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Absolutely avoidable order-size pairs in hypergraphs

Lea Weber
∗

For a fixed integer r ≥ 2, we call a pair (m, f) of integers, m ≥ 1,
0 ≤ f ≤

(
m
r

)
, absolutely avoidable if there is n0, such that for any

pair of integers (n, e) with n > n0 and 0 ≤ e ≤
(
n
r

)
there is an

r-uniform hypergraph on n vertices and e edges that contains no
induced sub-hypergraph on m vertices and f edges. Some pairs
are clearly not absolutely avoidable, for example (m, 0) is not ab-
solutely avoidable since any sufficiently sparse hypergraph on at
least m vertices contains independent sets on m vertices. Here we
show that for any r ≥ 3 and m ≥ m0, either the pair (m,

⌊(
m
r

)
/2
⌋
)

or the pair (m,
⌊(

m
r

)
/2
⌋
−m− 1) is absolutely avoidable.

Next, following the definition of Erdős, Füredi, Rothschild and
Sós, we define the density of a pair (m, f) as

σr(m, f) = lim sup
n→∞

|{e : (n, e) → (m, f)}|(
m
r

) ,

where (n, e) → (m, f) if any n-vertex r-graph with e egdes contains
an induced m-vertex subgraph with f edges. We show that for
r ≥ 3 most pairs (m, f) satisfy σr(m, f) = 0, and that for m > r,
there exists no pair (m, f) of density 1.

1. Introduction

One of the central topics of graph theory deals with properties of classes
of graphs that contain no subgraph isomorphic to some given fixed graph,
see for example Bollobás [8]. Similarly, graphs with forbidden induced sub-
graphs have been investigated from several different angles – enumerative,
structural, algorithmic, and more.

Erdős, Füredi, Rothschild and Sós [12] initiated a study of a class of
graphs that do not forbid a specific induced subgraph, but rather forbid any
induced subgraph on a given number m of vertices and number f of edges.
Following their notation we say an r-uniform hypergraph (also referred to
as an r-graph) G arrows a pair of non-negative integers (m, f) and write
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G →r (m, f) if G has an induced sub-hypergraph on m vertices and f
hyperedges. We say that a pair (n, e) of non-negative integers arrows (or
simply induces) the pair (m, f), and write

(n, e) →r (m, f)

if for any r-graph G on n vertices and e hyperedges, G →r (m, f). We say
a pair (n, e) is realised by an r-graph G if G has n vertices and e edges.
If r is clear from the context, we might omit the index and simply write
(n, e) → (m, f).

As an example for r = 2, if tm−1(n) denotes the number of edges in
the balanced complete (m− 1)-partite graph on n vertices, then by Turán’s
theorem [20] we know that any graph on n vertices with more than tm−1(n)
edges contains Km, a complete subgraph on m vertices. Equivalently stated,
we have (n, e) → (m,

(
m
2

)
) if and only if e > tm−1(n).

Let r,m, f integers, m ≥ r ≥ 3 and 0 ≤ f ≤
(
m
r

)
. Following the notation

in [12, 13], we define

σr(m, f) = lim sup
n→∞

|{e : (n, e) → (m, f)}|(
n
r

) .

Erdős, Füredi, Rothschild and Sós [12] considered σ2(m, f) for different
choices of (m, f). One of their main results is the following theorem.

Theorem 1 (Erdős, Füredi, Rothschild and Sós [12]). If (m, f) ∈
{(2, 0), (2, 1), (4, 3), (5, 4), (5, 6)}, then σ2(m, f) = 1; otherwise, σ2(m, f) ≤
2
3 .

The upper bound 2
3 was subsequently improved by He et al. [13] to 1

2 . On
the other hand, they showed that there are infinitely many pairs for which
the equality σ(m, f) = 1

2 holds.
In [12], Erdős, Füredi, Rothschild and Sós also gave a construction that

shows that “most of the” σ2(m, f) are 0, by showing that for large n almost
all pairs (n, e) can be realised as the vertex disjoint union of a clique and a
high-girth graph, and that for fixed m most pairs (m, f) cannot be realised
as the vertex disjoint union of a clique and a forest. Axenovich and the
author [6] investigated the existence of so-called absolutely avoidable pairs
(m, f) for which we not only have σ2(m, f) = 0, but the stronger prop-
erty {e : (n, e) → (m, f)} = ∅ for large n. Here, we extend this notion to
hypergraphs:

Definition 1. A pair (m, f) is absolutely r-avoidable if there is n0 such
that for each n > n0 and for any e ∈ {0, . . . ,

(
n
r

)
}, (n, e) �→r (m, f).
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In [6] we showed that for r = 2 there are infinitely many absolutely avoid-
able pairs and amongst others constructed an infinite family of absolutely
avoidable pairs of the form (m,

(
m
2

)
/2) and showed that for any sufficiently

large m, there exists an f such that (m, f) is absolutely avoidable. Here, we
extend this result to higher uniformities:

Theorem 2. Let r ≥ 3. Then there exists m0 such that that for any m ≥ m0

either (m,
⌊(

m
r

)
/2
⌋
) or (m,

⌊(
m
r

)
/2
⌋
−m− 1) is absolutely avoidable.

