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Sharp minimum degree conditions for disjoint
doubly chorded cycles

Michael Santana and Maia Van Bonn
∗

In 1963, Corrádi and Hajnal proved that if G is an n-vertex graph
where n ≥ 3k and δ(G) ≥ 2k, then G contains k vertex-disjoint
cycles, and furthermore, the minimum degree condition is best
possible for all n and k where n ≥ 3k. This serves as the moti-
vation behind many results regarding best possible conditions that
guarantee the existence of a fixed number of disjoint structures in
graphs. For doubly chorded cycles, Qiao and Zhang proved that if
n ≥ 4k and δ(G) ≥ � 7k

2 �, then G contains k vertex-disjoint dou-
bly chorded cycles. However, the minimum degree in this result
is sharp for only a finite number of values of k. Later, Gould Hi-
rohata, and Horn improved upon this by showing that if n ≥ 6k
and δ(G) ≥ 3k, then G contains k vertex-disjoint doubly chorded
cycles. Furthermore, this minimum degree condition is best pos-
sible for all n and k where n ≥ 6k. In this paper, we prove two
results. First, we extend the result of Gould et al. by showing their
minimum degree condition guarantees k disjoint doubly chorded
cycles even when n ≥ 5k, and in addition, this is best possible for
all n and k where n ≥ 5k. Second, we improve upon the result
of Qiao and Zhang by showing that every n-vertex graph G with
n ≥ 4k and δ(G) ≥ � 10k−1

3 �, contains k vertex-disjoint doubly
chorded cycles. Moreover, this minimum degree is best possible for
all k ∈ Z

+.
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1. Introduction

All graphs in this paper are simple with no loops and no multiple edges.
Given a graph G, we use V (G) and E(G) to denote the sets of vertices and
edges of G, respectively, and for a vertex v, we often use v ∈ G to denote
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v ∈ V (G). For a subgraph H of G, and for a vertex v ∈ G (where v is not
necessarily in H), the neighborhood of v in H is denoted by NH(v), and
the number of neighbors of v in H will be written by dH(v). We use |G| for
|V (G)|, G for the complement of G, and δ(G) for the minimum degree of G.
Furthermore, σ2(G) denotes the minimum Ore degree of G (sometimes called
the minimum degree sum), which is given by the minimum of dG(x)+dG(y)
over all non-adjacent pairs of distinct vertices x and y in G (when G is
complete, we say σ2(G) = ∞).

Kn is used to denote the complete graph on n vertices, and Kk1,...,kt
is

the complete t-partite graph with parts of size k1, . . . , kt. Also, the Paw is
the 4-vertex graph formed by adding an edge to K1,3.

If a graph H contains a spanning cycle C and |E(H)| > |E(C)|, then H
is called a chorded cycle, and every edge in E(H) \ E(C) is called a chord.
If a chorded cycle H has at least two chords, then we say H is a doubly
chorded cycle. Lastly, two graphs are said to be ‘disjoint’ if they have no
vertices in common.

In 1963, Corrádi and Hajnal proved the following theorem, which verified
a conjecture of Erdős.

Theorem 1 (Corrádi and Hajnal [1]). For all k ∈ Z
+, if G is an n-vertex

graph where n ≥ 3k and δ(G) ≥ 2k, then G contains k disjoint cycles.

The condition on the number of vertices in this result is clearly best
possible as every cycle requires at least three vertices. The minimum degree
condition is also best possible as there exist n-vertex graphs with n ≥ 3k
and minimum degree 2k − 1 that do not have k disjoint cycles (see [5] for a
complete characterization). In fact, for every k ∈ Z

+ and every n ≥ 3k, there
exists an n-vertex graph with minimum degree 2k − 1 that does not have
k disjoint cycles. Thus, the minimum degree condition in Theorem 1 is not
just best possible in general, but is actually best possible for all n, k ∈ Z

+

where n ≥ 3k.
Theorem 1 has been extended in a number of ways, and serves as the

motivation behind finding best possible conditions that guarantee the exis-
tence of a fixed number of similar objects in a graph. One such extension is
an analogue for chorded cycles proved by Finkel in 2008.

Theorem 2 (Finkel [2]). For all k ∈ Z
+, if G is an n-vertex graph where

n ≥ 4k and δ(G) ≥ 3k, then G contains k disjoint chorded cycles.

The condition on the number of vertices in this result is clearly best
possible as every chorded cycle requires at least four vertices. Furthermore,
the minimum degree condition is also sharp, as there exist n-vertex graphs
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with n ≥ 4k and minimum degree 3k − 1 that do not contain k disjoint
chorded cycles. The complete characterization of such graphs is given by
the following result.

Theorem 3 (Molla, Santana, and Yeager [6]). For all k ∈ Z
+ with k ≥ 2, if

G is an n-vertex graph where n ≥ 4k and σ2(G) ≥ 6k − 2, then G contains
k disjoint chorded cycles unless either:

• G ∼= K3k−1,n−3k+1 with n ≥ 6k − 2, or
• G ∼= K1,3k−2,3k−2 where n = 6k − 3.

One consequence of Theorem 3 is that every n-vertex graph with min-
imum degree 3k − 1 that does not contain k disjoint chorded cycles, must
have n ≥ 6k − 3. Therefore, the minimum degree condition in Theorem 2
is not best possible when 4k ≤ n ≤ 6k − 4, and it is currently unknown as
to what the best possible minimum degree condition might be for n in this
range. A possible answer to this is the following conjecture from [7]. As a
note, the authors from [7] actually pose a more general conjecture in regards
to finding both cycles and chorded cycles in a graph, and they prove an ap-
proximate version of the following conjecture as well as the more general
version.

Conjecture 4 (Molla, Santana, and Yeager [7]). For all k ∈ Z
+, if G is an

n-vertex graph with 4k ≤ n ≤ 6k− 4 and δ(G) ≥ 3k
2 + n

4 , then G contains k
disjoint chorded cycles.

We now turn our attention to doubly chorded cycles, which is main con-
cern of this paper. To begin, a well-known theorem by Hajnal and Szemerédi
on packings of cliques yields the following.

Theorem 5 (Hajnal and Szemererédi [4]). For all k ∈ Z
+, if G is an n-

vertex graph where n = 4k and δ(G) ≥ 3k, then G contains k disjoint copies
of K4.

As K4 is the smallest doubly chorded cycle, Theorem 5 guarantees the
existence of k disjoint doubly chorded cycles. Furthermore, the minimum
degree condition is known to be best possible for all k ∈ Z

+.

In 2010, Qiao and Zhang sought to extend this result for graphs on at
least 4k vertices.

Theorem 6 (Qiao and Zhang [8]). For all k ∈ Z
+, if G is an n-vertex graph

where n ≥ 4k and δ(G) ≥ �7k2 �, then G contains k disjoint doubly chorded
cycles.
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The condition on the number of vertices in this result is clearly best pos-
sible as every doubly chorded cycle requires at least four vertices. However,
the only sharpness examples for the minimum degree condition are K2,2,
K3,3,3, K4,5,5, and K8,8,8, which show it best possible for k = 1, 2, 3, and 5,
respectively.

This result was later improved upon by Gould, Hirohata, and Horn in
2013, who proved the following Ore degree version and subsequent minimum
degree corollary.

Theorem 7 (Gould, Hirohata, and Horn [3]). For all k ∈ Z
+, if G is an

n-vertex graph where n ≥ 6k and σ2(G) ≥ 6k−1, then G contains k disjoint
doubly chorded cycles.

Corollary 8 (Gould, Hirohata, and Horn [3]). For all k ∈ Z
+, if G is an

n-vertex graph where n ≥ 6k and δ(G) ≥ 3k, then G contains k disjoint
doubly chorded cycles.

The minimum degree condition in Corollary 8 is best possible for all
n, k ∈ Z

+ where n ≥ 6k, and we will show this in Section 2.

The main purpose of this paper is attempt to determine the best possible
minimum degree condition for n-vertex graphs with 4k < n < 6k that
guarantees the existence of k disjoint doubly chorded cycles. In particular,
we prove the following two results.

Theorem 9. For all k ∈ Z
+, if G is an n-vertex graph where n ≥ 5k and

δ(G) ≥ 3k, then G contains k disjoint doubly chorded cycles.

Theorem 10. For all k ∈ Z
+, if G is an n-vertex graph where n ≥ 4k and

δ(G) ≥ �10k−1
3 �, then G contains k disjoint doubly chorded cycles.

Theorem 9 extends the result of Gould, Hirohata, and Horn in Corollary
8 by showing that the minimum degree condition in Corollary 8 also suffices
for n-vertex graphs with n ≥ 5k. Furthermore, in Section 2 we show that this
minimum degree condition is best possible for all n, k ∈ Z

+ where n ≥ 5k.

Theorem 10 improves upon the result of Qiao and Zhang in Theorem 6.
In particular, in Section 2 we show that our minimum degree is best possible
for all k ∈ Z

+, while the minimum degree condition in Theorem 6 is sharp
only when k ∈ {1, 2, 3, 5}.

That said, the sharpness examples that we will construct in Section 2 for
Theorem 10 will all be n-vertex graphs with n = 5k − 1. These graphs will
also demonstrate that the condition on the number of vertices in Theorem
9 is best possible for the minimum degree condition of 3k. That is, it is
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impossible to replace the condition ‘n ≥ 5k’ in Theorem 9 with ‘n ≥ x’

where x < 5k and still guarantee k disjoint doubly chorded cycles.

This still leaves the question as to what is the best possible minimum

degree condition for n-vertex graphs with 4k < n < 5k that guarantees
the existence of k disjoint doubly chorded cycles? We pose the following

conjecture, which if true, would completely answer this question, and we
prove an approximate version of this conjecture in Section 9.

Conjecture 11. For all k ∈ Z
+, if G is an n vertex graph where 4k ≤ n ≤

5k and δ(G) ≥ �5k+n
3 �, then G contains k disjoint doubly chorded cycles.

The remainder of the paper is structured as follows. As mentioned, in
Section 2, we construct the sharpness examples to Theorems 9 and 10. In

addition, we construct graphs which show that if Conjecture 11 is true, it is

best possible. The proofs of Theorems 9 and 10 are spread across Sections
3–8, and in some sense, are proved simultaneously. In Section 3, we define

some notation and begin the setup of our proofs, and in Section 4, we prove
several structural lemmas that are foundational to our proofs. Sections 5 and

6 deal with separate cases and culminate in a proof of Theorem 9, subject
to a lemma, whose detailed proof is contained in Section 7. Theorem 10 is

proved in Section 8 based on all our prior work. Lastly, we address Conjecture

11 in Section 9, and there prove an approximate version of this conjecture.

2. Sharpness examples

In this section, we construct sharpness examples which show that Theorems
9 and 10 are sharp. Furthermore, we construct examples that show that if

Conjecture 11 is true, then it is also sharp.

The following observations will be used in our arguments. In complete

bipartite graphs, every doubly chorded cycle requires at least three vertices
from each partite set. In complete tripartite graphs, every 5-vertex doubly

chorded cycle requires exactly one vertex from one partite set and exactly
two vertices from each of the other two partite sets.

Observe that for all k ∈ Z
+ and n ≥ 6k − 2, K3k−1,n−3k+1 is an n-

vertex graph with minimum degree 3k− 1. Furthermore, K3k−1,n−3k+1 does

not have k disjoint doubly chorded cycles, as each doubly chorded cycle
requires at least three vertices from each partite set. This construction shows

that the minimum degree condition in Theorem 9 is best possible for all

n, k ∈ Z
+ where n ≥ 6k − 2. This same construction shows the minimum

degree condition in Corollary 8 is also best possible for such k and n.
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For k, n ∈ Z
+ such that 5k ≤ n ≤ 6k−1, letHk,n = K6k−n−1,n−3k,n−3k+1.

Since 5k ≤ n ≤ 6k − 1, the smallest partite set has size 6k − n − 1, where
0 ≤ 6k − n− 1 ≤ k − 1, so that Hk,n could be bipartite. Observe that Hk,n

is an n-vertex graph, and δ(Hk,n) = 6k − n− 1 + n− 3k = 3k − 1.
We claim that Hk,n does not have k disjoint doubly chorded cycles. If

on the contrary, Hk,n contains k disjoint doubly chorded cycles, then each
one has either five vertices, or at least six. By our observations above, the
maximum number of doubly chorded cycles that have exactly five vertices is
6k−n−1. This means we need to still find k−(6k−n−1) = n−5k+1 more
disjoint doubly chorded cycles, each with at least six vertices. So in total, the
number of vertices we need is at least 5(6k−n− 1)+ 6(n− 5k+1) = n+1,
which is impossible as Hk,n is an n-vertex graph. So Hk,n is a sharpness
example to Theorem 9. Thus, for every n, k ∈ Z

+ where n ≥ 5k, we can
construct an n-vertex graph with minimum degree 3k − 1 that does not
have k disjoint doubly chorded cycles.

The last family of graphs we will construct will be sharpness examples
to both Theorem 10 and Conjecture 11 (if true) Let t, n ∈ Z such that
0 ≤ t ≤ n

4 . Define the graph

G(t, n) = Kt,t+�n−4t

3
�,t+�n−4t

3
�+α,t+�n−4t

3
�+β

where if n − 4t ≡ 0 mod 3, then α = β = 0; if n − 4t ≡ 1 mod 3, then
α = 0 and β = 1; if n − 4t ≡ 2 mod 3, then α = β = 1. Observe that in
each case, the number of vertices in G(t, n) is exactly n, and furthermore, if
t = 0, then G(t, n) is tripartite.

Lemma 12. If 4k ≤ n ≤ 5k, then G′ = G(5k − n, n) contains k disjoint
doubly chorded cycles, and furthermore the only way to find k disjoint doubly
chorded cycles is to use every vertex.

Proof. Since 4k ≤ n ≤ 5k, we have 0 ≤ 5k − n ≤ n
4 . If n = 5k, then

G′ is tripartite, and if n < 5k, then the smallest partite set of G′ has size
5k − n. Regardless, the maximum number of disjoint copies of K4 we can
find in G′ is 5k − n. If the number of disjoint copies of K4 we create is say
� < 5k−n, then in order to find k disjoint doubly chorded cycles in G′, each
of the remaining k− � disjoint doubly chorded cycles must have at least five
vertices. This requires

n ≥ 4�+ 5(k − �) = 5k − � > 5k − (5k − n) = n,

which is a contradiction. Thus, the only way to find k disjoint doubly chorded
cycles in G′ is create 5k − n disjoint copies of K4.
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Now if we remove these 5k−n disjoint copies of K4 from G′, this leaves
a new graph G′′ that is a complete tripartite graph with partite sets of size

⌊
5(n− 4k)

3

⌋
,

⌊
5(n− 4k)

3

⌋
+ α, and

⌊
5(n− 4k)

3

⌋
+ β.

Let x = n − 4k. Since 4k ≤ n, we have x ≥ 0. We induct on x to show

that G′′ contains x disjoint copies of K1,2,2 and this covers all of the vertices

of G′′. This is clear if x = 0, 1, 2 as G′′ is empty, K1,2,2, or K3,3,4, respectively

(recall that α and β are defined based on 5(n − 4k), as t = 5k − n). For

x ≥ 3, we remove a copy of K5,5,5 from G′′, which contains 3 disjoint copies

of K1,2,2, and induct on the remaining graph.

Thus, G′ will contain 5k−n disjoint copies of K4 and x = n−4k disjoint

copies ofK1,2,2, and soG′ will have 5k−n+n−4k = k disjoint doubly chorded

cycles, and furthermore the only way to find k disjoint doubly chorded cycles

is to use every vertex.

Let k, n′ ∈ Z
+ such that 4k < n′ ≤ 5k, and let H ′ = G(5k−n′, n′). Note

that t = 5k − n′ > 0 so that H ′ is a 4-partite graph, and furthermore, the

sizes of the partite sets of H ′ depend on n′−4t = 5n′−20k. If 5n′−20k ≡ 0

or 2 mod 3, then form the graph H from H ′ by deleting a vertex from the

smallest partite set with size 5k − n′; in these cases δ(H) = δ(H ′) − 1. If

5n′ − 20k ≡ 1 mod 3, then form the graph H from H ′ by deleting a vertex

from the largest partite set with size 5k − n′ + �5n′−20k
3 �+ β; recall that in

this case, α = 0 and β = 1 so that δ(H) = δ(H ′).
By Lemma 12, H does not contain k disjoint doubly chorded cycles as

it does not have enough vertices. Let n = |V (H)| so that n = n′ − 1 and

4k ≤ n < 5k. We claim δ(H) = �5k+n
3 � − 1, which will show that H is a

sharpness example to Theorem 10 (when n = 5k − 1) and Conjecture 11.

If 5n′ − 20k ≡ 0 mod 3, then �5n′−20k
3 � = 5n′−20k

3 , and δ(H ′) = 3(5k −
n′) + 2�5n′−20k

3 � = 5k+n′

3 , so that 3|(5k + n′) and 3|(5k + n+ 1). Therefore,

δ(H) = δ(H ′)− 1 =
5k + n′

3
− 1 =

5k + n+ 1

3
− 1 =

⌈
5k + n

3

⌉
− 1.

Similarly, if 5n′− 20k ≡ 2 mod 3, then δ(H ′) = 5k+n′−1
3 so that 3|(5k+

n). Therefore,

δ(H) = δ(H ′)− 1 =
5k + n′ − 1

3
− 1 =

5k + n

3
− 1 =

⌈
5k + n

3

⌉
− 1.
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Laslty, if 5n′ − 20k ≡ 1 mod 3, then δ(H ′) = 5k+n′−2
3 so that 3|(5k +

n− 1) and 3|(5k + n+ 2). Note that in this case,

δ(H) = δ(H ′) =
5k + n′ − 2

3
=

5k + n− 1

3
=

5k + n+ 2

3
−1 =

⌈
5k + n

3

⌉
−1.

So for all n, k ∈ Z
+ where 4k ≤ n ≤ 5k−1, we can construct an n-vertex

graph with minimum degree �5k+n
3 � − 1 that does not contain k disjoint

doubly chorded cycles. These graphs are sharpness examples to Conjecture
11, if it is true. Furthermore, for all k ∈ Z

+ and n = 5k − 1, these graphs
will have minimum degree �10k−1

3 � − 1 and so are sharpness examples to
Theorem 10.

3. Setup and notation

In this section, we provide the setup behind our proofs of Theorems 9 and
10. To start, we present notation that will be used throughout our proofs.

3.1. Notation

Let G be a graph, v ∈ V (G), and A and B be two subsets of V (G), not
necessarily disjoint. We let NB(v) denote NG(v) ∩ B, and let both ‖v,B‖
and dB(v) denote |NB(v)|. We also let ‖A,B‖ =

∑
v∈A ‖v,B‖. For every

collection of subgraphs H of G, we let V (H) =
⋃

H∈H V (H). If H is a
subgraph of G, we often replace V (H) with H in the above notation (e.g.,
NH(v) = NV (H)(v), ‖v,H‖ = ‖v, V (H)‖, and ‖A,H‖ = ‖A, V (H)‖). Simi-
larly, we often replace V (H) with H when H is a collection of subsets of G
(e.g., ‖A,H‖ = ‖A, V (H)‖). Furthermore, this notation is commutative so
that ‖A,B‖ = ‖B,A‖.

If G is a graph and A ⊆ V (G), we let G[A] denote the subgraph of G
induced by the vertices of A. If H is a subgraph of G, we let H + A =
G[V (H) ∪ A] and H − A = G[V (H) \ A]. If |A| is small, we often replace
A with the vertices of A in the above notation (e.g., if A = {v}, we use
H + v = H + A and H − v = H − A). If F is a subgraph of G, we let
H + F = H + V (F ) and H − F = H − V (F ).

