− 1) of M :

1. Calculate the partial sums Si,j (i ∈ X1,0 ∪X0,1);
2. Rank the 2p (0 ≤ p ≤ k) partial sums from Step 1 in descending order,

with members of X1,0 taking precedence over members of X0,1 in the
case of a tie, as per Definition 3.3(iii).

3. Form the canonical word w = wj = a1 · · · a2p where ar = a or b
according as the rth member of this ranking lies in X1,0 or X0,1.

4. M is optimal if and only if wj is a Dyck word for all 1 ≤ j ≤ n− 1.

However, it is not necessary to check the first two nor the last two
assignment mappings for optimality by virtue of part (ii) of our next re-
sult.

Lemma 3.8. (i) For a given j (1 ≤ j ≤ n− 1), all assignment mappings
φj are optimal if and only if the canonical word wj = apbp, (p = |X1,0|).

(ii) An assignment mapping φj is optimal if j ∈ {1, 2, n − 2, n − 1} or if
k ∈ {1, 2, n− 2, n− 1}.

Proof. (i) Every φj is optimal if and only if Si1,j ≥ Si2,j for all i1 ∈ X1,0

and i2 ∈ X0,1, which in turn is equivalent to wj = apbp, where p =
|X1,0|.

(ii) Let i1 ∈ X1,0 and i2 ∈ X0,1. For φ1 and φ2 we have Si1,j ≥ 1 and
Si2,j ≤ 1 (j = 1, 2) whence it follows that wj = apbp. For φn−2 or φn−1

we have Si1,j ≥ k − 1 while Si2,j ≤ k − 1, (j = n− 2, n− 1) and again
wj = apbp. The claim now follows from part (i).

Similarly, if k ≤ 2 then Si1,j ≥ 1 and Si2,j ≤ 1, while if k ≥ n − 2 then
Si1,j ≥ j − 1 and Si2,j ≤ j − 1 and again the result follows.

Corollary 3.9. (i) An n× n uniform matrix M is optimal if n ≤ 5.
(ii) For any non-optimal k-uniform matrix M , 3 ≤ k ≤ n− 3.
(iii) Optimality of a k-uniform matrix M is preserved under the exchange of

columns C1 and C2, and under the exchange of columns Cn−1 and Cn.

Proof. (i) For n ≤ 5, for any scheme there are at most 5−1 = 4 assignment
mappings which are among the four mappings listed in Lemma 3.8(ii),
and so all are optimal.

(ii) This follows from Lemma 3.8(ii).
(iii) Indeed, we may replace C1 and C2 by any pair of binary columns that

retains k-uniformity of M , for then the transformed matrix retains
its status with respect to optimality by Lemma 3.8(ii). These corre-
spond to exchanging adjacent instances of 0 and 1 in the two columns
in opposite pairs. In particular, since complete exchange of C1 and
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C2 retains k-uniformity, the result follows, as it does likewise for the
exchange of the final column pair.

Proposition 3.10. Let S = S(M) be an (n, k)-uniform scheme with a given
set of assignment mappings φj (1 ≤ j ≤ n − 1). If all travellers complete c
cycled stages of S without the scheme failing, (that is, without any traveller
being stalled) then the scheme, with this set of assignment mappings, will
not fail before some traveller is due to ride their (c+ 3)rd cycled stage.

In particular, S will not fail prior to some traveller being due to ride
their 3rd stage, and if all travellers complete k − 2 stages without S failing,
then S is an optimal scheme, which is realised by the given set of assignment
mappings.

Proof. Suppose all travellers have completed c cycled stages without failure
in S. Suppose a walking traveller ti′ arrives at a staging post Pj (1 ≤ j ≤
n − 1), where sj represents cycle stage number c + 1 or c + 2 for that
traveller. Let i = φ−1

j (i′). Then Si′,j = c in the first case, and Si′,j = c + 1
in the second. If ti′ stalls at Pj then it follows that Si,j ≤ c. However, since
mi,j = 1, it follows that ti has not yet completed c cycled stages when the
stall occurs, contrary to hypothesis. Therefore, if all travellers complete c
cycle stages without the scheme failing, then the scheme will not fail prior
to some traveller attempting to cycle a stage for the (c+3)rd occasion. The
final statement simply draws attention to the special cases where c = 0, and
where c = k − 2.

Examples 3.11. It follows from Corollary 3.9 that the smallest dimension
n that might admit a non-optimal matrix M is n = 6. In this case, the
inequality of Corollary 3.9(ii) becomes 3 ≤ k ≤ 6 − 3, so that k = 3.
Consider the simple scheme S(M1), where M1 is given below. This scheme
is clearly optimal: travellers t1, t2, t3 ride the first three stages and then leave
their bikes to be collected later by t4, t5, and t6 who then ride together to the
finish. The assignment mappings all act identically except for φ3, which may
be taken as any bijection such that φ3({1, 2, 3}) = {4, 5, 6}. However, if we
swap columns C3 and C4 in M1, we have the array M2. By Lemma 3.8, the
only canonical word of M2 that may fail to be a Dyck word is w3. However,
for j = 3 we have X1,0 = {4, 5, 6} and X0,1 = {1, 2, 3}. For any i1 ∈ X1,0

and i2 ∈ X0,1 we have Si1,3 = 1 < 2 = Si2,3 and so w3 = b3a3, which is not a
Dyck word. Therefore, M2 is not optimal. Indeed, this example shows that
the class of optimal matrices is not closed under permutation of columns,
nor under the taking of transpositions.



The biker-hiker problem 115

M1 =

P0 P1 P2 P3 P4 P5 P6

t1 1 1 1 0 0 0

t2 1 1 1 0 0 0

t3 1 1 1 0 0 0

t4 0 0 0 1 1 1

t5 0 0 0 1 1 1

t6 0 0 0 1 1 1

M2 =

P0 P1 P2 P3 P4 P5 P6

t1 1 1 0 1 0 0

t2 1 1 0 1 0 0

t3 1 1 0 1 0 0

t4 0 0 1 0 1 1

t5 0 0 1 0 1 1

t6 0 0 1 0 1 1

Theorem 3.12. The question of whether an n × n binary matrix M is
optimal may be decided by an algorithm of complexity O(n2 log n).

Proof. 1. By inspecting rows and columns of M , decide whether M is
uniform, an operation of order O(n2).
If M is uniform, we may decide optimality of M by carrying out the
following procedure for each j with 1 ≤ j ≤ n− 1.

2. Compute Si,j+1 from Si,j for all 1 ≤ i ≤ n − 1, which consists of

n additions. This allows identification of the sets Xj
0,0, X

j
1,0, X

j
0,1 and

Xj
1,1.

