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Metric dimension of growing infinite graphs

Csaba Biró, Beth Novick, and Daniela Olejnikova

We investigate how the metric dimension of infinite graphs change
when we add edges to the graph. Our two main results: (1) there ex-
ists a growing sequence of graphs (under the subgraph relation, but
without adding vertices) for which the metric dimension changes
between finite and infinite infinitely many times; (2) finite changes
in the edge set can not change the metric dimension from finite to
infinite or vice versa.
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1. Introduction

In this paper we consider connected graphs, both finite and infinite. For a
graph G and u, v ∈ V (G), we define the distance between u and v, denoted
d(u, v), to be the number of edges in a shortest u–v path. A vertex w ∈ V (G)
resolves u and v if d(u,w) �= d(v, w). If W = (w1, . . . , wk) is an ordered set
of vertices in V (G), we define the metric representation or metric code of v
with respect to W to be

r(v|W ) = (d(v, w1), . . . , d(v, wk)).

A set W is a resolving set, if all vertices in V (G) have distinct metric repre-
sentations with respect to W . The minimum cardinality of a resolving set is
the metric dimension of G, denoted β(G). Note that the metric dimension
is a nonnegative integer for finite graphs, but may be infinite for infinite
graphs.

The concept of metric representation was introduced by Slater [15] in
1975 in the context of a location problem: The location of an intruder is
modeled by its metric representation, which Slater called its locating set.
The minimum number of sensors to uniquely determine the location of the
intruder in the network is then the metric dimension, which Slater termed
the location number. Harary and Melter [10] independently introduced met-
ric dimension in 1976. Many applications of this concept, including robot
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navigation [11], sonar [15], chemistry [6], network discovery [2], and find-
ing person zero at the beginning of an epidemic [12], have helped motivate
extensive research. See [8] for an early survey.

The problem of determining β(G) is, in general, NP-hard [11]. Much is
known for specific graphs. For example, the only finite graphs with metric
dimension equal to 1 are paths [6], and this generalizes to infinite rays [5].
Efficient methods for finding the metric dimension of a tree were described
independently by various authors [6, 10, 11, 15]. Cáceres et al. [5] studied
the metric dimension of the Cartesian product of graphs.

Several variations of metric dimension have been studied. Motivated by
the observation that non-isomorphic graphs on a fixed vertex set can have
identical metric codes for each vertex, Sebő and Tannier [14] introduced
strong metric dimension: a vertex w strongly resolves u and v if some short-
est u-w path contains v, or if some shortest v-w path contains u. Sensors
measuring truncated metric dimension [1, 16] detect only relatively ‘close’
objects. Mol, Murphy and Oellermann [13] considered the question of how
much the metric dimension of a graph can be reduced by adding edges,
defining the threshold dimension of a graph G to be the minimum of β(H)
over all graphs H on V (G) for which G is a subgraph. The analogous con-
cept for strong metric dimension is introduced by Benakli et al. [3]. Metric
dimension of random graphs was studied by Bollobás, Mische, and Pra�lat
[4].

The following theorem was proved by Chartrand, Poisson, and Zhang
[7] for finite graphs, and by Cáceres et al. [5] for infinite graphs.

Theorem 1.1. If β(G) = k, then G has maximum degree at most 3k − 1.

Recall that a graph G is locally finite, if every vertex in G has finite
degree. Later in the paper we will use the following important corollary of
Theorem 1.1.

Corollary 1.2. If β(G) < ∞, then G is locally finite.

The issue of how metric dimension changes with the addition of edges is
an intriguing one. Some graph parameters, such as chromatic number and
clique number are non-decreasing. Others, such as independence number,
diameter, and matching number are non-increasing. The invariant β(G),
on the other hand can increase, decrease, or remain the same as edges are
added. In 2015, Eroh et al. [9] assert that the addition of one edge to a finite
graph can raise the metric dimension by an arbitrary amount, specifically
it can be raised by approximately order n, where n = |V (G)|. In the same
paper, these authors show that the removal of a single edge can increase the
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metric dimension by at most 2. Later, in 2021, Mashkaria et al. [12] give a
class of examples showing that in fact the metric dimension of a finite graph
can increase by an exponential amount upon the addition of an edge.

