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Inversion sequences avoiding a pair of vincular
patterns of type (2, 1)

Toufik Mansour

An inversion sequence of length n is a sequence of integers e =
e0 · · · en which satisfies 0 ≤ ei ≤ i, for all i = 0, 1, . . . , n. We say
that e avoids a pattern ab-c of type (2, 1) if does not exist i, j such
that 0 ≤ i < j−1 ≤ n−1 and the subsequence πi, πi+1, πj has the
same order isomorphic as abc. For a set of patterns B, let In(B)
be the set of inversion sequences of length n that avoid all the
patterns from B. We say that two sets of patterns B and C are
I-Wilf equivalent if |In(B)| = |In(C)|, for all n ≥ 0. In this paper,
we show that the number of I-Wilf equivalences among pairs of
patterns of type (2, 1) is 72. In particular, we present connections to
Bell numbers, ascent sequences, and permutations avoiding length-
4 vincular pattern.
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1. Introduction

An inversion sequence of length n is a word e = e0 · · · en such that 0 ≤ ei ≤ i,
for all i = 0, 1, . . . , n. We denote the set of inversion sequences of length n
by In. The study of pattern-avoiding inversion sequences initiated in [4, 10]
for length-3 patterns. Later, these works extended the notion of pattern
avoidance to binary relations, and pairs/triples of length-3 patterns (see
[3, 8, 12, 11, 14]).

A reduction of a word σ = σ1 · · ·σk is the word obtained by replacing
the i-th smallest entry of σ with i−1, for all i = 1, 2, . . . , k. Here, we denote
the reduction of σ by red(σ). For example, the reduction of σ = 22404 is
red(σ) = 11202. Let abc be any pattern over alphabet {0, 1, 2}, we say that
e = e0e1 · · · en ∈ In avoids a pattern ab-c of type (2, 1) if does not exist
i, j such that 0 ≤ i < j − 1 ≤ n − 1 and red(πi, πi+1, πj) = abc. For a set
of patterns B, let In(B) be the set of inversion sequences of length n that
avoid all the patterns from B. We say that two sets of patterns B and C are

I-Wilf-equivalent, denoted B
I∼ C, if |In(B)| = |In(C)|, for all n ≥ 0.
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As an extension of [4, 10], Lin and Yan [9] and Auli and Elizalde [1]
considered the case of patterns of type (2, 1). Among other results, they

showed that {01-0} I∼ {01-1} and {10-0} I∼ {10-1}. The aim of this paper is
to reprove again these results and as well as give all the I-Wilf-equivalences
for pairs of patterns of type (2, 1). Here, we will use the algorithmic approach
based on generating trees developed in [8] to obtain the generating tree for
In(B). More precisely, the main result of this paper can be formulated as
follows.

Theorem 1.1. There are exactly 72 I-Wilf equivalences among pairs of
patterns of type (2, 1).

Note that there are 78 pairs of patterns of type (2, 1). Thus, there are
only 6 I-Wilf equivalences such that each has only two pairs. Throughout the
proof of Theorem 1.1, we enumerate each pair in these 6 I-Wilf equivalences
and we show Table 1.

Table 1: Enumeration pairs in the 6 I-Wilf equivalences

B Pair of patterns of type
∑

n≥0 |In(B)|xn+1 Reference

(2, 1)

{01-1, 01-2},{01-0, 01-2} x
1−x +

∑
j≥0

x2j+2

(1−x)j+2
∏j

i=0((1−x)i−x)
Theorem 3.2

{01-1, 02-1},{01-0, 02-1} 1−2x−
√
1−4x

2x Theorem 3.3

{01-0, 12-0},{01-0, 10-1}
∑

j≥1
xj

∏j−1
i=1 (1−ix)

Theorem 3.4

{10-1, 20-1},{10-0, 20-1}
∑

n≥0 |In({101, 201})|xn+1 Theorem 3.5

{10-1, 21-0},{10-0, 21-0} See [13, Sequence A137538] Theorem 3.6

{00-0, 10-0},{00-0, 10-1} See [13, Sequence A138265] Theorem 3.8

The paper is organized as follows. In Section 2, we recall the algorithmic
approach based on generating trees developed in [8] which leads to the main

result of this paper. In Section 3, we reprove {01-0} I∼ {01-1} and {10-0} I∼
{10-1}, and then we prove Theorem 1.1, as described in Table 1.

2. Inversion sequences and generating trees

Following [8], we define the generating tree (see [15]) T (B) to be a plain tree
as follows. Let IB = ∪∞

n=0In(B). Clearly, the tree T (B) is empty whenever
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0 ∈ B. Otherwise, the root can always be taken as 0. Starting with this root
which stays at level 0, we construct the remainder of the nodes of the tree
T (B) as follows: the children of e0e1 · · · en ∈ In(B) are obtained from the
set {e0e1 · · · enen+1 | en+1 = 0, 1, . . . , n+1} by obeying the pattern-avoiding
restrictions of the patterns in B.

Let D(B) be the set of all nodes of T (B). We denote the subtree con-
sisting of the inversion sequence e as the root and its descendants in T (B)
by T (B; e). For any e, e′ ∈ D(B), we say that e is equivalent to e′ if and only
if

T (B; e) ∼= T (B; e′)

(in the sense of plain trees). Let T ′(B) be the same tree T (B) where we
replace each node e by the first node e′ ∈ T (B) from top to bottom and
from left to right in T (B) such that T (B; e) ∼= T (B; e′). From now, we
identify T ′(B) with T (B).