In [12] it was further claimed that “almost all pairs” have σ2(m, f) = 0.
Here we prove the following:

Proposition 1. For r,m ∈ N, r,m ≥ 3, all but O
(
m

r

r−1

)
of all possible(

m
r

)
pairs (m, f) satisfy σr(m, f) = 0.

As seen in Theorem 1, for r = 2 there exist pairs with σ2(m, f) = 1.
This changes for r ≥ 3, as seen in Proposition 2 below, for which we need
some additional definitions and notation. An r-graph G is called l-partite
if the vertex set can be partitioned into l parts V (G) = V1 ∪ · · · ∪ Vl, such
that for any edge e ∈ E(G) and i ∈ [l] we have |e ∩ Vi| ≤ 1. By Tr(n, l)
we denote the complete l-partite r-graph with n vertices and part sizes
n1, . . . , nl ∈ {

⌊
n
l

⌋
,
⌈
n
l

⌉
}. Note that for l < r, Tr(l, n) is empty, and for r = 2

this is just the Turán graph. The number of edges in Tr(n, l) is denoted by
tr(n, l) and for l ≥ r we have

tr(n, l) =
∑

S∈([l]r )

∏
i∈S

ni =
(l)r
lr

(
n

r

)
+ o(nr),

where (l)r =
∏r−1

i=0 (l − i) = l(l − 1) · · · (l − r + 1). Note that for r ≥ 2,
(l)r
lr = (l−1)r

(l−1)r (1−
1
l )

r l
l−r , and by Bernoulli’s inequality we have (1−1

l )
r > 1− r

l ,

i.e. (l)r
lr > (l−1)r

(l−1)r , so
(l)r
lr is strictly increasing in l, and lim

l→∞
(l)r
lr = 1. Also note

that we have (r)r
rr = r!

rr ≤ 1
r .

Let lm,r be the largest l ∈ N for which tr(m, l) < 1
2

(
m
r

)
. Note that

this is well-defined by the previous observation, in particular, lm,r ≥ r. For

example, one can verify that for r = 3, we have lm,r =

⎧⎪⎨
⎪⎩
3, 4 ≤ m ≤ 11,

4, 12 ≤ m ≤ 72,

5, m ≥ 73.

Proposition 2. Let m > r ≥ 3, 0 ≤ f ≤
(
m
r

)
. Then σr(m, f) < 1.

In particular, we can give the following upper bounds on σr for any l ∈ N

satisfying l ≤ lm,r:
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(a) We have σr(m, f) ≤ 1− (l)r
lr .

(b) If tr(m, l) < f <
(
m
r

)
− tr(m, l) for some l, then σr(m, f) < 1− 2 (l)r

lr .

Note that He, Ma and Zhao [13] mentioned in their conclusion without
proof, that for pairs (m, f) with m > r ≥ 3, 0 ≤ f ≤

(
m
r

)
, the bound

σr(m, f) ≤ 1− r!
rr holds.

For some other results concerning sizes of induced subgraphs (of 2-
graphs), see for example Alon and Kostochka [2], Alon, Balogh, Kostochka,
and Samotij [1], Alon, Krivelevich, and Sudakov [3], Axenovich and Ba-
logh [4], Bukh and Sudakov [9], Kwan and Sudakov [14, 15] and Narayanan,
Sahasrabudhe, and Tomon [18]. A similar question on avoidable order-size
pairs was considered by Caro, Lauri, and Zarb [10] for the class of line
graphs.

In Section 2 of this paper we will build on one of the proof ideas used in
[6] for 2-graphs, and extend these methods to higher uniformities in order
to prove Theorem 2. In Section 3 we will make some observations on the
r-density σr and prove Proposition 1 and Proposition 2.

2. Existence of absolutely avoidable pairs

For a positive real number x, let [x] = {0, 1, . . . , 
x�}. We will call an r-graph
G m-sparse if every subset of m vertices in G induces at most m edges. We

denote the complete r-graph or clique on n vertices by K
(r)
n . We call an

r-graph with at most m edges an ≤m-edge (“at most m-edge”) r-graph.
In order to prove results in the 2-uniform case, the following fact is used

in [6, 12]:
Let m > 0 be given. Then for any v large enough there exists a graph of

girth at least m on v vertices with v1+
1

2m edges.
For a probabilistic proof of this fact see for example Bollobás [8] and for

an explicit construction see Lazebnik et al. [16].
The proof of the first lemma follows a standard probabilistic argument:

Lemma 1. Let m > 0, r ≥ 2 be given. Then for any n large enough there

exists an n-vertex r-graph with Ω(nr−1+ 1

m+1 ) edges which is m-sparse.

Proof. Let cm,f,r =
(
m
e

)m

f r!f
mre21/f . Consider a random r-graph G ∈ Gr(n, p),

for p < cm,r,fn
−m/f . Then the probability that some m-subset contains at

least f edges is less than

(
n

m

)((m
r

)
f

)
pf ≤

(ne
m

)m
(
mrep

r!f

)f

<
1

2
.
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Now let X be the number of edges in G. Using the computations above
and the standard bound

(
n
r

)
≥

(
n
r

)r
, we have

E[X] =

(
n

r

)
p ≥ cm,f,r

nr−m/f

rr
.