We say that a graph parameter is stable if there is a universal positive
integer k such that the addition (or removal) of a single edge in an arbitrary
graph changes the parameter by at most k. Otherwise that parameter is
unstable. In this setting we see that the results mentioned above [9, 12]
establish that metric dimension for finite graphs is unstable.

Our focus in this paper is to study the behavior of infinite graphs as
edges are added. In Section 2 we show that with the right choice of se-
quences of edge sets added, the metric dimension will change from finite, to
infinite, and back, an infinite number of times. In Section 3 we show that
this behavior is only possible if each set in the sequence is infinite – said
differently, adding (or deleting) a finite number of edges cannot change the
metric dimension from finite to infinite or vice versa. Next we note that our
result in Section 3 is non-trivial because for infinite graphs, as well, metric
dimension is unstable; furthermore, we propose a new question and prove a
partial result.

2. Growing sequence with infinitely many changes

Throughout this paper, we use N to denote the set of nonnegative integers.

2.1. Definition of the graph sequence

Let V = {vij : i ∈ N, j ∈ {0, 1}}. We will define the edge sets E0, E
′
0, E1, E

′
1 . . .

such that

E0 ⊆ E′
0 ⊆ E1 ⊆ E′

1 ⊆ · · ·

and the corresponding growing sequences of graphs Gi = (V,Ei), and G′
i =

(V,E′
i) for i ∈ N.

The definition of the edge sets is as follows.

Ei = {(vab, vcd) : |a− c| ≤ i}
E′

i = Ei ∪ {(vab, vcd) : |a− c| = i+ 1, and b �= d}

The graph G0 is the infinite matching and it is disconnected. The graph
G′

0 is the so-called ladder, and β(G′
0) = 2. See Figure 1 for G1, G

′
1, and G2.

Theorem 2.1. For all i ≥ 1,



162 Csaba Biró et al.

· · · · · ·

· · ·

Figure 1: The graphs G1, G
′
1, and G2.

a) β(Gi) = ∞
b) β(G′

i) ≤ 2i+ 1

Proof. Let i ≥ 1 and suppose that β(Gi) < ∞. Let W be a finite resolving
set. Let k = max{a : vab ∈ W}+1. Then vk,0 and vk,1 are not distinguished
by W . Indeed, if vab ∈ W , then d(vab, vk,0) = d(vab, vk,1) =

⌈
k−a
i

⌉
. So W is

not a resolving set, a contradiction.
To see the second part, let W = {vab : a + b ≤ i}, and fix the ordering

on W as (v0,0, v1,0, . . . , vi,0, v0,1, v1,1, . . . , vi−1,1). Then |W | = 2i+1. We will
show that W is a resolving set of G′

i.
To see this, we introduce two functions αi(k) and βi(k) to measure the

distance of vertices in G′
i. Let

αi(k) = d(vab, vcd) if |a− c| = k and b = d

βi(k) = d(vab, vcd) if |a− c| = k and b �= d.

For example, the sequence {α2(k)}∞k=0 starts with 0, 1, 1, 2, 2, 2, 2, 3, 3, 4,
4, 4, 4, 5,. . . , and {β2(k)}∞k=0 starts with 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5,
5,. . .

In general,

αi(k) =

⎧⎨
⎩
⌈

k
i+1

⌉
+ 1 if k

i+1 is an odd integer⌈
k

i+1

⌉
otherwise,

βi(k) =

⎧⎨
⎩
⌈

k
i+1

⌉
+ 1 if k

i+1 is an even integer⌈
k

i+1

⌉
otherwise.

Lemma 2.2. For all k ∈ N, αi(k) ≤ αi(k + 1), βi(k) ≤ βi(k + 1). Less
obviously αi(k) ≤ βi(k + 1) and βi(k) ≤ αi(k + 1).
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Proof. When k/(i+1) is not an integer, the assertions are clear. If k/(i+1)
is an odd integer, then αi(k) = 	k/(i+1)
+1 = 	(k+1)/(i+1)
 = βi(k+1);
the other assertions are trivial. The case when k/(i + 1) is an even integer
is similar.

