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Let the diameter cover number, Dt
r(G), denote the least integer d

such that under any r-coloring of the edges of the graph G, there
exists a collection of t monochromatic subgraphs of diameter at
most d such that every vertex ofG is contained in at least one of the
subgraphs. We explore the diameter cover number D2

2(G) when G
is a complete multipartite graph. Specifically, we determine exactly
the value of D2

2(G) for all complete tripartite graphs G, and almost
all complete multipartite graphs with more than three parts.

AMS 2000 subject classifications: Primary 05C12; secondary 05C15.
Keywords and phrases: Diameter, covers, Ryser’s conjecture.

1. Introduction

Given a hypergraph H, we say H is r-partite if there exists a partition
V (H) = V1 ∪ V2 ∪ · · · ∪ Vr such that no edge of H contains two or more
vertices from Vi for any 1 ≤ i ≤ r. The vertex cover number, τ(H), is the
minimum cardinality of a set S ⊆ V (H) such that S intersects every edge
of H, and the matching number, ν(H), is the size of a largest set of pairwise
disjoint edges in H. Ryser’s Conjecture [8] attempts to relate these two
parameters in a strong way for r-partite graphs.

Conjecture 1.1. Let r ≥ 2 and let H be an r-partite hypergraph. Then

τ(H) ≤ (r − 1)ν(H).

Note that the classical König’s Theorem [9], which states that the size of
a minimum vertex cover in a bipartite graph G is no bigger than the size of
a maximum matching in G, confirms the case r = 2 of Ryser’s Conjecture.
It was proved by Aharoni [1] that Ryser’s Conjecture also holds for r = 3.
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However, already for r = 4, 5 the only exact result is for the case ν(H) = 1,
shown by Tuza [11]. It has also been proven in the case of r = 4, 5, by Haxell
and Scott [7], that there exists some ε > 0 such that τ(H) ≤ (r − ε)ν(H).

An equivalent formulation of Ryser’s Conjecture involves coverings of
edge-colored graphs with monochromatic connected components. More specif-
ically, a monochromatic connected subgraph cover of an edge colored graph
G is a collection of monochromatic connected subgraphs of G whose union
contains every vertex. The monochromatic tree cover number tcr(G) is the
least integer such that for any r-coloring of the edges of G, there exists a
monochromatic connected subgraph cover with tcr(G) subgraphs. The inde-
pendence number of G, α(G), is the size of the largest collection S ⊆ V (G)
such that no two vertices in S are adjacent. The following is an equivalent
formulation of Conjecture 1.1, first observed by Gyárfás [5].

Conjecture 1.2. For every graph G and all r ≥ 2,

tcr(G) ≤ (r − 1)α(G)

For a brief sketch of the proof that these two conjectures are equivalent,
see [3], Section 1.

Phrasing Ryser’s Conjecture in terms of edge colorings leads to many
interesting questions and connections. In particular, this phrasing of Ryser’s
Conjecture sheds light on the fact that the conjecture fits into the large
body of work on Ramsey theory. In particular, Ryser’s Conjecture is closely
related to problems involving finding large monochromatic components in
edge-colored graphs. Given an r-coloring of the edges of the complete graph
Kn, it is known that there always exists a monochromatic component of size
at least n/(r − 1) [5], and that this is sharp for infinitely many values of n
and r. Conjecture 1.2, if true, implies this as well, and thus can be thought
of as a strengthening of the question of the size of the largest monochromatic
component. Large monochromatic components has been studied intensively
in both graphs and hypergraphs [4], [6]

In this paper, we will explore structural properties of the monochromatic
connected subgraphs in a cover, in particular we consider subgraphs with
bounded diameter. Given a graph G, an integer r ≥ 2, and an integer t ≥
tcr(G), define the diameter cover number, Dt

r(G), to be the least integer d
such that in every r-coloring of the edges of G, there exists a monochromatic
connected subgraph cover of G with at most t subgraphs such that every
subgraph has diameter at most d.

The diameter cover number was first studied by Milićević [10], who con-
sidered 3- and 4-colored complete graphs as well as 2-colored complete bi-
partite graphs, using the result for 3-colored complete graphs to prove a
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generalization of Banach’s fixed point theorem. Note that it is known that
tc3(Kn) ≤ 2 [5], tc4(Kn) ≤ 3, [5] tc2(Km,n) ≤ 2 [2], tc3(Km,n) ≤ 4 [2] and
tc2(G) = 2 for any graph G with α(G) = 2.

Theorem 1.3 ([10]). 1. For all complete graphs Kn, D
2
3(Kn) ≤ 8.

2. For all complete graphs Kn, D
3
4(Kn) ≤ 80.

3. For all complete bipartite graphs Km,n, D
2
2(Km,n) ≤ 9.

The above results were improved and extended by DeBiasio, Kamel,
McCourt, and Sheats [3].

Theorem 1.4 ([3]). 1. For all complete graphs Kn with n ≥ 7, 3 ≤
D2

3(Kn) ≤ 4.
2. For all complete graphs Kn with n ≥ 5, 2 ≤ D3

4(Kn) ≤ 6.
3. For all complete bipartite graphs Km,n with m ≥ 3, n ≥ 4, 3 ≤

D2
2(Km,n) ≤ 4.