3. Form the two setsX
j
1,0 andX

j
0,1 and sort in descending order, a process

which has time complexity O(n lnn), as this is the least possible for
any comparison algorithm [1], from which may be read the canonical
word, wj .

4. At most O(n) comparisons determine whether or not wj is a Dyck
word.

For each j, the total complexity of steps 2, 3, and 4 is O(n)+O(n lnn)+
O(n) = O(n lnn). These steps are carried out n−1 times, (strictly speaking,
by Lemma 3.8(ii), at most n− 5 applications are needed), which, including
Step 1, yields an overall complexity of O(n2)+O(n2 log n) = O(n2 log n).

Definition 3.13. Let M = (mi,j) be an n × n k-uniform binary matrix.
Let Sn denote the symmetric group on Xn. The n × n k-uniform matrices
Mπ = (pi,j) (π ∈ Sn),Mr = (ri,j), and M = (di,j) are defined by:

(i) pi,j = mπ(i),j , (ii) ri,j = mi,n−j+1, (iii) di,j = (mi,j + 1) (mod 2).
We may denote di,j by mi,j .

Theorem 3.14. Suppose that S(M) is an optimal scheme. Then so are the
schemes (i) S(Mπ), (ii) S(Mr), and (iii) S(M).

Lemma 3.15. Let M be an n× n k-uniform matrix. Then

(i) The jth canonical word of Mπ (π ∈ Sn) is wj, the jth canonical word
of M (1 ≤ j ≤ n).
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(ii) The jth canonical word of M is wj.
(iii) The jth canonical word of Mr is wn−j.

Proof. (i) The canonical words wj (0 ≤ j ≤ n − 1) of M are defined by
(Y,≤) based on the partial orders as in (9) and (10). Replacing M by
Mπ, results in replacing each of the symbols it, js by π−1(it),π

−1(jt)
in the sets (9) and (10). Since the value of wj is independent of the
naming of these symbols, each canonical word wj is unaltered.

(ii) Write Si,j for a typical partial sum of M . Since for any matrix position
(i, j), Si,j = j − Si,j the list of inequalities in (9) and (10), apart
from tied sums, is reversed when passing from M to M . Moreover,
i1 ∈ Xj

1,0, i2 ∈ Xj
0,1 for M if and only if i1 ∈ Xj

0,1, i2 ∈ Xj
1,0 for M . It

follows from this pair of observations that the jth canonical word of
M is wj , the dual reverse canonical word of wj .

(iii) Denote the partial sums of Mr by Sr
i,j . Then Sr

i,j+Si,n−j = k (1 ≤ j ≤
n, taking Si,0 = 0). Moreover, i1 ∈ Xj

1,0, i2 ∈ Xj
0,1 for M if and only if

i1 ∈ Xn−j
0,1 , i2 ∈ Xn−j

1,0 for Mr. Now

Sr
i1,j ≤ Sr

i2,j ⇔ k − Si1,n−j ≤ k − Si2,n−j ⇔ Si2,n−j ≤ Si1,n−j .

This pair of observations imply that the jth canonical word of M r is
wn−j .

Proof of Theorem 3.14. Since M is optimal, by Theorem 3.7 all canonical
words wj ofM are Dyck words. By Lemma 3.15, the corresponding canonical
words ofMπ,M , andM r are respectively wj , wj , and wn−j . Since the reverse
dual word of a Dyck word is a Dyck word (Proposition 3.6(i)) it follows, again
by Theorem 3.7, that each of Mπ, M , and M r is optimal.

Definition 3.16. Define the complementary assignment function φj of an
assignment function φj by putting

(11) dom φj = X0,0 ∪X0,1, ranφj = X00 ∪X1,0

with φj(i) = i if i ∈ X0,0 and φj(i) = φ−1
j (i) if i ∈ X0,1.

Remark 3.17. We may prove Theorem 3.14 directly by identifying optimal
assignment mappings ψj for the matrix of the transformed scheme in terms
of given optimal assignment mappings φj of M(S). In case (iii) for instance,
put ψj = φj (1 ≤ j ≤ n− 1), as per Definition 3.16. For M we have

domψj = {i : mi,j = 0} = {i : di,j = 1},
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ranψj = {i : mi,j+1 = 0} = {i : di,j+1 = 1},

whence it follows that the ψj qualify as assignment mappings for S(M).
Moreover, by definition, ψj(i) = i if and only if di,j = di,j+1 = 1, and so
Condition (1) is satisfied. For i ∈ X0,0 we have ψj(i) = i and so in this case
the inequality of Condition (2) becomes an equality, and is thus satisfied.
Otherwise, i ∈ X0,1. Then we have

j∑

l=1

dψj(i),l = j −
j∑

l=1

mψj(i),l = j −
j∑

l=1

mφj(i),l
= j −

j∑

l=1

mφ−1
j (i),l

≤ j −
j∑

l=1

mi,l =

j∑

l=1

di,l,

where the inequality comes from Condition (2) applied to the φj , thereby
verifying Condition (2) for the ψj . For parts (i) and (ii) the corresponding
assignment mappings are given respectively by ψj = π−1φjπ, and ψj = φ−1

n−j ,
(1 ≤ j ≤ n− 1).

Removing unnecessary handovers from an optimal scheme

Optimal schemes may have unnecessary cycle handovers, which can be re-
moved, resulting in a scheme that is still optimal and displays the same
character as the original. Suppose that S = S(M) is an optimal (n, k)-
scheme and for some j we have i1 ∈ X1,0, i2 ∈ X0,1 and Si1,j = Si2,j . Then
ti1 and ti2 arrive at Pj simultaneously, the former by bike and the latter on
foot, whereupon ti2 takes one of the bikes parked at Pj and goes on to cycle
sj+1. However, one cycle handover could be avoided if the pair of travellers
swapped labels at this point, with ti1 taking on the mantle of ti2 and vice-
versa. In other words, ti1 would complete the journey as instructed by the
final part of Ri2 from mi2,j+1 onwards and similarly ti2 would follow Ri1

from mi1,j+1 onwards, allowing ti1 to remain on his bike for sj+1.
This does not alter any column sums, and nor does it alter rows sums as

the initial portions are equal: Si1,j = Si2,j , and hence so are the latter por-
tions, as together they each sum to k. Applying this procedure repeatedly
will lead to a more efficient scheme that will appear to be identical, meaning
that if both schemes were to run simultaneously, at any given moment the
set of positions of walking travellers and the set of positions of cycling trav-
ellers for the two schemes are identical. We shall call such a scheme reduced,
with it being free of excess handovers. In summary, we have the following
theorem.
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Theorem 3.18. Given any optimal scheme S = S(M) for the (n, k)-
problem we may construct an optimal scheme S(M ′) that is free of un-
necessary handovers by repetition of the rule that if for some j we have
i1 ∈ X1,0, i2 ∈ X0,1 and Si1,j = Si2,j we replace Ri1 and Ri2 in M by

R
′

i1 = (mi1,1, · · · ,mi1,j ,mi2,j+1, · · · ,mi2,n),

(12) R
′

i2 = (mi2,1, · · · ,mi2,j ,mi1,j+1, · · · ,mi1,n).