Lemma 2.3. For all k ∈ N, we have αi(k+j) �= βi(k+j) for some 0 ≤ j ≤ i.

Proof. Let 0 ≤ j ≤ i be such that (k+ j)/(i+1) is an integer. Then it is an
even integer or an odd integer. Either way

αi

(
k + j

i+ 1

)
�= βi

(
k + j

i+ 1

)
.

Lemma 2.4. If αi(k) = αi(k + 1) = · · · = αi(k + i + 1), then βi(k + i) <
βi(k+ i+1). Symmetrically, if βi(k) = βi(k+1) = · · · = βi(k+ i+1), then
αi(k + i) < αi(k + i+ 1).

Proof. We will show the first assertion; the proof of the second one is similar.
Suppose αi(k) = · · · = αi(k+ i+1). If (k+ j)/(i+1) is an integer for some
1 ≤ j ≤ i, then either αi(k+ j− 1) < αi(k+ j), or αi(k+ j) < αi(k+ j+1),
depending on the parity of (k + j)/(i + 1). Either way, it would contradict
the condition. Otherwise, k/(i+1) and (k+ i+1)/(i+1) are both integers.
Since αi(k) = αi(k + i+ 1), we must have that k/(i+ 1) is an odd integer,
so (k+ i+1)/(i+1) is an even integer, and (k+ i)/(i+1) is not an integer.
Hence

βi(k + i) =

⌈
k + i

i+ 1

⌉
=

⌈
k + i+ 1

i+ 1

⌉
<

⌈
k + i+ 1

i+ 1

⌉
+ 1 = βi(k + i+ 1).

Lemma 2.5. For all k ∈ N, we have αi(k) < βi(k + i + 1) and βi(k) <
αi(k + i+ 1).

Proof. For the first assertion, suppose αi(k) = βi(k + i+ 1). Then

⌈
k

i+ 1

⌉
+ y =

⌈
k + i+ 1

i+ 1

⌉
+ z,

where y, z ∈ {0, 1} with y = 1 iff k/(i + 1) is an odd integer, and z = 1 iff

(k + i + 1)/(i + 1) is an even integer. Since
⌈

k
i+1

⌉
+ 1 =

⌈
k+i+1
i+1

⌉
, we have

y = 1, and z = 0. So k/(i+1) is an odd integer. But then (k+ i+1)/(i+1)
is an even integer, contradicting z = 0.

The other assertion is similar.
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We are ready to finish the proof of β(G′
i) ≤ 2i+1 by showing that W is

a resolving set. To see this, let vab, vcd ∈ V ; we will show that the distance

vectors of vab and vcd are distinct. Without loss of generality, assume c ≥ a.

If c > a, then, by Lemma 2.2,

r(vab|W ) ≤ r(va+1,b|W ) ≤ r(vcd|W )

So if r(vab|W ) = r(vcd|W ), then r(vab|W ) = r(va+1,b|W ).

This shows that we may assume a ≤ c ≤ a + 1. Up to symmetry, there

are three different cases.

Case 1: c = a, b = 0, d = 1

The distance vectors are

(αi(a) αi(a− 1) . . . αi(a− i) βi(a) βi(a− 1) . . . βi(a− i+ 1))
(βi(a) βi(a− 1) . . . βi(a− i) αi(a) αi(a− 1) . . . αi(a− i+ 1))

Due to Lemma 2.3, there is a distinct coordinate somewhere among the first

i+ 1.

Case 2: c = a+ 1, b = d

We may assume b = d = 0. The case b = d = 1 is symmetric by swapping

αi and βi in the argument.