4. For all complete bipartite graphs Km,n, D
4
3(Km,n) ≤ 6.

5. For all graphs G on at least 7 vertices with α(G) = 2, 3 ≤ D2
2(G) ≤ 6.

We focus on 2-colorings of complete multipartite graphs with at least
three parts. Note that tc2(G) ≤ 2 for any complete multipartite graph G.
This was shown by Chen, Fujita, Gyárfás, Lehel, and Tóth [2], and we offer
a sketch of a proof of it in Section 1.2.

We prove the following theorem in Section 2.

Theorem 1.5. For any complete tripartite graph G,

D2
2(G) ≤ 3.

Note that if G is complete multipartite, then D4
2(G) ≤ 2, since we can

cover the entire graph with a red and blue star at a vertex in one part and
another red and blue star at a vertex in another part. Therefore finding an
upper bound on Dt

2(G) for complete multipartite graphs with at least three
parts is only interesting in the case of t = 2, 3.

It is worth noting that if F is a spanning subgraph of G and tcr(F ) ≥ t,
then Dt

r(F ) ≥ Dt
r(G). Therefore, the bound in Theorem 1.5 also applies

to all complete k-partite graphs with k ≥ 3, as they contain a spanning
complete tripartite graph.

In Section 3, we improve on Theorem 1.5, and provide a complete char-
acterization of the value of D2

2(G) for all complete tripartite graphs G.

Theorem 1.6. Let G be a complete tripartite graph.

1. D2
2(G) = 3 if and only if K5,2,2 ⊆ G or K4,3,2 ⊆ G,
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2. D2
2(G) = 1 if and only if G = K3 or G = K2,1,1, and

3. D2
2(G) = 2 otherwise.

In addition, for every k ≥ 4, we determine the value of D2
2(G) for all but

finitely many complete k-partite graphs G. We also explore the problem of
categorizing more values of D2

2(G). In particular, it is easy to show that if
G has a vertex adjacent to all other vertices then D2

2(G) ≤ 2. However, it
is unclear if D2

2(G) ≤ 2 for any complete k-partite graphs without a part of
size 1, when k is large. Let Kk(2) denote the complete multipartite graph
with k parts each of size 2. We propose the following conjecture:

Conjecture 1.7. For all k ≥ 3,

D2
2(Kk(2)) = 2.

In Section 4, we provide partial results towards proving this conjecture.

1.1. Definitions and notations

Call a graph a double star if it is isomorphic to graph with vertex set
a, b, x1, . . . , xn, y1, . . . , ym where ab, axi, byj are edges for all 1 ≤ i ≤ n and
1 ≤ j ≤ m. Given a graph G and a vertex v ∈ V (G), let N(v) denote the
open neighborhood of v, that is N(v) = {u ∈ V (G) : uv ∈ E(G)}. Given a
graph G with V (G) = {v1, v2, . . . , vn}, a blow-up of G is a graph F with a
partition V (F ) = V1∪V2∪· · ·∪Vn of non-empty vertex sets such that for all
a ∈ Vi and b ∈ Vj , ab ∈ E(F ) if and only if vivj ∈ E(G). Given two disjoint
subsets A,B ⊆ V (G), we will let G[A] denote the subgraph of G induced on
the vertex set A, and let G[A,B] denote the bipartite graph induced in G
with parts A and B. Recall that the eccentricity of a vertex x in a connected
graph F , denoted eccF (x) is defined as

eccF (x) = max{dF (x, y) | y ∈ V (F )}.

Note that if a graph H is connected, then there exists a vertex x ∈ V (H)
such that eccH(x) = diam(H).

1.2. For any complete multipartite graph G, tc2(G) ≤ 2

Note that adding edges can only decrease the tree cover number, so it suffices
to show this for complete bipartite graphs. Let G = (A,B,E) be a complete
bipartite graph, and fix v ∈ A. Assume without loss of generality that v has
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at least one red edge incident to it, as otherwise we may swap the colors
red and blue. Let A′ and B′ be the sets of vertices in A and B, respectively,
which are covered by the red component containing v. If A′ = A, then we can
cover the graph with the maximum red and blue components containing v. If
B′ = B then all vertices in A \A′ are complete blue to B and therefore may
be covered with a blue connected component. That blue component along
with the red component containing v forms the desired cover. Otherwise, we
may cover the graph with 2 connected blue components, G[(A \ A′) ∪ B′]
and G[A′ ∪ (B \B′)], both of which induce a complete blue bipartite graph.

2. Upper bound – proof of Theorem 1.5

In this section, we prove Theorem 1.5. To do this, we will first show in
Section 2.1 that any hypothetical counterexample to the theorem must have
some very specific structure, and then in Section 2.2 we explore this structure
and show that we can find a suitable monochromatic subgraph cover.

Throughout this section, we will use the following result:

Lemma 2.1 (Lemma 4.18(P1) in [3]). If all edges incident to a single vertex
v in a two-edge coloring of a complete bipartite graph are all colored the same,
then there is a monochromatic subgraph cover with a star and a double star.