Remark 3.19. Removal of unnecessary handovers yields a stronger form
of Condition (2) of Theorem 3.2 in which all the associated inequalities for
which i′ �= i are strict, for all collections of optimal assignment mappings.
However, this process does alter the scheme, whereas imposing Condition (1)
merely chooses a special type of set of assignment maps for a given scheme.

Conversely, if S(M) is optimal and every set of optimal assignment map-
pings yields strict inequalities in Condition (2), it follows that S(M) has no
unnecessary handover. However an optimal scheme may have some collection
of assignment mappings for which the non-trivial inequalities in Condition
(2) are all strict, yet the scheme still not be reduced. Such a collection of
assignment mappings has the added feature that each traveller will find a
parked cycle waiting for him whenever he is due to pick one up.

Simple comparison arguments like those in the proof of Theorem 3.14
give the following result.

Proposition 3.20. For any optimal matrix M , the number h = h(M) of
excess handovers is the same for the optimal schemes Mπ, Mr and M .

4. Solution to the biker-hiker problem

We now provide a particular solution type to the general Biker-hiker prob-
lem. Because of the cyclic nature of our solutions, it will be convenient in this
section to label the travellers as t0, t1, · · · , tn−1 and the entries of an n× n
matrix M as mi,j (0 ≤ i, j ≤ n− 1), and stages are labelled s0, s1, · · · , sn−1

also.

Definition 4.1 (The Cyclic Scheme). We define the cyclic (n, k)-scheme
S = Sn,k with matrix M(S) = Mn,k by assigning the cycling quota for ti to
consist of the k cyclically successive stages, which run from Pik to P(i+1)k,
where arithmetic is conducted modulo n. The matrix Mn,k of the n×n cyclic
scheme will be called the cyclic (n, k)-matrix.
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Since we are working modulo n, we identify P0 and Pn, thereby making
the journey a circuit. However, the following analysis holds whether the
journey is linear or circular in nature.

Theorem 4.2. The (n, k)-cyclic scheme Sn,k is optimal.

Proof. By construction, M = Mn,k is row k-uniform. The entry mi,j = 1 if
and only if j belongs the cyclic sequence ik, ik + 1, · · · , ik + k − 1 which is
equivalent to the statement that ki (mod n) lies in the cyclic interval Ij =
(j−k+1, j−k+2, · · · , j). Therefore, the number of 1′s in Cj is the number
of solutions to the congruences kx ≡ a (mod n), a ∈ Ij . Such a congruence
has no solution if d = gcd(n, k) is not a divisor of a, otherwise there are d
solutions. The number of a such that d|a is the number of multiples of d in
Ij , which is k

d , and so that there are exactly d · k
d = k non-zero entries in

each column of M . (Indeed, every column of M represents the same cyclic
sequence: see Prop. 4.9.)

To prove optimality of the matrix M of a cyclic scheme we note that at
each dismount a rider has either been riding from P0 or has just completed
his kth cycled stage. In either instance, he is ahead of the traveller to whom
he is assigned to transfer his bicycle.

For M = (mi,j), a square matrix, Mr, the matrix that results from
reversing the rows of M is described by permuting the columns of M by
Cj ↔ Cn−j−1. Similarly, we now define Mc by reversing the columns of M ,
which is effected by the row permutation whereby Ri ↔ Rn−i−1. Of course
both these permutations are respectively involutions on the set of columns
and the set of rows of M . Writing Mrc for (Mr)c, and similarly defining
Mcr,Mr2 and so on, we see that Mrc = Mcr = (mn−1−i,n−1−j).

Proposition 4.3. (i) For the cyclic (n, k)-matrix M ,
(i) Mc = Mr. (ii) Mcr = Mrc = M . (iii) (MT )r = (Mr)

T , (MT )c =
(Mc)

T (iv) (MT )rc = MT .

Proof. We prove (i), from which (ii), (iii), and (iv) readily follow. For M =
(mi,j) we have Mc = (ci,j) where ci,j = mn−1−i,j and Mr = (ri,j), where
ri,j = mi,n−1−j . Then we have

ci,j=1 ⇔ mn−1−i,j=1 ⇔ j ≡ (n−1−i)k+a (mod n) for some 0 ≤ a ≤ k − 1

(13) ⇔ j + ik + k ≡ a (mod n)

ri,j = 1 ⇔ mi,n−j−1 = 1 ⇔ n−j−1 ≡ ik+b (modn) for some 0 ≤ b ≤ k − 1
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⇔ j + ik + 1 ≡ −b (modn)

(14) ⇔ j + ik + k ≡ c (modn),

where c = k − 1− b. Now

0 ≤ b ≤ k − 1 ⇔ −k + 1 ≤ −b ≤ 0 ⇔ 0 ≤ c ≤ k − 1.

We now note that the conditions of (13) and (14) are the same. It follows
that ci,j = ri,j , allowing us to conclude that Mc = Mr.

Theorem 4.4. For the (n, k)-problem, (1 ≤ k ≤ n− 1) on an n-circuit, the
cyclic scheme matrix represents the unique solution, up to permutation of
rows, in which each traveller mounts and dismounts a cycle only once.

Proof. By construction S(Mn,k) instructs each traveller to mount and dis-
mount a cycle exactly once on the circuit. On the other hand, a uniform
scheme that has this property is the cyclic solution. To see this, take any
traveller, label the traveller t0 and label the post where t0 mounts a cycle
as P0. Since t0 has a single bike ride, he must pass posts that we may label,
P1, P2, · · · until he alights at a post that we may label Pk, thereby com-
pleting his full quota. That bicycle is then picked up by another traveller,
who we may label t1, who rides between posts that we may label Pk to P2k

(subscripts modulo n). We continue this process with the traveller labelled
ti riding the k stages from Pik to P(i+1)k. But this is just the description of
the cyclic solution of the (n, k)-problem.