The distance vectors are

(αi(a) αi(a− 1) . . . αi(a− i) βi(a) βi(a− 1) . . . βi(a− i+ 1))
(αi(a+ 1) αi(a) . . . αi(a− i+ 1) βi(a+ 1) βi(a) . . . βi(a− i+ 2))

If the two metric codes are equal, then αi(a − i) = αi(a − i + 1) = · · · =
αi(a+ 1), so by Lemma 2.4, we conclude βi(a) < βi(a+ 1), a contradiction.

Case 3: c = a+ 1, b �= d

Again, by the symmetry of αi and βi, we may assume that b = 0 and

d = 1.

The distance vectors are

(αi(a) αi(a− 1) . . . αi(a− i) βi(a) βi(a− 1) . . . βi(a− i+ 1))
(βi(a+ 1) βi(a) . . . βi(a− i+ 1) αi(a+ 1) αi(a) . . . αi(a− i+ 2))

Suppose the metric codes are equal. If i is even, then αi(a−i) = βi(a−i+1) =

αi(a − i + 2) = βi(a − i + 3) = · · · = αi(a) = βi(a + 1), which contradicts

Lemma 2.5. If i is odd, then αi(a− i) = βi(a− i+1) = αi(a− i+2) = βi(a−
i+3) = · · · = αi(a−1) = βi(a) = αi(a+1). So αi(a− i) = αi(a) = αi(a+1).

But also, αi(a) = βi(a + 1), so αi(a − i) = βi(a + 1), again, contradicting

Lemma 2.5.
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3. Finite changes in the edge set

In Section 2 we have shown that it is possible to change between finite and
infinite metric dimension infinitely many times with the addition of edges.

Notice, that in the example we provided, an infinite number of edges were
added in every step. It is natural to ask if the same can be achieved with

the addition of a finite number of edges.

The following two theorems and their corollary answer this question in
the negative.

Theorem 3.1. Let G be a graph, and let G′ be a graph constructed from G
by adding an edge between vertices u and v. Let W be a resolving set of G,

and let

W ′ = W ∪
⋃

w∈W
{x ∈ V (G) : dG(w, x) ∈ I(dG(w, u), dG(w, v))},

where I(a, b) represents the closed interval of integers between the integers
a and b, regardless of which one is greater.

Then W ′ is a resolving set of G′.

Theorem 3.2. Let G be a graph, and let G′ be a graph constructed from G
by removing an edge between vertices u and v. Let W be a resolving set of

G, and let

W ′ = W ∪ {u, v}

Then W ′ is a resolving set of G′.

We note that Eroh et al. [9] proved a result similar to Theorem 3.2 in
the context of finite graphs. Their proof method is not much different from

ours. Furthermore, we note that their proof works in the infinite case as well.

Corollary 3.3. Let G be a graph and let G′ be constructed from G by chang-

ing (adding or removing) finitely many edges. Then the metric dimension of
G is finite if and only if the metric dimension of G′ is finite.

Proof. Suppose β(G) < ∞, and let W be a finite resolving set. We can form

a finite sequence of addition and removal of edges to construct G′. In each
step, apply Theorem 3.1 or Theorem 3.2 to construct a new resolving set.

Notice that the set we add in each step is finite. In Theorem 3.2 this is

obvious; in Theorem 3.1 it follows from the fact that, by Corollary 1.2, G is
locally finite.
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Now suppose that β(G) = ∞. Suppose for a contradiction that a finite
sequence of changes turns G into G′, and β(G′) < ∞. Then one can re-
verse the changes to construct G from G′, contradicting the first part of the
theorem.

Proof of Theorem 3.1

Let G be a graph with a resolving set W . Let u, v ∈ V (G), u �∼ v, and let
G′ = G+ uv. Let W ′ be the set defined in the statement of the theorem. If
W is a resolving set of G′, then W ′ is also a resolving set of G′. So for the
balance, we assume that W is not a resolving set of G′.

Hence there are two vertices x, y ∈ V (G′) that are not resolved by W in
G′. However, they are resolved by W in G, so there is a w ∈ W such that
dG(w, x) �= dG(w, y), but dG′(w, x) = dG′(w, y).