Example 2.1. Let B = {00-0, 01-2}. Clearly, the children of 0 ∈ T (B)
are 00 and 01. The children of 00 are 000, 001 and 002. By obeying the
pattern-avoiding restrictions of the patterns in B, we see there are two
children 001 and 002. Note that π = 002π′ ∈ In(B) if and only if 01π′′

where π′′ obtained from π′ by decreasing each letter by 1, so T (B; 002) ∼=
T (B; 01). Thus, the children of 00 in T (B) are 001 and 01. So, up to now,
we have two rules 0 � 00, 01 and 00 � 001, 01. Similarly, we see that
01 � 010, 011; 001 � 0011; 010 � 011, 01 and 011 � 001. Note that there
are no children for the node 0011 ∈ T (B) because all of its children, namely
00110, 00111, 00112, 00113, 00114 does not avoid B.

Example 2.2. Let B = {00-1, 02-1, 12-0}, then we see that T (B) can be pre-
sented by nodes am = (01)m, bm = (01)m0, cm = (01)m02, dm = (01)m020,
e = 0110, f = 011, and g = 00. More precisely, the rules of T (B) are given
by

b0 � g, a1, g � g,

f � h, f, h � g, f,

am � bm, f, am, cm−1, . . . , a2, c1, a1, bm � g, am+1, cm, . . . , a2, c1, a1,

cm � dm, f, bm, am, . . . , b1, a1, dm � g, cm+1, am+1, . . . , c1, a1.

Since the similarity, let us prove 4 of these rules:

• b0 � g, a1: holds because all the children of b0 = 0 are 00 = g and
a1 = 01.
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• g � g: since the only inversion sequence π = 00π′ avoids B is π =
00 · · · 0, we obtain that the rule holds.

• a1 � b1, f, a1; the children of a1 are 010 = b1, 011 = f , and 012.
Note that π = 012π′ is an inversion sequence avoids B if and only
if 01π′′ is an inversion sequence avoids B, where π′′ obtained from π′

by subtracting 1 from each letter, so T (B; 012) ∼= T (B; a1). Thus, the
rule holds.

• dm � g, cm+1, am+1, . . . , c1, a1; By ordering/removing letters of π =
dmjπ′ ∈ In(B) with j = 0, 2, 3, . . . , 2m+ 3, we have that T (B; dm0) ∼=
T (B; g), T (B; dm(2s)) ∼= T (B; cm+2−s) with s = 1, 2, . . . ,m + 1, and
T (B; dm(2s + 1)) ∼= T (B; am+2−s) with s = 1, 2, . . . ,m + 1, which
implies that the rule holds.

For given a rule v � v1, . . . , vs, v is called a father and v1, . . . , vs are
called children of v. In [8] the authors described an algorithm on how to guess
and prove the generating tree T (B) for given a set of pattern B. Briefly, the
algorithm is working as follows:
Algorithm KMY:

• Given D ≥ 1 (Usually, we take D to be small number).
• By computer programming, we can find the generating tree TD(B),

which is the same tree T (B) up to level D. Let RD(B) all the rules of
TD(B).

• We say that a set of rules R1, R2, . . . , Rs can be written by one index
rule R(i), if R(i) = Ri for all i = 1, 2, . . . , s. In this case, we say the set
{R1, R2, . . . , Rs} is minimize to one index rule R(i). Then, consider any

subset R′ of RD(B) and check if R′ minimizes to a one index rule R′(i).
If yes, define RD(B) to be (RD(B)\R′) ∪ {R′ (i)}. Otherwise, move to
the next step.

• Consider the rules of RD(B) and try to prove (as done in Example 2.2),
by considering children of each father in a rule, that the rules of RD(B)
are exactly the rules of T (B).

We end this section, by presenting one example for finding the generating
tree T ({01-0, 02-1}). By applying the algorithm for D = 6, we obtain the
following rules

0 � 00, 0,

00 � 000, 00, 0,

000 � 0000, 000, 00, 0,

0000 � 00000, 0000, 000, 00, 0,
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00000 � 000000000000000000000

000000 � 0000000, 000000, 00000, 0000, 000, 00, 0.

So, it is easy to see that this set of rules can be minimized to a one index
rule am � am+1, . . . , a1 with am = 0m. Here, for a symbol k and an integer
d, the constant sequence k, k, . . . , k of length d is denoted by kd. To prove
the rule, we have to consider only the children of am, which are amj with
j = 0, . . . ,m. Note that the inversion sequence π = amjπ′ avoids B if and
only if am+1−jπ

′ (j), where π′ (j) is a word obtained from π′ by subtracting j
from each letter of π′, which implies that T (B; amj) ∼= T (B; am+1−j) for all
j = 0, 1, . . . ,m. Hence, the rule am � am+1, . . . , a1 holds, and the generating
tree T (B) satisfies only this rule.

Before we end this section, we state the following observation that is
used in Section 3. We define B

g∼ B′ whenever T (B) = T (B′). So, by the
definitions, we have the following observation.

Observation 2.3. Let B,B′ be any two sets of patterns. If B
g∼ B′ then

B
I∼ B′.

3. Patterns of type (2,1) in inversion sequences

As an application of Algorithm KMY, in the next subsections, we present
all the I-Wilf equivalences among single patterns of type (2, 1) and among
pairs of patterns of type (2, 1).