Remark 4.5. The feature of one ride per ciruit is preserved by any of the
symmetries of Theorem 3.14. In the case of row reversal, the non-zero stages
for ti remain those between Pik and P(i+1)k but are now ridden in reverse.
Indeed, since by Proposition 4.3,Mr = Mc, we see that for the cyclic solution
matrix M , Mr is a special case of permutation of the rows of M , and so Mr

also represents an (n, k)-cyclic scheme. When we pass to the binary dual we
find that Mn,k = (Mn,n−k)r and so by the previous observation it follows
that Mn,k indeed represents a cylic solution to the (n, n − k) problem. In
detail, write (Mn,n−k)r = (ai,j) whence ai,j = 1 becomes

mi,n−1−j = 1 ⇔ n−1−j ≡ i(n−k)+a (mod n) for some 0 ≤ a ≤ n− k − 1

(15) ⇔ j + 1 + a ≡ ik (modn) 0 ≤ a ≤ n− k − 1.
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For the left hand side we write Mn,k = (bi,j) and Mn,n−k = (mi,j). Then

bi,j = 1 may be written as

mi,j = 0 ⇔ j ≡ (i+ 1)k + b (modn) for some 0 ≤ b ≤ n− k − 1

⇔ j − (b+ k) ≡ j + (n− b− k) ≡ ik (modn).

Now 0 ≤ n− 1− b− k ≤ n− 1− k. Put c = n− 1− b− k. Then

(16) j + 1 + c ≡ ik (modn) 0 ≤ c ≤ n− k − 1.

The agreement of (15) and (16) allow us to conclude that Mn,k = (Mn,n−k)r
and so Mn,k represents a cyclic solution to the (n, n− k)-problem.

Proposition 4.6. Consider the (n, k)-problem and let d = gcd(n, k). Let Ri

and Cj denote the ith row and jth column respectively of M , the matrix of

the cyclic solution to the (n, k)-problem as defined in 4.1. Then

(i) Ri = Rj if and only if i ≡ j (mod n
d );

(ii) Ci = Cj if and only if dq ≤ i, j ≤ d(q + 1) − 1 for some q ∈
{0, 1, · · · , nd − 1}.

Proof. (i) is trivially true if k = 0 or k = n. Otherwise, the cyclic intervals

of entries that equal 1 in Ri and Rj respectively are defined by the

corresponding cyclic lists of staging posts: Pik, Pik+1, · · · , P(i+1)k and

Pjk, Pjk+1, · · · , P(j+1)k. These lists are identical if and only if ik ≡ jk

(mod n) ⇔ i ≡ j (mod n
d ).

(ii) We observe that the non-zero entries of each row Ri consist of two

intervals: an initial interval I of Ri of length r say, and a terminal

interval T of Ri of length k− r (0 ≤ r ≤ k). We may write k = du and

n = dv. Then for some x ≥ 0 we have

ik (mod n) = dui− dvx = d(ui− xv).

If non-empty, the terminal interval T begins at Pik and ends at Pn and

so has length |T | given by

|T | = n− ik(mod n) = d(v − ui+ xv).

It follows that d||T |. The length |I| of the initial interval is |I| = k−|T | =
du− |T |, whence d||I| also. In the case where both I and T are non-empty
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the (successive) zeros in Ri number n−|I|− |T |, which likewise is a multiple
of d. Otherwise, there is an initial interval of zeros of length ik, which is a
multiple of d, from which it follows that the terminal interval of zeros has
length that is too a multiple of d. Therefore, within any row, counting left to
right by columns, the entries from one multiple of d up to but not including
the next, are equal, because each maximal list of identical entries begins at
a multiple of d. Hence,

(17) dq ≤ i, j ≤ d(q + 1)− 1 (0 ≤ q ≤ n

d
− 1) ⇒ Ci = Cj .

In order to prove the reverse implication, we introduce the following
construction. By (17), the columns of M consist of n

d blocks A1, A2, · · · , An

d

of contiguous columns, with each Ai consisting of d identical columns. On
the other hand M is partitioned into n

d sets of d (non-contiguous) identi-
cal rows B1, B2, · · · , Bn

d
. We may permute the rows of M , giving a new

optimal matrix M ′ in which the rows of M ′ are partitioned into n
d blocks

B′
1, B

′
2, · · · , B′

n

d

each consisting of d identical rows. The new column blocks,

A′
1, A

′
2, · · · , A′

n

d

that result from this row permutation each consist of d

columns, and the columns within each block remain identical. The pairwise
intersections A′

i ∩ B′
j partition M ′ into n2

d2 square blocks, which are them-
selves d × d matrices. Each such block has identical columns and identical
rows, whence it follows that all entries of any particular A′

i∩B′
j are identical.

We can then form a quotient matrix, M ′
d by identifying each of the A′

i ∩B′
j

with the common value (0 or 1) of all entries in that sub-matrix. Therefore,
M ′

d is the cyclic scheme for the (nd × k
d )-problem in which the travellers and

the bicycles are grouped into sets of order d, which move together as a block
throughout the scheme.

If now the reverse implication in (17) were false, it would imply that
there were two identical columns in the quotient matrix M ′

d. It is possible to
prove directly by analysing the cardinality of the intersection of sets of cylic
intervals that in the case where n and d are coprime, no two columns are
identical, which, since (nd ,

k
d ) is a pair of coprime integers, applies to Md′ .

However, the desired result follows at once from the next proposition which
shows that in the case of coprimality the deteminant of M corresponds to
the number of bicycles.

Proposition 4.7. If n and k are coprime then |det(Mn,k)| = k. Otherwise,
Mn,k is singular.

Proof. Let d = gcd(k, n). If d ≥ 2 then by Proposition 4.6(i), Mn,k has a
pair of identical rows and so det(M) = 0. For d = 1, however, the rows
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are cyclically identical and no two are equal. It follows that the set of
rows consists of all n different possibilities that arise from the cyclic se-
quence (1, 1, · · · , 1, 0, · · · , 0), where the initial sequence of 1’s has length k.
By permuting the rows of Mn,k we may obtain the circulant matrix Cn,k,
where Ri(Cn,k) has for its non-zero entries mi,i,mi,i+1, · · · ,mi,i+k−1, (addi-
tion modulo n). Hence, det(Mn.k) = ± det(Cn,k). We may therefore complete
the proof by showing that det(Cn,k) = k.

By a standard result on circulant matrices (see, for example, [4]), with
ω denoting any primitive nth root of unity:

(18) det(Cn,k) = Πn−1
i=0 (1 + ωi + ω2i + · · ·+ ω(k−1)i).