For brevity of notation, we will write d(a, b) = dG(a, b) for distances
in G, and d′(a, b) = dG′(a, b) for distances in G′. Furthermore we write
d(a) = d(w, a), and d′(a) = d′(w, a). To reiterate previous statements with
the new notations, without loss of generality

d(x) < d(y) and d′(x) = d′(y).

An important simple observation that we will repeatedly use is that
distances in G′ are never longer than distances in G, so for all a, b, d′(a, b) ≤
d(a, b), and d′(a) ≤ d(a).

For the argument below, the key is the following lemma. Recall that a
geodesic between two vertices is a shortest path between them.

Lemma 3.4. Let G, G′, u, v, x, y, w as before. Let P be a geodesic from
w to x in G, and let w′ ∈ V (P ). If there exists a geodesic from w′ to y in
G′ that does not contain the edge uv, then w′ resolves x and y in G′. (See
Figure 2.)

Proof. Suppose that w′ does not resolve x and y in G′, that is d′(w′, x) =
d′(w′, y). Since there is a geodesic from w′ to y in G′ that does not contain
the edge uv, we have d′(w′, y) = d(w′, y). Then

d(y) ≤ d(w′)+d(w′, y) = d(w′)+d′(w′, y) = d(w′)+d′(w′, x) ≤ d(w′)+d(w′, x)

Recall that w′ is on the geodesic P , so d(w′)+ d(w′, x) = d(x). We conclude
that d(y) ≤ d(x), a contradiction.

Now we proceed with the proof of the theorem. We distinguish two cases.
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w

w′

P

x

y

�� uv

Figure 2: w′ resolves x and y in W ′.

w

w′

P

u

R′

v

x

y

Q′

Figure 3: Addition of edge, Case 1.

Case 1: d(x) = d′(x) (Figure 3) In this case we necessarily have d′(y) <
d(y). In other words, a geodesic R′ from w to y in G′ contains the edge uv;

without loss of generality u is the vertex closer to w on R′. On the other

hand, there is a geodesic P from w to x that does not contain uv.

If d(v) > d(x), then note that d(x) must be in the interval of integers

[d(u), d(v)]. Indeed, d(u) < d(x), because d′(x) = d′(y). Hence x ∈ W ′, and
x trivially resolves x and y.

So we may assume d(v) ≤ d(x). Let w′ ∈ V (P ) be the unique vertex for

which d(w′) = d(v). If d′(w′, x) �= d′(w′, y), then w′ resolves x and y in G′,
so we are done. Otherwise we will argue that a geodesic Q′ from w′ to y in

G′ can not contain uv, and we get a contradiction by Lemma 3.4.

Indeed, if � = d′(w′, x) = d′(w′, y), then we will prove that v �∈ V (Q′).
For otherwise, d′(v, y) ≤ �, and since v is the vertex on the geodesic R′ that
is closer to y, d(v, y) = d′(v, y) ≤ �. Then

d(y) ≤ d(v) + d(v, y) ≤ d(w′) + � = d(x),
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w

w′

P

u v

x

y

P ′

R′

Figure 4: Addition of edge, Case 2.

a contradiction.

Case 2: d′(x) < d(x) and d′(y) < d(y) (Figure 4) This time, there

exist geodesics P ′ from w to x and R′ from w to y in G′, both of which

contain uv. Without loss of generality, let u be the vertex on P ′ closer

to w. Consequently, u is the vertex on R′ closer to w as well. Note that

d′(x) = d′(y) implies d(v, x) = d(v, y). Call this distance �. Now there is a

geodesic P from w to x in G that is longer than P ′.
If d(v) > d(x), then again d(x) ∈ [d(u), d(v)]. This time d(u) < d(x),

because d′(x) ≤ d(x). Hence, again, x ∈ W ′, and x resolves x and y.

So we may assume d(v) ≤ d(x). Let w′ be the unique vertex on P for

which d(w′) = d(v). Again, we will show that w′ resolves x and y in G′.
Similarly as before, the strategy of the proof is that if we assume it does

not, then we can show that v is not on any geodesic from w′ to y in G′, and
Lemma 3.4 finishes the proof.