Using Chernoff’s bound for Bin(n, p) distributed random variables, we ob-
tain that for δ ∈ (0, 1) the probability that G has fewer than a (1−δ)-fraction
of the expected number of edges is

P(X ≤ (1− δ)E(X)) ≤ exp
(
− δ2

2 E[X]
)
≤ exp

(
−cm,f,r

δ2n
r−m

f

2rr

)
<

1

2
,

where the last inequality holds for m
f ≤ r and n sufficiently large. Thus,

there exists an r-graph on n vertices with at least (1−δ)
(
n
r

)
p edges in which

each m-subset spans at most f − 1 edges.

Note that, by choosing f = m+1, we obtain the existence of an r-graph

with c′r,f,mnr−1+ 1

m+1 hyperedges and no m-subset which spans more than m
hyperedges, i.e. an m-sparse graph.

The next two lemmata show that for many possible order-size pairs (n, e)
we can find an r-graph which realises this pair and has a “nice”, i.e. easy to
analyse structure. We will use them repeatedly throughout the paper.

Lemma 2. Let p, r ∈ N, p, r ≥ 2, and c be a constant, 0 ≤ c < 1. Then
for n ∈ N sufficiently large and any e ∈ [c

(
n
r

)
], there exists a non-negative

integer k and an r-graph on n vertices and e edges which is the vertex disjoint

union of a K
(r)
k and a p-sparse r-graph on n− k vertices.

Proof. Let p, r > 0 be given and let n be a given sufficiently large integer. Let
e ∈ [c

(
n
r

)
]. Let k be the non-negative integer such that

(
k
r

)
≤ e ≤

(
k+1
r

)
− 1.

Note that since e ≤ c
(
n
r

)
,
(
k
r

)
≤ c

(
n
r

)
, and thus, k ≤ r

√
cn+1 ≤ c′n, where c′

is a constant with c′ < 1. We claim that the pair (n, e) could be represented

as the vertex disjoint union of a K
(r)
k and a p-sparse r-graph.

Let G′ be a p-sparse graph on n− k vertices with exactly e−
(
k
r

)
edges.

Lemma 1 guarantees the existence of such a graph, since

e−
(
k

r

)
<

(
k + 1

r

)
−
(
k

r

)
=

(
k

r − 1

)
k≤c′n
≤ (n− k)r−1+ 1

p+1 .

Now let G be the vertex disjoint union of K
(r)
k and G.



184 Lea Weber

Lemma 3. Let p, r ∈ N, p, r ≥ 2, and c be a constant, 0 < c ≤ 1. Then for
n ∈ N sufficiently large and any integer e with c

(
n
r

)
≤ e ≤

(
n
r

)
, there exists a

non-negative integer k ≤ n and an r-graph on k vertices and e edges which
is the complement of a p-sparse r-graph.

Proof. Note that adding isolated vertices to the complement of an m-sparse
graph results in the complement of the vertex disjoint union of a clique and
an m-sparse graph. Thus, the statement immediately follows from Lemma 2
by taking complements.

Lemma 4. If for some integers m, r, f with m ≥ r ≥ 2 and 0 ≤ f ≤
(
m
r

)
neither (m, f) nor (m,

(
m
r

)
− f) can be realised as an r-graph which is the

vertex disjoint union of a complete r-graph and an ≤m-edge r-graph, then
the pair (m, f) is absolutely avoidable.

Proof. Assume we can realise neither (m, f) nor (m,
(
m
r

)
− f) as the vertex

disjoint union of a complete r-graph and an ≤m-edge r-graph.
By the previous lemma, for n sufficiently large and any e ≤

⌈(
n
r

)
/2
⌉
,

there exists an r-graph G with e hyperedges which is the vertex disjoint
union of a clique and an r-graph which is m-sparse. In particular, for every
e ∈ {0, 1, . . . ,

(
n
r

)
}, there is an r-graph G on n vertices with e edges, such

that either G or its complement is the vertex disjoint union of a clique and
an m-sparse r-graph.

If G is the union of a clique and an m-sparse r-graph, then clearly
G �→r (m, f), since (m, f) cannot be realised as the union of a clique and an
≤m-edge r-graph.

If Ḡ is the union of a clique and anm-sparse r-graph, then any induced r-
graph onm vertices is the complement of the vertex disjoint union of a clique
and an ≤m-edge r-graph. Since (m,

(
m
r

)
−f) cannot be realised as the union

of a clique and an ≤m-edge r-graph, the pair (m, f) = (m,
(
m
r

)
− (

(
m
r

)
− f))

cannot be realised by a graph whose complement is the union of a clique
and an ≤m-edge r-graph. Thus, G �→r (m, f).

In the 2-uniform case we used a slightly stronger statement (i.e. no m-
subset spans more than m−1 edges), to find absolutely avoidable pairs. For
r > 2, it suffices to find pairs (m, f), which cannot be realised as the vertex

disjoint union of a clique K
(r)
x and an ≤m-edge r-graph.