For i = 0, the bracketed term is equal to k. It remains to show that the
product of the other terms in (18) is equal to 1. By summing each of the
geometric series we see that this claim is equivalent to the equation:

(19) Πn−1
i=1 (ω

ki − 1) = Πn−1
i=1 (ω

i − 1).

However, since k and n are coprime, ωk is also a primitive nth root of unity,
and so it follows that the products in (19) are identical up to the order of
their factors, thereby completing the proof. In particular, no two columns of
Mn,k are identical, thereby also completing the proof of Proposition 4.6.

Remark 4.8. Note from the previous proof that for gcd(n, k) = 1, S(Cn,k) is
also the cyclic (n, k)-scheme. Moreover, the non-zero entries of Ri(C

T
n,k) are

mi,i,mi,i−1, · · · ,mi,i−k+1. Hence, the non-zero entries of Ri+k−1(C
T
n,k) are

mi+k−1,i+k−1,mi+k−1,i+k−2, · · · ,mi+k−1,i, which match those of Ri(Cn,k),
and so S(CT

n,k) is also the cyclic (n, k)-scheme, with CT
n,k obtained by rotating

the columns of Cn,k forward by k − 1 places. This contrasts with S(MT
n,k),

the subject of Section 5, which although optimal is of a different character
to S(Mn,k).

The rows of Mn,k represent the same cyclic sequence. The same is true
of the columns.

Proposition 4.9. Let M = Mn,k be the cyclic (n, k)-matrix. Then every
pair or columns of M represent the same cyclic sequence.

Proof. Let gcd(n, k) = d. For Mn,k = (mi,j) we have, with addition modulo
n, that mi,j = mi+1,j+k. Since gcd(n, k) = d, there exists a value r such that
kr ≡ d (mod n); r-fold application of the previous equation then givesmi,j =
mi+r,j+kr = mi+r,j+d. It follows in particular that Cj and Cj+d define the
same cyclic sequence, with one being transformed into the other through a
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rotation of r positions. By Proposition 4.7(ii), the columns C0, C1, · · · , Cd−1

are identical, and so it now follows that every pair of columns of Mn,k define
the same cyclic sequence.

5. The transpose solution

We have noted that optimality of a uniform matrix is generally not preserved
under transposition. However, the cyclic scheme is an exception to this.

Theorem 5.1. The transpose matrix M = MT
n,k of a cyclic (n, k)-matrix

Mn,k is also optimal.

We shall call S(MT ) a transpose cyclic scheme and similarly MT is a
transpose cyclic matrix. With subscripts calculated modulo n, the non-zero
entries of column Cj ofM

T aremjk,j ,mjk+1,j , · · · ,mjk+k−1,j (0 ≤ j ≤ n−1).
The transpose cyclic matrix MT is k-uniform, and so if S(MT ) does not
stall, we have optimality. By passing to the binary dual if necessary, we may
suppose that k ≤ n

2 , for first note that for any binary matrix M = (mi,j), we

have M
T
= MT as the (i, j)th entry in each of these matrices is mj,i. Now

let us assume that for any cyclic (n, k)-matrix M with n ≥ 2k, the transpose
matrix MT is optimal. Suppose that M is a cyclic (n, k)-matrix with n < 2k

and consider MT . Then MT = M
T
, with M a cyclic (n, n−k)-matrix. Since

n < 2k, it follows that n > 2(n−k), and so by our assumption we have that

M
T
is optimal. But M

T
= MT , whence MT = MT is also optimal.

We are therefore permitted to adopt the assumption that 2k ≤ n in our
proof that transpose cyclic matrices are optimal. For the remainder of the
section we shall denote our transpose cyclic matrix by M (as opposed to
MT ). For any t, at least one of the entries mt,j and mt,j+1 of M is 0, as we
now show.

For any j ≥ 0, there is a unique i (= jk mod n), such that the non-zero
entries of columns Cj and Cj+1 in M have the form:

(mi,j = mi+1,j = · · · = mi+k−1,j = 1)

(20) ⇔ (mi+k,j+1 = mi+k+1,j+1 = · · · = mi+2k−1,j+1 = 1).

Since the total number of entries listed in (20) is 2k ≤ n, it follows that
there is no t such that mt,j = mt,j+1 = 1, as claimed.

The non-zero entries of Cj form a cyclic block of length k. This will
manifest itself either as a single linear block in Cj , or as a pair of initial and
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a terminal blocks. In the single block case, the initial and terminal blocks
of non-zero entries are one and the same.

Lemma 5.2. Let (i, j) be the final entry of the initial block of non-zero
entries of Cj. We shall write i = i(j). Then

(21) S0,j = S1,j = · · · = Si,j = Si+1,j + 1; Si+1,j = Si+2,j = · · · = Sn−1,j .

Proof. We proceed by induction on j. For j = 0 we have m0,0 = m1,0 =
· · · = mk−1,0 = 1, mk,0 = · · · = mn−1,0 = 0, in accord with (21), where
i(0) = k − 1. Suppose now that (21) holds for some value of j and consider
Cj+1. Suppose first that the non-zero entries of Cj+1 form a single linear
block: mt,j+1 = mt+1,j+1 = · · · = mt+k−1,j+1 = 1. If t = 0 then i(j) = n− 1
in (21) and all the row sums for Cj in (21) are equal. It then follows that
(21) holds for Cj+1 as in the j = 0 case. Otherwise, t ≥ 1 and so i(j) = t−1.
By induction:

S0,j = S1,j = · · · = St−1,j = St,j + 1, St,j = St+1,j = · · · = Sn−1,j .

Since Sp,j = Sp,j+1 for all 0 ≤ p ≤ t − 1 it follows that S0,j+1 = Sp,j+1

for all 0 ≤ p ≤ t − 1. On the other hand for t ≤ p ≤ t + k − 1 we have
Sp,j+1 = 1+Sp,j = 1+(S0,j − 1) = S0,j = S0,j+1. Therefore, S0,j+1 = Sp,j+1

for all 0 ≤ p ≤ t + k − 1. Finally, for the case where t + k ≤ p we have
Sp,j+1 = Sp,j = S0,j+1−1 and so (21) is holds for the Sp,j+1 (0 ≤ p ≤ n−1).

The alternative case is where the non-zero entries of Cj+1 break into
distinct initial and terminal blocks. The two blocks then have the respective
forms:

m0,j+1 = m1,j+1 = · · · = mi,j+1 = 1

(22)
& mn−k+i+1,j+1 = mn−k+i+2,j+1 = · · · = mn−1,j+1 = 1 (0 ≤ i ≤ k − 2).