For each doubly chorded cycle C ∈ C, we fix a spanning cycle and assume
an inherent orientation of this cycle, say clockwise. So for any vi, vj ∈ C,
there are exactly two paths from vi to vj along the spanning cycle of C. We
let viCvj denote the path that follows the orientation of the spanning cycle

and let vi
←−
Cvj denote the path that follows the reverse orientation. Similarly,



Disjoint doubly chorded cycles 225

given a path P , we assume an inherent orientation of this path, say from
left-to-right. So in following the orientation of P , if vi appears before vj ,

then define viPvj (resp. vj
←−
P vi) as the unique subpath of P that starts at

vi (resp. vj) and ends at vj (resp. vi).

We also let [vi, vj ]C and [vi, vj ]P denote V (viCvj) and V (viPvj), re-
spectively. We also let (vi, vj)C and (vi, vj)P denote V (viCvj) \ {vi, vj}
and V (viPvj) \ {vi, vj}, respectively. We similarly define (vi, vj ]C , [vi, vj)C ,
(vi, vj ]P , and [vi, vj)P . When it is clear from context what the host object
is, we will often supress the subscripts (e.g., [vi, vj ]). Note that [vi, vj ]C ∩
[vj , vi]C = {vi, vj}.

At times we will identify a doubly chorded cycle by first describing its
spanning cycle and then providing at least two chords. For example, if C =
v1 . . . vtv1 is a cycle with t ≥ 6 and v1v3, v1v4, v1v5 ∈ E(G), then we say
v1Cv5v1 is a doubly chorded cycle with chords v1v3 and v1v4.

Given a fixed path P , a hop is an edge in E(G[P ])\E(P ); that is, a hop
is an edge whose endpoints are both on P , but are not consecutive along P .
Given a vertex v ∈ P , a hop neighbor of v is a vertex adjacent to v via a
hop.

Lastly, to keep from writing ‘doubly chorded cycle’ throughout the rest
of this paper, we will often use ‘DCC’ in its place.

3.2. Setup

We now begin the proofs of Theorems 9 and 10. Suppose that for some
k ∈ Z

+, there exist n-vertex graphs with n ≥ 4k and minimum degree at
least 3k that do not contain k disjoint DCCs. Among these graphs choose
G to be one that is edge-maximal with respect to not having k disjoint
DCCs. That is, G does not contain k disjoint DCCs, however for each edge
e /∈ E(G), G+ e does contain k disjoint DCCs. Since G cannot be complete
(otherwise it would contain k disjoint DCCs as n ≥ 4k), there exists an edge
e /∈ E(G).

Since G + e contains k disjoint DCCs, G must contain k − 1 disjoint
DCCs, and furthermore these DCCs cover all but at least four vertices of
G. That is, we can partition G into a collection of k − 1 disjoint DCCs and
some nonempty remainder with at least four vertices.

Over all possible collections of k− 1 disjoint chorded cycles in G, we say
an optimal collection C is a collection of k− 1 disjoint DCCs which satisfies
the following conditions, where R is the graph G− V (C):
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(O1) the number of vertices in C is minimum,

(O2) subject to (O1), the total number of chords in the DCCs of C is maxi-

mum,

(O3) subject to (O1) and (O2), the length of the longest path in R is max-

imum, and

(O4) subject to (O1), (O2), and (O3), the number of edges in R is maximum.

In the rest of this paper, we fix an optimal collection C and remainder
R = G−V (C). We will also refer to this as an optimal partition of G. As we

already know that G has a partition into a collection of k− 1 disjoint DCCs

and some nonempty remainder with at least four vertices, (O1) implies that

given our optimial collection C, we have |R| ≥ 4. Furthermore, by (O1) and

(O2), G[C] ∼= C for all C ∈ C.
Our goal is to first show that n < 5k, which will prove Theorem 9 due

to the following. Any counterexample to Theorem 9 is an n-vertex graph H

with n ≥ 5k and δ(H) ≥ 3k that does not contain k disjoint DCCs. From
H, we can construct a sequence of graphs H = H0, H1, H2, . . . , such that

for each i ≥ 1, Hi is obtained from Hi−1 by adding an edge to Hi−1 that

does not result in Hi containing k disjoint DCCs. At some point this process

must stop and the resulting graph, say Ht, will be an n-vertex graph with

n ≥ 5k and δ(Ht) ≥ 3k that is edge-maximal with respect to not having k

disjoint DCCs. This will contradict our showing that every such graph will

have less than 5k vertices.

Once we have shown that n < 5k, we will then assume that in fact,

δ(G) ≥ 10k−1
3 . As 10k−1

3 ≥ 3k for all k ∈ Z
+, all of the previous properties

proven for G will still hold. We then show arrive at contradictions in all pos-

sible situations, showing that G does not exist, and by the above argument,

no counterexample to Theorem 10 exists.

4. Structural lemmas

In this section, we prove several structural lemmas that will be used through-

out the remaining sections.

An immediate corollary of (O1) is that, for any C ∈ C, no vertex of C

is incident to three chords; otherwise, we could replace C with a DCC on

fewer vertices. So every vertex in C is incident to at most two chords.
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Lemma 13. If C ∈ C, then C contains at most one vertex incident to two
chords, and furthermore, if such a vertex exists and |C| ≥ 6, then there is
another vertex in C that is not incident to any chord in C.

Proof. Let C ∈ C and let x ∈ C such that x is incident to two chords xx1
and xx2, where x1 ∈ (x, x2). Suppose e is a chord in C other than xx1 and
xx2. Both endpoints of e cannot be in [x, x2], otherwise xCx2x is a DCC
with chords xx1 and e, on fewer vertices than C, contradicting (O1). By
symmetry, both endpoints of e cannot be in [x1, x]. Therefore, every chord
in C other than xx1 and xx2 must have one endpoint in (x, x1) and the
other in (x2, x).

Suppose there exists y ∈ C − x such that y is incident to two chords,
yy1 and yy2, where y1 ∈ (y, y2). By symmetry, we may assume y ∈ (x, x1)
and y1, y2 ∈ (x2, x). If there exists z ∈ (y, x1), then is not an edge, then

xx1Cy2y
←−
Cx is a DCC with chords xx2 and yy1, on fewer vertices than C,

contradicting (O1). Hence, (y, x1) = ∅. However, xx1Cy1y
←−
Cx is a DCC with

chords xx2 and yx1, on fewer vertices than C, contradicting (O1). Thus, C
contains at most one vertex incident to two chords.

Now suppose |C| ≥ 6. We now show there exists a vertex in C−x that is
not incident to a chord. If there exists z ∈ (x1, x2), then as shown above, it
cannot be incident to a chord, as the other endpoint would either be in [x, x2]
or [x1, x]. So we may assume (x1, x2) = ∅, and without loss of generality,
(x, x1) has at least two vertices. So let w1 and w2 be two such vertices such
that x,w1, and w2 are consecutive along C.

So each wi is incident to a chord wiw
′
i, where w′

i ∈ (x2, x). Note also
that w′

1 �= w′
2 as otherwise we have two vertices in C that are incident to

two chords. If w′
2 ∈ (w′

1, x), then xx2Cw′
1w1Cx1x is a DCC with chords xw1

and x1x2 without w′
2. If w

′
1 ∈ (w′

2, x), then x
←−
Cw′

1w1Cx2x is a DCC with
chords xw1 and xx1 without w′

2. In either case, we contradict (O1).

Note that the following three lemmas apply to collections of k − 1 dis-
joint DCCs that satisfy (O1) and possibly (O2). So while they apply to our
optimal collection C, they may also apply to other collections of k−1 disjoint
DCCs.

Lemma 14. Let C′ be a collection of k − 1 DCCs that satisfies (O1), and
let R′ = G \ V (C′). For all v ∈ R′ and C ∈ C′, ‖v, C‖ ≤ 4 and if equality
holds, |C| ≤ 5.

Proof. We will start by showing that ‖v, C‖ ≤ 4, so suppose ‖v, C‖ ≥ 5. If
there exists a c1, c2 ∈ C that are adjacent along the cycle of C such that
‖v, C−c1−c2‖ ≥ 4, then G[C−c1−c2+v] contains a DCC with strictly fewer
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vertices than C, contradicting (O1). Since ‖v, C‖ ≥ 5 this implies ‖v, C‖ = 5
and |C| = 5. Since |C| = 5, then every chord in C will form a triangle, and
so v together with this triangle in C will form a K4, contradicting (O1).
Hence, ‖v, C‖ ≤ 4.

Suppose ‖v, C‖ = 4. We will prove that |C| ≤ 5 by considering cases.

Case 1. |C| ≥ 9
In this case, we can always find c1, c2 ∈ C that are adjacent along the

cycle of C, such that ‖v, C − c1 − c2‖ ≥ 4, which as we stated, leads to a
contradiction.

Case 2. |C| = 8

Label the vertices so that C = v1v2v3v4v5v6v7v8v1. To avoid having
c1, c2 ∈ C that are adjacent along the cycle of C, such that ‖v, C − c1 −
c2‖ ≥ 4, we may assume NC(v) = {v1, v3, v5, v7}. If C has a chord with
both endpoints in [v1, v5], then vv1Cv5v is a DCC with this chord and vv3,
contradicting (O1). So by symmetry, we may assume the chords in C are
v2v6 and v4v8. However, vv3Cv6v2v1v forms a DCC with chords v2v3 and
vv5, that contradicts (O1).

Case 3. |C| = 7

Label the vertices so that C = v1v2v3v4v5v6v7v1. To avoid having c1, c2 ∈
C that are adjacent along the cycle of C, such that ‖v, C − c1 − c2‖ ≥ 4, we
can conclude without loss of generality that NC(v) = {v1, v2, v4, v6}. If C
has a chord with both endpoints in [v1, v4], then vv1Cv4v is a DCC with this
chord and vv2, contradicting (O1). If C has a chord with both endpoints in
[v4, v1], then vv4Cv1v is a DCC with this chord and vv6, contradicting (O1).
By symmetry, C has no chords with both endpoints in [v2, v6] or in [v6, v2].
However, this leaves C with only one possible chord, v3v7, a contradiction.

Case 4. |C| = 6

Label so that C = v1v2v3v4v5v6v1. To avoid having c1, c2 ∈ C that
are adjacent along the cycle of C, such that ‖v, C − c1 − c2‖ ≥ 4, we can
conclude without loss of generality that either NC(v) = {v1, v2, v4, v5} or
NC(v) = {v1, v2, v3, v5}.

Suppose first that NC(v) = {v1, v2, v4, v5}. If C has a chord with both
endpoints in [v1, v4], then vv1Cv4v is a DCC with this chord and vv2, contra-
dicting (O1). If C has a chord with both endpoints in [v4, v1], then vv4Cv1v
is a DCC with this chord and vv2 that contradicts (O1). So v1, v4, and by
symmetry, v2, v5 are not incident to chords in C. Yet this implies the only
possible chord is v3v6, a contradiction.
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Now suppose NC(v) = {v1, v2, v3, v5}. If C has a chord with both end-
points in [v1, v4], then vv1Cv4v is a DCC with this chord and vv2, contra-
dicting (O1). By symmetry, C has no chord with both endpoints in [v4, v1].
If v2vi ∈ E(G) for i ∈ {5, 6}, then vv2viCv1v is a DCC with chords v1v2 and
vv6, contradicting (O1). So v1, v2, v4, and by symmetry, v6, are not incident
to any chords in C. However, this implies the only possible chord is v3v5, a
contradiction.

This completes all cases and proves the lemma.

Lemma 15. Let C′ be a collection of k−1 disjoint DCCs that satisfies (O1)
and (O2), and let R′ = G \ V (C′). For all v ∈ R′ and C ∈ C′, ‖v, C‖ ≤ 4,
and if equality holds, either C ∼= K4 or C ∼= K1,2,2 and G[C + v] ∼= K2,2,2.
As a result, for all x ∈ C, G[C − x+ v] ∼= C.

Proof. By Lemma 14, we can conclude that ‖v, C‖ ≤ 4 and that |C| ≤ 5.
Suppose ‖v, C‖ = 4. If |C| = 4, then C ∼= K4, and we are done. So

assume |C| = 5, and label C = v1v2v3v4v5v1 where v5 is the non-neighbor
of v. Observe that vv1Cv4v forms a DCC including all chords with both
endpoints in [v1, v4]C and two additional chords, vv2 and vv3. The number of
chords in C is exactly the number of chords with both endpoints in [v1, v4]C
together with those incident to v5. Thus, if v5 is not incident to two chords,
we contradict (O2). Hence v5v2, v5v3 ∈ E(G).

These cannot be the only chords in C, otherwise vv3v5Cv2v forms a DCC
with chords v2v5, v2v3, and vv1, contradicting (O2). If there exists a triangle
in G[NC(v)], then we can replace C with a copy of K4, contradicting (O1).
Therefore, the only other chord in C is v1v4, so that C ∼= K1,2,2.

We will often encounter the situation in which for some v ∈ R and
C ∈ C, ‖v, C‖ = 4. Therefore, as a consequence of Lemma 15, we will use the
following labels for the vertices of C in the situation where C ∈ {K4,K1,2,2}.
If C ∼= K4 label the vertices a1, a2, a3, and a4. If C ∼= K1,2,2, then label the
vertex in the part of size one as b, label the two vertices in one of the parts
of size two as c1 and c2, and label the remaining two vertices in the final
part as d1 and d2.

Lemma 16. Let C′ be a collection of k − 1 disjoint doubly chorded cy-
cles that satisfies (O1) and (O2), and let R′ = G \ V (C′). Suppose there
exists C ∈ C′ such that C ∼= K1,2,2. Then for any edge xy ∈ E(R′), we
have ‖{x, y}, C‖ ≤ 7, and if equality holds, then without loss of generality,
NC(x) = {c1, c2, d1, d2} and NC(y) ∈ {{b, c1, c2}, {b, d1, d2}}. Furthermore,
if ‖x,C‖ = ‖y, C‖ = 3, then |NC(x) ∩ NC(y)| ≤ 2, and if equality holds,
then NC(x) ∩NC(y) ∈ {{c1, c2}, {d1, d2}}.
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Proof. Let C ∈ C′ be such that C ∼= K1,2,2, and let xy ∈ E(R′). Observe the
following:

(1)

if x and y have two common neighbors in C, say u and v, such
that uv ∈ E(G), then G[{x, y, u, v}] ∼= K4, which contradicts
(O1).

Therefore, if we say ‖x,C‖ = 4 and ‖y, C‖ ≥ 3, then by Lemma 15, NC(x) =
{c1, c2, d1, d2}, and the only way to avoid (1) is for NC(y) ∈ {{b, c1, c2},
{b, d1, d2}}. Similarly, if ‖x,C‖ = ‖y, C‖ = 3 and |NC(x)∩NC(y)| ≥ 2, then
the only way to avoid (1) is for NC(x) ∩NC(y) ∈ {{c1, c2}, {d1, d2}}.

We now return to our optimal collection C with R = G \ V (C).
Lemma 17. Suppose P1 and P2 are two disjoint, non-trivial paths in G.
If there exist u, v ∈ P1 such that ‖{u, v}, P2‖ ≥ 5, then G[P1 + P2] con-
tains a DCC. Furthermore, if ‖{u, v}, P2‖ ≥ 4, then G[P1 + P2] contains a
DCC, unless one of the following configurations exists up to symmetry and
relabelling of vertices:

1. NP2
(u) = {u1, u2, u3}, NP2

(v) = {v1}, and v1 ∈ (u1, u3)P2
;

2. NP2
(u) = {u1, u2}, NP2

(v) = {v1, v2}, NP2
(u) ∩ NP2

(v) = ∅, and
u1, v1, v2, u2 appear in this order along P2 (not necessarily consecu-
tive).

Proof. Suppose ‖{u, v}, P2‖ ≥ 4, and without loss of generality, suppose
‖v, P2‖ ≤ ‖u, P2‖. Let wL and wR be the endpoints of P2 where P2 =
wLP2wR.

If ‖u, P2‖ ≥ 4, then G[P2 + u] contains a DCC. So 1 ≤ ‖v, P2‖ ≤
‖u, P2‖ ≤ 3.

If ‖u, P2‖ = 3, let NP2
(u) = {u1, u2, u3} where u1, u2, and u3 appear

in this order along P2 (not necessarily consecutive). Let v1 ∈ NP2
(v). If

v1 ∈ [wL, u1]P2
, then uP1vv1P2u3u is a DCC with chords uu1 and uu2.

So v1 /∈ [wL, u1]P2
, and by symmetry, v1 /∈ [u3, wR]P2

. So v1 ∈ (u1, u3)P2
.

If ‖v, P2‖ ≥ 2 so that v2 ∈ NP2
(v) exists, then by the same argument,

v2 ∈ (u1, u3)P2
. Without loss of generality, we may assume v1 ∈ (u1, v2)P2

.
If v2 ∈ [u2, u3)P2

, then uu1P2v2vP1u forms a DCC with chords uu2 and
vv1. If v2 ∈ (u1, u2)P2

, then vv1P2u3uP1v forms a DCC with chords uu2 and
vv2. Thus, v2 does not exist, and configuration 1 holds.

So ‖v, P2‖ = ‖u, P2‖ = 2. Let NP2
(u) = {u1, u2} where u1 and u2 appear

in this order along P2 (not necessarily consecutive), and similarly define

NP2
(v) = {v1, v2}. If v1 ∈ [u2, wR]P2

, then uu1P2v2v
←−
P 1u is a DCC with

chords uu2 and vv1. So v1 /∈ [u2, wR]P2
and by symmetry, v2 /∈ [wL, u1]P2

.
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Suppose v1 = u1. If v2 ∈ (u1, u2)P2
, then v1P2u2uP1vv1 is a DCC with

chords uu1 and vv2. If v2 ∈ [u2, wR]P2
, then u1P2v2v

←−
P 1uu1 is a DCC with

chords vv1 and uu2. So v1 �= u1 and by symmetry v2 �= u2. Thus, either v1 ∈
[wL, u1)P2

or v1 ∈ (u1, u2)P2
, and either v1 ∈ (u1, u2)P2

or v2 ∈ (u2, wR]P2
.

If v1 ∈ [wL, u1)P2
and v2 ∈ (u1, u2)P2

, then uP1vv1P2u2u is a DCC with
chords uu1 and vv2. A symmetric argument holds if v1 ∈ (u1, u2)P2

and v2 ∈
(u2, wR]P2

. So either v1 ∈ (u1, u2)P2
and v2 ∈ (u1, u2)P2

, or v ∈ [wL, u1)P2

and v2 ∈ (u2, wR]P2
. The former immediately gives configuration 2, while

the latter gives configuration 2 after switching ui with vi.

Lemma 18. Suppose P1 and P2 are two disjoint, non-trivial paths in G. If
there exist u, v ∈ P1 such that ‖{u, v}, P2‖ ≥ 6, then G[P1 + P2] contains
a DCC on fewer than |P1|+ |P2| vertices. Furthermore, if ‖{u, v}, P2‖ ≥ 5,
then G[P1 + P2] contains a DCC on fewer than |P1| + |P2| vertices, unless
one of the following configurations exists up to symmetry and relabelling of
vertices:

1. NP2
(u) = {u1, u2, u3}, NP2

(v) = {v1, v2}, NP2
(u) ∩ NP2

(v) = ∅, u
and v are the endpoints of P1, v1 and u3 are the endpoints of P2, and
v1, u1, u2, v2, u3 appear in this order on P2 (not necessarily consecu-
tive) so that |P2| ≥ 5. Furthermore, if |P1| = 2, then (u1, u2)P2

�= ∅,
(u2, v2)P2

= ∅, and in particular, |P2| ≥ 6;
2. NP2

(u) = {u1, u2, u3}, NP2
(v) = {v1, v2}, u1 = v1, u3 = v2, u and v

are the endpoints of P1, u1 = v1 and u3 = v2 are the endpoints of P2,
and u1 = v1, u2, u3 = v2 appear in this order on P2 (not necessarily
consecutive). Furthermore, if say |P1| = 2, then P2 = u1u2u3; that
is,|P2| = 3.