This can be easily seen by taking the double star at uv where u is some
neighbor of v, and then the star in the other color centered at u.

Theorem 1.5. For any complete tripartite graph G,

D2
2(G) ≤ 3.

Proof. First note that if our complete multipartite graph has a part of size 1,
then this vertex is the center of a blue star and a red star (one of these may be
trivial), which cover the entire graph, so we have a cover with two subgraphs
of diameter at most 2 in this case. Now, let a, b, c ≥ 2 be fixed, and assume to
the contrary that Theorem 1.5 does not hold for G := Ka,b,c. Let A,B and C
be the partite sets of G with |A| = a, |B| = b and |C| = c. Let χ : E(G) →
{red, blue} be a 2-coloring of the edges of G where χ has the property
that there do not exist two monochromatic subgraphs of G of diameter at
most 3 that cover V (G). Let Gred and Gblue be the spanning subgraphs
of G containing all the red edges and all the blue edges respectively, and
define Nred(x) := NGred

(x), Nblue(x) := NGblue
(x), dred(x) := dGred

(x), and
dblue(x) := dGblue

(x).
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As noted in [3] following Lemma 4.18, the only case in which we do not

know that a 2-colored complete bipartite graph has a monochromatic cover

consisting of at most two subgraphs of diameter at most 3 occurs when

both the red and blue spanning subgraphs are connected and of diameter

exactly 4. This implies the following:

Claim 2.2. Both graphs Gred and Gblue have diameter 4.

Proof. Assume towards a contradiction this is not the case. If the diameter of

Gred or Gblue is less than 4 then we can simply take that as our component,

meaning that D2
2(G) ≤ 3. So, one of Gred or Gblue must have diameter

at least 5 (in the case where one of Gred or Gblue is disconnected, we will

consider it to have infinite diameter, and it would fall into this case). Note

that the deletion of edges can only increase the diameter of a graph. Thus,

if we delete all edges between two parts in G to create a complete bipartite

graph G′, we get that one of G′
red or G′

blue has diameter at least 5. Then, by

Lemma 4.18 in [3], 3 ≥ D2
2(G

′) ≥ D2
2(G), a contradiction.

Throughout the rest of this proof, we will fix a vertex v ∈ V (G) such

that eccGred
(v) = 4. We may assume without loss of generality that v ∈ A.

We now will partition A, B and C based on red-distances from the

vertex v. For 1 ≤ i ≤ 4, let Ai ⊆ A, Bi ⊆ B and Ci ⊆ C be the sets of

vertices that are red-distance exactly i from v in each of our three partite

sets. This gives us the following partitions:

• A = {v} ∪A2 ∪A3 ∪A4,

• B = B1 ∪B2 ∪B3 ∪B4, and

• C = C1 ∪ C2 ∪ C3 ∪ C4,

where A1 is omitted since A1 = ∅ trivially.

2.1. Reducing the problem

Many of the sets in the above partitions of A, B and C may be empty. The

goal of this section is to reduce the problem down to a case where we know

exactly which sets are empty and which are non-empty. More specifically,

we will show that we may focus on the case when A3, B2, B4, C2 and C4 are

all empty, while all the other sets in our partitions are non-empty.

Claim 2.3. B1, C1 	= ∅.
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Proof. First note by Lemma 2.1 that no vertex of G dominates an entire
partite set in a single color, otherwise the bipartite subgraph between the
dominated partite set and the rest of the graph would have a cover with
a star and a double star. Therefore, there must exist a vertex in B that is
adjacent to v in red, and also a vertex in C that is adjacent to v in red,
giving us that B1 	= ∅ and C1 	= ∅.

We now deal with all vertices at red-distance 4 from v.

Claim 2.4. A4 	= ∅ and B4 = C4 = ∅.

Proof. First suppose B4 	= ∅, and let u4 ∈ B4. The existence of u4 imme-
diately implies that there exists a vertex u3 ∈ A3 ∪ C3. Now by Claim 2.3
we know that B1 	= ∅, so let u1 ∈ B1. Note that the edges vu4 and u1u3 are
both blue since dred(v, u4) = 4 and dred(u1, u3) ≥ 2. Let S1 be the largest
blue double star with centers v and u4 and let S2 be the largest blue double
star with centers u1 and u3.

We will show that S1 and S2 form a monochromatic subgraph cover of
diameter at most 3, which will give us a contradiction. Indeed, every vertex
in B1 is a blue neighbor of u3, while B\B1 ⊆ Nblue(v), so B ⊆ V (S1)∪V (S2).
Furthermore, every vertex in A3 ∪A4 ∪C3 ∪C4 is blue-adjacent to u1, while
every vertex in {v} ∪ A2 ∪ C1 ∪ C2 is blue-adjacent to u4, giving us that
A,C ⊆ V (S1) ∪ V (S2). This gives us the desired contradiction, so we must
have that B4 = ∅. By symmetry C4 = ∅. Since v has eccentricity at least 4
in Gred, we must have A4 	= ∅, completing the proof.