(Note that the total number of entries in (22) is indeed (i + 1) + (n − 1 −
(n − k + i)) = k.) The single linear cyclic block of non-zero entries of Cj

ends at mn−k+i,j = 1 and begins at m(n−k+i−(k−1)),j = mn−2k+i+1,j = 1. By
applying the inductive hypothesis to the row sums of Cj we infer that:

(23) S0,j+1 = S1,j+1 = · · · = Si,j+1 = S0,j + 1 = · · · = Si,j + 1.

Since S0,j = S1,j = · · · = Sn−k+i,j , it follows that

(24) Si+1,j+1 = · · · = Sn−k+i,j+1 = S0,j .
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Finally, we have

Sn−k+i,j = 1 + Sn−k+i+1,j , Sn−k+i+1,j = · · · = Sn−1,j

(25) ⇒ Sn−k+i+1,j+1 = · · · = Sn−1,j+1 = 1 + Sn−k+i+1,j = S0,j .

Statements (23), (24), and (25) together give (22) as applied to Cj+1.

Now suppose that n ≤ 2k. Recall from Remark 4.5 that the binary dual
M of M is the cyclic transpose matrix of the (n, n− k) problem with rows
reversed.

Since n ≥ 2(n − k) it follows that (22) holds for the corresponding row
sums of the columns of M , (denoted Si,j). Note that Si,j + Si,j = j + 1.
Hence, for some i (0 ≤ i ≤ n− 1):

Sn−1,j=Sn−2,j= · · ·=Sn−i,j=Sn−i−1,j+1; Sn−i−1,j = Sn−i−2,j= · · · = S0,j ,

⇔ Sn−1,j = Sn−2,j = · · · = Sn−i,j = Sn−i−1,j − 1;

Sn−i−1,j = Sn−i−2,j · · · = S0,j ,

⇔ S0,j = · · · = Sn−i−1,j = Sn−i,j + 1; Sn−i,j = · · · = Sn−1,j ,

which is in accord with (22) with i(j) = n − 1 − i. This completes the
proof.

Proof of Theorem 5.1. As already observed, we may assume that n ≥ 2k, in
which case it is clear from (21) that for any column Cj ,

(i1 ∈ Xj
1,0, i2 ∈ Xj

0,1) ⇒ Si1,j ≥ Si2,j ,

from which it follows that the canonical word wj is the Dyck word wj = akbk

(2k ≤ n ⇒ |X1,0| = k). Hence, every assignment mapping φj is optimal, and
therefore M is optimal.

Proposition 5.3. If n ≥ 2k, then at any time point during the execution
of S(M), there are at most 3 distinct positions for the travellers. Moreover,
the distance separating one cohort from the next is less than 1 unit.

Proof. We begin with three useful observations.

• If i ≤ i′ then ti never trails ti′ . This follows easily from the fact that
for any fixed j, the Si,j are monotonically decreasing in i (Lemma 5.2).
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• Consider a typical column Cj of M . As explained prior to Lemma 5.2,
Cj consists of three blocks, each of which consists of zeros or ones.
Writing 0 for a block of zeros and 1 for a block of ones, the blocks of
Cj have either of the two forms 010 or 101, although in the former
case the second 0-block may be empty, as may be the second 1-block
in the latter case.

• Two successive columns Cj and Cj+1 cannot both have the 101-block
structure. (This is a consequence of n ≥ 2k, for since the combined
length of the two 1-blocks is k, the length of the 0-block in the 101
case is at least k.)

When travelling in a common stage sj+1, we shall refer to ti and ti′ as
being members of the block if mi,j and mi′,j are in the same block of Cj .
A set of travellers who are currently moving together will be called a cohort.

We now prove inductively on j that, during the period when the leading
cohort is between Pj and Pj+1, the following three conditions hold:

1. Any pair of members of the same block are in the same cohort.
2. There are at most 3 cohorts.
3. The distance between the members of two neighbouring cohorts is less

than 1 unit.

Inductive verification of this trio of claims proves Proposition 5.3.

For j = 0 all three claims are clear and indeed there are only 2 cohorts.
Consider Cj (j ≥ 1) and suppose by way of induction that our claims hold
for all lesser values of j.

Take the case where Cj has a 010 block structure. Suppose first that
Cj−1 also has a 010 structure. Then, by Lemma 5.2, the members of the
joint 01-block of Cj−1 arrive together at Pj and from the structure of the
transpose cyclic scheme, form the first 0-block of Cj , so forming the lead
cohort in sj+1. By induction, the lead of this cohort over the second 0-block
in Cj−1 as it becomes the first 0-block of Cj is less than 1 unit. Since the
leading cohort is walking, its lead over the next cohort remains less than
1 unit as the lead cohort traverses sj+1. The 1-block of Cj consists of the
first k entries of the members of the second 0-block of Cj−1, whose members
arrived in unison at Pj . This 1-block cohort forms the second cohort, which
then catches the leading cohort at Pj+1. During this time the lead of the
second cohort is less than 1 unit over the third cohort which is the remainder
of the second 0-block of Cj−1, which becomes the second 0-block of Cj upon
arrival at Pj . These observation taken together demonstrate that Conditions
1-3 are respected throughout the time that the lead cohort walks sj+1.
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Next suppose that Cj−1 has a 101 structure, in which case the members
of the first 1-block of Cj−1 arrive first at Pj and form the first 0-block of Cj .
By induction, this cohort is less than 1 unit ahead of the next cohort. Since
the leading block of Cj is walking, its lead over the following cohort cannot
increase as it traverses sj+1, and so remains less than 1 unit. By induction,
the separation of the 0-block of Cj−1 and the second 1-block of Cj−1 is less
than 1 unit up until the time the leading cohort of Cj−1 reaches Pj . Their
separation decreases after that and the two cohorts reach Pj in unison. After
that the 01-block of Cj−1 splits into two new cohorts, the first a cohort of size
k is comprised of cyclists, which are the members of the 1-group of Cj , with
the remainder of the joint 01-block of Cj−1 becoming the second 0-block of
Cj and the third cohort, (thus maintaining Conditions 1 and 2). The second
0-block of Cj will be less than 1 unit behind the second cohort until the
leading cohort completes sj+1. Hence, Conditions 1, 2, and 3 remain valid
throughout the period where the leading cohort is travelling between Pj and
Pj+1, thus continuing the induction.