Good candidates for such pairs (m, f) are again, as in the 2-uniform
case, pairs which look roughly like (m,

(
m
r

)
/2 + o(1)).

We will use the following Lemmata several times:

Lemma 5. Let r ≥ 2,m, f be integers with m ≥ r, 0 ≤ f ≤
(
m
r

)
. If for

some k ∈ N,
(
k
r

)
+m < f <

(
k+1
r

)
, then the pair (m, f) cannot be realised
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as an r-graph which is the vertex disjoint union of a clique and an ≤m-edge
hypergraph.

Proof. Assume (m, f) is realised as K
(r)
l + H, where l ≥ 0 and H is an

≤m-edge r-graph. Then from the lower bound on f , we have that l > k, and
from the upper bound on f , we see that l < k+1. Thus, no such l exists.

Lemma 6. Let r ≥ 2,m, f be integers with m ≥ r, 0 ≤ f ≤
(
m
r

)
. If for

some k ∈ N,
(
k−1
r

)
< f <

(
k
r

)
−m, then the pair (m, f) cannot be realised as

an r-graph which is the union of the complement of an ≤m-edge hypergraph
and some isolated vertices.

Proof. Assume (m, f) is realised as K
(r)
l −H, where l ≥ 0 and H is an ≤m-

edge r-graph, and some isolated vertices. Then from the upper bound on f ,
we have that l < k, and from the lower bound on f , we see that l > k − 1.
Thus, no such l exists.

Proof of Theorem 2. Let r ≥ 3, m ≥ m0 and let f0 =
⌊(

m
r

)
/2
⌋
.

Using Lemma 4, we need to show that either (m, f0) or both (m, f0 −
(m+1)) and (m,

(
m
r

)
−f0+(m+1)) are not realisable as the vertex disjoint

union of a clique and an ≤m-edge r-graph. To this end we will show that
the condition of Lemma 5 is satisfied.

Let x be an integer such that
(
x
r

)
≤

⌊(
m
r

)
/2
⌋
<

(
x+1
r

)
. By standard

bounds we observe the following:

1

2

(m
r

)r
≤

⌊
1

2

(
m

r

)⌋
<

(
x+ 1

r

)
<

(
(x+ 1)e

r

)r

,

and thus,

x+ 1 >
1

21/re
m.

Thus, by choosing m0 sufficiently large, we have for m ≥ m0 that x−1 > m
4 ,

since for r ≥ 3 r
√
2e ≥ 3

√
2e > 4, and

(∗)
(
x− 1

r − 1

)
≥

(
x− 1

r − 1

)r−1

≥
(

m

4(r − 1)

)r−1

> 2m+ 2.

Let f− =
⌊(

m
r

)
/2
⌋
− (m+ 1) and f+ =

⌈(
m
r

)
/2
⌉
+ (m+ 1).

Case 1:
(
x
r

)
+ m < f0. Then by Lemma 5, (m, f0) cannot be realised by

K
(r)
k +H, where k ∈ N and H has at most m edges. If

⌈(
m
r

)
/2
⌉
<

(
x+1
r

)
, then

again by Lemma 5, (m,
(
m
r

)
− f0) cannot be realised as the disjoint union

of a clique and an ≤m-edge r-graph, i.e. by Lemma 4, (m, f0) is absolutely
avoidable.
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Otherwise, we have
⌈(

m
r

)
/2
⌉
=

(
x+1
r

)
=

⌊(
m
r

)
/2
⌋
+ 1. We clearly have

f− <
(
x+1
r

)
and f+ >

(
x+1
r

)
+m, so it remains to show that f− >

(
x
r

)
+m

and f+ <
(
x+2
r

)
. Indeed, we have

f−−
(
x

r

)
=

(
x+ 1

r

)
−m−1−

(
x

r

)
=

(
x

r − 1

)
−(m+1)

(∗)
> 2m+1−m−1=m,

i.e. f− >
(
x
r

)
+m, and also

f+=

(
x+ 1

r

)
+m+1<

(
x+ 1

r

)
+2m+1

(∗)
<

(
x+ 1

r

)
+

(
x− 1

r − 1

)
<

(
x+ 2

r

)
,

and thus, f+ <
(
x+2
r

)
.

Case 2:
(
x
r

)
≤

⌊(
m
r

)
/2
⌋
≤

(
x
r

)
+m.

It remains to check that neither (m, f−) nor (m, f+) can be realised as
the vertex disjoint union of a clique and an ≤m-edge r-graph. On the one
hand we have f− ≤

(
x
r

)
+m− (m+1) <

(
x
r

)
. Thus, in order to use Lemma 5,

it remains to verify that we also have f− >
(
x−1
r

)
+m. Indeed, we have

f−−
(
x− 1

r

)
≥
(
x

r

)
− (m+1)−

((
x

r

)
−
(
x− 1

r − 1

))
=

(
x− 1

r − 1

)
− (m+1)

(∗)
> 2m+1−m− 1=m

for m ≥ m0, i.e. we have
(
x−1
r

)
+ m < f− <

(
x
r

)
, so by Lemma 5, (m, f−)

cannot be realised as the vertex disjoint union of a clique and an ≤m-edge
r-graph.