Next, we consider B3 and C3.

Claim 2.5. B3, C3 	= ∅.

Proof. By Claim 2.4, we must have a vertex x ∈ A4. Note that Nred(x) ⊆
B3 ∪ C3. The contrapositive of Lemma 2.1 applied to G[A ∪ C,B] implies
that Nred(x)∩B3 	= ∅. In particular, B3 	= ∅, and by a symmetric argument,
we can also conclude that C3 	= ∅.

Before we show that A3 = ∅, we deal with all vertices at red-distance 2
from v.

Claim 2.6. A2 	= ∅ and B2 = C2 = ∅.

Proof. First assume that B2 	= ∅. Note that by definition, for all distinct
X,Y ∈ {A,B,C} and i, j ∈ {1, 2, 3, 4} with |i − j| ≥ 2, G[Xi, Yj ] is com-
plete blue. Additionally, if X 	= A, and i ∈ {2, 3, 4}, G[{v}, Xi] is complete
blue. These blue complete bipartite graphs are enough to guarantee that
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H := Gblue[V (G) \ (A2 ∪ A3)], as seen in Figure 1 has diameter 3, regard-

less of whether C2 is empty or not, and further that every vertex in B2 has

eccentricity 2 in H.

Figure 1: The blue subgraph H, which has diameter 3.

Let x ∈ B2 and define H ′ := Gblue[V (H) ∪Nblue(x)]. Since x has eccen-

tricity 2 in H, H ′ is a blue subgraph of G of diameter 3. Let S be the largest

red star in G centered at x. Every vertex in B ∪ C is contained in H ′, and
A \ V (H ′) ⊆ Nred(x). Thus H ′ and S give us a monochromatic subgraph

cover of diameter at most 3, a contradiction. Hence B2 = ∅, and a symmetric

argument shows that C2 = ∅. Since B3 is non-empty by Claim 2.5, there

must exist a vertex at distance exactly 2 from v, so we must have that A2

is non-empty, finishing the proof of the claim.

The final set to consider is A3.

Claim 2.7. A3 = ∅.

Proof. Any vertex in A3 must have a red neighbor in B2 ∪ C2 in order to

have red-distance 3 from v. By Claim 2.6, B2 and C2 are empty. Therefore

A3 must also be empty.

Thus, we have shown that the sets A2, A4, B1, B3, C1, C3 are all non-

empty, while all the other sets in our partitions of A,B and C are empty.

2.2. The final case of Theorem 1.5

Based on Section 2.1, we may assume that A = {v} ∪ A2 ∪ A4, B = B1 ∪
B3 and C = C1 ∪ C3, and furthermore each of these sets are non-empty.

We will now explore this particular case and show that there must exist a

monochromatic subgraph cover of diameter at most 3, which will conclude

the proof of Theorem 1.5.
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Note that, similar to the proof of Claim 2.6, G[{v}, B3], G[B3, C1],
G[C1, A4], G[A4, B1], G[B1, C3] and G[C3, {v}] are all blue complete bipar-
tite graphs due to the red-distance from v of each set. This implies that
G′ := G[V (G) \ A2] has a spanning blue C6-blowup, call it C+

6 , and thus
has diameter at most 3. Thus, our main goal of this section will be to show
that the vertices in A2 can either be added to C+

6 without increasing the
diameter, or can be included in a red subgraph of diameter 3.

Towards this, we first explore which edges are red in G′. By definition, we
have that G[{v}, B1 ∪C1] is a red star. Our next claim gives us a collection
of red edges in G′ that will help form a large red subgraph.

Claim 2.8. The red subgraph Gred[B1, C1], is a complete bipartite graph.

Proof. Let x ∈ B1 and y ∈ C1. Assume to the contrary that the edge xy is
blue. Then x has eccentricity 2 in C+

6 +xy, so G∗ := Gblue[V (C+
6 )∪Nblue(x)]

has diameter at most 3. Let S be the largest red star with center x. Notice
that G∗ and S cover G since the only vertices that are not in G∗ are in
A2 \ Nblue(x), which is contained in V (S). This gives us a monochromatic
subgraph cover of diameter at most 3, a contradiction. Thus every edge in
G[B1, C1] is red.

Note that using the same technique we can show thatG[B3, C3],G[B3, A4],
and G[C3, A4] are complete red bipartite graphs as well, but only Claim 2.8
is necessary to complete the proof of Theorem 1.5. We now define a parti-
tion of A2 into two sets, one of which can be added to the blue subgraph
containing C+

6 , and the other which can be covered with a red subgraph of
diameter at most 3. Let A2,red ⊆ A2 be the set of vertices, x, that satisfy at
least one of the following properties:

(P1) x has only red neighbors in B1,
(P2) x has only red neighbors in C1, or
(P3) x has at least one red neighbor in each of B1 and C1.

Let A2,blue := A2 \ A2,red, and note that every vertex in A2,blue has at least
one blue neighbor in each of B1 and C1, and also has only blue neighbors in
at least one of B1 or C1. First we show that the vertices in A2,blue can be
included in a blue subgraph containing the blue C+

6 .