3.1. Single pattern

As mentioned in the introduction, Lin and Yan [9] and as well as Auli and

Elizalde [1] showed that {01-0} I∼ {01-1} and {10-0} I∼ {10-1}. Algorithm
KMY gives new proof for these facts.

Theorem 3.1. We have

(1) {01-0} g∼ {01-1}. Moreover, the rules of the generating tree T ({01-0})
are given by

am � am+1, am, bm,2, . . . , bm,m,

bm,j � am+1, bm+1,2, . . . , bm+1,j , bm,j , . . . , bm,m,

where am = 0m and bm,j = 0mj with 2 ≤ j ≤ m.
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(2) {10-0} g∼ {10-1}. Moreover, the rules of the generating tree T ({10-0})
are given by

am � am+1, bm,1, . . . , bm,m,

bm,j � am+1, bm,1, . . . , bm,j−1, bm+1,j , . . . , bm+1,m+1,

where am = 0m and bm,j = 0mj with 1 ≤ j ≤ m.

3.2. Pairs of patterns

By finding all the sequences |In(B)|9n=0 whenever B is pair of patterns of

type (2, 1), we present Table 2.

Table 2: Number inversion sequences in In(B), where B is a pair of patterns
of type (2, 1)

Beginning of Table 2
Class B |In(B)| Class B |In(B)|
1 {00-1, 01-0} 1, 2, 3, 4, 5, 6, 7, 8,

9, 10
2 {00-1, 01-2} 1, 2, 3, 5, 8, 13, 21,

34, 55, 89
3 {00-1, 01-1} 1, 2, 3, 6, 13, 35,

109, 394, 1611,
7387

4 {00-0, 00-1} 1, 2, 3, 9, 33, 158,
919, 6279, 49273,
436517

5 {00-1, 10-1} 1, 2, 4, 10, 29, 102,
422, 2025, 11040,
67324

6 {00-0, 01-0} 1, 2, 4, 10, 29, 98,
378, 1644, 7971,
42692

7 {00-1, 12-0} 1, 2, 4, 10, 30, 109,
468, 2300, 12650,
76508

8 {00-1, 10-0} 1, 2, 4, 10, 32, 124,
571, 3035, 18197,
121147

9 {00-1, 11-0} 1, 2, 4, 10, 34, 154,
874, 5914, 46234,
409114

10 {00-1, 02-1} 1, 2, 4, 11, 36, 137,
586, 2742, 13791,
73538

11 {00-1, 21-0} 1, 2, 4, 11, 38, 160,
789, 4422, 27526,
187216

12 {00-1, 20-1} 1, 2, 4, 11, 38, 161,
797, 4447, 27250,
180065

13 {00-0, 01-2} 1, 2, 4, 6, 7, 8, 8, 8,
8, 8

14 {00-1, 10-2} 1, 2, 4, 9, 22, 58,
163, 485, 1519,
4985

15 {01-0, 01-2}
{01-1, 01-2}

1, 2, 4, 8, 17, 39,
96, 251, 691, 1990

16 {00-0, 01-1} 1, 2, 4, 9, 23, 67,
222, 832, 3501,
16412
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Continuation of Table 2
Class B |In(B)| Class B |In(B)|
17 {01-0, 01-1} 1, 2, 4, 9, 24, 75,