As we assume that w′ does not resolve x and y in G′, we have d′(w′, x) =
d′(w′, y). As w′ is on the geodesic P ,

d(w′, x) = d(x)− d(w′) < d(y)− d(v) ≤ d(v, y) = �.

A quick observation is that d′(w′, x) = d(w′, x) for otherwise there is a

path from w′ to x in G′ through uv that is shorter than d(w′, x). However,

d(w′, x) < �, and d(v, x) = �.

So now we have seen that d′(w′, y) = d′(w′, x) < �, but d′(v, y) =

d(v, y) = �. This shows that a geodesic from w′ to y in G′ can not con-

tain v, as we intended.
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w a
Q

u

vP

x

y

R

Figure 5: Removal of edge, Case 1.

Proof of Theorem 3.2

Let G be a graph with a resolving set W . Let u, v ∈ V (G), u ∼ v, and let
G′ = G−uv. Let W ′ be the set defined in the statement of the theorem. As
before, we assume that W is not a resolving set of G′, for otherwise we are
done.

Again, there are two vertices x, y ∈ V (G′) that are not resolved by W
in G′, but resolved in G, so there is a w ∈ W such that (without loss of
generality)

d(x) < d(y) and d′(x) = d′(y).

This time, distances in G′ are never shorter than distances in G, so for
all a, b, d(a, b) ≤ d′(a, b), and d(a) ≤ d′(a).

Consider geodesics from w to x and from w to y in G. Let the last
common vertex on them be a, and let the portion of these geodesics from a
to x be called P , the portion from a to y be called R, and let the portion
from w to a be called Q. The edge uv is on one of these paths and it can
not be on R. So again, we distinguish two cases.

Case 1: uv is on P (Figure 5) Without loss of generality, v is the vertex
farther from w. We claim v resolves x and y in G′. Suppose not. Then

d(v, x) = d′(v, x) = d′(v, y) ≥ d(v, y),

so

d(x) = d(v) + d(v, x) ≥ d(v) + d(v, y) ≥ d(y),

a contradiction.
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w u

Q
v a

x

P

y

R

Figure 6: Removal of edge, Case 2.

Case 2: uv is on Q (Figure 6) Without loss of generality, v is the vertex
farther from w. We claim v resolves x and y in G′. Suppose not. Then

d(x) = d(v)+d(v, x) = d(v)+d′(v, x) = d(v)+d′(v, y) = d(v)+d(v, y) = d(y),

a contradiction.

4. Single edge change

In Section 3 we have shown that changing finitely many edges can not turn
the metric dimension from finite to infinite or vice versa. We have shown
this by proving that a single edge change can not turn the metric dimension
from finite to infinite or vice versa.

It is natural to ask, what a change of a single edge can do in terms of
metric dimension. In particular, is there a bound on the change in the metric
dimension after we change a single edge?

It is clear from Theorem 3.2 that removal of an edge can not increase
the metric dimension by more than 2. So in this section we focus on addition
of an edge.

This question is particularly important, because if there is a bound (say,
addition of a single edge can not change the metric dimension by more than
k), then it would render our result from Section 3 trivial.

Of course this question is meaningful for both finite and infinite graphs.
However, as we will see later, as long as there is no bound for finite graphs,
we can show that there is no bound for infinite graphs. So in the next part
of the section, we deal with finite graphs, and we return to the infinite case
at the end of the section.

In [9], the authors state the following theorem.
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Theorem 4.1. There exists a graph G and a non-edge e in G such that
β(G+ e)− β(G) can be arbitrarily large.

While the idea in their paper seems correct, the short proof (which is an
example graph G) is not correct.

This issue seems to have been unnoticed. Mashkaria, Ódor, and Thi-
ran [12] cite the paper [9], and claim an improved example, which increases
the metric dimension exponentially. More precisely, they prove the following
theorem.

Theorem 4.2. For all k ≥ 3 there exists a graph G and a non-edge e in G
such that β(G) ≤ k and β(G+ e) ≥ 2k−1 − 2.