Claim 2.9. The blue subgraph Gblue[V (C+
6 )∪A2,blue] has diameter at most 3.

Proof. We need only consider pairs of vertices x and y with at least one
vertex in A2,blue, say without loss of generality x ∈ A2,blue. If y is also in
A2,blue, then since x has at least one neighbor in each of B1 and C1, and y
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Figure 2: The blue subgraph Gblue[V (C+
6 ) ∪ A2,blue]. Solid edges represent

blue complete bipartite graphs. Dashed edges represent that every vertex
in A2,blue is complete blue to one of B1 and C1, and has at least one blue
neighbor in the other set.

is adjacent to every vertex in either B1 or C1, x and y are at distance 2 in
Gblue[V (C+

6 ) ∪A2,blue].
Now, consider a pair with x ∈ A2,blue and y ∈ V (C+

6 ). Assume without
loss of generality that x has only blue neighbors in B1, and let z ∈ C1 be
a blue neighbor of x. If y ∈ B3, then (x, z, y) is a blue path of length 2.
If y 	∈ B3, then y is distance at most 2 from any vertex in B1, so distance
at most 3 from x, so in either case, x and y are at distance at most 3, so
Gblue[V (C+

6 ) ∪A2,blue] has diameter at most 3.

The final step in the proof is to show that we can cover A2,red with a
red subgraph.

Figure 3: The red subgraph Gred[B1 ∪ C1 ∪ A2,red]. Solid edges represent
complete bipartite graphs while dotted edges represent that vertices in X3

have at least one red neighbor in each set B1 and C1.

Claim 2.10. The red subgraph Gred[B1∪C1∪A2,red] has diameter at most 3.

Proof. By Claim 2.8, Gred[B1, C1] is complete bipartite. Let Xi ⊆ A2 be
the set of vertices satisfying property (Pi) for 1 ≤ i ≤ 3. Then note that
Gred[B1 ∪ C1 ∪ X1 ∪ X2] has a spanning red P4-blowup, call it P+

4 , which
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has diameter 3. Thus, to show that Gred[B1 ∪ C1 ∪ A2,red] has the desired

diameter, we only need to consider distances between pairs of vertices with

at least one vertex in X3.

Let x ∈ X3 and y ∈ B1 ∪ C1 ∪ A2,red. Since eccP+
4
(u) = 2 for any

vertex u ∈ B1 ∪ C1, and x has a red neighbor in B1 ∪ C1, dred(x, y) ≤ 3 if

y ∈ B1∪C1 ∪X1 ∪X2. If instead y ∈ X3, then let x′ ∈ B1 be a red neighbor

of x, and y′ ∈ C1 be a red neighbor of y. The path (x, x′, y′, y) is a red path

of length 3, so dred(x, y) ≤ 3, finishing the proof.

This completes the proof of Theorem 1.5; in Section 2.1, we reduced the

proof down to the case when {v}, A2, A4, B1, B3, C1 and C3 are the only non-

empty sets in our original partition, and then via Claim 2.9 and Claim 2.10,

we show that in this final case, we have a monochromatic subgraph cover

using two subgraphs of diameter at most 3.

3. Determining D2
2(G) exactly for complete tripartite graphs

and others

In this section we provide a complete classification of D2
2(G) for all complete

tripartite graphs, G, as well as prove some results towards a classification of

D2
2(G) for any complete multipartite graph G. In light of Theorem 1.5, as

the addition of edges can only decrease the value of D2
2(G), D2

2(G) ≤ 3 for

all complete multipartite graphs with at least three parts. In Theorem 3.1

we prove that a particular complete multipartite graph G has D2
2(G) = 3,

and then in Proposition 3.2, we prove that if we add a vertex to an existing

part in a complete multipartite graph G, the diameter cover number cannot

decrease. For any fixed k, this gives us that there are finitely many complete

k partite graphs with diameter cover number 2 or less. In the case of complete

tripartite graphs, we then classify the remaining graphs via direct analysis.

Our first result in this section shows that for each k ≥ 2, a complete

(k + 1)-partite graph with no part of size 1 and one large part will have

diameter cover number 3. Let Ka,b∗k denote the complete (k + 1)-partite

graph with one part of size a and k parts of size b.

Theorem 3.1. For all k ≥ 2,

D2
2(K2k+1,2∗k) = 3.

Proof. The upper bound follows from Theorem 1.5 and the fact thatK2k+1,2k−2,2

is a spanning subgraph of K2k+1,2∗k. Now let us focus on the lower bound.
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Figure 4: A coloring of K5,2,2 that does not admit a monochromatic cover
with two diameter 2 subgraphs.

Let G = K2k+1,2∗k, Let A = {a1, a2, . . . , a2k, c} be the part of G of size
2k + 1, and let B = {b1, b2, . . . , b2k} denote the remaining vertices of G,
where {b2i−1, b2i} is a part of size 2 for all 1 ≤ i ≤ k. Color the edges aibi,
cbi, and bibj blue for all 1 ≤ i, j ≤ 2k (if bibj is not an edge, we do not assign
it a color), and color all remaining edges of G red.