On the other hand, we clearly have f+ >
(
x
r

)
+m, and also,

f+ ≤
(
x

r

)
+m+1+(m+1)

(∗)
<

(
x

r

)
+

(
x− 1

r − 1

)
<

(
x

r

)
+

(
x

r − 1

)
=

(
x+ 1

r

)
,

so by Lemma 5, (m, f+) cannot be realised as K
(r)
k +H, where k ∈ N and

H is an ≤m-edge r-graph.
Thus, by Lemma 4 the pair (m, f−) is absolutely avoidable.

3. Density observations

Let r ≥ 3, m, f ≤
(
m
r

)
. Recall from the introduction that the density is

defined as



Absolutely avoidable order-size pairs in hypergraphs 187

σr(m, f) = lim sup
n→∞

|{e : (n, e) → (m, f)}|(
n
r

) .

By considering complementary pairs, it immediately follows that
σr(m, f) = σr(m,

(
m
r

)
− f). Recall that for a family of r-graphs G, exr(n,G)

denotes the extremal number, i.e. the maximum number of edges an r-graph
on n vertices can have without containing any member of G. For an r-graph

H, the Turán-density is defined as πr(H) = lim
n→∞

ex(n,{H})
(nr)

.

Note that for f = 0, σr corresponds to the Turán density, i.e. σr(m, 0) =

σr(m,
(
m
r

)
) = πr(K

(r)
m ), where the currently best known general bounds on

the Turán density are

1−
(

r − 1

m− 1

)r−1

≤ π(Kr
m) ≤ 1−

(
m− 1

r − 1

)−1

,

due to Sidorenko [19] and de Caen [11]. Also note that σr(r, 1) = σr(r, 0) =
1. Thus, the only non-trivial cases are m > r, which are dealt with in
Proposition 1 and Proposition 2.

Before we prove Proposition 1, we show the following auxiliary lemma:

Lemma 7. Let m, r, f ∈ N with m ≥ r ≥ 3 and 0 ≤ f ≤
(
m
r

)
.

(a) If (m, f) cannot be realised as the disjoint union of a clique and an ≤m-
edge r-graph, then σr(m, f) = 0. In particular, if there is no x ∈ [m],
such that 0 ≤ f −

(
x
r

)
< m, then σr(m, f) = 0.

(b) If (m, f) cannot be realised as the complement of an ≤m-edge r-graph
and some isolated vertices, then σr(m, f) = 0. In particular, if there
is no x ∈ [m], such that 0 ≤

(
x
r

)
− f < m, then σr(m, f) = 0.

(c) If σr(m, f) > 0, then there exist x, x̄ ∈ [m] such that 0 ≤ f −
(
x
r

)
< m

and 0 ≤ (
(
m
r

)
− f)−

(
x̄
r

)
< m.

(d) If for some l ∈ N we have
(

l
r−1

)
> 2m, then for f >

(
l
r

)
and f �=

(
x
r

)
for x ∈ [m] we have σr(m, f) = 0.

Proof. (a) By Lemma 2, for any 0 < c′ < 1, n sufficiently large, and
e ∈ En :=

[
c′
(
n
r

)]
there exists an r-graph G on n vertices with e edges

which is the vertex disjoint union of a clique and an m-sparse r-graph.
Note that any induced subgraph on m vertices of G is the union of a
clique and an r-graph with at most m edges. Thus, by definition of
σr, if a pair (m, f) cannot be realised by a clique and an ≤m-edge
r-graph, we have

σr(m, f)= lim sup
n→∞

|{e : (n, e)→ (m, f)}|(
n
r

) ≤ lim sup
n→∞

|
(
[n]
r

)
−En|(
n
r

) =1−c′.
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Letting c′ go to one proves the statement.
If there is no x ∈ [m], such that 0 ≤ f −

(
x
r

)
≤

(
m
r

)
, then the pair

(m, f) cannot be realised as the union of a clique and an ≤m-edge
r-graph. Thus, in this case we have σr(m, f) = 0.

(b) By Lemma 3, for any 0 < c′ < 1, n sufficiently large, and e ∈ En :=[(
n
r

)]
−

[
c′
(
n
r

)]
there exists an r-graph G on n vertices with e edges

which is the complement of an m-sparse r-graph and some isolated
vertices.
Note that any induced subgraph on m vertices of G is the union of a
clique with at most m edges removed and an empty graph. Thus, by
definition of σr, if a pair (m, f) cannot be realised as the complement
of an ≤m-edge r-graph and some isolated vertices, we have

σr(m, f) = lim sup
n→∞

|{e : (n, e) → (m, f)}|(
n
r

) ≤ lim sup
n→∞

|
(
[n]
r

)
− En|(
n
r

) = c′.

The statement follows by letting c′ go to zero.
The “in particular” part follows similarly as in part (a).

(c) The first part is the contrapositive of the “in particular” statement
in part (a). The second statement follows trivially using σr(m, f) =
σr(m,

(
m
r

)
− f).