Since they provide a correct proof, this already ensures that our The-
orems 3.1 and 3.2 and Corollary 3.3 are meaningful. However, this result
raises another interesting question.

Question 4.3. Is there a function f(d) such that β(G + e) ≤ f(β(G)) for
all G and e �∈ E(G)? If there is one, what is the smallest such function?
More precisely, determine

ι(d) = max{β(G+ e) : β(G) = d, e �∈ E(G)}.

We know ι(1) = 2, but all the other values (or indeed their existence)
are unknown. Theorem 4.2 shows that ι(d) = Ω(2d).

We first present an example (without proof) of a relatively simple graph
for which adding an edge roughly doubles the metric dimension. This exam-
ple simplifies and corrects ideas from [9]. See Figure 7.

Next, we add our contribution to Question 4.3. The following theorem
is a strengthening of Theorem 4.2.

Theorem 4.4. For all k ≥ 4 there exist a graph G and e �∈ E(G) such that
β(G) ≤ k, but β(G+ e) ≥ (k + 1)2k−2 − 1. Hence ι(d) = Ω(d2d).

Before we can get to the proof we propose a related problem in enumer-
ative combinatorics.

Let Tn be the set of ternary strings of length n, consisting of digits 0,
1, and 2. For x ∈ Tn, let x(i) denote the ith digit of x. We say two distinct
elements x, y ∈ Tn conflict, if there exists an i with x(i) = y(i) = 2, and for
all j for which x(j) �= y(j), we have {x(j), y(j)} = {0, 2}.

We call a subset S ⊆ Tn conflict-free, if no two elements in S conflict.
Let tn be the size of a largest conflict-free subset of Tn.

Observation 4.5. tn ≥ 2n + n2n−1
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a1

a2

a3

a4

a5

· · ·

Figure 7: The filled vertices form a resolving set of the graph without the
dashed edge. Once the dashed edge is added, the vertices on the right (a1
to a5) are not resolved. The metric dimension roughly doubles with the
addition of the edge.

Proof. The set of strings that contain at most one 2 is clearly conflict-free.

We note that one can prove that tn = 2n+n2n−1, but the proof is more
complicated, and we only need the easy lower bound.

Proof of Theorem 4.4. Let d = k−1. We will define a graph G and e �∈ E(G)
such that β(G) ≤ d+ 1, but β(G+ e) ≥ td − 1 ≥ (d+ 2)2d−1 − 1.

Let G be defined as follows. Start with td disjoint copies of P4 (path with
4 edges) with endpoints ai and bi (i = 1, . . . , td). We will call these paths
“pages”. Add a vertex w0 and join it to each ai. Add vertices w1, . . . , wd

that will be connected to various bi’s via paths of length 1 or 2, as described
below. The vertices w1, . . . , wd will be called “digits”.

Reindex the elements b1, . . . btd with a set of conflict-free elements of Td.
So the new index of bi is a ternary string x. Connect bi to wj via a path
of length x(j), if x(j) > 0. (If x(j) = 0, no connection is made.) These
connecting paths will be called “ramps”.

Finally, add a vertex c and connect it to each of w1, . . . , wd. See Figure 8.
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w0

a1 a2 atd

00

b1

01

b2

02 10 11 12 20 21

w1 w2

c

Figure 8: The filled vertices form a resolving set of the graph without the
dashed edge. Once the dashed edge is added, every page needs a resolving
vertex, except maybe one.

We claim that {w0, . . . , wd} is a resolving set of G.

First we show that if v ∈ V (G) is on one of the pages, its distance vector

is unique. The position of v on a page (and whether it is on a page) is

determined by its distance from w0. The page index is then determined by

the digits.

Since c is of distance 1 from each digit, we just have to show that it is

distinguished from each vertex of the same property. There is (at most) one

other vertex with this property: it is the bi whose new index is 11 . . . 1. They

are distinguished by their distance from w0.