We claim that under this coloring, G does not have a monochromatic
cover with two subgraphs of diameter at most 2. To see this, let us assume
to the contrary that there exists such a cover. First note that since c is
not incident to any red edges, there must be a blue subgraph containing c.
Furthermore, the blue edges incident to the ai’s form a matching, so any
blue subgraph of diameter 2 can contain at most one of the ai’s. and since
there are 2k ≥ 4 such vertices ai, there must be a red subgraph that contains
all but at most one of the ai’s. This red subgraph must contain at least one
of the bi’s, otherwise it would contain no edges, so without loss of generality,
we can assume that b1 is in the red subgraph. Since a1 and b1 are distance
3 from each other in red, a1 cannot be in the red subgraph, and so the
red subgraph contains the vertices in {a2, a3, . . . , a2k}. Now, note that b2 is
distance 3 from a2 in red, and distance 3 from a1 in blue, so b2 cannot be
in either the red or blue subgraph, a contradiction. Thus D2

2(G) ≥ 3.

We now prove that adding vertices to a part in a complete multipartite
graph does not decrease the diameter cover number.

Proposition 3.2. Let k ≥ 2, b1 ≥ a1, b2 ≥ a2, . . . , bk ≥ ak be positive
integers. If D2

2(Ka1,a2,...,ak
) ≥ 3, then D2

2(Kb1,b2,...,bk) ≥ 3.

Proof. Note that it will suffice to prove that D2
2(Ka1+1,a2,...,ak

) ≥ 3. Let
G = Ka1+1,a2,...,ak

, and let G′ be an induced subgraph of G isomorphic to
Ka1,a2,...,ak

. By assumption, there exists a 2-coloring c : E(G′) → {red, blue}
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of the edges of G′ such that there is no cover of G′ using two monochromatic
subgraphs, each with diameter at most 2. Let the edges of G′ be colored
according to this 2-coloring.

Let x ∈ V (G′) be a vertex in the part of size a1. Let y be the vertex in
V (G) \ V (G′). For each vertex v ∈ V (G) such that vy ∈ E(G), assign the
color c(vx) to the edge vy. We claim that there is no cover of G with two
monochromatic subgraphs of diameter at most 2. Assume to the contrary
that there was such a cover, say with monochromatic subgraphs G1 and G2,
where the edges of Gi are colored ci ∈ {red, blue} for i = 1, 2. Let Vi = V (Gi)
for i = 1, 2. For i = 1, 2, if y ∈ Vi, let V ′

i = (Vi \ {y}) ∪ {x}, and if y 	∈ Vi,
let V ′

i = Vi. Let G′
i denote the subgraph of G′[V ′

i ] consisting of only edges
of color ci.

We claim thatG′
i is connected and has diameter 2. Indeed, if V ′

i = Vi, this
follows immediately from our contrary assumption. If V ′

i = (Vi \ {y})∪ {x},
any path in Gi containing y can be replaced with a path of the same length in
G′

i containing x, so diam(G′
i) ≤ diam(Gi) ≤ 2. Finally, note that V (G′) =

V ′
1 ∪ V ′

2 since V (G) = V1 ∪ V2, and Vi \ {y} ⊆ V ′
i . This contradicts the

original assumption that under the coloring c, there was no cover of G′ with
two monochromatic subgraphs with diameter at most 2.

We note that our argument above can also prove the stronger fact that
if G is a graph and H is a blow-up of G then Dt

r(H) ≥ Dt
r(G).

By combining Theorem 3.1 and Proposition 3.2, we see that given any
k ≥ 3, all but finitely many k-partite graphs G with no part of size 1 have
D2

2(G) = 2. Let us turn our attention to small complete tripartite graphs
with no part of size 1. There are 10 complete tripartite graphs with no
part of size 1 that our prior results do not imply a result for D2

2, namely
the graphs Ka,b,c with 2 ≤ c ≤ b ≤ a ≤ 4. Fortunately, to determine which
complete tripartite graphs require diameter 3, we do not need to check all 10
of these graphs, but instead we need to find the “minimal” ones that require
diameter 3 and the “maximal” ones that do not require diameter 3, and
then we can apply Proposition 3.2 and its contrapositive to classify the rest.

Proposition 3.3. We have the following:

• D2
2(K4,3,2) = 3,

• D2
2(K4,2,2) = 2,

• D2
2(K3,3,3) = 2.

As the proofs for Proposition 3.3 involve simple logic and extensive case
work, we only include a proof of the first equality, below. These graphs are
small enough that we were able to verify these bounds using a brute force
computer program (see supplemental files on arXiv).
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Figure 5: A coloring of K4,3,2 that does not admit a monochromatic cover
with two diameter 2 subgraphs.

proof that D2
2(K4,3,2) = 3. Note that the upper bound on D2

2(K4,3,2) follows
from Theorem 1.5. For the lower bound, consider the coloring ofK4,3,2 shown
in Figure 5. Assume towards a contradiction that there is some covering of
the vertices with 2 monochromatic diameter 2 subgraphs. First we note that
in the spanning blue subgraph vertices v2, v3, and v6 are pairwise distance
at least 3 from each other, and vertices v0, v1, and v7 are pairwise distance 3
in the spanning red subgraph. Therefore, one of our subgraphs in our cover
must be red, while the other must be blue. Let R be the set of vertices in
the red subgraph, and B be the set of vertices in the blue subgraph. We
consider two cases based on which subgraphs contains v8.