267, 1062, 4665,
22437

18 {01-2, 02-1} 1, 2, 5, 12, 27, 58,
121, 248, 503, 1014

19 {01-2, 10-0} 1, 2, 5, 12, 28, 65,
153, 369, 916, 2343

20 {01-2, 10-1} 1, 2, 5, 12, 28, 66,
161, 410, 1089,
3003

21 {01-2, 11-0} 1, 2, 5, 12, 29, 73,
194, 544, 1604,
4957

22 {01-2, 21-0} 1, 2, 5, 13, 34, 89,
233, 610, 1597,
4181

23 {01-2, 20-1} 1, 2, 5, 13, 34, 90,
243, 671, 1893,
5442

24 {01-2, 12-0} 1, 2, 5, 13, 35, 98,
284, 847, 2592,
8131

25 {01-1, 10-2} 1, 2, 5, 13, 35, 98,
285, 857, 2652,
8413

26 {01-2, 10-2} 1, 2, 5, 13, 35, 98,
285, 859, 2677,
8604

27 {01-0, 02-1}
{01-1, 02-1}

1, 2, 5, 14, 42, 132,
429, 1430, 4862,
16796

28 {01-1, 10-0} 1, 2, 5, 14, 43, 144,
523, 2048, 8597,
38486

29 {01-1, 12-0} 1, 2, 5, 14, 45, 164,
669, 3012, 14789,
78430

30 {00-0, 10-2} 1, 2, 5, 15, 47, 157,
555, 2061, 7997,
32303

31 {01-0, 10-2} 1, 2, 5, 15, 51, 187,
721, 2889, 11954,
50869

32 {01-1, 21-0} 1, 2, 5, 15, 52, 202,
860, 3951, 19372,
100543

33 {01-1, 20-1} 1, 2, 5, 15, 52, 203,
876, 4118, 20838,
112389

34 {01-0, 11-0} 1, 2, 5, 15, 52, 203,
879, 4184, 21765,
123193

35 {01-0, 10-1}
{01-0, 12-0}

1, 2, 5, 15, 52, 203,
877, 4140, 21147,
115975

36 {01-0, 10-0} 1, 2, 5, 15, 52, 205,
908, 4473, 24283,
144076

37 {01-0, 21-0} 1, 2, 5, 15, 53, 216,
992, 5024, 27570,
161773

38 {01-0, 20-1} 1, 2, 5, 15, 53, 216,
993, 5047, 27898,
165556

39 {01-1, 10-1} 1, 2, 5, 15, 53, 216,
997, 5134, 29139,
180514

40 {01-1, 11-0} 1, 2, 5, 15, 53, 216,
997, 5136, 29195,
181508

41 {00-0, 12-0} 1, 2, 5, 16, 60, 261,
1281, 6987, 41791,
271261

42 {00-0, 02-1} 1, 2, 5, 16, 61, 265,
1274, 6628, 36756,
214812
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Continuation of Table 2
Class B |In(B)| Class B |In(B)|
43 {00-0, 10-0}

{00-0, 10-1}
1, 2, 5, 16, 61, 271,
1372, 7795, 49093,
339386

44 {00-0, 11-0} 1, 2, 5, 16, 63, 300,
1696, 11186, 84687,
725406

45 {00-0, 20-1} 1, 2, 5, 17, 71, 350,
1960, 12156, 81936,
591811

46 {00-0, 21-0} 1, 2, 5, 17, 71, 350,
1962, 12219, 83168,
611437

47 {10-2, 12-0} 1, 2, 6, 21, 77, 287,
1079, 4082, 15522,
59280

48 {02-1, 10-2} 1, 2, 6, 21, 79, 312,
1280, 5418, 23539,
104529

49 {10-2, 11-0} 1, 2, 6, 21, 80, 320,
1327, 5669, 24867,
111791

50 {10-0, 10-2} 1, 2, 6, 21, 81, 335,
1470, 6788, 32793,
164990

51 {10-1, 10-2} 1, 2, 6, 21, 81, 337,
1492, 6965, 34055,
173503

52 {10-2, 20-1} 1, 2, 6, 22, 88, 368,
1584, 6968, 31192,
141656

53 {10-2, 21-0} 1, 2, 6, 22, 88, 370,
1619, 7349, 34534,
167637

54 {02-1, 12-0} 1, 2, 6, 22, 90, 394,
1806, 8558, 41586,
206098

55 {02-1, 10-0} 1, 2, 6, 22, 91, 412,
2003, 10312, 55653,
312487

56 {02-1, 11-0} 1, 2, 6, 22, 92, 424,
2105, 11092, 61382,
353938

57 {10-0, 12-0} 1, 2, 6, 22, 92, 424,
2113, 11238, 63204,
373381

58 {10-1, 12-0} 1, 2, 6, 22, 92, 425,
2127, 11383, 64545,
385155

59 {02-1, 10-1} 1, 2, 6, 22, 93, 437,
2229, 12140, 69762,
419206

60 {10-1, 11-0} 1, 2, 6, 22, 94, 454,
2438, 14398, 92790,
648702

61 {10-0, 10-1} 1, 2, 6, 22, 94, 456,
2466, 14670, 95026,
664838

62 {10-0, 11-0} 1, 2, 6, 22, 94, 456,
2470, 14780, 96930,
692276

63 {11-0, 12-0} 1, 2, 6, 22, 95, 464,
2516, 14924, 95836,
660908

64 {02-1, 21-0} 1, 2, 6, 23, 103,
511, 2722, 15275,
89206, 537666

65 {02-1, 20-1} 1, 2, 6, 23, 103,
514, 2779, 15984,
96582, 607562

66 {12-0, 20-1} 1, 2, 6, 23, 104,
528, 2918, 17205,
106744, 690006

67 {10-0, 20-1}
{10-1, 20-1}

1, 2, 6, 23, 104,
530, 2958, 17734,
112657, 750726

68 {12-0, 21-0} 1, 2, 6, 23, 104,
531, 2980, 18059,
116715, 797204
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Continuation of Table 2
Class B |In(B)| Class B |In(B)|
69 {10-0, 21-0}

{10-1, 21-0}
1, 2, 6, 23, 104,
532, 3004, 18426,
121393, 851810

70 {11-0, 20-1} 1, 2, 6, 23, 105,
547, 3161, 19863,
133751, 954492

71 {11-0, 21-0} 1, 2, 6, 23, 105,
549, 3207, 20577,
143239, 1071704

72 {20-1, 21-0} 1, 2, 6, 24, 116,
632, 3720, 23072,
148528, 983072

End of Table 2

Table 2 suggests there are exactly 6 I-Wilf equivalences. So, the aim of

this section is to prove that there the only 6 I-Wilf equivalences among pairs

of patterns of type (2, 1), namely, we show the following equivalences:

{01-0, 01-2} I∼ {01-1, 01-2} (Thm. 3.2),

{01-0, 02-1} I∼ {01-1, 02-1} (Thm. 3.3),

{01-0, 10-1} I∼ {01-0, 12-0} (Thm. 3.4),

{10-0, 20-1} I∼ {10-1, 20-1} (Thm. 3.5),

{10-0, 21-0} I∼ {10-1, 21-0} (Thm. 3.6),

{00-0, 10-0} I∼ {00-0, 10-1} (Thm. 3.8).

In order to prove these 6 I-Wilf equivalences, we use Algorithm KMY to

guess the generating tree for each pair, and then we prove the rules as

explained in Section 2. Since it is routine procedure to prove the rules, we

omit the proofs.