(d) Let f >
(
l
r

)
, f �=

(
x
r

)
for x ∈ [m], and let t be the unique integer

satisfying
(
t
r

)
< f <

(
t+1
r

)
. Since

(
l

r−1

)
> 2m, it implies that

(
t+1
r

)
−(

t
r

)
=

(
t

r−1

)
≥

(
l

r−1

)
> 2m. Thus, we either have f >

(
t
r

)
+ m or(

t+1
r

)
−m > f . In particular, by part (a) or (b), we have σr(m, f) = 0.

Note: The results by Axenovich, Balogh, Clemen and the author in
[5] imply that the condition f >

(
l
r

)
might not be needed. It is shown

there for r = 3.

Proof of Proposition 1. Let m be fixed and f ≤
(
m
r

)
; write f uniquely as

f =
(
l
r

)
+ l′, where l ∈ [m] and 0 ≤ l′ <

(
l

r−1

)
. By Lemma 7(d) it follows

that we have σr(m, f) = 0 if
(
l
r

)
> 2m and l′ > 0. In particular, any pair

(m, f) with σr(m, f) > 0 must satisfy either l′ = 0 or
(
l
r

)
≤ 2m. In the

first case, there are exactly m + 1 possible choices for f (i.e. f =
(
x
r

)
for

some x ∈ {0, . . . ,m}). In the second case, we obtain that
(
l
r

)r−1 ≤
(

l
r−1

)
≤

2m, i.e. l ≤ (2m)1/r−1r, i.e. f ≤
(
l
r

)
≤

(
el
r

)r ≤ er(2m)r/r−1. Thus, at

most (m+ 1) + er(2m)r/r−1 ∈ O
(
m

r

r−1

)
of all possible pairs (m, f) satisfy

σr(m, f) > 0. Note that for r ≥ 3, we have m
r

r−1 ∈ o(
(
m
r

)
).
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For the proof of Proposition 2 we will use the following extension of

Turán’s theorem to hypergraphs by Mubayi [17]. For fixed l, r ≥ 2 let F (r)
l

be the family of r-graphs with at most
(
l
2

)
edges, that contain a core S of l

vertices, such that every pair of vertices in S is contained in an edge.

Theorem 3 (Mubayi [17]). Let r, l, n ≥ 2. Then

ex(n,F (r)
l+1) = tr(n, l)

and the unique r-graph on n vertices containing no copy of any member

of F (r)
l+1 for which equality holds is Tr(n, l), the complete balanced l-partite

r-graph on n vertices.

Proof of Proposition 2. Now let m > r ≥ 2, 0 ≤ f ≤
(
m
r

)
.

Let l ∈ N, such that tr(m, l) < 1
2

(
m
r

)
. Note that for r ≥ 3, such an l

always exists, since we have tr(m, r) < 1
2

(
m
r

)
, so we can always choose l = r.

Thus, in particular, we are in one of two cases: Either we have f ≥
1
2

(
m
r

)
> tr(m, l), or we have f ≤ 1

2

(
m
r

)
, i.e. f −

(
m
r

)
≥ 1

2

(
m
r

)
> tr(m, l).

Case 1: f > tr(m, l). Then by Theorem 3, any r-graph that realises the pair

(m, f) contains a member of F (r)
l+1. If e ≤ tr(n, l), we have (n, e) �→ (m, f),

since taking any subgraph of Tr(n, l) with e edges yields an (n, e) graph not

containing any member of F (r)
l+1, and thus, a graph not containing induced

(m, f). In particular, this implies that

σr(m, f) ≤ lim
n→∞

(
n
r

)
− tr(n, l)(

n
r

) < 1.

Case 2:
(
m
r

)
− f > tr(m, l). Then by Theorem 3 any graph that realises

(m,
(
m
r

)
− f) contains a member of K

(r)
l+1. Then any graph G with G →r

(m,
(
m
r

)
− f) must contain a member of F (r)

l+1, i.e. |E(G)| > tr(n, l). Thus,

for each e ≤ tr(n, l), (n, e) �→r (m,
(
m
r

)
− f), and thus, by considering the

complement, for each e ≥
(
n
r

)
− tr(n, l), (n, e) �→r (m, f). In particular, we

have

σr(m, f) ≤ lim
n→∞

(
n
r

)
− tr(n, l)(

n
r

) < 1.

Thus, in either case, we have

σr(m, f) ≤ 1− lim sup
n→∞

tr(n, l)(
n
r

) = 1− (l)r
lr

< 1.
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This proves part (a).

To obtain part (b), assume that for some l ∈ N we have tr(m, l) < f <(
m
r

)
− tr(m, l). Then by Cases 1 and 2, we see that (n, e) →r (m, f) requires

tr(n, l) < e <
(
n
r

)
− tr(n, l). Thus, we obtain that

σr(m, f) ≤ 1− 2 lim sup
n→∞

tr(n, l)(
n
r

) = 1− 2
(l)r
lr

,

which completes the proof.

Corollary 1. For r = 3, m > 3, 0 < f <
(
m
3

)
, we have the following upper

bounds on σ3(m, f):

1. σ3(m, f) ≤ 7
9 .

2. If t3(m, 3) < f <
(
m
r

)
− t3(m, 3), then σ3(m, f) ≤ 5

9 .