Case 1: v8 ∈ R. Since v2 is distance 3 from v8 in red, we must have that
v2 ∈ B \ R. Furthermore, as v7 is distance 3 from v2 in blue, v7 ∈ R \ B.
Since v1 is distance 3 from v7 in red, we have v1 ∈ B \ R. Note that the
only blue path of length 2 from v1 to v5 is through v7, so since v1 ∈ B, and
v7 	∈ B, we have that v5 	∈ B. Similarly, the only red path of length 2 from
v7 to v5 is through v2, so since v7 ∈ R and v2 	∈ R, we have that v5 	∈ R, a
contradiction.

Case 2: v8 ∈ B \R. If v3 ∈ B, then v1 and v4 are in R\B since they are
distance at least 3 in blue from v3, but the only red path of length 2 from
v1 to v4 uses v8, which is not in R, a contradiction. Thus, v3 ∈ R \ B. As
v8 and v1 are distance 3 in blue, we know that v1 ∈ R \B, but the only red
path of length 2 from v1 to v3 is through v8, yielding another contradiction
and completing the proof.

Note that D2
2(K3) = D2

2(K2,1,1) = 1 since both graphs can be covered by
two edges, butD2

2(K3,1,1) ≥ 2 sinceK3,1,1 cannot be covered by two diameter
1 subgraphs (even without regards to an edge coloring), and D2

2(K2,2,1) ≥ 2
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since any cover of K2,2,1 with two diameter 1 subgraphs would necessarily
need to contain at least one K3, but if we color the edges incident with the
vertex in the part of size 1 red and all other edges blue, there is no monochro-
matic triangle. We remind the reader that any complete multipartite graph
with a part of size 1 has D2

2(G) ≤ 2 since a red and blue star centered at
this vertex cover everything.

These results allow us to determine D2
2(G) for all complete tripartite

graphs G. The results on complete tripartite graphs are summarized con-
cisely below.

Theorem 3.4. Let G be a complete tripartite graph.

• D2
2(G) = 3 if and only if K5,2,2 ⊆ G or K4,3,2 ⊆ G,

• D2
2(G) = 1 if and only if G = K3 or G = K2,1,1, and

• D2
2(G) = 2 otherwise.

4. Progress towards Conjecture 1.7

In this section, we consider the family of complete multipartite graphs in
which each partite set has size 2. Recall that we denote such a graph with
k parts as Kk(2).

Problem 4.1. Determine the value of D2
2(Kk(2)).

Using the same program that we checked small examples of complete tri-
partite graphs with, we found that D2

2(K3(2)) = D2
2(K4(2)) = D2

2(K5(2)) =
2. In attempts to determine whether this value is 2 or 3 for k ≥ 6, we proved
the following results. These results serve as properties of a minimal example
which requires diameter 3, if such a graph and coloring exists. Note that
one difficulty in solving this problem is being unable to classify graphs of
diameter 2. In particular, we often attempt to build a cover using familiar
graphs of diameter 2 that are relatively easy to find by hand, such as stars
and C5 blow-ups. However, there are many diameter 2 graphs which are
more difficult to find by hand. In particular, almost all graphs are diameter
2, and further we have pathological examples such as the Petersen graph and
the graph pictured in Figure 6, which was in fact used in multiple covers
produced by a program we ran to check small cases.

Throughout the section we will suppose that a 2-coloring of the edges
of Kk(2) exists that requires a subgraph of diameter 3 in every cover, and
state necessary properties. We fix such a 2-coloring of Kk(2) and let color 1
be blue and color 2 be red.
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Figure 6: A diameter 2 graph used in some colorings of K2,2,2,2,2.

For any v ∈ V (Kk(2)), we will denote by v′ the unique vertex such that

vv′ /∈ E(Kk(2)), and we call v′ the clone of v. We begin with a result on the

length 2 paths between clones.

Property 4.2. For each v ∈ V (Kk(2)), every possible color combination of

length 2 vv′-paths exist. That is, clones are distance 2 from each other in

both colors 1 and 2, as well as have length 2 paths which alternate colors in

both orders.

Proof. For i, j ∈ [2], let Xi,j denote the vertices which send color i to v

and color j to v′. Note that each of the four sets represent one of the four

possible color combinations of length 2 vv′-paths. Suppose Xi,j = ∅ for some

i, j ∈ [2]. Then the color j star at v and the color i star at j cover V (Kk(2))

and each have diameter 2. Hence Xi,j 	= ∅ for all i, j ∈ [2].