Theorem 3.2. We have {01-1, 01-2} I∼ {01-0, 01-2}. Moreover, the rules of

the generating tree T ({01-1, 01-2}) are given by

am � am+1, b1, . . . , bm,

bm � cm,0, . . . , cm,m−2, bm,

cm,j � cm,0, . . . , cm,j , bj+1, . . . , bm−1,

where am = 0m, bm = 0mm, and cm,j = 0mmj with 0 ≤ j ≤ m − 2. The

rules of the generating tree T ({01-0, 01-2}) are given by

am � am+1, b1, . . . , bm,
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bm � dm,1, . . . , dm,m−1, bm,

dm,j � dm,1, . . . , dm,j , bj , . . . , bm−1,

where am = 0m, bm = 0mm, and dm,j = 0mmj with 1 ≤ j ≤ m− 1.

Moreover, the generating function
∑

n≥0 |In({01-1, 01-2})|xn+1 is given

by

x

1− x
+

∑
j≥0

x2j+2

(1− x)j+2
∏j

i=0((1− x)i − x)
.

Proof. By Algorithm KMY, we obtain the rules as stated in the current

theorem. Note that, by mapping the label dm,j to the label cm,j−1, we ob-

tain that the two generating trees T ({01-1, 01-2}) and T ({01-0, 01-2}) are

isomorphic as plain trees. Thus, {01-1, 01-2} I∼ {01-0, 01-2}.
Now let us focus on the generating tree T (B), where B = {01-1, 01-2}.

Define Am(x) (respectively, Bm(x), Cm,j(x)) to be the generating function

for the number of nodes at level n ≥ 0 for the subtree of T (B; am) (respec-

tively, T (B; bm), T (B; cm,j)), where its root stays at level 0. Then, these

rules lead to

Am(x) = x+ xAm+1(x) + xB1(x) + · · ·+ xBm(x),

Bm(x) = x+ xCm,0(x) + · · ·+ xCm,m−2(x) + xBm(x),

Cm,j(x) = x+ xCm,0(x) + · · ·+ xCm,j(x) + xBj+1(x) + · · ·+ xBm−1(x).

Define F (v) =
∑

m≥1 Fm(x)vm−1 with F ∈ {A,B} and

C(v, u) =
∑
m≥1

m−2∑
j=0

Cm,j(x)u
jvm−2.

Then, the recurrence can be written as

A(v) =
x

1− v
+

x

v
(A(v)−A(0)) +

x

1− v
B(v),

B(v) =
x

1− v
+ xvC(v, 1) + xB(v),

C(v, u) =
x

(1− v)(1− uv)
+

x

1− u
(C(v, u)− uC(uv, 1))

+
x

(1− u)(1− v)
(B(v)− uB(uv)).
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By equation of C(v, u), we have

C(v/u, u) =
x

(1− v/u)(1− v)
+

x

1− u
(C(v/u, u)− uC(v, 1))

+
x

(1− u)(1− v/u)
(B(v/u)− uB(v)).

Thus, by taking u = 1− x, we obtain

C(v, 1) =
x

(1− x− v)(1− v)
+

1

1− x− v
(B(v/(1− x))− (1− x)B(v)).

Hence, the equation of B(v) gives

B(v) =
x

(1− x)(1− v)
+

xv

(1− x)2(1− v)
B(v/(1− x)).

By iterating this equation with assuming |x| < 1, we obtain

B(v) =
x

(1− x)(1− v)
+

x2v

(1− x)2(1− v)((1− x)− v)

+
x2v2

(1− x)3(1− v)(1− x− v)
B(

v

(1− x)2
)

=

2∑
j=0

xj+1vj

(1− x)j+1
∏j

i=0((1− x)i − v)

+
x3v3

(1− x)3(1− v)(1− x− v)((1− x)2 − v)
B(

v

(1− x)3
)

= · · · ,

which implies

B(v) =
∑
j≥0

xj+1vj

(1− x)j+1
∏j

i=0((1− x)i − v)
.

Equation of A(v) with v = x gives

A(0) =
x

1− x
+

x

1− x
B(x),

which completes the proof.
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Theorem 3.3. We have {01-1, 02-1} g∼ {01-0, 02-1}. Moreover, the rules of

the generating tree T ({01-1, 02-1}) are given by

am � am+1, am, . . . , a1,

where am = 0m. Moreover, for all n ≥ 0,

|In({01-1, 02-1})| =
1

n+ 2

(
2n+ 2

n+ 1

)
.

Proof. By Algorithm KMY, the rules of the generating tree T ({01-1, 02-1})
are the same as the rules of the generating tree T ({01-0, 02-1}) (see end of

Section 2) and they are given by am � am+1, am, . . . , a1, where am = 0m.

Thus, {01-1, 02-1} g∼ {01-0, 02-1}.
Let B = {01-0, 02-1}. Define Am(x) to be the generating function for

the number of nodes at level n ≥ 0 for the subtree of T (B; am), where its

root stays at level 0. Then, these rules lead to

Am(x) = x+ x

m+1∑
i=1

Ai(x).

Define A(x, v) =
∑

m≥1Am(x)vm−1. Thus,

A(x, v) =
x

1− v
+

x

v
(A(x, v)−A(x, 0)) +

x

1− v
A(x, v).