Proof. Suppose ‖{u, v}, P2‖ ≥ 5 for some u, v ∈ P1. If say ‖u, P2‖ ≥ 4, then
we can easily form a DCC in G[P2 + u], which avoids v. So 2 ≤ ‖u, P2‖ ≤ 3
and by symmetry 2 ≤ ‖v, P2‖ ≤ 3.

LetX = NP2
(u)∪NP2

(v), and label the vertices inX = {x1, x2, . . . , x|X|}
such that x1, x2, . . . , x|X| appear in this order along P2 (not necessarily con-
secutive). If |X| = 3, then as ‖{u, v}, P2‖ ≥ 5, without loss of generality,

X = NP2
(u). If x1, x2 ∈ NP2

(v), then x1uP1vx2
←−
P 2x1 is a DCC with chords

ux2 and vx1 that avoids x3. A symmetric argument holds if x2, x3 ∈ NP2
(v).

So NP2
(v) = {x1, x3} and uP1vx1P2x3u is a DCC with chords ux1 and ux2.

Thus, we must have ‖{u, v}, P2‖ = 5. Further, u, v, x1, and x3 must be the
endpoints of their respective paths, otherwise we have a DCC with fewer
than |P1|+ |P2| vertices. This yields the first part of configuration 2.

To complete configuration 2, assume |P1| = 2. If (x1, x2)P2
�= ∅, then

x1ux2P2x3vx1 is a DCC with chords uv and ux3 that avoids all the vertices
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in (x1, x2)P2
. So (x1, x2)P2

= ∅ and by symmetry (x2, x3)P2
= ∅. Thus,

|P2| = 3. So when |X| = 3, configuration 2 holds.
Now suppose |X| = 4. Since ‖{u, v}, P2‖ ≥ 5, either ‖{u, v}, [x1, x3]P2

‖ ≥
4, or ‖{u, v}, [x2, x4]P2

‖ ≥ 4. Without loss of generality, suppose ‖{u, v},
[x1, x3]P2

‖ ≥ 4. By Lemma 17, either configuration 1 or 2 from Lemma 17
holds, otherwise G[P1 + [x1, x3]P2

] contains a DCC that avoids x4. Since u
and v only have three neighbors all together on [x1, x3]P2

, only configuration
1 from Lemma 17 holds, and so without loss of generality, u is adjacent to
x1, x2, and x3, and x2 is the only neighbor of v in [x1, x3]P2

. As 2 ≤ ‖v, P2‖,
we must have x4 ∈ NP2

(v). However, x4v
←−
P 1ux2P2x4 is a DCC with chords

ux3 and vx2 that avoids x1.
Lastly suppose |X| ≥ 5. So by the definition ofX, ‖{u, v}, [x1, x4]P2

‖ ≥ 4
and ‖{u, v}, [x2, x5]P2

‖ ≥ 4. In each, either configuration 1 or 2 from Lemma
17 holds, otherwise G[P1 + [x1, x4]P2

] contains a DCC that avoids x5 or
G[P1 + [x2, x5]P2

] contains a DCC that avoids x1.
Suppose configuration 1 from Lemma 17 holds for [x1, x4]P2

so that with-
out loss of generality, u have exactly three neighbors in [x1, x4], namely x1,
x4, and exactly one vertex from {x2, x3}, and v is only adjacent to the ver-
tex from {x2, x3} that u is not adjacent to. Since ‖u, P2‖ ≤ 3, we know
x5 ∈ NP2

(v), and furthermore, NP2
(u) = {x1, x4, xi} where i ∈ {2, 3} and

NP2
(v) = {x5, x5−i}. However, we know either configuration 1 or 2 from

Lemma 17 holds for [x2, x5]P2
. As u and v only have two neighbors each

in [x2, x5]P2
, we must have configuration 2 from Lemma 17. This implies

NP2
(u) = {x1, x3, x4} and NP2

(v) = {x2, x5}. Now x1P2x5v
←−
P 1ux1 is a DCC

with chords ux3 and ux4. Thus, we must have u, v, x1, and x5 be the end-
points of their respective paths, otherwise we have a DCC with fewer than
|P1|+ |P2| vertices. This yields the first part of configuration 1 in our lemma.
We will deal with the case where |P1| = 2 in a moment.

If configuration 2 from Lemma 17 holds for [x1, x4]P2
, then without loss

of generality, u is only adjacent to x2 and x3 from [x1, x4]P2
, and v is only

adjacent to x1 and x4. However, we know either configuration 1 or 2 from
Lemma 17 holds for [x2, x5]P2

. Configuration 2 from Lemma 17 cannot hold
as neither u or v is adjacent to both x3 and x4. So configuration 1 from
Lemma 17 holds, and NP2

(u) = {x2, x3, x5} and NP2
(v) = {x1, x4}. Just

as above, u, v, x1, and x5 must be the endpoints of their respective paths,
otherwise we have a DCC with fewer than |P1| + |P2| vertices. This yields
the first part of configuration 1 in our lemma.

Now to complete configuration 1, suppose |P1| = 2, and relabel the
vertices so that NP2

(u) = {u1, u2, u3}, NP2
(v) = {v1, v2}, NP2

(u)∩NP2
(v) =

∅, u and v are the endpoints of P1, v1 and u3 are the endpoints of P2, and
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v1, u1, u2, v2, u3 appear in this order on P2 (not necessarily consecutive).
If (u1, u2)P2

= ∅ so that u1u2 ∈ E(G), then v1P2u1uu2P2v2vv1 is a DCC
with chords uv and u1u2 with fewer vertices than |P1|+ |P2| as it skips u3.
Thus, (u1, u2)P2

�= ∅ so that |P2| ≥ 6. Furthermore, if (u2, v2)P2
�= ∅, then

v2P2u3uu2
←−
P 2v1vv2 is a DCC with chords uv and uu1 with fewer vertices

than |P1| + |P2| as it skips all the vertices in (u2, v2)P2
. This completes

configuration 2, and prove the lemma.

Lemma 19. Suppose P1 and P2 are two disjoint, non-trivial paths in G.
If there exist u, v, w ∈ P1 such that ‖{u, v, w}, P2‖ ≥ 6, then G[P1 + P2]
contains a DCC on fewer than |P1|+|P2| vertices, unless one of the following
configurations exists up to symmetry and relabelling of vertices.

1. NP2
(u) = {u1, u2, u3}, NP2

(v) = {v1, v2}, NP2
(w) = {w1}, NP2

(u) ∩
NP2

(v) ∩NP2
(w) = ∅, u and v are the endpoints of P1, v1 and u3 are

the endpoints of P2, and v1, u1, u2, v2, w1, u3 appear in this order along
P2 (not necessarily consecutive).

2. NP2
(u) = {u1, u2}, NP2

(v) = {v1, v2}, NP2
(w) = {w1, w2}, NP2

(u) ∩
NP2

(v) ∩NP2
(w) = ∅, w ∈ (u, v)P1

, and w1, u1, v1, v2, u2, w2 appear in
this order along P2 (not necessarily consecutive).

3. NP2
(u) = {u1, u2}, NP2

(v) = {v1, v2}, NP2
(w) = {w1, w2}, u and v

are the endpoints of P1, u1 = v1, u2 = v2, u1 and u2 are the endpoints
of P2, and u1, w1, w2, u2 appear in this order along P2 (not necessarily
consecutive).

In particular, if ‖{u, v, w}, P2‖ ≥ 6, then G[P1 + P2] contains a DCC (not
necessarily on fewer than |P1|+ |P2| vertices) unless ‖{u, v, w}, P2‖ = 6 and
configuration 2 occurs.

Proof. Suppose ‖{u, v, w}, P2‖ ≥ 6, and let xL and xR be the endpoints of
P2 such that P2 = xLP2xR. If say ‖u, P2‖ ≥ 4, then G[P2 + u] contains
a DCC that avoids v and w. Suppose in the following, ‖u, P2‖ = 3. Since
‖{u, v, w}, P2‖ ≥ 6, either ‖w,P2‖ ≥ 2 or ‖v, P2‖ ≥ 2. Suppose ‖v, P2‖ ≥ 2.
If ‖v, P2‖ ≥ 3, then ‖{u, v}, P2‖ ≥ 6, and we are done by Lemma 18. So
‖v, P2‖ = 2. Since ‖{u, v}, P2‖ = 5, by Lemma 18 either configuration 1 or
2 from Lemma 18 holds. Furthermore, we must have w ∈ (u, v)P1

, otherwise
we are done by Lemma 17, and since ‖{u, v, w}, P2‖ ≥ 6, there exists w1 ∈
NP2

(w).
We claim configuration 1 from Lemma 18 holds. If on the contrary,

configuration 2 from Lemma 18 holds, then NP2
(u) = {u1, u2, u3}, NP2

(v) =
{v1, v2}, u1 = v1, u3 = v2, u and v are the endpoints of P1, u1 = v1 and
u3 = v2 are the endpoints of P2, and u1 = v1, u2, u3 = v2 appear in this order
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on P2 (not necessarily consecutive). If w1 ∈ [u1, u2]P2
, then uP1vu1P2u2u is

a DCC with chords uu1 and ww1 that avoids u3. A symmetric argument
holds if w1 ∈ [u2, u3]P2

, so we must have configuration 1 from Lemma 18.
So NP2

(u) = {u1, u2, u3}, NP2
(v) = {v1, v2}, NP2

(u) ∩ NP2
(v) = ∅, u

and v are the endpoints of P1, v1 and u3 are the endpoints of P2, and
v1, u1, u2, v2, u3 appear in this order on P2 (not necessarily consecutive) so
that |P2| ≥ 5. Note that ‖{u,w}, P2‖ ≥ 4. If G[P2+[u,w]P1

] contains a DCC,
then it avoids v; so by Lemma 17, w1 ∈ (u1, u3)P2

. If w1 ∈ (u1, v2]P2
, then

uP1vv2
←−
P 2u1u is a DCC with chords uu2 and ww1 that avoids v1. If w1 = u3,

then w1w
←−
P 1uu1P2w1 is a DCC with chords uu2 and uu3 that avoids v1. So

w1 ∈ (v2, u3)P2
. Suppose there exists a w2 ∈ Nw(P2). By a similar argument

w2 ∈ (v2, u3). Then, vv2P2u3uP1v forms a DCC with chords ww1 and ww2

that avoids v. Therefore Nw(P2) = {w1}. Furthermore, uP1vv1P2u3u is a
DCC with chords uu1 and uu2. Therefore, u, v, v1, and u3 are the endpoints
of their respective paths, otherwise we have a DCC with fewer than |P1|+|P2|
vertices. This yields configuration 1 in this lemma.

This completes the case when ‖u, P2‖ = 3. So without loss of generality,
as ‖{u, v, w}, P2‖ ≥ 6, we have ‖u, P2‖ = ‖v, P2‖ = ‖w,P2‖ = 2. Suppose
without loss of generality that w ∈ (u, v)P1

. If either G[P2 + [u,w]P1
] or

G[P2+[w, v]P1
] contain a DCC then we are done, as either would avoid v or

u, respectively. So by Lemma 17, we must have configuration 2 from Lemma
17 hold for each.

As a result, NP2
(u) = {u1, u2}, NP2

(v) = {v1, v2}, NP2
(w) = {w1, w2},

NP2
(u) ∩ NP2

(w) = ∅, and NP2
(v) ∩ NP2

(w) = ∅. We now have two cases
depending on the order of u1, u2, w1, w2 along P2.

Case 1. u1, w1, w2, u2 appear in this order along P2 (not necessarily con-
secutive).

If v1 ∈ (w1, w2)P2
, then we must have w1, v1, v2, w2, in this order, so that

v2 ∈ (v1, w2)P2
. However, uP1vv1P2u2u is a DCC with chords ww2 and vv2

that avoids u1. So v1 /∈ (w1, w2)P2
, and by symmetry, v2 /∈ (w1, w2)P2

.
Now suppose v1 = u1. Note that by Lemma 17, v2 ∈ (w2, xR]P2

. If
v2 ∈ (u2, xR]P2

, then uP1vv1P2u2u is a DCC with chords ww1 and ww2 that

avoids v2. If v2 ∈ (w2, u2)P2
, then v2v

←−
P 1uu1P2v2 is a DCC with chords ww1

and ww2 that avoids u2. So v2 = u2. Note that uP1vu1P2u2u is a DCC
with chords ww1 and ww2. So u, v, u1, and u2 must be the endpoints of
their respective paths, otherwise we have a DCC with fewer than |P1|+ |P2|
vertices. This yields configuration 3 in this lemma.

A symmetric argument holds if v2 = u2. So either v1 ∈ [xL, u1)P2
or

v1 ∈ (u1, w1)P2
, and by symmetry, v2 ∈ (w2, u2)P2

or v2 ∈ (u2, xR]P2
. If
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v1 ∈ (u1, w1)P1
, then uP1vv1P2u2u is a DCC with chords ww1 and ww2

that avoids u1. So we must have v1 ∈ [xL, u1)P2
, and by symmetry, v2 ∈

(u2, xR]P2
. However, uP1vv1P2u2u is a DCC with chords ww1 and ww2 that

avoids v2. This completes the case.

Case 2. w1, u1, u2, w2 appear in this order along P2 (not necessarily con-
secutive).

Recall that by Lemma 17, configuration 2 from Lemma 17 holds for
G[P2+[w, v]P2

]. In particular, either v1, w1, w2, v2 or w1, v1, v2, w2 appear in
this order along P2 (not necessarily consecutive).

If v1 ∈ [xL, w1]P2
, then uP1vv1P2u2u is a DCC with chords uu1 and

ww1 that avoids w2. So v1 �∈ [xL, w1]P2
and by a symmetric argument

v1 �∈ [w2, xR]P2
. So we must have v1 ∈ (w1, w2)P2

, and by symmetry, v2 ∈
(w1, w2)P2

. Now, G[P1 + (w1, w2)P2
] cannot have a DCC, as it would avoid

w1. So as ‖{u, v}, (w1, w1)P2
‖ ≥ 4, by Lemma 17, either configuration 1 or

2 from Lemma 17 holds, and in particular, it must be configuration 2. So
either u1, v1, v2, u2 or v1, u1, u2, v2 appear in this order along P2 (not nec-
essarily consecutive). In either case, we get configuration 2 in this lemma.
This completes the case, and proves the lemma.

Lemma 20. Suppose P1 and P2 are two disjoint, non-trivial paths in G
such that |P1| = 3. If ‖P1, P2‖ ≥ 6, then G[P1 + P2] contains a DCC on
fewer than |P1|+ |P2| vertices.

Proof. Suppose P1 = uwv. By Lemma 19, we are done unless one of the three
configurations in Lemma 19 holds. If configuration 1 holds, then v1P2u2uww1←−
P 2v2vv1 is a DCC with chords uu1 and wv on fewer than |P1|+ |P2| vertices
as it skips u3. If configuration 2 holds, then w1P2u1uu2

←−
P 2v1vw with chords

uw and vv2 on fewer than |P1|+ |P2| vertices as it skips u3. If configuration
3 holds, then u1P2w1wvv2uu1 is a DCC with chords uw and vu1 on fewer
than |P1|+ |P2| vertices as it skips w2.

Thus, in every case G[P1+P2] contains a DCC on fewer than |P1|+ |P2|
vertices.

Lemma 21. Suppose P1 and P2 are two disjoint paths such that min{|P1|,
|P2|} ≥ 4. If ‖P1, P2‖ ≥ min{|P1|, |P2|}+4, then G[P1+P2] contains a DCC
on fewer than |P1|+ |P2| vertices.

Proof. Suppose without loss of generality that |P1| ≤ |P2|. Therefore, if we
show that satisfying ‖P1, P2‖ ≥ |P1|+ 4 implies the existence of a DCC on
fewer than |P1|+ |P2| vertices in G[P1 + P2], then we are done.
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If there exists u ∈ P1 such that ‖u, P2‖ ≥ 4, then G[P2 + u] contains a
DCC, and we are done. Thus we assume ‖u, P2‖ ≤ 3 for all u ∈ P1. Suppose
there exists u ∈ P1 such that ‖u, P2‖ = 3. If ‖v, P2‖ ≤ 1 for all v ∈ P1 − u,
then ‖P1, P2‖ ≤ |P1|+2, which is a contradiction. So there exists v ∈ P1−u
such that ‖v, P2‖ ≥ 2. If ‖v, P2‖ = 3, then ‖{u, v}, P2‖ ≥ 6 and by Lemma
18 we are done; so ‖v, P2‖ = 2. Again, there must exist w ∈ P1 − u− v such
that ‖w,P2‖ ≥ 1. If ‖w,P2‖ = 2, then ‖{u, v, w}, P2‖ ≥ 7 and by Lemma 19
we are done; so ‖w,P2‖ = 1. Similarly, there exists x ∈ P1 − u− v −w such
that ‖x, P2‖ ≥ 1. So ‖{u, v, w}, P2‖ ≥ 6, and by configuration 1 in Lemma
19, NP2

(u) = {u1, u2, u3}, NP2
(v) = {v1, v2}, NP2

(w) = {w1}, NP2
(u) ∩

NP2
(v) ∩ NP2

(w) = ∅, u and v are the endpoints of P1, v1 and u3 are the
endpoints of P2, and v1, u1, u2, v2, w1, u3 appear in this order along P2 (not
necessarily consecutive). Similarly, ‖{u, v, x}, P2‖ ≥ 6, so that x ∈ (u, v)P1

,
NP2

(x) = {x1}, and x1 ∈ (v2, u3)P2
. However, uP1vv2P2u3u is a DCC with

chords ww1 and xx1 on strictly fewer vertices than |P1|+ |P2|.
Thus in the remainder of this proof we assume that for all u ∈ P1,

‖u, P2‖ ≤ 2. Since ‖P1, P2‖ ≥ |P1|+4, there exist distinct vertices u, v, w, x ∈
P1 such that ‖u, P2‖ = ‖v, P2‖ = ‖w,P2‖ = ‖x, P2‖ = 2. Suppose there ex-
ist three distinct vertices from {u, v, w, x} such that they form configuration
3 in Lemma 19, and without loss of generality suppose it is u, v, w. Then
NP2

(u) = {u1, u2}, NP2
(v) = {v1, v2}, NP2

(w) = {w1, w2}, u and v are the
endpoints of P1, u1 = v1, u2 = v2, and u1 = v1, w1, w2, u2 = v2 appear
in this order along P2 (not necessarily consecutive). Since u and v are the
endpoints of P1, without loss of generality, we may assume x ∈ (u,w)P1

.
When we consider x,w, v, either configuration 2 or 3 in Lemma 19 holds.
If configuration 2 holds, we must have v1, v2 ∈ (w1, w2)P2

, which is a con-
tradiction as w1, w2 ∈ (v1, v2)P2

. So configuration 3 holds, and x1 = v1 and

x2 = v2. However, xP1vv2
←−
P 2x1x is a DCC with chords xx2 and vv1 with

fewer vertices than |P1|+ |P2| as it does not include u.
So for every three vertices from {u, v, w, x}, configuration 2 in Lemma

19 holds. Without loss of generality, suppose u,w, x, v appear in this order
along P1. When we consider u,w, x, we see that x1, x2 ∈ (w1, w2)P2

, however
when we consider w, x, v, we must have w1, w2 ∈ (x1, x2)P2

, a contradiction.
This completes the proof of the lemma.