Note that there must exist a vertex x ∈ V (Kk(2)) that has at least one

vertex at distance at least 3 in blue, since otherwise the spanning blue sub-

graph is the desired cover of diameter at most 2. By the previous property,

this other vertex is not x′. We will now partition the vertex set in terms of

the distances in blue from x and x′.
For i, j ∈ [3], let Ai,j denote the vertices that are distance i in blue from

x and distance j in blue from x′, with the convention that when i or j is

3, we include vertices of distance at least 3 in blue instead of exactly 3. Let

Ai,∗ = Ai,1 ∪Ai,2 ∪Ai,3 and A∗,j = A1,j ∪A2,j ∪A3,j .

Next, we eliminate three of these nine sets.

Property 4.3. A2,3 ∪A3,2 ∪A3,3 = ∅.

Proof. First, suppose A3,2 ∪ A3,3 	= ∅ and let y ∈ A3,2 ∪ A3,3. Consider the

red star at x and the red star at y. The red star at x covers A2,∗ ∪A3,∗, and
the red star at y covers {x′} ∪ (A1,∗ \ {y′}). If y′ /∈ A1,∗, then this gives the

desired cover with diameter at most 2.
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If y′ ∈ A1,1, then consider the red and blue stars at x′. Notice that the
only red neighbors of x′ which do not also send a red edge to x are A1,2∪A1,3.
However, all those vertices are red neighbors of y, so we can add x to the
red star at x′ while maintaining diameter 2. Thus we have the desired cover.

If y′ ∈ A1,2∪A1,3, then consider the red and blue stars at y′. Notice that
the only vertex not covered by these two subgraphs is y. We will add y to
the red subgraph by also adding x. As long as either A3,∗ \{y} 	= ∅ or y′ has
a red neighbor in A2,∗, this new red subgraph has diameter 2, and we have
the desired cover. Otherwise, y is the only vertex in A3,∗ and every vertex
in A2,∗ sends a blue edge to y′. Hence the red star at y and the blue star at
y′ give the desired cover.

Finally, we can switch the roles of x and x′ in the above argument to
show that if A2,3 	= ∅, we get the desired cover.

The previous two properties imply that the following sets must be non-
empty.

Corollary 4.4. A1,1 	= ∅, A2,2 	= ∅, A1,2 ∪A1,3 	= ∅, and A2,1 ∪A3,1 	= ∅.

Note that by our choice of x and Property 4.3, we have more specifically
that A3,1 	= ∅

Now we give the location of the clones of vertices in A1,3 and A3,1.

Property 4.5. For any y ∈ A1,3, y
′ ∈ A2,1. Similarly, for any z ∈ A3,1,

z′ ∈ A1,2.

Proof. Fix y ∈ A1,3. First, we will show that y′ ∈ A2,1 ∪ A3,1. Consider the
blue star at x along with the red C5 blow up formed by x, A2,2, x

′, y, and
(A2,1 ∪A3,1) \ {y′}. Note that A2,2 	= ∅ and A2,1 ∪A3,1 	= ∅ by Corollary 4.4.
Thus if y′ /∈ A2,1∪A3,1, those two monochromatic subgraphs form the desired
cover.

Now suppose y′ ∈ A3,1. Consider the red star at y′ along with the red
C5 blow up formed by x, A2,2, x

′, y, and (A2,1 ∪A3,1) \ {y′}. This gives the
desired cover unless (A2,1 ∪A3,1) \ {y′} = ∅, in which case we replace the C5

blow up with the red star at x′. Thus we have the desired cover.
Therefore y′ ∈ A2,1. The second half of the property can be proven by

switching the roles of x and x′ in the above argument.

5. Concluding results

In this paper we were able to determine the diameter cover number exactly
for complete tripartite graphs, and for some classes of complete multipar-
tite graphs, whenever two colors are used and two subgraphs are allowed. It
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would however be interesting to have a more thorough idea of the diameter
cover number for other complete multipartite graphs. One of the most tangi-
ble questions in this regard would be work towards Conjecture 1.7, restated
here:

Problem 4.1. Determine the value of D2
2(Kk(2)), where Kk(2) is the com-

plete k-partite graph in which each part is size 2.

Section 4 covers some results we were able to show regarding the previous
problem. Knowing this border case could also possibly help determine the
diameter cover number for other complete multipartite graphs. In the other
direction, one could also ask about complete bipartite graphs instead.

Problem 5.1. Determine the value of D2
2(Ka,b).

It has been shown that D2
2(Ka,b) ≤ 4 in [3], however this is not known

to be sharp, and one could work towards providing a complete classification
as we did for complete tripartite graphs.

One could also explore this question while allowing for more subgraphs.
As mentioned in the introduction, Dt

2(G) ≤ 2 for t ≥ 4. Thus we could
achieve a complete classification for t ≥ 4 by solving the following problem.

Problem 5.2. Determine when Dt
2(G) = 1 for complete multipartite graphs

G and t ≥ 4.

The behavior of D3
2(G) is less clear.

Problem 5.3. Determine the value of D3
2(G) for complete multipartite

graphs G.
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[4] Z. Füredi and A. Gyárfás. Covering t-element sets by partitions. Euro-
pean J. Combin., 12(6):483–489, 1991. MR1136390
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