By taking v = 1−
√
1−4x
2 , we obtain A(x, 0) = 1−

√
1−4x
2x − 1, the generating

function for the Catalan numbers 1
n+1

(
2n
n

)
with n ≥ 1. Hence,

|In({01-1, 02-1})| =
1

n+ 2

(
2n+ 2

n+ 1

)
,

for all n ≥ 0.

Theorem 3.4. We have {01-0, 12-0} I∼ {01-0, 10-1}. Moreover, the rules of

the generating tree T ({01-0, 12-0}) are given by

am � am+1, am, bm,2, . . . , bm,m,

bm,j � am+1, am+1−j , bm+1,2, . . . , bm+1,j , bm+1−j,2, . . . , bm1+−j,m+1−j ,
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where am = 0m and bm,j = 0mj with 2 ≤ j ≤ m. The rules of the generating
tree T ({01-0, 10-1}) are given by

am � am+1, am, bm,2, . . . , bm,m,

bm,j � am, bm,2, . . . , bm,j−1, bm+1,j , bm,j , . . . , bm,m,

where am = 0m and bm,j = 0mj with 2 ≤ j ≤ m.
Moreover, the number of inversion sequences in In({01-0, 10-1}) is given

by the n-th Bell number.

Proof. We proceed with the proof by showing that the number of inversion
sequences in In({01-0, 12-0}) (In({01-0, 10-1})) is given by the n-th Bell
number, that is, the generating function for the number of such inversion
sequences is given by G(x) =

∑
j≥1

xj
∏j

i=1(1−ix)
.

First, we consider the case B = {01-0, 12-0}. By Algorithm KMY, we
derive the rules of the generating tree T (B). Define Am(x) (respectively,
Bm,j(x)) to be the generating function for the number of nodes at level
n ≥ 0 for the subtree of T (B; am) (respectively, T (B; bm,j), where its root
stays at level 0. Then, these rules lead to

Am(x) = x+ xAm+1(x) + xAm(x) + x

m∑
i=2

Bm,i(x),

Bm,j(x) = x+ xAm+1(x) + xAm+1−j(x) + x

j∑
i=2

Bm+1,i(x)

+ x

m+1−j∑
i=2

Bm+1−j,i(x).

Define A(v) =
∑

m≥1Am(x)vm−1 and

B(v, u) =
∑
m≥1

m−2∑
j=0

Bm,j(x)u
m−jvm−2.

Then, the recurrence can be written as

A(v) =
x

1− v
+

x

v
(A(v)−A(0)) + xA(v) + xvB(v, 1),

(1)

B(v, u) =
x

(1− v)(1− uv)
+

x

v2(1− u)

(
A(v)−A(0)− 1

u
(A(uv)−A(0))

)
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+
x

1− v
A(uv) +

x

v(1− u)
(B(v, 1)−B(v, u)) +

xuv

1− v
B(uv, 1).(2)

Based on the first terms of the generating functions A(v) and B(v, u), we

assume

A(v) + vB(v, 1) =
G(x/(1− v))

1− v
.(3)

Note that from (3), we see that A(0) = G(x). Also, by (1)-(2), we have

A(v) =
xG(x)

2vx− v + x
+

vx(1 +G(x/(1− v)))

(1− v)(2vx− v + x)

and

B(v, 1) =
x(1− v)G(x)− (vx− v + x)G(x/(1− v)) + vx

v(1− v)(2vx− v + x)
.

Hence, by (2), we have an explicit formula for B(v, u):

B(v, u)

=
(−v2(1− v)(1− u) + v(2uv2 − 5uv − 2v2 + u+ 4v)x)xG(x)

v(uv − v − x)(2uvx− uv + x)(1− v)(2vx− v + x)

+
(8uv2 − 2uv − 6v2 + v − 1)x3G(x)

v(uv − v − x)(2uvx− uv + x)(1− v)(2vx− v + x)

− x(v − x)G(x/(1− v))

v(uv − v − x)(1− v)(2vx− v + x)

+
(u2v2 − uv2 − uvx+ x)xG(x/(1− uv))

(uv − v − x)(2uvx− uv + x)(1− uv)(1− v)

+
(uv2(1− u) + (2u2v2 − u2v − 2uv2 + 2u− 1)x)vx

(1− v)(2vx− v + x)(1− uv)(2uvx− uv + x)(uv − v − x)

− (4uv − 2v + 1)x3

(1− v)(2vx− v + x)(2uvx− uv + x)(uv − v − x)
.

By using expressions of B(v, u) and A(v), we see that (1)-(3) hold. Hence,

A(0) = G(x), that is, the number of inversion sequences in In({01-0, 12-0})
is given by the n-th Bell number.

Second, we consider the case B = {01-0, 10-1}. By Algorithm KMY, we

derive the rules of the generating tree T (B). Define Am(x) (respectively,

Bm,j(x)) to be the generating function for the number of nodes at level
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n ≥ 0 for the subtree of T (B; am) (respectively, T (B; bm,j), where its root
stays at level 0. Then, these rules lead to

Am(x) = x+ xAm+1(x) + xAm(x) + xBm,2(x) + · · ·+ xBm,m(x),

Bm,j(x) = x+ xAm(x) + xBm,2(x) + · · ·+ xBm,j−1(x) + xBm+1,j(x)

+ xBm,j(x) + · · ·+ xBm,m(x).

Define A(v) =
∑

m≥2Am(x)vm−2 and

B(v, u) =
∑
m≥1

m−2∑
j=0

Bm,j(x)u
m−jvm−2.