3. If m ≥ 12, then σ3(m, f) ≤ 5
8 .

4. If m ≥ 73, then σ3(m, f) ≤ 13
25 .

For r = 4, m > 4, 0 < f <
(
m
4

)
, we have the following upper bounds on σ4:

1. σ4(m, f) ≤ 29
32 ,

2. There is m0, such that for all m ≥ m0 we have σ4(m, f) ≤ 131
243 ≈ 0.54.

Proof. We start with r = 3. In order to obtain our bounds, we can compute

the fraction (l)3
l3 for different l ≥ 3. We have that

(3)3
33

=
2

9
,

(4)3
43

=
3

8
,

(5)3
53

=
12

25
,

(6)3
63

=
5

9
.

Note that (6)3
63 > 1

2 , so for r = 3, the best possible upper bound one can

achieve for any pair using Proposition 2 will use l = 5.

Now (1) and (2) immediately follow from Proposition 2, by setting l =

r = 3 and observing that for r ≥ 3, we always have tr(m, r) < 1
2

(
m
r

)
. Then

σ3(m, f) ≤ 1− lim
n→∞

t3(n, 3)(
n
3

) = 1− lim
n→∞

(
(l)r
lr

(
n
r

)(
n
r

) +
o(nr)(

n
r

)
)

= 1− (3)3
33

=
7

9
,

and for (2), if t3(m, 3) < f <
(
m
r

)
− t3(m, 3),

σ3(m, f) ≤ 1− 2 lim
n→∞

t3(n, 3)(
n
3

) =
5

9
.
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Now for (3) note that for m ≥ 12, we have lm,3 = 4, and thus, by Proposi-
tion 2(a), for all pairs (m, f) with m ≥ 12 we have

σ3(m, f) ≤ 1−
(
(4)3
43

)
= 1− 6

16
=

5

8
.

For (4) note that for m ≥ 73, we have lm,3 = 5, so using Proposition 2(a),
for all pairs (m, f) with m ≥ 73 we have

σ3(m, f) ≤ 1−
(
(5)3
53

)
= 1− 12

25
=

13

25
.

For the case r = 4, we obtain the first part by computing (4)4
44 = 3

32 . The

second part is obtained by computing (9)4
94 = 112

243 and noting that lm,4 = 9
for m ≥ m0.

4. Concluding remarks

We have shown that for r ≥ 3 and m sufficiently large there always exists an
f such that (m, f) is absolutely r-avoidable; however, in the cases considered
f is always roughly

(
m
r

)
/2. This inspires the following interesting question:

Question. Are there absolutely avoidable pairs where f/
(
m
r

)
is bounded

away from 1
2 in the limit?

We have proven that for m > r ≥ 3 and f with 0 ≤ f ≤
(
m
r

)
, we always

have σr(m, f) < 1. We have also shown that for fixed r, most pairs (m, f)
satisfy σr(m, f) = 0. On the other hand, for r ≥ 3 there is no pair (m, f)
with 0 < f <

(
m
r

)
for which we can show that σr(m, f) > 0. This inspires

the following question:

Open problem. For m > r ≥ 3, are there any f with 0 < f <
(
m
r

)
such

that σr(m, f) > 0?

Next, we will use Lemma 7 to identify candidate pairs (m, f) for r =
3,m ≤ 15 which might satisfy σ3(m, f) > 0:

Lemma 8. Let r = 3, 4 ≤ m ≤ 15 and 0 < f <
(
m
r

)
. If (m, f) �= (6, 10),

then σ3(m, f) = 0.

Proof. Let (m, f) be a pair with 4 ≤ m ≤ 15, 0 < f <
(
m
r

)
with σ3(m, f) >

0. One can verify that for 4 ≤ m ≤ 15, we have 2
(
m−3
3

)
+ 4 ≤

(
m
3

)
, i.e.(

m−3
3

)
+ 2 ≤

(
m
3

)
−

(
m−3
3

)
− 2. Thus, for any f ≤

(
m
3

)
, we either have f ≥
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(
m−3
3

)
+2 or

(
m
3

)
−f ≥

(
m−3
3

)
+2, assume w.l.o.g. that we have f ≥

(
m−3
3

)
+2.

Let x be the unique value with
(
x
3

)
≤ f <

(
x+1
3

)
and write f =

(
x
3

)
+ x′,

0 ≤ x′ <
(
x
2

)
. Then by assumption we have x ∈ {m− 3,m− 2,m− 1}.

By Lemma 7(a) we know that if we cannot realise the pair (m, f) as
the vertex disjoint union of a clique and an ≤m-edge 3-graph, then we have
σ3(m, f) = 0. Thus, we can assume that the pair (m, f) can be realised as
the vertex disjoint union of a clique and an ≤m-edge 3-graph. By Lemma 5,

it follows that (m, f) can be realised as the disjoint union of K
(3)
x and an

≤m-edge 3-graph.
Assume we have x = m − 3. Since by assumption f ≥

(
x
3

)
+ 2, clearly

the pair (m, f) cannot be realised as the vertex disjoint union of K
(3)
x and

a graph on at most 1 edge. Since m − x = 3, it also cannot be realised as

the vertex disjoint union of K
(3)
x and a graph with 2 edges, a contradiction.