The only vertices remaining are the midpoints of the ramps. They are

distinguished from the rest of the vertices by the fact that they are all of

distance 6 from w0, and the only other vertices of distance 6 from w0 are

the digits.

However, we need to be careful here. The danger is that two of these

vertices have the same distance vector. To understand why this can’t happen,
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let us study their distance vectors. For j = 0, . . . , d, we will refer to the
distance from wj as the jth coordinate of the distance vector.

Let v be a midpoint of a ramp that connects wi to a vertex indexed with
the ternary string x. By definition, x(i) = 2. For j ≥ 1, the jth coordinate
of the distance vector is

⎧⎪⎨
⎪⎩
1 if j = i;

2 if j �= i and x(j) = 1;

3 if j �= i and x(j) ∈ {0, 2}.

Let u, v be two midpoints of ramps, and suppose they have the same
distance vectors. Suppose u is on a ramp of wi and v is on a ramp of wk. Then
the ith coordinate of the distance vector of u is 1, while the ith coordinate
of the distance vector of v is 1 only if i = k. So we have shown that u and
v are both on a ramp of wi.

Now suppose the other ends of the ramps are indexed with ternary
strings x and y. From the fact that the distance vectors of u and v are
identical, it follows that wherever x and y differ, one of them has a 0, and
the other has a 2. Together with the fact that x(i) = y(i) = 2, this shows
that x and y conflict, which is a contradiction.

It remains to be shown that adding an edge to G raises the metric
dimension to at least td − 1. Indeed, if we add the edge cw0, the vertices ai
can not be distinguished by any of the vertices that are not on the pages.
Furthermore, if there are two pages i, j with no resolving vertex on either
one, then ai and aj can not be distinguished. So we need a vertex in the
resolving set from each page, except perhaps one. That shows β(G + e) ≥
td − 1.

As mentioned above, one can prove that td = 2d + d2d−1. So these
techniques can not be used to further improve the theorem.

Finally, as promised, we return to the discussion of infinite graphs.

Corollary 4.6. For all k ∈ N, there exists an infinite graph H, and nonad-
jacent vertices u, v of H such that β(H + uv)− β(H) > k.

Proof. We begin by proving a lemma that relates the metric dimension of
finite graphs with the metric dimension of certain infinite graphs constructed
from them.

Lemma 4.7. Let G be a finite graph on the vertex set V = {v1, . . . , vn}. Let
H be the countably infinite graph constructed from G by adding the vertex
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set U = {u1, u2, . . .}, and edges v1u1, u1u2, u2u3, . . . . Then

β(G) ≤ β(H) ≤ β(G) + 2

Proof. Let W be a smallest resolving set of G. We claim that W ∪ {v1, u1}
is a resolving set of H. To see this, let x, y ∈ V (H). If both x, y ∈ V ,
then already W resolves them. If both are in U , then v1 resolves them. If
x ∈ V , and y ∈ U , then d(x, v1) < d(x, u1), and d(y, v1) > d(y, u1) so the
set {v1, u1} resolves them. This shows β(H) ≤ β(G) + 2.

Now let W be a smallest resolving set of H. If W ∩ V is a resolving set
of G, then β(G) ≤ β(H), and we are done.

Now suppose W ∩V is not a resolving set of G. We claim (W ∩V )∪{v1}
is a resolving set of G. To see this, let x, y ∈ V = V (G). Since W ∩ V
does not resolve them, it means W includes some vertices of U . However,
d(x, ui) = d(x, v1) + i, and the same holds for y. So if d(x, ui) �= d(y, ui),
then d(x, v1) �= d(y, v1), and therefore x and y are resolved by v1. Since
|(W ∩ V ) ∪ {v1}| ≤ W , we conclude β(G) ≤ β(H).

Now we are ready to prove Corollary 4.6. Let k be a positive integer. By
Theorem 4.4 there exists a graph G and e = uv, a non-edge of G, such that
β(G + uv) − β(G) > k + 2. Construct H from G as in Lemma 4.7. By the
lemma, and the assumption on uv,

β(H + uv)− β(H) > k.

References
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