Finally, we examine the case where Cj has the block form 101. By the
third bullet point, Cj−1 has the block form 010. By Lemma 5.2, the members
of the 01-block of Cj−1 arrive together at Pj , and by induction, the members
of the second 0-block are the trailing cohort, which is less than 1 unit behind.
The first 1-block of Cj is an initial segment of the joint 01-block of Cj−1 and
its members therefore proceed together as the lead cohort. By construction
of the transpose cyclic scheme, the joint 01-block of Cj−1 becomes the joint
10-block of Cj , with the walking members becoming a second cohort in
sj+1. Their distance behind the first cohort is always less than 1 unit. The
second 0-block of Cj−1 becomes the second 1-block of Cj , and so its members
proceed together, as the third cohort. This cohort was also the third cohort
of Cj−1 and so was less than 1 unit behind the members of the 01-block
of Cj−1 (by Condition 3 and induction) when the joint block reached Pj .
Hence, the separation between the two trailing cohorts is less than 1 unit
(and decreases to 0 as these cohorts traverse sj+1). Therefore, Conditions 1,
2, and 3 have been met, and so the induction continues, thereby completing
the proof.

Examples 5.4. Proposition 5.3 does not hold however when 2k > n. For
example, consider the transpose matrix M for the (n, n− 1) problem. Then
the zeros consist of the non-leading diagonal running between entries (n −
1, 0) and (0, n− 1). If we let the ratio of the cycling speed to walking speed
become arbitrarily large, then t0 will reach Pn−1 before tn−1 has reached
P1, so that the separation of t0 and tn−1 approaches an upper limit of n− 1
units.
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6. Calculating features of cyclic schemes

Proposition 6.1. In respect to the (n, k)-cyclic solution, let n = r + qk,
(0 ≤ r ≤ k − 1), and let d = gcd(n, k). Let i0, i1, · · · , ik−1 be the subscripts
of the k travellers that ride stage s0. Label the k bicycles as b0, b1, · · · , bk−1,
where bm is the bicycle ridden by tim in s0. Then during the execution of the
scheme:

(i) the total number of bicycle rides is n+ k − d.
(ii) Each bicycle bm is mounted on either �nk � or �

n
k �+1 occasions, with the

first alternative applying if and only if r ≤ cm, where k(im + 1) ≡ cm
(mod n), 1 ≤ cm ≤ k.

Proof. (i) There are k travellers ti that cycle s0, and ti completes their
quota if and only if ki ≡ 0 (mod n). There are d solutions i to this
congruence. Therefore, n−k+d travellers have a single ride while k−d
travellers have two separate rides, one beginning and the other ending
their journey. The total number of cycle rides is therefore n− k+ d+
2(k − d) = n+ k − d.

(ii) Bicycle bm (0 ≤ m ≤ k − 1) is mounted at P0 by tim who dismounts
at Pcm , where k(im + 1) ≡ cm (mod n) (1 ≤ cm ≤ k). If cm < r then

(26) cm + qk < r + qk = n.

Hence, bm is ridden by 1+q+1 = q+2 travellers. Since 1 ≤ r we have
�nk �+ 1 = (q + 1) + 1 = q + 2, as required. Otherwise, r ≤ cm whence

(27) cm + (q − 1)k ≤ qk ≤ r + qk = n.

If 1 ≤ r it follows from (27) that bm is ridden by 1+(q−1)+1 = q+1
travellers. If r = 0 then cm = k and this figure is 1 + (q − 1) = q, but
in either event this number equals �nk �, thus completing the proof.

Proposition 6.2. For the M = MT
n,k transpose cyclic matrix and scheme:

(i) If n ≤ 2k then traveller ti has k cycle rides; if 2k ≥ n, then ti has
n− k + 1 rides if n− k ≤ i ≤ k − 1, and n− k rides otherwise.

(ii) The total number of cycle rides is nk if 2k ≤ n and is n(n−k−1)+2k
if 2k ≥ n.

(iii) The number of excess handovers h(M) = min(k(k−1), (n−k)(n−k−
1)).

(iv) The number of cycle rides after the elimination of excess handovers is,
in all cases, k(n− k + 1).
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Proof. (i) For the case where 2k ≤ n, each traveller rides just one stage

at a time, and so ti has k rides. We analyse this case further. Applying

Proposition 4.3(iv) to MT
n,k, we have that mi,j = mn−1−i,n−1−j , and

so

m0,0 = m1,0 = · · · = mk−2,0 = mk−1,0 = 1,

(28) mn−k,n−1 = mn−k+1,n−1 = · · · = mn−2,n−1 = mn−1,n−1 = 1.

mk,0 = mk+1,0 = · · · = mn−1,0 = 0 = m0,n−1(29)

= m1,n−1 = · · · = mn−k−1,n−1.

It follows from (28) and (29) that for 0 ≤ i ≤ k − 1, row Ri has

mi,0 = 1, and Ri has k (non-consecutive) entries equal to 1, each

followed by a maximal sequence of positive length that consists of

entries that equal 0. For n − k ≤ i ≤ n − 1, the same is true for Ri

but the statement applies for Ri considered in reverse order, beginning

with mi,n−1 = 1. On the other hand, for k ≤ i ≤ n− k − 1, Ri begins

and ends with a sequence of zeros, and once again there are k entries

equal to 1, but with no two consecutive entries equal to 1.

If we now pass from MT
n,k to MT

n,k, the rows indexed by 0 ≤ i ≤
k − 1 and n − k ≤ i ≤ n − 1 each indicate k bicycle rides, while the

remaining central rows each show k+1 cycle rides. By symmetry, the

same conclusion applies to the matrix with rows reversed. Now by

Remark 4.5 and Proposition 4.3(iii) we infer that

MT
n,k = (Mn,n−k)r

T
= ((Mn,n−k)r)T = ((MT

n,n−k)r = ((MT
n,n−k))r.

(30)

Therefore, if n < 2k we infer that the rows Ri of MT
n,k such that

0 ≤ i ≤ n− k − 1 or k ≤ i ≤ n− 1 indicate n− k bicycle rides, while

those indexed by n − k ≤ i ≤ k − 1 show n − k + 1 cycle rides, as

required.