Lemma 22. Suppose Q1 and Q2 are disjoint subgraphs in G such that Q1
∼=

K3 and Q2 contains a nontrivial, spanning path. Then

1. if ‖Q1, Q2‖ ≥ 5, then G[Q1 + Q2] contains a DCC on fewer than
|Q1|+ |Q2| vertices;

2. if ‖Q1, Q2‖ ≥ 4, then G[Q1 +Q2] contains a DCC;
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3. for any x, y ∈ Q2, if ‖Q1, {x, y}‖ ≥ 3, then G[Q1 + Q2] contains a

DCC;

4. if |Q2| = 3 and ‖Q1, Q2‖ ≥ 4, then G[Q1 + Q2] contains a DCC on

fewer than |Q1|+ |Q2| vertices.

Proof. Suppose V (Q1) = {u, v, w}, and let P2 be a spanning path of Q2

with endpoints q and q′. The following claim will be useful in proving the

above statements.

Claim 22.1. For any e ∈ E(Q1), if ‖e,Q2‖ ≥ 4, then G[Q1 +Q2] contains

a DCC with fewer vertices than |Q1|+ |Q2|.

Proof. If G[uv + Q2] contains a DCC, then we are done as we skip w. So

by Lemma 18, we assume ‖uv,Q2‖ ≤ 4. If ‖uv,Q2‖ = 4, then by Lemma

17, G[uv + Q2] is one of the two configurations in Lemma 17. If the first

configuration holds, then without loss of generality we may assume v1 ∈
[u2, u3)Q2

. However, u1P2v1vwuu1 is a DCC with chords uv and uu2 with

fewer than |Q1| + |Q2| vertices as it skips u3. If the second configuration

holds, then u1P2v2vwuu1 is a DCC with chords uv and vv1 with fewer than

|Q1|+ |Q2| vertices as it skips u3.

Proof of 1. Suppose ‖Q1, Q2‖ ≥ 5. Then there exists some edge in Q1, say

uv, such that ‖uv,Q2‖ ≥ 4. So by the claim, we are done.

Proof of 2. Suppose ‖Q1, Q2‖ ≥ 4. By the claim, if we consider the edge

uv, then ‖uv,Q2‖ ≤ 3 otherwise we are done. As this holds for every

edge in Q1, we get ‖Q1, Q2‖ ≤ 4, so that in fact equality holds. In par-

ticular, we may assume ‖u,Q2‖ = 2 and ‖v,Q2‖ = ‖w,Q2‖ = 1. Let

NQ2
(u) = {u1, u2}, NQ2

(v) = {v1}, and NQ2
(w) = {w1}. If v1 ∈ [u2, q

′]Q2
,

then u1P2v1vwuu1 is a DCC with chords uv and uu2. By symmetry, we

may assume v1 ∈ (u1, u2)Q2
, and furthermore, w1 ∈ (u1, u2)Q2

. Without loss

of generality, suppose v1 ∈ (u1, w1]Q2
. Then u1P2w1wvuu1 is a DCC with

chords vv1 and uv.

So in any case we get a DCC in G[Q1 +Q2].

Proof of 3. Fix x, y ∈ Q2. If either ‖x,Q1‖ = 3 or ‖y,Q1‖ = 3, then we are

done as G[x+Q1] or G[y+Q1] contain a DCC, respectively. So ‖x,Q1‖ ≤ 2

and ‖y,Q2‖ ≤ 2. Thus, if ‖{x, y}, Q2‖ ≥ 3, then without loss of generality,

‖x,Q1‖ = 2 with NQ1
(x) = {u, v}. If yw ∈ E(G), then xuvwyx is a DCC

with chords uw and xv. So y has a neighbor in {u, v}, say u. Then yuwvxy is

a DCC with chords uv and xv. A similar DCC exists when yv ∈ E(G).
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Proof of 4. Let Q2 = qxq′. By the Proof of 3 above, ‖Q1, qx‖ ≤ 2 and
‖Q1, xq

′‖ ≤ 2, otherwise we find a DCC that skips q′ and q, respectively.
So if ‖Q1, Q2‖ ≥ 4, we must have ‖q,Q1‖ = ‖q′, Q1‖ = 2 and ‖x,Q1‖ = 0.
Without loss of generality, suppose NQ1

(q) = {u, v}. If NQ1
(q′) = {u, v} as

well, then uvq′xqu is a DCC with chords uq′ and vq that skips w. So we
may assume NQ2

(q′) = {w, v}. However, q′wuqvq′ is a DCC with chords uv
and wv that skips x.

This proves all the statements, and so proves the lemma.

Lemma 23. Suppose Q is a subgraph of G such that G[Q] ∼= K−
4 where

V (Q) = {q1, q2, q3, q4} and q1q3 is its chord. Let v ∈ G be disjoint of Q. If
‖v,Q‖ ≥ 3, or ‖v,Q‖ = 2 and at most one of the edges vq1 and vq3 exist,
then G[Q+ v] contains a DCC.

Proof. Suppose that ‖v,Q‖ ≥ 3. Without loss of generality either {q1, q2, q3}
⊆ NQ(v) or {q1, q2, q4} ⊆ NQ(v). In both cases, G[Q+ v] contains a DCC.

Suppose ‖v,Q‖ = 2 and at most one of the edges vq1 and vq3 exist.
Suppose vq1 ∈ E(G), so that vq3 �∈ E(G). Without loss of generality, assume
NQ(v) = {q1, q2}. Then vq1q4q3q2v forms a DCC with chords q1q3 and q1q2.
A similar DCC exists if vq3 ∈ E(G). If neither edge vq1 and vq3 exists,
Nq(v) = {q2, q4}. Then vq2q3q1q4v forms a DCC with chords q1q2 and q3q4.

Lemma 24. Suppose Q is a subgraph of G such that |Q| = 4 and G[Q]
contains a cycle on four vertices. Let xy be an edge disjoint from Q. If
‖xy,Q‖ ≥ 3 such that NQ(x)∩NQ(y) = ∅, then G[Q+xy] contains a DCC.

Proof. SinceQ has a spanning cycle, we can label it as c1c2c3c4c1. If ‖x,Q‖ ≥
3, then without loss of generality {c1, c2, c3} ⊆ NQ(x). Then xc2c3c4c1x
forms a DCC with chords xc2 and c1c2. So, ‖x,Q‖ ≤ 2 and by symmetry
‖y,Q‖ ≤ 2. Since ‖{x, y}, Q‖ ≥ 3, we may assume ‖x,Q‖ = 2 and ‖y,Q‖ ≥
1. Since NQ(x) ∩ NQ(y) = ∅, without loss of generality, we can assume
that yc1, xc2 ∈ E(G). Then xc2c3c4c1yx forms a DCC with chord c1c2 and
another chord incident to x.

Lemma 25. Suppose Q is a subgraph of G such that G[Q] ∼= Paw, and let
v ∈ G disjoint from Q. If ‖v,Q‖ ≥ 3, then G[Q+ v] contains a DCC.

Proof. Label V (Q) = {x1, x2, x3, x4} where dQ(x1) = 1 and dQ(x2) = 3.
If v has three neighbors in Q − x1, then G[Q + v] contains a K4. So we
may assume vx1 ∈ E(G), and without loss of generality, vx4 ∈ E(G). Then
vx1x2x3x4v is a DCC with chords x2x4 and another chord incident to v.
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5. V (R) �= V (P )

In this section, we assume that V (R) �= V (P ) with the goal of arriving at a
contradiction. Note that since V (R) �= V (P ), there exists v ∈ V (R) \ V (P ).
In addition, we define P to be the set of all vertices p̃ in R such that p̃ is an
endpoint of a path P̃ where V (P̃ ) = V (P ). In other words, P contains all
the endpoints of every spanning path of G[V (P )]. Furthermore, p is always
assumed to be an endpoint of P .

Lemma 26. Let v ∈ V (R)\V (P ), then ‖{v, p}, C‖ ≤ 6 for all C ∈ C.

Proof. Suppose there exists a C ∈ C such that ‖{v, p}, C‖ ≥ 7. By Lemma
15 either ‖v, C‖ = 4 or ‖p, C‖ = 4. Suppose that ‖v, C‖ = 4 and ‖p, C‖ ≥ 3.
Let x ∈ NC(p). By Lemma 15, we can replace C with G[C − x+ v] ∼= C so
that we obtain a new partition C′ and R′ = R − v + x that satisfies (O1)
and (O2). However, since xp ∈ E(G), the longest path in R′ is longer than
the longest path in R, which contradicts (O3).

So suppose that ‖v, C‖ = 3 and ‖p, C‖ = 4. If C ∼= K4, then the same
argument above holds. So suppose C ∼= K1,2,2. Since ‖v, C‖ = 3, then up
to symmetry, either NC(v) = {b, c1, c2} or NC(v) = {c1, c2, d1}, otherwise
G[C + v] will contain a copy of K4, contradicting (O1). By Lemma 15,
pd2 ∈ E(G), so that in either case, we can replace C with G[C−d2+v] ∼= C
so that we obtain a new partition C′ and R′ = R− v+ d2 that satisfies (O1)
and (O2). However, since d2p ∈ E(G), the longest path R′ is longer than
the longest path in R, which contradicts (O3). This concludes all cases and
proves the lemma.

Lemma 27. There exists a p̃ ∈ P such that ‖p̃, R‖ ≤ 2.

Proof. Note that for each p̃ ∈ P , there exists a path P̃ in R such that
V (P̃ ) = V (P ) and p̃ is an endpoint of P̃ . Observe that ‖p̃, R‖ = ‖p̃, P‖, as
otherwise we can construct a longer path than P in R, contradicting (O3).
For all p̃ ∈ P , we assume ‖p̃, P‖ ≥ 3 so that in particular, |P | ≥ 2.

Let p and p′ be the endpoints of P . Since ‖p, P‖ ≥ 3, let p1, p2, and p3
are the neighbors of p on P such that p, p1, p2, and p3 appear in this order
(not necessarily consecutive) along P .

Let p̃ be the vertex immediately preceding p2 in [p, p2] (note that perhaps

p̃ = p1). Observe that P̃ = p̃
←−
P pp2Pp′ is a path such that V (P̃ ) = V (P ). So

p̃ ∈ P , and ‖p̃, R‖ ≥ 3. We know that p̃ is already adjacent to p2, as well as
the vertex immediately preceding it on P . So p̃ must be adjacent to a third
vertex p̃′.
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If p̃′ ∈ [p, p3], then pPp3 is a DCC with chords pp2 and p̃p̃′. If p̃′ ∈ (p3, p],

then pP p̃p̃′
←−
P p2p] is a DCC with chords pp3 and p̃p2. Either case yields a

contradiction, which proves the lemma.

By Lemma 27, we may assume that P and p ∈ P are chosen so that
‖p,R‖ ≤ 2.

Lemma 28. For every v ∈ V (R)\V (P ), ‖v,R‖ ≥ 4.

Proof. It follows from our minimum degree constraint and Lemma 26 that

2(3k) ≤ dG(v) + dG(p) = ‖{v, p}, C‖+ ‖{v, p}, R‖ ≤ 6(k − 1) + ‖{v, p}, R‖,

so ‖{v, p}, R‖ ≥ 6. Recall that p was chosen so that ‖p,R‖ ≤ 2, and hence
‖v,R‖ ≥ 4.

We now look to complete the case where V (R) �= V (P ). Observe that
for all x ∈ V (R) \ V (P ), ‖x, P‖ ≤ 3, otherwise G[P + x] contains a DCC.
Consequently, Lemma 28 implies every such x must have a neighbor in R\P ,
which implies the existence of nontrivial paths in R \ P , and furthermore
implies |P | ≥ 2.

Now let Q be a longest path in R \P , and let v and v′ be its endpoints.
Since Q is nontrivial, v and v′ are distinct vertices. Furthermore, every
neighbor of v and v′ that is in R, is specifically contained in P or Q, as
otherwise we contradict the construction of Q.

By Lemma 28, ‖{v, v′}, R‖ ≥ 8. By Lemma 17, ‖{v, v′}, P‖ ≤ 4, oth-
erwise R will contain a DCC. So ‖{v, v′}, Q‖ ≥ 4. If either ‖v,Q‖ ≥ 4 or
‖v′, Q‖ ≥ 4, then G[Q] contains a DCC. So ‖v, P‖ ≥ 1 and ‖v′, P‖ ≥ 1. Yet,
because ‖{v, v′}, Q‖ ≥ 4, G[P +Q] will contain a DCC with chords incident
to either v or v′.

This leads us to our contradication and completes the case when V (R) �=
V (P ).

6. V (R) = V (P )

In this section, we assume V (P ) = V (R). So for every v ∈ V (G), ‖v, P‖ =
‖v,R‖. Since |R| ≥ 4, we can specify p, q, q′, p′ as the vertices in R such
that P = pq . . . q′p′. If |R| ≥ 5, then we let r denote the vertex immediately
following q along P , and if |R| ≥ 6, then we also let r′ denote the vertex
immediately preceeding q′ on P . Since R has no DCC, we see that ‖p,R‖ ≤
3, ‖q,R‖ ≤ 4, and ‖r,R‖ ≤ 5. The same bounds hold for p′, q′, and r′,
respectively. Furthermore, for every v ∈ P \ {p, q, r, r′, q′, p′}, ‖v,R‖ ≤ 6.
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Lemma 29. If |P | ≥ 6, then there exists Q = {v1, v2, v3, v4, v5, v6} along P
such that ‖Q,R‖ ≤ 17.

Proof. Label the vertices of P as P = pqr · · · r′q′p′. For each α ∈ {p, q, r}, let
α1, α2, . . . denote the neighbors of α in (r, p′] such that for each i ≥ 2, if αi+1

exists, then αi+1 ∈ (αi, p
′]. In particular, r1 always exists and is possibly r′.

In the following, we will often consider pqr and r1Pp′ as two separate
non-trivial paths and apply lemmas from Section 4 regarding the num-
ber of edges between two non-trivial paths. We will also use the fact that
‖p, (r, p′]‖ ≤ 2 and ‖q, (r, p′]‖ ≤ 2, as otherwise we get a DCC in R.

Claim 29.1. If pr ∈ E(G), then ‖pqr,R‖ ≤ 9 and if equality holds then
either ‖p,R‖ = ‖q,R‖ = 2 and ‖r,R‖ = 5, or ‖r,R‖ = 4 and without loss
of generality, ‖p,R‖ = 3, ‖q,R‖ = 2, and further, p1 ∈ (r1, r2).

Proof. Suppose pr ∈ E(G). Then G[pqr] ∼= K3, and p and q are similar
vertices as they are both endpoints of a path spanning R. So by Lemma 22.2,
we have ‖pqr, (r, p′]‖ ≤ 3, otherwise R contains a DCC. As ‖pqr, pqr‖ = 6,
we get ‖pqr,R‖ ≤ 9.

Suppose ‖pqr,R‖ = 9. If ‖r,R‖ = 5, then ‖p,R‖ = ‖q,R‖ = 2, which
proves one part of the claim. Now as pr ∈ E(G), we have ‖r,R‖ ≥ 3. If
‖r,R‖ = 3, then ‖{p, q}, (r, p′]‖ = 2, and as we noted at the beginning of
this section, ‖p,R‖ ≤ 3. So ‖q, (r, p′]‖ ≥ 1 and q1 exists. If q2 also exists,

then qq2
←−
P rpq is a DCC with chords qq1 and qr. If p1 exists, then as p and q

are similar vertices, without loss of generality, p1 ∈ [q1, p
′]. However, pp1

←−
P p

is a DCC with chords pr and qq1.
So we must have ‖r,R‖ = 4, and r2 exists. Furthermore, ‖{p, q}, (r, p′]‖ =

1 and either p1 or q1 exists. As p and q are similar, suppose without loss of

generality, that p1 exists. If p1 ∈ [r2, p
′], then pp1

←−
P p is a DCC with chords

pr and rr2. If p1 = r1, then rr2
←−
P r1pqr is a DCC with chords pr and rr1.

So we must have p1 ∈ (r1, r2), which completes the proof of the claim.

Claim 29.2. If pr /∈ E(G), then ‖pqr,R‖ ≤ 8.

Proof. Suppose pr /∈ E(G), and suppose on the contrary ‖pqr,R‖ ≥ 9.
So ‖pqr, pqr‖ = 4 and ‖pqr, (r, p′]‖ ≥ 5. By Lemma 20, ‖pqr, (r, p′]‖ ≤ 5,
otherwise R contains a DCC. So ‖pqr, (r, p′]‖ = 5. As a result, we must have
a pair of distinct vertices x, y ∈ {p, q, r}, such that ‖{x, y}, (r, p′]‖ ≥ 4. In
fact, equality must hold as otherwise if ‖{x, y}, (r, p′]‖ ≥ 5, R will contain a
DCC by Lemma 17. Thus for all α ∈ {p, q, r}, ‖α, (r, p′]‖ ≥ 1.

Note that we cannot have {x, y} = {p, q} as otherwise, ‖{p, q}, [r, p′]‖ ≥
5 and R will contain a DCC by Lemma 17. So r ∈ {x, y} and furthermore, as
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rr1 ∈ E(G), r must play the role of u in Lemma 17 in both configurations,

where u1 = r1.

If configuration 1 holds, then as ‖q, (r, p′]‖‖p, (r, p′]‖ = 1, both q and p

play the role of v so that q1, p1 ∈ (r1, r3). Suppose p1 ∈ (r1, r2]. If q1 ∈ [r1, p1],

then rr1Pq1qpp1Pr3r is a DCC with chords qr and rr2. If q1 ∈ (p1, r3), then

rqpp1Pr3r is a DCC with chords rr2 and qq1. So we must have p1 ∈ (r2, r3).

If q1 ∈ (r1, p1] then pPp1p is a DCC with chords qq1 and rr2, and if q1 ∈
(p1, r3), then rr1Pp1pqq1Pr3r is a DCC with chords qr and rr2. So in all

cases we get contradictions so that configuration 2 holds from Lemma 17

where r plays the role of u and either p or q plays the role of v.

Suppose p plays the role of v so that r1, p1, p2, r2 appear in this or-

der along P (not necessarily consecutive) and |{r1, p1, p2, r2}| = 4. If q1 ∈
[r1, p1), then pPp2p is a DCC with chords qq1 and pp1. If q1 ∈ [p1, r2], then

rr2
←−
P p1pqr is a DCC with chords qq1 and pp2. Lastly, if q1 ∈ (r2, p

′], then

qq1
←−
P p2pp1

←−
P r1rq is a DCC with chords pq and rr2.

So we must have q playing the role of v in Lemma 17. If p1 ∈ [q2, p
′], then

pPp1p is a DCC with chords qq1 and qq2. If p1 ∈ [r1, q1], then pp1Pr2rqp

is a DCC with chords qq1 and qq2. So we must have p1 ∈ (q1, q2), however

rPq1qpp1Pr2r is a DCC with chords qq2 and qr. This completes all the cases

and proves the claim.

Now by Claims 29.1 and 29.2, we must have ‖pqr,R‖ = ‖r′q′p′, R‖ = 9,

otherwise we are done, and furthermore pr, r′p′ ∈ E(G). Suppose first that

‖p,R‖ = ‖q,R‖ = 2 and ‖r,R‖ = 5, and so r2 and r3 exist. Note that by

Claim 29.1, r1 �= r′ as otherwise r2 = q′, r3 = p′, and as a result both

‖q′, R‖, ‖p′, R‖ ≥ 3.