Thus, for x = m− 3 we have σ3(m, f) = 0.
So assume x ∈ {m − 2,m − 1}. Note that since m − x ≤ 2, the pair

(m, f) cannot be realised as the vertex disjoint union of a clique on x vertices
and a graph with at least 1 edge. Thus, the only pairs (m, f) which might
satisfy σ3(m, f) > 0 have x′ = 0, i.e. f ∈ {

(
m−2
3

)
,
(
m−1
3

)
}. Then (m, f) ∈

A1 ∪ A2 ∪ {(6, 10), (10, 84), (13, 165), (15, 169), (15, 91)} with

A1= {(5, 4), (7, 20), (8, 35), (9, 56), (11, 120), (12, 165), (13, 220), (14, 286)},
A2= {(5, 1), (6, 4), (7, 10), (8, 20), (9, 35), (10, 56), (11, 84), (12, 120), (14, 220)}.

Now let (m, f) ∈ A1 ∪ A2. Let f̄ =
(
m
3

)
− f and let y ∈ [m] such that(

y
3

)
≤ f̄ <

(
y+1
3

)
, i.e. f̄ =

(
y
3

)
+ y′ for some y′ ≤

(
y
2

)
. Then it is easy to verify

that we are in one of three cases:

• y ∈ {m− 1,m− 2} and y′ > 0,
• y = m− 3 and y′ > 1,
• y ≤ m− 4 and y′ > m.

In each case, by Lemma 5 (m, f̄) canot be realised as the disjoint union of
a clique and an ≤m-edge 3-graph, and thus, by Lemma 7(a), σ3(m, f) =
σ3(m, f̄) = 0.

The pair (6, 10) is self-complementary with 10 =
(
5
3

)
=

(
6
3

)
/2.

For the pair (10, 84) we have
(
10
3

)
− 84 = 36 =

(
7
3

)
+1 =

(
10
3

)
−
(
9
3

)
. Note

that for m = 10, we have 2m <
(
7
2

)
, i.e. by Proposition 1, σ3(10, 36) = 0.

For the pair (13, 165) we have
(
13
3

)
− 165 = 121 =

(
10
3

)
+ 1 =

(
13
3

)
−(

11
3

)
. Note that for m = 13, we have 2m <

(
10
2

)
, i.e. by Proposition 1,

σ3(13, 121) = 0.



Absolutely avoidable order-size pairs in hypergraphs 193

For the pair (15, 91) we have 91 =
(
15
3

)
−
(
14
3

)
=

(
9
3

)
+7, and for the pair

(15, 169) we have 169 =
(
15
3

)
−
(
13
3

)
=

(
11
3

)
+4. Note that for m = 15, we have

2m <
(
9
2

)
<

(
11
2

)
, i.e. by Proposition 1, σ3(15, 91) = σ3(15, 169) = 0.

Lemma 8 implies that for r = 3, the smallest value of m, for which the
first open problem has no answer is m = 6. In this case, f = 10 is the
only possible value for which we might have σ3(6, f) > 0. This leads to the
following sub-problem of the first open problem: What is σ3(6, 10)?

From Corollary 1 we obtain that σ3(6, 10) ≤ 5
9 , but we can do slightly

better, as can be seen by considering the following construction:

Let G1 = K
(3)
3 , i.e. the 3-graph on 3 vertices with one edge. Assume

Gk−1 has been constructed. We obtain Gk = (Vk, Ek) by taking 3 copies
of Gk−1 and adding all edges using exactly one vertex from each copy of
Gk−1, i.e. inserting the edges of a complete 3-partite graph. Thus, for Gk we
have |Vk| = 3|Vk−1| = 3k and |Ek| = |Vk−1|3 + 3|Ek−1|. One can show that
|Ek|
(|Vk|

3 )
= 1

4 − o(1), see for example Bárány and Füredi [7].

Thus, for sufficiently large n = 3k, this gives a construction with (14 −
o(1))

(
n
3

)
edges. It is easy to verify that every 6-set in Gn spans at most 8

edges, so every 6-set in its complement spans at least 12 edges, i.e. Gn and
its complement are induced (6, 10)-free, so for n sufficiently large and any
e ≤ (14 − o(1))

(
n
3

)
or e ≥ (34 − o(1))

(
n
3

)
there exists a 3-graph on n vertices

with e edges, which does not arrow (6, 10). Thus, σ3(6, 10) ≤ 1
2 .

Note that this construction is not the only one that shows σ3(6, 10) ≤ 1
2 :

Blowing up a C
(3)
5 in the same manner as K

(3)
3 above is also induced (6, 10)-

free and achieves the same bound.
Very recently it was shown by Axenovich, Balogh, Clemen and the au-

thor [5] that indeed we have σ3(6, 10) > 0. They also found a better con-
struction which shows that σ3(6, 10) ≤.

It would be interesting to further investigate this problem, as currently
there is no other known pair (m, f) for r ≥ 3 which satisfies σr(m, f) > 0.
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