(ii) If 2k ≤ n then each cycle is mounted on n separate occasions, and so

the total number of cycle rides is nk. Otherwise, it follows by

(i) that the total number of cycle rides is given by:

n(n−k)+(k−1− (n−k−1)) = (n−k)(n−1)+k = n(n−k−1)+2k.
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(iii) The cyclic sequence of 1’s in Cj has length k and may be written as
Tj = (ij , ij + 1, · · · , ij + k − 1) with addition mod n (ij = jk (mod

n)). Suppose that n ≥ 2k, in which case Tj = Xj
1,0. By Lemma 5.2

it follows that sj has no excess handovers unless for some t such that
0 ≤ t ≤ k − 1 we have ij + 2k − 1 = n+ t. In that case j ≤ n− 2 and
Tj+1 consists of two linear sequences, which are I1 = (0, 1, · · · , t) and
I2 = (n−k+t+1, n−k+t+1, · · · , n−1), although the latter is empty
if t = k−1. (Note that |I1| = t+1, |I2| = n−1−(n−k+ t) = k− t−1,
so that |I1| + |I2| = k.) Observe from Lemma 5.2 that the handovers
to t0, · · · , tt at the completion of sj are excess handovers, as are all
those from tn−k+t+1, · · · , tn−1 for sj+1. There are no other unnecessary
handovers in either sj or in sj+1. It follows that the number of excess
handovers in the pair of stages sj and sj+1 is then |I1|+ |I2| = k.
It follows that the set of excess handovers of S(M) is partitioned into
sets of order k, with one such set for every 0 ≤ j ≤ n − 1 such that
0 ≤ (j + 1)k (mod n) ≤ k − 1, with one exception. In the case where
j = n− 1 so that j+1 ≡ 0 (mod n) there are no handovers from sn−1

to s0. Let d = gcd(n, k). The number of multiples of d in the interval
[0, k − 1] is k

d . Then there are d values of (j + 1) (0 ≤ j ≤ n− 1) such
that (j + 1)k ≡ td (mod n) (0 ≤ t ≤ n

d ). Hence, the number of sets

in question is dk
d = k. Therefore, h(M) = k2 − k = k(k − 1), as we

subtract k in recognition of no handovers occurring from sn−1 to s0.

On the other hand, if n ≤ 2k consider MT
n,k = (MT

n,n−k)r by (30). Since
the latter matrix is also a reverse transpose matrix and n ≥ 2(n− k),
it now follows from Proposition 3.20 that

h(MT
n,k) = h(MT

n,k) = h(MT
n,n−k)r = h(MT

n,n−k) = (n− k)(n− k − 1).

(31)

Therefore, h(M) = k(k − 1) if n ≥ 2k and h(M) = (n− k)(n− k − 1)
otherwise. Combining these two cases we obtain the statement of (iii).

(iv) If n ≥ 2k we have the number of cycle rides after elimination of excess
handovers is kn−k(k−1) = k(n−k+1), as required. In the alternative
case, by (i), the corresponding number has the same form:

n(n− k − 1) + 2k − (n− k)(n− k − 1)

= (n− k − 1)(n− n+ k) + 2k = k(n− k + 1).
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Examples 6.3. MT
11,7

M ′ =

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

t0 1 1 0 0 1 1 1 1 0 0 1

t1 1 1 0 0 1 1 1 0 1 1 0

t2 1 1 0 0 1 1 1 0 0 1 1

t3 1 0 1 1 1 0 0 1 1 1 0

t4 1 0 1 1 1 0 0 1 1 1 0

t5 1 0 1 1 0 0 1 1 1 0 1

t6 1 0 0 1 1 1 1 0 0 1 1

t7 0 1 1 1 0 0 1 1 1 0 1

t8 0 1 1 1 0 1 1 0 0 1 1

t9 0 1 1 1 0 1 0 1 1 0 1

t10 0 1 1 0 1 1 0 1 1 1 0

We expunge all excess handovers from S(MT
11,7) to yield M ′. Since 2k ≥

n, from Proposition 6.2(iv) we find that the total ride number is 11(11 −
7 − 1) + 2(7) = 47. The number of rides by t0 through to t10 is (4 + 4 +
4 + 4) + (5 + 5 + 5) + (4 + 4 + 4 + 4) = 47, in accord with part (i), as
n−k = 4 and n−k ≤ i ≤ k−1 becomes 4 ≤ i ≤ 6, so it is t4, t5, and t6 who
have the extra ride. We have h(M) = (11− 7)(11− 7− 1) = 12. According
to (iii), after elimination of excess handovers the total number of rides is
7(11− 7+1) = 35, which indeed equals 47−h(M). All travellers have three
rides in S(M ′) except for t5 and t9 who each have four.

Throughout this paper we have placed the staging posts at intervals
of one unit with the journey regarded as being of length n. We may how-
ever consider other partitions of the travellers’ journey. Consider a putative
scheme, S = Sm, based on partitions into m equal stages. Such a scheme
Sm would then be represented by an n×m binary matrix M = M(Sm).

Theorem 6.4. For the (n, k)-problem, let k = gcd(n, k) and put n′ = n
d and

k′ = k
d . Then an optimal scheme Sm defined by an n ×m matrix exists for

the (n, k)-problem if and only if m = rn′ for some r ≥ 1, in which case each
traveller cycles for l = rk′ of the m stages of Sm.

Proof. As in the m = n case, for Sm to be an optimal solution, we must
have each column Cj of M containing exactly k instances of 1, and each row
containing a common number, t say, of 1’s. Counting the 1’s by rows, and
then by columns we equate to see that tn = km, whence m = tn

k = tn′

k′ . Since
gcd(n′, k′) = 1, it follows that k′|t so that t = rk′ say, and m necessarily has
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the form m = rn′, for some r ≥ 1. Moreover, in any optimal scheme Sm,
each traveller cycles the same number, l say, of stages of Sm. By optimality
we then have l

m = k
n = k′

n′ so that l = mk′

n′ = rn′k′

n′ = rk′. In conclusion:

(32) m = rn′, l = rk′ (r ≥ 1).

Conversely, we now show that given that m satisfies (32), we may build
a scheme Sm from copies of schemes for the (n′, k′)-problem to yield an
optimal solution for the (n, k)-problem based on an n × m binary matrix
M which is (l, k)-uniform, meaning that each row and each column contains
exactly l and k non-zero entries respectively. To do this we take a d × r
array and at each position in the array we place an optimal n′ × n′ matrix
for the (n′, k′)-problem. (There is no need for these matrices to be identical
solutions.) This yields a (dn′×rn′) = (n×m) binary matrix M with l entries
of 1 in each row, and k entries of 1 in each column.

The first set of n′ columns represents a scheme for the initial 1
r part

of the journey. Executing this partial scheme will see d (disjoint) sets of
travellers, with each set executing an optimal (n′, k′) scheme. Since these
schemes are carried out in parallel, all n travellers will complete the first 1

r
of the full journey simultaneously, as all these schemes are optimal. Each of
these d sets of travellers will then repeat a similar process for the second
and subsequent partial schemes, with all travellers completing each of the
fractional journeys of lengths 1

r ,
2
r , · · · ,

j
r , · · ·

r
r = 1 at the same time. All

n travellers complete the journey simultaneously, having cycled l stages, as
required to finish in the least time.
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