We must have ‖r1, R‖ ≥ 5, otherwise ‖{p, q, r1, r′, q′, p′}, R‖ ≤ 17, and

we are done. Now the only neighbors of r1 are r and those in (r1, p
′]. So r1

has two hop neighbors, say x1 and x2 in (r1, p
′] where x2 ∈ (x1, p

′]. If x1 ∈
(r1, r3], then rr3

←−
P r is a DCC with chords rr2 and r1x1. So x1, x2 ∈ (r3, p

′].

However, r1x2
←−
P r2rr1 is a DCC with chords rr3 and r1x1.

So by Claim 29.1, we must have ‖r,R‖ = 4 and without loss of generality,

‖p,R‖ = 3 and ‖q,R‖ = 2, with p1 ∈ (r1, r2). As before, r1 �= r′, otherwise
p1 = q′, r2 = p′, and both ‖q′, R‖, ‖p′, R‖ ≥ 3. We also must have ‖r1, R‖ ≥
4, otherwise ‖{p, q, r1, r′, q′, p′}, R‖ ≤ 17, and we are done. So r1 has two

hop neighbors, say x1 and x2 ∈ (r1, p
′] where x2 ∈ (x1, p

′]. If x2 ∈ (r1, r2],

then rPr2r is a DCC with chords r1x1 and r1x2. So x2 ∈ (r2, p
′]. However,

r1x2
←−
P p1pPr1 is a DCC with chords pr and rr2.

So in all cases we get a contradiction, which proves the lemma.
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Lemma 30. If |P | ≥ 5, then there exists Q = {v1, v2, v3, v4, v5} along P
such that ‖Q,R‖ ≤ 14.

Proof. If |P | = |R| = 5, then we claim that |E(R)| ≤ 7. If for all v ∈ R,
‖v,R‖ ≤ 3, then |E(R)| ≤ 15

2 and we are done. So there exists x ∈ R such
that ‖x,R‖ = 4, that is, x is a dominating vertex in R. Since R has no DCC,
R − x must be acyclic. Thus, |E(R − x)| ≤ 3 and |E(R)| ≤ 7. Therefore, if
|P | = 5, then we can let Q = V (P ) to obtain ‖Q,R‖ ≤ 14.

So we may assume |P | ≥ 6. By Lemma 29, there exists Q ⊆ V (P )
such that |Q| = 6 and ‖Q,R‖ ≤ 17. If ‖Q,R‖ ≤ 14, then for any x ∈ Q,
‖Q − x,R‖ ≤ 14 and we are done. So ‖Q,R‖ ≥ 15 and there exists y ∈ Q
such that ‖y,R‖ ≥ 3. However, ‖Q− y,R‖ ≤ 14, and we are done.

Lemma 31. Let |P | ≥ 5, let Q = {v1, v2, v3, v4, v5} ⊆ V (P ), and let C ∈ C.
If ‖Q,C‖ ≥ 16, then ‖Q,C‖ ≤ 17, and furthermore, one of the following
configurations occurs.

1. C ∼= K4 with NC({v1, v3, v5}) ⊆ {a1, a2, a3} and NC({v2, v4}) ⊆ V (C),
2. C ∼= K1,2,2 with NC({v1, v3, v5}) ⊆ {b, c1, c2} and NC({v2, v4}) ⊆

{c1, c2, d1, d2}, or
3. C ∼= K1,2,2 with NC({v1, v3, v5}) = {b, c1, c2}, NC(v4) = {b, d1, d2},

and NC(v2) = {c1, c2, d1, d2}, or
4. C ∼= K1,2,2 with NC({v1, v3, v4, v5}) = {b, c1, c2}, and NC(v2) = {c1, c2,

d1, d2}.

Note that in configurations 1 and 2, ‖Q,C‖ ∈ {16, 17}, and in configu-
rations 3 and 4 ‖Q,C‖ = 16.

Proof. Suppose that |P | ≥ 5, and let Q = {v1, v2, v3, v4, v5} ⊆ V (P ), labeled
so that v1, v2, v3, v4, and v5 appear in this order (not necessarily consecutive)
along P . Suppose also that ‖Q,C‖ ≥ 16 for some C ∈ C. Thus ‖v, C‖ = 4
for some v ∈ Q, and by Lemma 15, C ∼= K4 or C ∼= K1,2,2. Recall that
if C ∼= K4, then V (C) = {a1, a2, a3, a4}, and if C ∼= K1,2,2, then V (C) =
{b, c1, c2, d1, d2}, where c1 and c2 are the vertices in one partite set of size
two, d1 and d2 are the vertices in the other partite set of size two, and b is
the dominating vertex.

Case 1. C ∼= K4.

Our goal in this case is to prove that configuration 1 of this lemma holds.

Claim 31.1. There exists ai ∈ C such that either ‖{v1, v2}, C − ai‖ = 6 or
‖{v4, v5}, C − ai‖ = 6.
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Proof. Suppose on the contrary that for all ai ∈ C, we satisfy ‖{v1, v2}, C−
ai‖ ≤ 5 and ‖{v4, v5}, C − ai‖ ≤ 5. We claim ‖{v1, v2}, C‖ ≤ 6. Indeed, if
‖{v1, v2}, C‖ ≥ 7, then we may assume ‖v1, C‖ = 4 and a1, a2, a3 ∈ NC(v2).
However, ‖{v1, v2}, C − a4‖ = 6, a contradiction.

So ‖{v1, v2}, C‖ ≤ 6 and by symmetry, ‖{v4, v5}, C‖ ≤ 6. Since ‖Q,C‖ ≥
16, we have ‖v3, C‖ = 4. So, in fact, we must have ‖{v1, v2}, C‖ = ‖{v4, v5},
C‖ = 6, else ‖Q,C‖ < 16. Since ‖{v1, v2}, C‖ = 6, v1 and v2 have two com-
mon neighbors, say a1 and a2; thus, G[v1Pv2+a1+a2] contains a DCC. If we
can showG[v3Pv5+a3+a4] also contains a DCC, then we are done by contra-
diction. Since ‖{v4, v5}, C−ai‖ ≤ 5 for each i ∈ {3, 4}, and ‖{v4, v5}, C‖ = 6,
we deduce that ‖{v4, v5}, {a3, a4}‖ ≥ 2. So ‖{a3, a4}, v3Pv5‖ ≥ 4. By Lemma
17, we must have equality and either configuration 1 or 2 occurs where a3a4
plays the role of P1 and v3Pv5 plays the role of P2. However, in neither
configuration is ‖v3, a3a4‖ = 2. So G[v3Pv5 + a3 + a4] contains a DCC by
Lemma 17, and we are done.

Claim 31.2. If ‖{v1, v2}, C − ai‖ = 6 for some ai ∈ C, then each of the
following hold:

1. for all a� ∈ C − ai, ‖a�ai, {v3, v4, v5}‖ ≤ 4,
2. ‖{v1, v2}, C‖ ≤ 7, and
3. NC({v3, v5}) ⊆ V (C − ai).

Symmetric statements hold if ‖{v4, v5}, C − ai‖ = 6.

Proof. In all the following we assume without loss of generality that‖{v1, v2},
C−a4‖ = 6. Observe G[v1Pv2+ai+aj ] contains a DCC for all 1 ≤ i < j ≤ 3.

We cannot have G[v3Pv5+a4+a�] contain a DCC for all � ∈ {1, 2, 3}, else
we get two disjoint DCCs in G[R+C]. Thus, by Lemma 18, ‖a�a4, v3Pv5‖ ≤
4, and in particular, ‖a�a4, {v3, v4, v5}‖ ≤ 4, for all � ∈ {1, 2, 3}. This proves
the first item in the claim.

We now prove item 2. Suppose on the contrary that ‖{v1, v2}, C‖ =
8, which is the most it can possibly be by Lemma 15. This implies that
for all aj ∈ C, ‖{v1, v2}, C − aj‖ = 6, and so by item 1 of this claim,
‖aiaj , {v3, v4, v5}‖ ≤ 4 for all 1 ≤ i < j ≤ 4. As a result, ‖C, {v3, v4, v5}‖ ≤
8. However, as ‖{v1, v2}, C‖ = 8 and ‖Q,C‖ ≥ 16, we must have equality
so that ‖C, {v3, v4, v5}‖ = 8 and furthermore, ‖aiaj , {v3, v4, v5}‖ = 4 for all
1 ≤ i < j ≤ 4.

In particular, ‖a1a2, {v3, v4, v5}‖ = 4, and since we can form a DCC
in with G[v1Pv2 + a3 + a4], Lemma 17 implies either configuration 1 or 2
holds with a1a2 as P1 and v3Pv5 as P2. Configuration 1 must hold other-
wise we would need four vertices in {v3, v4, v5}. So without loss of gener-
ality, ‖a1, {v3, v4, v5}‖ = 3 and ‖a2, {v3, v4, v5}‖ = 1. However, since ‖aiaj ,
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{v3, v4, v5}‖ = 4 for all 1 ≤ i < j ≤ 4 and ‖a1, {v3, v4, v5}‖ = 3, we would
have ‖C, {v3, v4, v5}‖ ≤ 6, a contradiction. This proves item 2 of the claim.

To prove item 3, suppose that ‖a4, {v3, v5}‖ ≥ 1. Since ‖{v1, v2}, C‖ ≤ 7
by item 2 of this claim, we must have ‖{v3, v4, v5}, C‖ ≥ 9. Addition-
ally, as ‖a�a4, {v3, v4, v5}‖ ≤ 4, for all � ∈ {1, 2, 3}, if ‖a4, {v3, v4, v5}‖ ≥
2, then ‖C, {v3, v4, v5}‖ ≤ 8, a contradiction. So ‖a4, {v3, v4, v5}‖ ≤ 1,
and in fact equality holds. Further, ‖{a1, a2, a3}, {v3, v4, v5}‖ ≥ 8. Since
‖ai, {v3, v4, v5}‖ ≤ 3 for each i, we may assume ‖a1, {v3, v4, v5}‖ = ‖a2,
{v3, v4, v5}‖ = 3. So ‖a1a4, {v3, v4, v5}‖ = 4.

Recall that G[v1Pv2 + ai + aj ] contains a DCC for all 1 ≤ i < j ≤ 3. In
particular, G[v1Pv2 + a2 + a2] contains a DCC so that G[v3Pv5 + a1 + a4]
cannot contain a DCC. So as ‖a1a4, {v3, v4, v5}‖ = 4, by Lemma 17, either
configuration 1 or 2 holds. Similar to the above, we must have configura-
tion 1. So as ‖a4, {v3, v4, v5}‖ = 1, a1 plays the role of u and a4 plays the
role of v. In particular, v3 and v5 are not adjacent to a4, a contradition to
‖a4, {v3, v5}‖ ≥ 1. Thus, NC({v3, v5}) ⊆ {a1, a2, a3}, which proves item 3,
and finishes the proof of the claim.

By Claim 31.1, we may assume without loss of generality that ‖{v1, v2},
C − a4‖ = 6. By item 3 in Claim 31.2, we know NC({v3, v5}) ⊆ {a1, a2, a3}.
So it remains to showNC(v1) ⊆ {a1, a2, a3} to complete this case. So suppose
v1a4 ∈ E(G). By item 2 in Claim 31.2, ‖{v1, v2}, C‖ ≤ 7, and since NC(v3) ⊆
{a1, a2, a3}, we have ‖{v1, v2, v3}, C‖ ≤ 10, which implies ‖{v4, v5}, C‖ ≥ 6.
If ‖{v4, v5}, C − a4‖ = 6, then by item 3 in Claim 31.2, NC({v1, v3}) ⊆
{a1, a2, a3}, a contradiction as we assumed v1a4 ∈ E(G). So we must have
‖{v4, v5}, C − a4‖ ≤ 5, and as NC({v3, v5}) ⊆ {a1, a2, a3}, we deduce that
‖{v3, v4, v5}, C‖ ≤ 9 and furthermore, the only way equality holds is if v4a4 ∈
E(G) and NC(v3) = {a1, a2, a3}. Since ‖{v1, v2}, C‖ ≤ 7 and ‖Q,C‖ ≥ 16,
we must have ‖{v3, v4, v5}, C‖ = 9, and consequently, ‖{v1, v2}, C‖ = 7,
v4a4 ∈ E(G), NC(v3) = {a1, a2, a3}, and ‖{v4, v5}, C − a4‖ = 5.

Recall that we are assuming v1a4 ∈ E(G). If v2a4 ∈ E(G), then as
‖{v1, v2}, C‖ = 7, we may assume without loss of generality that G[v1Pv2+
a1+a4] contains a DCC. As ‖{v3, v4, v5}, C‖ = 9 and NC({v3, v5}) ⊆ V (C)−
a4 by item 3 in Claim 31.2, we get ‖{v3, v4, v5}, a2a3‖ ≥ 5. However, Lemma
18 implies G[v3Pv5 + a2 + a3] contains a DCC.

So v2a4 /∈ E(G), which implies ‖v1, C‖ = 4 and ‖v2, C − a4‖ = 2. Thus
‖Q− v1, C − a4‖ ≥ 10, and in particular, there exists ai ∈ C − a4 such that
‖ai, Q− v1‖ = 4. However, this results in two disjoints DCCs in C − ai + v1
and v2Pv5 + ai in G[R+ C], a contradiction.

Thus, we must have NC({v1, v3, v5}) ⊆ {a1, a2, a3}, which completes this
case.



246 Michael Santana and Maia Van Bonn

Case 2. C ∼= K1,2,2.

A (T, e)-partition is a partition of C into two subgraphs, T and e, in
which T is a triangle and e is an edge.

Claim 31.3. For every (T, e)-partition, G[v1Pv2 + e] (and by symmetry
G[v4Pv5 + e]) does not contain a DCC.

Proof. Fix a (T, e)-partition of C. Suppose G[v1Pv2 + e] contains a DCC,
and suppose also that G[v1Pv2+T ] also contains a DCC. Since G[R+C] does
not contain two disjoint DCCs, we cannot have G[v3Pv5+T ] or G[v3Pv5+e]
contain a DCC. So by Lemmas 22 and 18, ‖v3Pv5, T‖ ≤ 3 and ‖v3Pv5, e‖ ≤
4. As a result, ‖{v3, v4, v5}, C‖ ≤ 7. However, since ‖Q,C‖ ≥ 16, this implies
‖{v1, v2}, C‖ ≥ 9, which contradicts Lemma 15.

So suppose G[v1Pv2 + e] contains a DCC, but G[v1Pv2 + T ] does not.
Again, by Lemma 22, ‖{v3, v4, v5}, T‖ ≤ 3. The same lemma implies that
since G[v1Pv2+T ] does not contain a DCC, ‖{v1, v2}, T‖ ≤ 2. So ‖{v1, v2},
T‖ ≤ 2, and ‖{v1, v2}, C‖ ≤ 6. However, since ‖{v3, v4, v5}, T‖ ≤ 3, we have
‖{v3, v4, v5}, e‖ ≥ 7, a contradiction as this can be at most six.

Claim 31.4. For every (T, e)-partition, G[v1Pv2 + T ] (and by symmetry
G[v4Pv5 + T ]) must contain a DCC. Furthermore, ‖e,Q‖ ≤ 7.

Proof. Fix a (T, e)-partition of C, say T = bc1d1b and e = c2d2. By Claim
31.3, G[v1Pv2 + e] does not contain a DCC so that ‖{v1, v2}, e‖ ≤ 3.
We wish to show that G[v1Pv2 + T ] contains a DCC; so if not, then by
Lemma 22, ‖{v1, v2}, T‖ ≤ 2. Thus, ‖{v1, v2}, C‖ ≤ 5 and as ‖Q,C‖ ≥ 16,
‖{v3, v4, v5}, C‖ ≥ 11. Note that if ‖{v4, v5}, C‖ ≥ 8, then G[v4Pv5 + e]
would contain a DCC, contradicting Claim 31.3. So we must have ‖{v4, v5},
C‖ = 7, ‖v3, C‖ = 4, and by Lemma 15, NC(v3) = V (C − b). Furthermore,
‖{v1, v2}, C‖ = 5.

Since ‖{v1, v2}, C‖ = 5, the inequalities of ‖{v1, v2}, T‖ ≤ 2 and ‖{v1, v2},
e‖ ≤ 3 must be equality. As NC(v3) = V (C − b), G[v1Pv3 + e] contains a
DCC. However, as ‖{v4, v5}, C‖ = 7, we have ‖v4Pv5, T‖ ≥ 3, which by
Lemma 22 implies G[v4Pv5+T ] contains a DCC. So G[R+C] contains two
disjoint DCCs, a contradiction. This proves that G[v1Pv2 + T ] contains a
DCC.

To show ‖e,Q‖ ≤ 7, recall that by Claim 31.3 neither G[v1Pv2 + e] or
G[v4Pv5+e] contain a DCC. Therefore, ‖e, {v1, v2}‖ ≤ 3 and ‖e, {v4, v5}‖ ≤
3. If ‖e, v3‖ = 2, then ‖v3Pv5, e‖ ≥ 5 and by Lemma 17, G[v3Pv5 + e]
contains a DCC. However, we just showed that G[v1Pv2 + T ] contains a
DCC. This completes the proof of the claim.
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By Claim 31.4, ‖{ci, di}, Q‖ ≤ 7 for each i ∈ {1, 2}. Hence ‖C − b,Q‖ ≤
14, which implies ‖b,Q‖ ≥ 2. Note that by Lemma 15, if ‖b,Q‖ = 5, then
for all v ∈ Q, ‖v, C‖ ≤ 3 contradicting ‖Q,C‖ ≥ 16. So 2 ≤ ‖b,Q‖ ≤ 4.

Subcase 2.1. ‖b,Q‖ = 4.

We will show that configuration 3 or 4 of this lemma holds. By Lemma
15 and to satisfy ‖Q,C‖ ≥ 16, there exists only one vertex, call it v ∈ Q,
such that ‖v, C‖ = 4, and all others are adjacent to b. Without loss of
generality, v ∈ {v1, v2, v3} so that ‖{v1, v2, v3}, b‖ = 2. For i ∈ {1, 2},
let Ti = bcidib, and ei = cidi. By Claim 31.4, G[v4Pv5 + Ti] contains a
DCC for each i ∈ {1, 2}. So G[v1Pv3 + ei] cannot contain a DCC. By
Lemma 17, ‖{v1, v2, v3}, ei‖ ≤ 4 for each i. So ‖{v1, v2, v3}, C − b‖ ≤ 8
and ‖{v1, v2, v3}, C‖ ≤ 10. Since ‖Q,C‖ ≥ 16, we have ‖{v4, v5}, C‖ ≥ 6;
however since v ∈ {v1, v2, v3}, we know ‖{v4, v5}, C‖ = 6 so that the previ-
ous inequalities must be equality. For example, ‖{v1, v2, v3}, ei‖ = 4 for each
i, and in particular, when i = 1. By Lemma 17, we must have configuration
1 or 2 in which ei plays the role of P1 and v1Pv3 plays the role of P2. Since
configuration 2 requires {v1, v2, v3} to have at least four vertices, we must
have configuration 1. Thus, v2 is adjacent to both c1 and d1, and v1 and v3
have the same neighbor, say c1.

Note that bc2d1b and c1d2 is another (T, e)-partition for which all the
previous arguments hold. In particular, v2 is adjacent to both c1 and d2,
and v1 and v3 are not adjacent to d2 as they are already both adjacent to
c1. Again, when considering T = bc1d1b and T = c2d2, we get NC(v2) =
V (C − b), and NC(v1) = NC(v3) = {b, c1, c2}.