Then, the recurrence can be written as

A(v) =
x

1− v
+

x

v
(A(v)−A(0)) + xA(v) + xB(v, 1),(4)

B(v, u) =
x

(1− v)(1− uv)
+

x

1− u
(A(v)− uA(uv))

+
x

1− u
(B(v, 1)−B(v, u))

+
x

uv
(B(v, u)−B(v, 0)) +

x

1− u
(B(v, u)− uB(uv, 1)).(5)

In order to solve this system, we guess that B(v, 0) = A(v) (based on the
first values of the generating functions). By solving (4) for B(v, 1), then (5)
gives

B(v, u) =
A(v)− uA(uv)

1− u
,

which implies B(v, 1) = A(v) + v ∂
∂vA(v). Hence, (5) gives

A(v) =
x

1− v
+

x

v
(A(v)−A(0)) + 2xA(v) + xv

∂

∂v
A(v).

By finding the coefficient of vm−2, we obtain

Am(x) = x+ xAm+1(x) + 2xAm(x) + (m− 2)xAm(x),

for all m ≥ 2. Hence, Am(x) = x
1−mx + x

1−mxAm+1(x). By induction on m,
we see that

Am(x) =
∑
j≥1

xj∏m+j−1
i=m (1− ix)

,
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which implies

A(v) =
∑
m≥2

∑
j≥1

xjvm−2∏m+j−1
i=m (1− ix)

and

B(v, u) =
∑
m≥2

∑
j≥1

xj(1− um−1)vm−2

(1− u)
∏m+j−1

i=m (1− ix)
.

This satisfies (4), (5), and B(v, 0) = A(v). Note that A1(x) = x+ xA1(x) +
xA2(x), that is, A1(x) = x

1−x + x
1−xA2(x), so A1(x) = G(x). Hence, the

number of inversion sequences in In({01-0, 10-1}) is given by the n-th Bell
number.

Theorem 3.5. We have {10-1, 20-1} g∼ {10-0, 20-1}. Moreover, the rules of
the generating tree T ({10-1, 20-1}) are given by

am � am+1, bm,1, . . . , bm,m,

bm,j � am+2−j , bm+1,j , . . . , bm+1,m+1, bm+2−j,1, . . . , bm+2−j,m+2−j ,

where am = 0m and bm,j = 0mj with 1 ≤ j ≤ m. Moreover, the generating
function

∑
n≥0 |In({10-1, 20-1})|xn+1 is given by [13, Sequence A117106].

Proof. Algorithm KMY derives that the generating trees T ({10-1, 20-1})
and T ({10-0, 20-1}) with the given rules in the statement. So it remains
to show that the generating function

∑
n≥0 |In({10-1, 20-1})|xn+1 is given

by [13, Sequence A117106]. To do so, we show that In({10-1, 20-1}) =
In({101, 201}), where in the right-side we avoid 101 and 201 as subse-
quences (that is, for any e ∈ In({101, 201}), there are no i, j, k such that
0 ≤ i < j < k ≤ n and red(eiejek) ∈ {101, 201}). Clearly, In({101, 201}) ⊆
In({10-1, 20-1}). Now, let us show In({10-1, 20-1}) ⊆ In({101, 201}).

Let π ∈ In({10-1, 20-1}). Assume that π contains 101 as πaπbπc with
0 ≤ a < b < c ≤ n, a minimal, a + b minimal, and a + b + c minimal, that
is, leftmost occurrence of 101 in π. Since π avoids 10-1, so b > a+ 1. Since
we select left-most occurrence of 101, we have πa+1, . . . , πb−1 ≥ πa. So, the
reduction of πb−1πbπc is either 101 or 201, a contradiction.

Now, assume that π contains 201 as πaπbπc with 0 ≤ a < b < c ≤ n, a
minimal, a+ b minimal, and a+ b+ c minimal, that is, leftmost occurrence
of 201 in π. Since π avoids 20-1, we have that b > a + 1. Since minimality
of a+ b, we see that πa+1, . . . , πb−1 ≥ πc. Thus, the reduction of πb−1πbπc is
either 101 or 201, a contradiction.

Hence, π ∈ In{101, 201}, which completes the proof.
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Theorem 3.6. We have {10-1, 21-0} g∼ {10-0, 21-0}. Moreover, the rules of
the generating tree T ({10-1, 21-0}) are given by

am � am+1, bm,1, . . . , bm,m,

bm,j � am+1, . . . , am+2−j , bm+1,j , . . . , bm+1,m+1,

where am = 0m and bm,j = 0mj with 1 ≤ j ≤ m. Moreover,

|In({10-0, 21-0})| = |Sn+1(1-24-3)|,

where in the right-side we meant the number of permutations π = π1 · · ·πn+1

of length n+1 such that there are no i, j, k such that 0 ≤ i < j < k−1 ≤ n−1
and red(πiπjπj+1πk) = 1243, See [13, Sequence A137538].

Proof. Algorithm KMY derives that the generating trees T ({10-1, 21-0})
and T ({10-0, 21-0}) with the given rules in the statement. So remains, to
show that |In({10-0, 21-0})| = |Sn+1(1-24-3)|, for all n ≥ 0. Here we use the
coding of a permutation in π = π1 · · ·πn ∈ Sn+1 by inversion sequences in
e = e0 · · · en ∈ In: ei = |{j|πn+1−i > πn+1−j , i > j ≥ 0}|. In this case, we
write e = e(π) = e0 · · · en.