Recall that bv4, bv5 ∈ E(G). We cannot have v5di ∈ E(G) for some
i ∈ {1, 2}, as otherwise v5dibv3Pv5 is a DCC with chords v5b and v4b, and
v2c1d3−ic2v1Pv2 is a DCC with chords v1c1 and v2c2. So we must have
NC(v5) = {b, c1, c2}.

To show that either configuration 3 or 4 of this lemma holds, we only need
to show NC(v4) is either {b, c1, c2} or {b, d1, d2}. Suppose on the contrary
that without loss of generality, NC(v4) = {b, c1, d1}; however, this results
in replacing C with the K4 in G[{v4, b, c1, d1}] which contradicts (O1). This
completes the case when ‖b,Q‖ = 4.

Subcase 2.2. 2 ≤ ‖b,Q‖ ≤ 3.

Here we will show configuration 2 of this lemma holds. Since ‖Q,C‖ ≥
16, we have ‖C − b,Q‖ ≥ 13. So for ei = cidi where i ∈ {1, 2}, we may
assume without loss of generality, ‖e1, Q‖ ≥ 7. However, recall by Claim
31.4 that ‖e,Q‖ ≤ 7 for all e in a (T, e)-partition, which each ei is. Thus,
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‖e1, Q‖ = 7. By Claim 31.3, ‖e1, {v4, v5}‖ ≤ 3 so that ‖e1, {v1, v2, v3}‖ ≥ 4.
However, if G[v1Pv3 + e1] contains a DCC, then we get a contradiction as
Claim 31.4 implies G[v4Pv5+ b+ c2+d2] contains a DCC. So by Lemma 17,
‖e1, {v1, v2, v3}‖ = 4, and one of two configurations holds where e1 plays the
role of P1 and v1Pv3 plays the role of P2. Since configuration 2 of Lemma 17
requires at least four vertices in {v1, v2, v3}, we must have configuration 1;
furthermore, v2 is adjacent to both c1 and d1, and without loss of generality,
v1 and v3 are both adjacent to c1 and not adjacent to d1

Recall ‖e1, Q‖ = 7, so we may also argue that ‖e1, {v3, v4, v5}‖ ≥ 4,
and by symmetry, v4 is adjacent to both c1 and d1, and v3 and v5 are both
adjacent to c1 and not adjacent to d1. We now let e∗1 = c1d2 and e∗2 = c2d1.
As ‖C − b,Q‖ ≥ 13 and ‖e,Q‖ = 7 for all e in a (T, e)-partition, either
‖e∗1, Q‖ = 7 or ‖e∗2, Q‖ = 7. In either case, all the above arguments apply.

If ‖e∗1, Q‖ = 7, then because we already know every vertex in Q is ad-
jacent to c1, the above argument implies that v1, v3, v5 are not adjacent to
d2, but v2 and v4 are. Since v2 and v4 are both adjacent to c1 and d1, we
cannot have bv2 or bv4 ∈ E(G), otherwise we can replace C with a copy of
K4, contradicting (O1). This yields configuration 2, as we allow any vertex
in Q to be ajdacent to c2.

If ‖e∗2, Q‖ = 7, then because we already know that the only vertices in Q
that are adjacent to d1 are v2 and v4, the same argument implies that c2 is
adjacent to all the vertices in Q. As a result, b and d2 cannot have common
neighbors in Q, otherwise we can replace C with a copy of K4 that includes
c2. Since v2 and v4 are both adjacent to c1 and d1, then bv2, bv4 /∈ E(G),
otherwise we can replace C with a copy of K4 contradicting (O1). So the
only vertices possibly adjacent to b are v1, v3, and v5. So if ‖b,Q‖ = 3, then
because every vertex in Q is adjacent to c2, d2 can only be adjacent to v2
and v4, which yields configuration 2. If ‖b,Q‖ = 2, then we actually have
‖C − b,Q‖ ≥ 14, from which we can conclude ‖e∗1, Q‖ = 7, and we again get
configuration 2.

This completes all cases and proves the lemma.

Lemma 32. |P | ≤ 5.

Proof. Let |P | ≥ 6. Then by Lemma 29 there existsQ = {v1, v2, v3, v4, v5, v6}
⊆ V (P ) such that ‖Q,R‖ ≤ 17. As δ(G) ≥ 3k, we get 6(3k) ≤ ‖Q,R‖ +
‖Q, C‖ ≤ 17 + ‖Q, C‖. Therefore, ‖Q, C‖ > 18(k − 1), which implies there
exists a C ∈ C such that ‖Q, C‖ ≥ 19. Thus ‖x,C‖ = 4 for some x ∈ Q,
and by Lemma 15, C ∼= K4 or C ∼= K1,2,2. If there exists u ∈ Q such
that ‖u,C‖ ≤ 1, then ‖Q − u,C‖ ≥ 18 which contradicts Lemma 31. So,
‖u,C‖ ≥ 2 for all u ∈ Q.
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Suppose there exists v ∈ Q such that ‖v, C‖ = 2. Relabel the vertices in
Q−v as u1, u2, u3, u4 and u5 so that they appear in this order, not necessarily
consecutive, along P . Without loss of generality, either v ∈ [p, u1), v ∈
(u1, u2), or v ∈ (u2, u3). Since ‖v, C‖ = 2 and ‖Q,C‖ ≥ 19, we have ‖Q −
v, C‖ ≥ 17. So by Lemma 31, equality holds and G[(Q − v) + C] is either
configuration 1 or 2 in Lemma 31.

Suppose first that we have configuration 1. Since ‖Q − v, C‖ = 17, we
must have NC({u1, u3, u5}) = {a1, a2, a3} and NC({u2, u4}) = V (C) by
Lemma 31. Since ‖v, C‖ = 2, without loss of generality, va1 ∈ E(G). Note
that G[u4Pu5+C−a1] contains a DCC. If v ∈ (u1, u2) or v ∈ (u2, u3), then
u1Pu3a1u1 is a DCC with chords va1 and u2a1. If v ∈ [p, u1), then vPu3a1v
is a DCC with chords u1a1 and u2a1. In either case, we get two disjoint
DCCs, which is a contradiction. This completes the case when configuration
1 holds.

Now suppose we have configuration 2. Since ‖Q−v, C‖ ≥ 17, by Lemma
31, we know equality holds and furthermore, NC({u1, u3, u5}) = {b, c1, c2}
and NC({u2, u4}) = {c1, c2, d1, d2}. Since ‖v, C‖ = 2, we may assume that v
is adjacent to either c1 or d1. In either case, note that G[u4Pu5+ c2+d2+ b]
contains a DCC. Suppose first that v is adjacent to c1. If v ∈ (u1, u2) or
v ∈ (u2, u3), then u1Pu3c1u1 is a DCC with chords u2c1 and vu2. If v ∈
[p, u1), then vPu3c1v is a DCC with chords u1c1 and u2c1. Now suppose v

is adjacent to d1. If v ∈ [p, u1) or v ∈ (u1, u2), then vd1c1u3
←−
P v is a DCC

with chords u2c1 and u2d1. If v ∈ (u2, u3), then u1Pvd1c1u1 is a DCC with
chords u2c1 and u2d1. In any case, we get two disjoint DCCs, which is a
contradiction. This completes the case when configuration 2 holds.

This implies that for all v ∈ Q, ‖v, C‖ ≥ 3. We now return to our original
labeling of the vertices of Q as {v1, v2, v3, v4, v5, v6}. Let’s now assume that
v1, v2, v3, v4, v5, and v6 appear in this order (not necessarily consecutive)
along P . Suppose ‖v6, C‖ = 3 so that ‖Q − v6, C‖ ≥ 16. In this case,
Lemma 31 holds, and one of the configurations listsed occurs. Note that in
each configuration, at least one of v2 or v4 has four neighbors on C, and
furthermore, v1, v3, and v5 each have at most three neighbors on C. Since
we showed above that for all v ∈ Q, ‖v, C‖ ≥ 3, we know in particular that
‖v1, C‖ = 3. Yet this implies that ‖Q − v1, C‖ ≥ 16, so that one of the
configurations in Lemma 31 holds here as well. However, this would imply
that at least one of v3 or v5 would need to have four neighbors on C, which
cannot happen as we just saw that each has at most three neighbors.

So ‖v6, C‖ = 4 and by symmetry, ‖v1, C‖ = 4. Since ‖v, C‖ ≥ 3 for all
v ∈ Q, we see that ‖Q−v6‖ ≥ 16, which implies that one of the configurations
in Lemma 31 holds. However, in none of the configurations is ‖v1, C‖ = 4,
a contradiction. This proves the lemma.
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Lemma 33. If |P | = 5, then R ∼= K1,1,3.

Proof. Let |P | = 5. Since |P | = |R| = 5, by Lemma 30, ‖R,R‖ ≤ 14. We
claim there exists C ∈ C such that ‖R,C‖ ≥ 16. If not, then as δ(G) ≥ 3k,
we get: 5(3k) ≤ ‖R,R‖+‖R, C‖ ≤ 14+15(k−1). However, this implies 15k ≤
15k−1, a contradiction. So ‖R,C‖ ≥ 16 for some C ∈ C, and by Lemma 31,
one of the four configurations hold. First note that if configuration 4 holds,
then we can replace C ∼= K1,2,2 with G[{b, c1, v3, v4}] ∼= K4, contradicting
(O1). So we only need to consider configurations 1–3.

Now since ‖R,R‖ ≤ 14, we know |E(R)| ≤ 7. Furthermore, by inspec-
tion, the only 5-vertex graph with seven edges and no DCC is K1,1,3. So if
R �∼= K1,1,3, then |E(R)| < 7. Our goal in the following is to consider each of
the remaining three configurations from Lemma 31, and show that in each
one, we can find disjoint graphs H1 and H2 in R+C such that H1

∼= C and
H2

∼= K1,1,3. This results in a new collection that will satisfy (O1), (O2),
and (O3), but contradict (O4).

First, if configuration 3 occurs, then G[{b, c1, v3, v4, v5]} ∼= K1,2,2, and
G[{v1, v2, c2, d1, d2}] ∼= K1,1,3. Now consider configuration 1. Since ‖Q,C‖ ≥
16, at most one edge is missing between Q and C. If a1 is not adjacent to v1
or v2, then G[{v1, v2, a2, a3}] ∼= K4 and G[{a1, a4, v3, v4, v5}] ∼= K1,1,3. If a1 is
not adjacent to v3 or if a4 is not adjacent to v2, then G[{a1, a2, v1, v2}] ∼= K4

and G[{a3, a4, v3, v4, v5}] ∼= K1,1,3. This covers all the cases by symmetry.

Lastly, consider configuration 2. Once again since ‖Q,C‖ ≥ 16, at most
one edge is missing between Q and C. There are a few cases to consider. Sup-
pose c1 is not adjacent to either v1, v2, or v3, then G[{v1, v2, v3, c2, d2}] ∼=
K1,1,3 and G[{v4, v5, c1, d1, b}] ∼= K1,2,2. Notice these same structures ex-
ist if bv1 �∈ E(G) or bv3 �∈ E(G). If d1 is not adjacent to v2, then then
G[{v1, v2, v3, c1, b}] ∼= K1,2,2 and G[{v4, v5, c2, d1, d2}] ∼= K1,1,3. By symme-
try, this covers all cases and proves the lemma.

Lemma 34. |P | = 4.

Proof. By Lemma 32, |P | ≤ 5. So suppose |P | = 5. By Lemma 33, G[P ] ∼=
K1,1,3. Let v1, v2, v3 be the vertices in P such that dR(vi) = 2 for each i, and
let F = {v1, v2, v3}. We claim that for all C ∈ C, ‖F,C‖ ≤ 9.

Suppose on the contrary that ‖F,C‖ ≥ 10 for some C ∈ C. Without loss
of generality, suppose ‖v1, C‖ = 4. By Lemma 15, |C| ≤ 5. Since ‖F,C‖ ≥
10, v2 and v3 have a common neighbor in C, say x. Then G[C − x+ v1] and
G[P − v1 + x] each contain a DCC, a contradiction. So ‖F,C‖ ≤ 9.

However, this yields the following contradiction: 3(3k) ≤ ‖F, C‖+‖F,R‖
≤ 9(k − 1) + 6 = 9k − 3.
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6.1. |R| = |P | = 4

In the following, we assume the vertices of R are labeled so that P =
v1v2v3v4.

Lemma 35. There exists C ∈ C such that ‖R,C‖ ≥ 13, and consequently,
R ∼= K1,1,2.

Proof. Suppose that for all C ∈ C, ‖R,C‖ ≤ 12. Note that ‖R,R‖ ≤
10 as R �∼= K4. However, this yields the following contradiction: 4(3k) ≤
4∑

i=1
dG(vi) = ‖R,R‖+ ‖R, C‖ ≤ 10 + 12(k − 1) = 12k − 2.

This proves the first part of the statement of Lemma 35. So suppose
‖R,C‖ ≥ 13 for some C ∈ C, and suppose R �∼= K1,1,2. Since ‖R,C‖ ≥
13, there exists vi ∈ R such that ‖vi, C‖ = 4. So, by Lemma 15, C ∈
{K4,K1,2,2}.

Note that K1,1,2 is the only 4-vertex graph with five edges. So if R �∼=
K1,1,2, then |E(R)| < 5. In each of the following cases we will find disjoint
graphs H1 and H2 in R+C such that H1

∼= C and H2
∼= K1,1,2. This results

in a new collection that will satisfy (O1), (O2), and (O3), but contradict
(O4).

Case 1. C ∼= K4.

Suppose ‖v1, C‖ = 4. Then ‖R−v1, C‖ ≥ 9. So without loss of generality,
‖a1, R − v1‖ = 3. Thus, we can replace C and R with G[C − a1 + v1] ∼= K4

and G[R− v1 + a1] ∼= K1,1,2, respectively.
So ‖v1, C‖ ≤ 3, and by symmetry, ‖v4, C‖ ≤ 3. Without loss of gener-

ality, suppose ‖v2, C‖ = 4. Then, as in the previous case, we may assume
‖a1, R−v2‖ = 3. Observe that if we replace C and R withG[C−a1+v2] ∼= K4

and G[R− v2+a1], respectively, then G[R− v2+a1] has at least four edges.
So R must have at least four edges, otherwise we contradict (O4). Thus
R ∈ {C4, Paw}. However, if R ∼= C4, as ‖v2, C‖ = 4, then by symmetry we
are done by the previous case. Therefore R ∼= Paw.

Note that in the Paw, three of the four vertices are endpoints of paths
spanning the Paw. As we have assumed ‖v2, C‖ = 4 and have shown that
‖v1, C‖ ≤ 3 above, we may assume that dR(v2) = 3, so that ‖vi, C‖ ≤ 3
for i ∈ {1, 3, 4}, otherwise we are again done by the previous case. In fact,
equality must hold as ‖R,C‖ ≥ 13.

As a result, v3 and v4 have a common neighbor, say a1, in C. However,
we can replace C and R with G[R − v1 + a1] ∼= K4 and G[C − a1 + v1] ∈
{K4,K1,1,2}, respectively. This completes the case when C ∼= K4.
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Case 2. C ∼= K1,2,2.

In this case, we first prove the following claim.

Claim 35.1. |E(R)| ≥ 4.

Proof. Suppose that |E(R)| < 4. As |R| = |P | = 4, we have R ∼= P4. If
‖v1, C‖ = 4, then ‖R − v1, C‖ ≥ 9, which implies that there exists distinct
vi, vj ∈ R − v1 such that vi and vj have a common neighbor, say x ∈
C. However, we can then replace C and R with G[C − x + v1] ∼= C and
G[R − v1 + x], respectively, where G[R − v1 + x] has at least four edges,
contradicting (O4).

So ‖v1, C‖ ≤ 3, and by symmetry, ‖v4, C‖ ≤ 3. Since ‖R,C‖ ≥ 13, we
may assume ‖v2, C‖ = 4 and ‖R − v2, C‖ ≥ 9. Note that if ‖v3, C‖ = 4,
then ‖v2v3, C‖ = 8, which contradicts Lemma 16. So ‖vi, C‖ = 3 for all
i ∈ {1, 3, 4}. Also by Lemma 16, we may assume NC(v1) = {b, c1, c2} and
NC(v3) ∈ {{b, c1, c2}, {b, d1, d2}}. If v4b ∈ E(G), then we can replace C and
R with G[C−b+v2] ∼= C and G[R−v2+b], respectively, where G[R−v2+b]
has at least four edges, contradicting (O4). So NC(v4) ⊆ {c1, c2, d1, d2} and
in fact, v4 is adjacent to some ci. If NC(v3) = {b, c1, c2}, then we can replace
C and R with G[C − ci + v2] ∼= C and G[R − v2 + ci], respectively, where
G[R− v2 + ci] has at least four edges. So NC(v3) = {b, d1, d2}. Now v4 must
also be adjacent to some dj . However, we can then replace C and R with
G[C − dj + v1] ∼= C and G[R − v1 + dj ], respectively, where G[R − v1 + dj ]
has at least four edges. This completes all cases where R ∼= P4, and proves
the claim.

So |E(R)| ≥ 4. As we are assuming R �∼= K1,1,2, we have R ∈ {C4, Paw}.
We now show that if R ∼= C4, then in fact, we may assume R ∼= Paw.
Indeed, if R ∼= C4, then as ‖R,C‖ ≥ 13, we may assume without loss of
generality that ‖v1, C‖ = 4. Note that either v2 and v3 have a common
neighbor in C, or v3 and v4 have a common neighbor, call it x. Then we can
replace C and R with G[C − x+ v1] and G[R− v1 + x], respectively, where
G[R− v1 + x] ∼= Paw.

So R ∼= Paw, and we may assume dR(v2) = 3. If ‖v2, C‖ = 4, then
by Lemma 16 and the assumption ‖R,C‖ ≥ 13, we have ‖vi, C‖ = 3 for
i ∈ {1, 3, 4}. Again, by Lemma 16, we may assume without loss of generality
NC(v1) = NC(v3) = {b, c1, c2} and NC(v4) = {b, d1, d2}. However, we can
replace C and R with G[C − c1 + v4] ∼= C and G[R − v4 + c1] ∼= K1,1,2,
respectively, contradicting (O4).

So ‖v2, C‖ ≤ 3. If ‖v1, C‖ = 4, then we have ‖{v3, v4}, C‖ ≥ 6, which
means v3 and v4 have a common neighbor, say x ∈ C. We can then replace
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C and R with G[C − x+ v1] ∼= C and G[R − v1 + x] ∼= K1,1,2, respectively,
contradicting (O4). So ‖v1, C‖ ≤ 3, and by Lemma 16, ‖{v3, v4}, C‖ ≤ 7.
Since ‖R,C‖ ≥ 13, equality must hold in each case. So, by Lemma 16, we
may assume ‖v4, C‖ = 4, NC(v2) = {b, c1, c2} and NC(v3) = {b, d1, d2}. If
v1b ∈ E(G), then we can replace C and R with G[C − b + v4] ∼= C and
G[R − v4 + b] ∼= K1,1,2, respectively, contradicting (O4). If v1b /∈ E(G),
then v1 must be adjacent to some ci. However, we can replace C and R
with G[C − cj + v3] ∼= C and G[R − v3 + cj ] ∼= K1,1,2, respectively, again
contradicting (O4). This completes the proof of the lemma.

Since R ∼= K1,1,2, we may assume the vertices of R are labeled so that
dR(v1) = dR(v4) = 2.

Lemma 36. Let C ∈ C. For i ∈ {1, 4}, if ‖vi, C‖ = 4 and C ∼= K4, then
‖R− vi, C‖ ≤ 8.

Proof. Without loss of generality, suppose ‖v1, C‖ = 4 for some C ∈ C,
and suppose C ∼= K4. If we have ‖ai, R‖ = 4 for any ai ∈ V (C), then
G[C − ai + v1] and G[R − v1 + ai] each form K4, a contradiction. Thus
‖ai, R‖ ≤ 3 for all i. So ‖R,C‖ ≤ 12, and since ‖v1, C‖ = 4, the lemma is
proved.

For a graph H, we let H− to denote any graph that is obtained from H
be removing a single edge. That is, H− represents any arbitrary graph from
a particular family of graphs.

Lemma 37. For all C ∈ C, ‖R,C‖ ≤ 14, and if ‖R,C‖ ≥ 13, then one of
the following configurations holds:

1. ‖R,C‖ = 14, ‖v1, C‖ = ‖v4, C‖ = 3, and G[R+ C] ∼= K5 ∨K3,
2. ‖R,C‖ = 13, 5 ≤ ‖{v1, v4}, C‖ ≤ 6, and G[R+ C] ∼= (K5 ∨K3)

−,
3. ‖R,C‖ = 13, ‖v1, C‖ = ‖v4, C‖ = 3, and G[R+ C] ∼= K2,3,4,
4. ‖R,C‖ = 14, ‖v1, C‖ = ‖v4, C‖ = 4, and G[R+ C] ∼= K3,3,3, or
5. ‖R,C‖ = 13, 7 ≤ ‖{v1, v4}, C‖ ≤ 8, and G[R+ C] ∼= K−

3,3,3.

Proof. Fix C ∈ C such that ‖R,C‖ ≥ 13. There exists some u ∈ R such that
‖u,C‖ ≥ 4, so by Lemma 15 equality holds and C ∈ {K4,K1,2,2}.

Case 1. C ∼= K4.

By Lemma 36, ‖v1, C‖ ≤ 3 and ‖v4, C‖ ≤ 3. So we may assume ‖v2, C‖ =
4.

Suppose that ‖v3, C‖ = 4. Since ‖R,C‖ ≥ 13, we may assume NC(v1) =
{a1, a2, a3} and further ‖v4, C‖ ≥ 2 with a3 ∈ NC(v4). If v4a4 ∈ E(G), then
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we can replace C with two disjoint DCCs in C − a3 − a4 + v3 + v4 and
R−v3−v4+a3+a4, a contradiction. So NC(a4) ⊆ {a1, a2, a3}, which yields
either configuration 1 or 2.

Now suppose ‖v3, C‖ = 3. Then as ‖R,C‖ ≥ 13, we must have ‖vi, C‖ =
3 for i ∈ {1, 3, 4}. Without loss of generality, we may assume NC(v1) =
{a1, a2, a3}. Suppose NC(v4) �= NC(v1), so that we may assume NC(v4) =
{a2, a3, a4}. Without loss of generality, a2 ∈ NC(v3). If v3a1 ∈ E(G), then
we can replace C with two disjoint DCCs in C−a1+ v4 and R− v4+a1. So
NC(v3) = {a2, a2, a4}. However, we can again replace C with two disjoint
DCCs in C − a2 − a4 + v1 + v2 and R− v1 − v2 + a2 + a4. So we must have
NC(v4) = NC(v1). However, this yields configuration 2.

Note that in each situation ‖R,C‖ ≤ 14, which completes this case.

Case 2. C ∼= K1,2,2.

Note that by Lemma 16, ‖{vi, vi+1}, C‖ ≤ 7 for i ∈ {1, 3}. Thus,
‖R,C‖ ≤ 14.

Suppose ‖v2, C‖ = 4. By Lemma 16, ‖vi, C‖ ≤ 3 for i ∈ {1, 3, 4}, and
since ‖R,C‖ ≥ 13, we must have equality. So, by Lemma 16, we may as-
sume NC(v1) = NC(v4) = {b, c1, c2} and NC(v3) = {b, d1, d2}. This yields
configuration 3.

So ‖v2, C‖ ≤ 3 and by symmetry ‖v3, C‖ ≤ 3. Without loss of generality,
‖v1, C‖ = 4, and so ‖vi, C‖ = 3 for some i ∈ {2, 3}. As R ∼= K1,1,2, we may
assume without loss of generality, that ‖v2, C‖ = 3, and by Lemma 16, we
may assume NC(v2) = {b, c1, c2}. Note that if v3 is adjacent to some ci,
then we can replace C with G[{ci, v1, v2, v3}] ∼= K4, contradicting (O1). So
NC(v3) ⊆ {b, d1, d2}.

Now since ‖R,C‖ ≥ 13, ‖{v3, v4}, C‖ ≥ 6. Since ‖v3, C‖ ≤ 3, we have
‖v4, C‖ ≥ 3. If ‖v4, C‖ = 4, then because NC(v3) ⊆ {b, d1, d2}, we get either
configuration 4 or 5. If ‖v4, C‖ = 3, then by Lemma 16, NC(v4) = {b, d1, d2}.
Howevever, this would mean ‖v3, C‖ = 3 as well as NC(v3) ∈ {{b, c1, c2},
{b, d1, d2}}, which in either case contradicts Lemma 16.

This completes both cases and proves the lemma.

Let C̃ ∈ C such that |C̃| is largest amongst all DCCs in C. The proof
of the following lemma requires many structural lemmas and cases, and is
proven in Section 7.

Lemma 38. For all C ∈ C \ {C̃}, if |C̃| ≥ 6, then ‖R+ C̃, C‖ ≤ 3(|C̃|+4).

Using this lemma we can prove the following.

Lemma 39. For all C ∈ C, |C| ≤ 5.
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Proof. First observe that ‖R,R‖ = 10. By the definition of C̃, if |C̃| ≤ 5,
then we are done. So we may assume |C̃| ≥ 6, and by Lemma 15 ‖v, C̃‖ ≤ 3
for all v ∈ R; so ‖R, C̃‖ ≤ 12.

We now claim ‖C̃, C̃‖ ≤ 3|C̃|. Indeed, if for all v ∈ C̃, ‖v, C̃‖ ≤ 3, then
we are done. So suppose we have ‖v, C̃‖ = 4 for some v ∈ C̃ so that v is
incident to two chords in C̃. By Lemma 13, v is the only vertex incident to
two chords, and since |C̃| ≥ 6, there is at least one other vertex in C̃ that is
not incident to a chord. Thus, ‖C̃, C̃‖ ≤ 4 + 2 + 3(|C̃| − 2) = 3|C̃|.

This together with Lemma 38 yields the following:

3k(|C̃|+ 4) ≤
∑

v∈R+C̃

dG(v)

= ‖R+ C̃, R‖+ ‖R+ C̃, C̃‖+ ‖R+ C̃, C \ {C̃}‖
≤ (10 + 12) + (12 + 3|C̃|) + 3(|C̃|+ 4)(k − 2)

= 22 + 3(|C̃|+ 4)(k − 1)

This simplifies to 3(|C̃| + 4) ≤ 22. However, since |C̃| ≥ 6, we get 30 ≤ 22,
which is a contradiction.

We are now able to prove Theorem 9.

Proof of Theorem 9. By Lemma 35, |R| = 4, and by Lemma 39,
∑
C∈C

|V (C)|

≤ 5(k − 1). Thus, n ≤ 4 + 5(k − 1) < 5k. So every n-vertex graph H with
n ≥ 4k and δ(H) ≥ 3k without k disjoint DCCs satisfies n < 5k.

7. Proof of Lemma 38

The goal of this section is to prove Lemma 38. So let C̃ ∈ C be such that
|C̃| is largest amongst all doubly chorded cycles in C, and assume |C̃| ≥ 6.
We show that for all C ∈ C − {C̃}, ‖R + C̃, C‖ ≤ 3(|C̃|+ 4). We first show
this holds if any vertex in the remainder has four neighbors on C.

Lemma 40. Let C ∈ C \ {C̃} and v ∈ R. If ‖v, C‖ = 4, then ‖R+ C̃, C‖ ≤
3(|C̃|+ 4).

Proof. Fix C ∈ C \ {C̃} and v ∈ R such that ‖v, C‖ = 4. By Lemma 15,
C ∈ {K4,K1,2,2}. Observe that for all x ∈ C, C − x + v creates a DCC
C ′ such that replacing C with C ′ yields a new collection of k − 1 disjoint
DCCs, call it C′, that satisfies (O1). Let R′ denote G \ C′, and note that
x ∈ R′. So, by Lemma 14, since |C̃| ≥ 6, we must have ‖x, C̃‖ ≤ 3. Thus,
‖C, C̃‖ ≤ 3|C| ≤ 15.
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Now by Lemma 37, ‖R,C‖ ≤ 14. Thus ‖R + C̃, C‖ ≤ 29 ≤ 3(6 + 4) ≤
3(|C̃|+ 4).

As a result of Lemma 40, we may assume that for all v ∈ R and C ∈
C\{C̃}, ‖v, C‖ ≤ 3, and furthermore, ‖R,C‖ ≤ 12. In the rest of this section,
we consider ‖C, C̃‖ for each the following cases: when C ∼= K4, when |C| = 5,
when |C| ≥ 6 and there exists xy ∈ E(R) such that ‖xy,C‖ ≥ 5, and when
|C| ≥ 6 and ‖R,C‖ ≤ 8.

Lemma 41. Let C1, C2 ∈ C. If ‖C1, C2‖ ≥ 3(max{|C1|, |C2|}) + 1, then for
each i ∈ [2], there exist consecutive vertices x and y along the cycle of Ci

such that ‖{x, y}, C3−i‖ ≥ 7.

Proof. Let C1, C2 ∈ C so that ‖C1, C2‖ ≥ 3(max{|C1|, |C2|}) + 1. Label the
vertices of Ci as v1v2 · · · v|Ci|. Suppose first that |Ci| is even. Consider the set
of consecutive pairs of vertices along the cycle of Ci, {v1v2, v3v4, . . . v|Ci|−1v|Ci|}.
If ‖{vj , vj+1}, C3−i‖ ≤ 6 for all vjvj+1 ∈ {v1v2, v3v4, . . . , v|Ci|−1v|Ci|}, then
‖C1, C2‖ ≤ 3(max{|C1|, |C2|}) which is a contradiction. Therefore, there ex-
ists at least one pair of consecutive vertices xy ∈ {v1v2, v3v4, . . . , v|Ci|−1v|Ci|}
such that ‖{x, y}, C3−i‖ ≥ 7.

Now suppose that |Ci| is odd. Consider the consecutive pairs of vertices
{v2v3, v4v5, . . . , v|Ci|−1v|Ci|}. If there exists a pair vjvj+1 ∈ {v2v3, v4v5, . . . ,
v|Ci|−1v|Ci|} such that ‖{vj , vj+1}, C3−i‖ ≥ 7, we are done. So let ‖{vj , vj+1},
C3−i‖ ≤ 6, for all vjvj+1 ∈ {v2v3, v4v5, . . . , v|Ci|−1v|Ci|}. Then ‖Ci−v1, C3−i‖
≤ 3(|Ci| − 1). Since we assumed that ‖C1, C2‖ ≥ 3(max{|C1|, |C2|}) + 1, we
can conclude that ‖v1, C3−i‖ ≥ 4. If ‖v2, C3−i‖ ≥ 3, then ‖{v1, v2}, C3−i‖ ≥ 7
as desired. So we have ‖v2, C3−i‖ ≤ 2. Now consider the consecutive pairs
of vertices {v|Ci|v1, v3v4, . . . v|Ci|−2v|Ci|−1}. The same argument which shows
that ‖v1, C3−i‖ ≥ 4, shows that ‖v2, C3−i‖ ≥ 4. However, this contradicts
‖v2, C3−i‖ ≤ 2. Hence there must exist a consecutive pair of vertices x and
y along the cycle of Ci such that ‖{x, y}, C3−i‖ ≥ 7.

Lemma 42. Let C1, C2 ∈ C. If ‖C1, C2‖ ≥ 3(max{|C1|, |C2|}) + 1, then for
all z ∈ Ci, ‖z, C3−i‖ ≤ 6.

Proof. Let C1, C2 ∈ C so that ‖C1, C2‖ ≥ 3(max{|C1|, |C2|})+1 and suppose
there exists a vertex z ∈ Ci such that ‖z, C3−i‖ ≥ 7. Label the neighbors of
z as z1, z2, z3, z4, z5, z6, z7, . . . in this order along the cycle of C3−i not neces-
sarily consecutive. From Lemma 41, we can conclude that there exist consec-
utive vertices x, y ∈ C3−i along the cycle portion such that ‖{x, y}, Ci‖ ≥ 7.
Both x and y could be neighbors of z, and so ‖{x, y}, Ci−z‖ ≥ 5. By Lemma
17 we can conclude that G[(C3−i − z) + x + y] contains a doubly chorded
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cycle. Since ‖z, C3−i‖ ≥ 7 there exists at least five neighbors of z that are
not x or y. Without loss of generality, suppose these five are z1, z2, z3, z4 and
z5. Hence G[z + z1Q3−iz4] and G[(C3−i − z) + x + y] form DCCs on fewer
vertices than |C1| and |C2|, contradicting (O1). Therefore, ‖z, C3−i‖ ≤ 6 for
all z ∈ Ci as desired.

Lemma 43. Let C ∈ C. If C ∼= K4, then, ‖C, C̃‖ ≤ 3|C̃|.
Proof. Let C ∈ C and C ∼= K4. Suppose ‖C, C̃‖ ≥ 3|C̃| + 1. By Lemma
41, there exist consecutive vertices x and y along the cycle of C̃, such that
‖{x, y}, C‖ ≥ 7. Suppose ‖{x, y}, C‖ = 8 so that each edge in C forms a K4

with xy. Let e ∈ E(C). The remaining vertices in C, form a K4 with xy, and
so if e forms a DCC with C̃−x−y on fewer vertices than |V (e+ C̃−x−y)|,
this contradicts (O1). Therefore, by Lemma 18 ‖e, C̃ − x − y‖ ≤ 5 for all
e ∈ E(C). If there is a v ∈ C, such that ‖v, C̃ − x − y‖ ≥ 4, then for any
v′ ∈ (C − v), ‖v′, C̃ − x − y‖ ≤ 1 and consequently ‖C, C̃ − x − y‖ ≤ 7.
If there is a v ∈ C, such that ‖v, C̃‖ = 3, then for any v′ ∈ (C − v),
‖v′, C̃ − x − y‖ ≤ 2 and consequently ‖C, C̃ − x − y‖ ≤ 9. If for all v ∈
C, ‖v, C̃ − x − y‖ ≤ 2, then ‖C, C̃ − x − y‖ ≤ 8. Therefore, in all cases
‖C, C̃ − x − y‖ ≤ 9, meaning ‖C, C̃‖ ≤ 17 ≤ 3|C̃|, which contradicts our
assumption that ‖C, C̃‖ ≥ 3|C̃|+ 1.

Suppose that ‖{x, y}, C‖ = 7, and without loss of generality, ‖x,C‖ = 4
and ‖y, C‖ = 3. Recall that the vertices of C ∼= K4 are labelled a1, a2, a3 and
a4. Without loss of generality, suppose that ya1, ya2, ya3 ∈ E(G). Note that
for all e ∈ {a1a2, a1a3, a2a3}, G[e+ x+ y] ∼= K4. Therefore, if a1a4, a2a4, or
a3a4 form a DCC with C̃−x−y on strictly fewer vertices than |C̃|, this would
contradict (O1). Thus, by Lemma 18, ‖{ai, a4}, C̃ − x − y‖ ≤ 5, for each
i ∈ {1, 2, 3}, and furthermore if equality holds for each i, then ‖a4, C̃‖ ≥ 2
by the configurations in Lemma 18.

If ‖a4, C̃−x−y‖ = 5, then ‖{a1, a2, a3}, C̃−x−y‖ = 0 and ‖C, C̃‖ ≤ 12.
If ‖a4, C̃−x−y‖ = 4, then ‖{a1, a2, a3}, C̃−x−y‖ ≤ 3, meaning ‖C, C̃‖ ≤ 14.
If ‖a4, C̃−x−y‖ = 3, then ‖{a1, a2, a3}, C̃−x−y‖ ≤ 6, meaning ‖C, C̃‖ ≤ 16.
If ‖a4, C̃−x−y‖ = 2, then ‖{a1, a2, a3}, C̃−x−y‖ ≤ 9, meaning ‖C, C̃‖ ≤ 18.
In all of these cases ‖C, C̃‖ ≤ 18 ≤ 3|C̃|, which contradicts our assumption
that ‖C, C̃‖ ≥ 3|C̃|+1. So let ‖a4, C̃ − x− y‖ ≤ 1. As noted above, Lemma
18 implies that ‖{ai, a4}, C̃ − x − y‖ ≤ 4, for each i ∈ {1, 2, 3}. Then if
‖a4, C̃−x−y‖ = 1, ‖{a1, a2, a3}, C̃−x−y‖ ≤ 9, meaning ‖C, C̃‖ ≤ 17, which
contradicts our assumption that ‖C, C̃‖ ≥ 3|C̃|+ 1. So ‖a4, C̃ − x− y‖ = 0.
Recall that C−aj+x ∼= K4 for each j ∈ {1, 2, 3}. So if G[C̃−x+aj ] contains
a DCC on less than |C̃| vertices, this contradicts (O1). Thus, ‖aj , C̃−x‖ ≤ 4
so that ‖aj , C̃‖ ≤ 5. However, as ‖a4, C̃‖ ≤ 3, we get ‖C, C̃‖ ≤ 18, which
contradicts our assumption that ‖C, C̃‖ ≥ 3|C̃|+ 1.
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Lemma 44. Let C1, C2 ∈ C. If ‖C1, C2‖ ≥ 3(max{|C1|, |C2|}) + 1, then for
all v ∈ Ci, ‖v, C3−i‖ ≤ 5.

Proof. Let C1, C2 ∈ C so that ‖C1, C2‖ ≥ 3(max{|C1|, |C2|}) + 1. Suppose
there exists a vertex v ∈ Ci such that ‖v, C3−i‖ ≥ 6. By Lemma 42, we
can conclude that ‖v, C3−i‖ = 6. By Lemma 41, we know that there exists
consecutive vertices x and y along the cycle of C3−i such that ‖{x, y}, Ci‖ ≥
7. Notice that ‖{x, y}, (Ci − v)‖ ≥ 5. If G[(Ci − v) + x+ y] contains a DCC
on fewer vertices than |(Ci − v) + x + y|, then G[(Ci − v) + x + y] and
G[(C3−i − x − y) + v] contain DCCs on fewer vertices, contradicting (O1).
Therefore, by Lemma 18, we can conclude that ‖{x, y}, (Ci − v)‖ = 5 and
so vx, vy ∈ E(G).

Let v1, v2, v3, and v4 be the four remaining neighbors of v so that y, x, v1,
v2, v3, and v4 appear in this order along the cycle of C3−i, not necessarily
consecutive, and so that x, y ∈ (v4, v1)C3−i

. Furthermore, from Lemma 17,
we can conclude that G[(Ci − v) + x + y] contains a DCC. Therefore, if
there exists z ∈ (x, v1)C3−i

or z ∈ (v4, y)C3−i
, then G[(Ci − v) + x + y] and

G[(C3−i − x− y − z) + v] contain DCCs on fewer vertices than |C1|+ |C2|,
contradicting (O1). Hence v4, y, x, v1 are consecutive along C3−i.