Assume that π ∈ Sn+1 contain 1-24-3 and, then there exist 1 ≤ a <
b < c − 1 ≤ n such that red(πaπbπb+1πc) = 1243. We choose the left-most
occurrence of 1-24-3, that is, a, a + b, a + b + c minimal. Let a ≤ i ≤ b − 1
such that πi < πa and i maximal. So, since we selected leftmost occurrence
of 1-24-3, we see all the letters πi+1, . . . , πb−1 are greater than πc. Hence, π
contains 1-24-3 as leftmost occurrence πaπbπb+1πc if and only if en+1−b >
en+1−b ≥ en+1−i, that is, if and only if e contains either 10-0 or 21-0.

In order to present our last I-Wilf equivalence, we need the following
definition. A sequence π1 · · ·πn of nonnegative integers is an ascent sequence
of length n if π1 = 0 and for all i ≥ 2, πi is at most 1 plus the number
of ascents in π1 · · ·πi−1, that is, πi ≤ 1 + |{j|πj < πj+1, 1 ≤ j ≤ i − 2}|.
Note that the area of combinatorics of ascent sequences have been received
a lot of attention, see, for example, [2, 5, 6, 7]. Here, we interested on [13,
Sequence A138265], the sequence of the number of ascent sequences π1 · · ·πn
of length n without flat steps (that is, πi �= πi+1 for all i = 1, 2, . . . , n). We
denote the set of all ascent sequences of length n without flat steps by ASn.

Lemma 3.7. The generating tree A for all the ascent sequences in ∪n≥2ASn

is given by root (1, 1) and the following rule

si,j � si,0, . . . , si,j−1, si+1,j+1, . . . , si+1,i+1
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with 0 ≤ j ≤ i and i ≥ 1, where si,j is the label for an ascent sequence with
i ascents and right most letter j.

Proof. Let π be any ascent sequence with i ascents and the last (rightmost)
letter j. Then, the children of π are πk where k = 0, 1, . . . , j, j+1, . . . , i+1.
Note that πk has i ascents and last letter is k whenever k = 0, 1, . . . , j − 1
and it has i+ 1 ascents and last letter k whenever k = j + 1, j + 2, . . . , i+.
This completes the proof.

Theorem 3.8. We have {00-0, 10-0} I∼ {00-0, 10-1}. Moreover, the number
of inversion sequences in In(00-0, 10-0) is the same as the number of ascents
sequences in ASn+2.

Proof. By Algorithm KMY, we obtain the rules of the generating trees
T ({00-0, 10-0}) and T ({00-0, 10-1}). More precisely, we have that

(1) the rules of the generating tree T ({00-0, 10-0}) are given by

am � bm,0, . . . , b0,m, am+1,

bm,j � bm+j,0, . . . , bm+1,j−1, bm,j+1, . . . , b0,m+j+1, am+j+1,

where am = 01 · · ·m and bm,j = 01 · · ·m01 · · · j.
(2) the rules of the generating tree T ({00-0, 10-1}) are given by

a′m � b′m,1, . . . , b
′
1,m, c′m, a′m+1,

c′m � b′m+1,1, . . . , b
′
1,m+1, a

′
m+1,

b′m,j � b′m+j−1,1, . . . , b
′
m+1,j−1, c

′
m+j−1, b

′
m,j+1, . . . , b

′
1,m+j , a

′
m+j ,

where a′m = 01 · · ·m, c′m = 01 · · ·mm, and b′m,j = 01 · · ·mmsj , where
sj is a sequence of j consecutive letters starting from 0 and does not
contain the letter m.

To show that {00-0, 10-0} I∼ {00-0, 10-1}, we describe a simple bijection f
between labels of the generating tree {00-0, 10-0} and labels of the generating
tree {00-0, 10-1} as follows: f(am) = a′m, f(bm,0) = c′m, and f(bm,j) = b′j,m+1

with j ≥ 1 and m ≥ 0. Clearly, we see that each rule in the generating tree
{00-0, 10-0} maps by f to a rule in the generating tree {00-0, 10-1}.

Thus, it is remains to prove that

|In{00-0, 10-0})| = |ASn+2|,

for all n ≥ 2. To do so, we describe a bijection between the generating tree
T ({00-0, 10-0}) and the generating tree of A (see Lemma 3.7). By mapping
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am to (m + 1,m + 1) and bm,j to (m + j + 1, j), we see that the root of
T ({00-0, 10-0}) maps to (1, 1) and the rules map to

(m+ 1,m+ 1) � (m+ 1, 0), . . . , (m+ 1,m), (m+ 2,m+ 2),

(m+ j + 1, j) � (m+ j + 1, 0), . . . , (m+ j + 1, j − 1),

(m+ j + 2, j + 1), . . . , (m+ j + 2,m+ j + 1),

(m+ j + 2,m+ j + 2),

that is, we can map the root of T ({00-0, 10-0}) to (1, 1) and its rules maps
to

sm,j � sm,0, . . . , sm,j−1, sm+1,j+1, . . . , sm+1,m+1.

Thus, by Lemma 3.7, we see that the number of nodes at level n (the root
is stay at level 0) in T ({00-0, 10-0}) equals the number of nodes at level n
in A. Note that the root 0 ∈ I0 has length 0 and 01 ∈ AS2 has length 2.
Hence, |In{00-0, 10-0})| = |ASn+2|, for all n ≥ 1, as claimed.
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