If ‖v4y, Ci‖ ≥ 8, then ‖v4y, Ci − v‖ ≥ 6 and by Lemma 18, G[Ci − v +
v4 + y] contains a DCC on fewer than |Ci − v + v4 + y| vertices. However,
G[C3−i−v4−y+v] also contains a DCC, contradicting (O1). So ‖v4y, Ci‖ ≤ 7
and by symmetry, ‖v1x,Ci‖ ≤ 7. Therefore, ‖{x, y, v1, v4}, Ci‖ ≤ 14.

Note that G[{v, v4, y, x, v1}] forms a DCC. So H = G[(v1v4)C3−i
+ (Ci −

v)] cannot contain a DCC on fewer vertices than |H|. Suppose first that
|C3−i| ≥ 8 so that |(v1, v4)C3−i

| ≥ 4. By Lemma 21:

‖(v1, v4)C3−i
, Ci − v‖ ≤ min{|(v1, v4)C3−i

|, |Ci − v|}+ 3

≤ |(v1, v4)C3−i
|+ 3

≤ |C3−i| − 4 + 3

≤ |C3−i| − 1.

Since ‖v, C3−i‖ = 6, we know that v is only adjacent to v2 and v3 in
(v1, v4)C3−i

, and so

‖(v1, v4)C3−i
, Ci‖ ≤ |C3−i|+ 1.

Since ‖{x, y, v1, v4}, Ci‖ ≤ 14,

‖C3−i, Ci‖ ≤ |C3−i|+ 15.
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However |C3−i| ≥ 8, which implies ‖C3−i, Ci‖ ≤ 3|C3−i|, a contradiction to
‖C1, C2‖ ≥ 3(max{|C1|, |C2|}) + 1. Therefore |C3−i| = 6 or 7.

If |C3−i|, then a similar argument to the above holds so that by Lemma
20:

‖(v1, v4)C3−i
, Ci − v‖ ≤ 5.

Since ‖v, C3−i‖ = 6, we know that v is only adjacent to v2 and v3 in
(v1, v4)C3−i

, and so

‖(v1, v4)C3−i
, Ci‖ ≤ 7.

Since ‖{x, y, v1, v4}, Ci‖ ≤ 14,

‖C3−i, Ci‖ ≤ 21.

However, |C3−i| = 7, which implies ‖C3−i, Ci‖ ≤ 3|C3−i|, a contradiction to
‖C1, C2‖ ≥ 3(max{|C1|, |C2|}) + 1. Therefore, |C3−i| = 6.

Note that for any pair of consecutive vertices along C3−i, say w and
z, G[C3−i − w − z + v] contains a DCC. So, by Lemma 18, we must have
‖wz,Ci − v‖ ≤ 5, else G[Ci − v + w + z] will contain a DCC on less than
|Ci − v+w+ z| vertices, contradicting (O1). Therefore, ‖C3−i, Ci − v‖ ≤ 15
and so ‖C3−i, Ci‖ ≤ 21. As ‖C3−i, Ci‖ ≥ 3(max{|C1|, |C2|}) + 1, we get
|Ci| ≤ 6.

Recall that ‖xy,Ci−v‖ = 5 andG[C3−i−x−y+v] contains a DCC. So we
must either have configuration 1 or 2 in Lemma 18. Configuration 1 cannot
occur as it requires |Ci − v| ≥ 6. So configuration 2 holds, which implies
|Ci−v| = 3 so that Ci

∼= K4, and without loss of generality, ‖x,Ci−v‖ = 3.
However, G[Ci − v + x] ∼= K4 and G[C3−i − x− y + v] form DCCs on fewer
than |C1|+ |C2| vertices, contradicting (O1).

This completes the proof of the lemma.

Lemma 45. Let C ∈ C \ {C̃}. If |C| = 5, then ‖C, C̃‖ ≤ 3|C̃|.

Proof. Let C ∈ C \ {C̃} such that |C| = 5, and suppose ‖C, C̃‖ > 3|C̃|.
Claim 45.1. For all c ∈ C̃, ‖c, C‖ ≤ 4.

Proof. Let c ∈ C̃ such that ‖c, C‖ = 5, and let v ∈ C. Label C = vv1v2v3v4v.
We will consider the number of chords incident to v. Note that by Lemma
13 v is incident to at most two chords.

Suppose v is incident to two chords so that vv2, vv3 ∈ E(G). Label
e1 = v1v2, e2 = v3v4, T1 as triangle vv3v4v and T2 as triangle vv1v2v.



260 Michael Santana and Maia Van Bonn

Note that G[Ti + c] ∼= K4. So if G[C̃ − c+ ei] contains a DCC on fewer than
|C̃−c+ei| vertices, this contradicts (O1). Hence by Lemma 18 ‖ei, C̃−c‖ ≤ 5,
implying ‖ei, C̃‖ ≤ 7. Therefore, ‖{e1, e2}, C̃‖ ≤ 14. Note that ‖C, C̃‖ ≥ 19,
by our assumption that ‖C, C̃‖ > 3|C̃|, and so ‖v, C̃‖ ≥ 5. By Lemma 44,
‖v, C̃‖ = 5, implying ‖C, C̃‖ = 19, ‖{e1, e2}, C̃‖ = 14, and more specifically
‖ei, C̃ − c‖ = 5.

As argued above ei cannot form a DCC with C̃−c on fewer vertices that
|C̃ − c + ei|. Therefore, by Lemma 18, either configuration 1 or 2 occurs,
implying |C̃ − c| ≥ 6 or |C̃ − c| = 3. The latter cannot hold as |C̃| ≥ 6. If
the former holds, then |C̃| ≥ 7, so that ‖C, C̃‖ ≥ 22. However, we showed
‖C, C̃‖ = 19, a contradiction. So v cannot be incident to two chords in C,
and by symmetry, the same holds for all vertices in C.

As C is a DCC, we can assume without loss of generality that vv2 and
v1v4 are the only chords in C. We now label e1 = v2v3, e2 = v3v4, T1 as
triangle vv1v4v, and T2 as triangle vvv1v2v. As above G[Ti+ c] ∼= K4. So we
must have ‖e3−i, C̃ − c‖ ≤ 5, otherwise by Lemma 18, G[C̃ − c + e3−i] will
contain a DCC on fewer than |C̃ − c + e3−i| vertices, contradicting (O1).
Similarly, ‖vj , C̃ − c‖ ≤ 3 for each j ∈ {2, 3, 4}. From here we can deduce
‖{v2, v3, v4}, C̃ − c‖ ≤ 8.

Note that G[C−v+c] ∼= K1,2,2, which has three chords. If ‖v, C̃−c‖ = 4,
then G[C̃ − c + v] contains a DCC that is either on fewer vertices than C̃,
or has the same number of chords as C̃, as c can only be incident to at most
two chords by Lemma 13. However, this either contradicts (O1) or (O2). So
‖v, C̃ − c‖ ≤ 3, and the same argument shows ‖v1, C̃ − c‖ ≤ 3.

Thus, ‖C, C̃ − c‖ ≤ 14 so that ‖C, C̃‖ ≤ 19. However, as ‖C, C̃‖ > 3|C̃|
and |C̃| ≥ 6, we must have |C̃| = 6, and furthermore, we must have equality
in our prior inequalities. In particular, ‖{v2, v3, v4}, C̃ − c‖ = 8 so that we
may assume without loss of generality that ‖v2v3, C̃ − c‖ = 5. Therefore,
either configuration 1 or 2 in Lemma 18 holds, and either |C̃ − c| ≥ 6 or
|C̃ − c| = 3, respectively. However, both yields contradictions as |C̃| = 6.

This proves the claim.

Claim 45.2. For every edge e along the cycle of C, and for every edge xy
along the cycle of C̃, G[e+ xy] �∼= K4. In particular, ‖e, xy‖ ≤ 3.

Proof. Let e be an edge along the cycle of C, let H be the remaining 3-vertex
path along the cycle of C (perhaps G[H] ∼= K3), and let xy be an edge along
the cycle of C̃.

Suppose first that both G[H+xy] and G[e+xy] contain DCCs. If G[C̃−
x − y + H] contains a DCC on fewer vertices than |C̃ − x − y + H|, this
contradicts (O1). Therefore, ‖H, C̃ − x − y‖ ≤ 5 by Lemma 20. Similarly,
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G[e+ C̃−x−y] cannot contain a DCC on fewer vertices than |C̃−x−y+e|,
so by Lemma 18 ‖e, C̃ − x− y‖ ≤ 5. Together we get ‖C, C̃ − x− y‖ ≤ 10.

Since we assumed that ‖C, C̃‖ > 3|C̃|, we have ‖C, {x, y}‖ ≥ 9. However,

this implies either ‖x,C‖ ≥ 5 or ‖y, C‖ ≥ 5, contradicting Claim 45.1.

Next suppose G[e + xy] contains a DCC, but G[H + xy] does not. As

above, ‖H, C̃ − x − y‖ ≤ 5 by Lemma 20. As G[H + xy] does not contain

a DCC, Lemma 17 implies ‖H,xy‖ ≤ 4 and if equality holds, then either

configuration 1 or 2 holds. Configuration 2 cannot hold as |H| = 3, and if

configuration 1 holds, then either x or y is adjacent to all the vertices of H,

say x. However, G[e + xy] ∼= K4, so that ‖x,C‖ = 5, contradicting Claim

45.1. So we must have ‖H,xy‖ ≤ 3.

This implies ‖H, C̃‖ ≤ 8, and since we assumed ‖C, C̃‖ > 3|C̃|, ‖e, C̃‖ ≥
11. However, this implies there exists x ∈ T such that ‖x, C̃‖ ≥ 6 contra-

dicting Lemma 44.

Claim 45.3. Given a partitioning of C into a triangle, T , and a disjoint

edge, e, there exists an edge xy along the cycle of C̃ such that G[T + xy]

contains a DCC.

Proof. Let T and e be such a partition of C. Suppose T does not form a

DCC with any edge xy along the cycle of C̃. By Lemma 22.3, ‖xy, T‖ ≤ 2

and by Claim 45.2 ‖xy, e‖ ≤ 3. Therefore ‖xy,C‖ ≤ 5. However, since this

is for all edges xy along the cycle of C̃ this contradicts Lemma 41.

Claim 45.4. Given a partitioning of C into a triangle, T , and a disjoint

edge, e, ‖e, C̃‖ ≤ 7.

Proof. Let T and e be such a partition of C and suppose that ‖e, C̃‖ ≥ 8. By

Claim 45.3, there exists an edge xy along the cycle of C̃ such that G[T +xy]

contains a DCC. So if G[C̃ − x − y + e] contains a DCC on strictly fewer

vertices than |C̃ − x − y + e| this contradicts (O1). Therefore, by Lemma

18, ‖e, C̃ − x − y‖ ≤ 5 and so ‖e, C̃‖ ≤ 8 by Claim 45.2. As ‖e, C̃‖ ≥ 8,

we must have equality, and furthermore, ‖e, C̃ − x − y‖ = 5. Therefore,

either configuration 1 or 2 from 18 holds, implying that |C̃ − x− y| ≥ 6 or

|C̃ − x− y| = 3, respectively. The latter cannot hold as |C̃| ≥ 6, so that the

former holds and |C̃| ≥ 8.

As ‖C, C̃‖ > 3|C̃| ≥ 24 and ‖e, C̃‖ = 8, we have ‖T, C̃‖ ≥ 17. However,

this implies there exists a vertex x ∈ T such that ‖x, C̃‖ ≥ 6, contradicting

Lemma 44.

Claim 45.5. |C̃| = 6
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Proof. Partition C into triangle, T , and disjoint edge, e. By Claim 45.4,
‖e, C̃‖ ≤ 7, and so if |C̃| ≥ 8, ‖T, C̃‖ ≥ 18 contradicting Lemma 44.

So suppose |C̃| = 7. By our assumption that ‖C, C̃‖ > 3|C̃| and by
Claim 45.4, we can conclude that ‖T, C̃‖ ≥ 15. This implies that there is a
vertex v ∈ C̃ such that ‖T, v‖ = 3, and so G[T + v] ∼= K4. If G[C̃ − v + e]
contains a DCC on strictly fewer vertices than |C̃ − v + e| this contradicts
(O1). Therefore, by Lemma 18 ‖e, C̃−v‖ ≤ 5. As ‖v, T‖ = 3 and ‖v, C‖ ≤ 4
Claim 45.1, we get ‖e, C̃‖ ≤ 6. However, this implies ‖T, C̃‖ ≥ 16, and
furthermore, there is a vertex x ∈ T such that ‖x, C̃‖ ≥ 6 which contradicts
Lemma 44. Therefore, |C̃| = 6.

Claim 45.6. LetH be a 3-vertex path along the cycle of C̃ (perhaps G[H] ∼=
K3). Given a partition of C into triangle T and disjoint edge e, G[e + H]
does not contain a DCC.

Proof. Partition C into a triangle T and disjoint edge e, and let H be a
3-vertex path along the cycle of C̃, where possibly G[H] ∼= K3. Suppose on
the contrary that G[e + H] contains a DCC. If G[C̃ − H + T ] contains a
DCC on strictly fewer vertices than |C̃ −H + T | this contradicts (O1). By
Claim 45.5, the vertices along the cycle of C̃ disjoint from H form a K1,2 so
that by Lemma 22.4, ‖T, C̃ −H‖ ≤ 3.

By Claim 45.4, ‖e, C̃‖ ≤ 7. So as ‖C, C̃‖ > 3|C̃|, we have ‖T, C̃‖ ≥ 12,
and further ‖T,H‖ ≥ 9. This implies that each vertex in T is adjacent to
all vertices in the H. However, this contradicts Claim 45.2.

Claim 45.7. Given a partitioning of C into a triangle, T , and a disjoint
edge, e, ‖e, C̃‖ ≤ 6 and and ‖T, C̃‖ ≥ 14.

Proof. Let C be partitioned into a triangle T and disjoint edge e. By Claim
45.4 ‖e, C̃‖ ≤ 7. Suppose that ‖e, C̃‖ = 7. By Claim 45.2 ‖e, xy‖ ≤ 3 for all
edges xy along the cycle of C̃. Since ‖e, C̃‖ = 7 and |C̃| = 6 by Claim 45.5,
there exists an edge xy along the cycle of C̃ such that ‖e, xy‖ ≥ 3, and by
Claim 45.2, equality holds.

Label C̃ = xyv1v2v3v4. Without loss of generality, we can assume that
‖e, x‖ = 2 and ‖e, y‖ = 1. We must have ‖e, v1‖ = 0 otherwise G[e +
xyv1] will contain a DCC, contradicting Claim 45.6. Similarly, we must have
‖e, v4‖ ≤ 1. If ‖e, v4‖ = 0, then as ‖e, v2v3‖ ≤ 3 by Lemma 45.2, we get
‖e, C̃‖ ≤ 6, a contradiction as we assumed ‖e, C̃‖ = 7. So ‖e, v4‖ = 1. Yet to
avoid contradicting Claim 45.6, we must have ‖e, v3‖ = 0, which again gives
‖e, C̃‖ ≤ 6 as ‖e, v2‖ ≤ 2.

So we may assume ‖e, C̃‖ ≤ 6. Since ‖C, C̃‖ > 3|C̃|, this implies that
‖T, C̃‖ ≥ 13. As |C̃| = 6, there exists a vertex x ∈ C̃ such that ‖T, x‖ = 3
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and hence G[T + x] ∼= K4. If e forms a DCC with C̃ − x on strictly fewer
vertices than |C̃ − x+ e| this contradicts (O1). Therefore, by Lemma 18 we
can conclude that ‖e, C̃ − x‖ ≤ 5. However, if equality holds, then either
configuration 1 or 2 of Lemma 18 occurs, implying |C̃| = 7 or |C̃| = 4,
contradicting |C̃| = 6. Hence ‖e, C̃ − x‖ ≤ 4, and as ‖T, x‖ = 3, we get
‖e, C̃‖ ≤ 5 by Claim 45.1. So, in fact, ‖T, C̃‖ ≥ 14.

Label the vertices of C so that C = r1r2t1t2t3r1, where e = r1r2 and
t1t2t3t1 is T ; in particular, t1t3 is a chord of C. C must have at least one
more chord, and up to symmetry it is r1t1 or r2t2. In either case, Claim 45.7
implies ‖e, C̃‖ ≤ 6 and ‖T, C̃‖ ≥ 14.

Suppose r1t1 ∈ E(G). Then we can apply Claim 45.7 to the edge t2t3
and triangle r1r2t2r1 to get ‖t2t3, C̃‖ ≤ 6. This together with ‖C, C̃‖ > 3|C̃|,
implies that ‖t1, C̃‖ ≥ 7, which contradicts Lemma 44.

So we may assume r2t2 ∈ E(G). Here we apply Claim 45.7 to the edge
t3r1 and triangle r2t1t2r2 to get ‖r2t1t2, C̃‖ ≥ 14. By Lemma 44, ‖z, C̃‖ ≤
5 for all z ∈ {r2, t1, t2, t3}. However, the only way for ‖T, C̃‖ ≥ 14 and
‖r2t1t2, C̃‖ ≥ 14, is for some edge in e′ ∈ {r2t1, t1t2, t2t3} to have ‖e′, C̃‖ ≥
10. Thus, for some edge e′′ along the spanning cycle of C̃, we must have
‖e′, e′′‖ ≥ 4, however, this contradicts Claim 45.2.

As all cases result in contradictions, this proves the lemma.

Lemma 46. Let C ∈ C \ {C̃}. If xy ∈ E(R) such that ‖{x, y}, C‖ ≥ 5, then
‖C̃, C‖ ≤ 3|C̃|.

Proof. Let C ∈ C \ {C̃}. Note that if |C| ≤ 5, then by Lemmas 43 and
45, ‖C, C̃‖ ≤ 3|C̃|, and we are done. So suppose in all the following that
|C̃| ≥ |C| ≥ 6.

Let xy ∈ E(R) such that ‖{x, y}, C‖ ≥ 5, and suppose on the contrary
that ‖C, C̃‖ ≥ 3|C̃| + 1. Without loss of generality suppose ‖x,C‖ ≥ 3. By
Lemma 15, if ‖x,C‖ = 4, then |C| ≤ 5, a contradiction. So ‖x,C‖ = 3 and
‖y, C‖ ≥ 2. Note that it suffices to consider ‖y, C‖ = 2, as when ‖y, C‖ = 3,
we can delete and edge incident to y and still obtain our results below.

Let NC(x) = {x1, x2, x3}, and NC(y) = {y1, y2}, such that x1, x2, x3
appear along C in this order, but not necessarily consecutive, and similarly
order y1 and y2.

In many of the following arguments we will use the following observation:

Observation. If we replace C with a DCC C ′ contained in G[C + xy] such
that |C| = |C ′|, then by Lemma 14, for all z ∈ V (C)− V (C ′), ‖z, C̃‖ ≤ 3 as
otherwise |C̃| ≤ 5.
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Using this observation, we will in many cases show that for all z ∈ C,
‖z, C̃‖ ≤ 3, which will contradict ‖C, C̃‖ ≥ 3|C̃|+1. We now proceed based
on the size of |NC(x) ∩NC(y)|.

Case 1. |NC(x) ∩NC(y)| ≥ 2.

Without loss of generality, suppose x1 = y1 and x2 = y2. Since xyx1Cx2x
is a DCC with chords xx1 and yx2, there is at most one vertex in (x2, x1)
other than x3, else we would get a DCC with fewer vertices than C, contra-
dicting (O1). Similarly, since yx2Cx3xx1y is a DCC with chords xy and xx2,
there are at most two vertices (x3, x2) other than x1. By symmetry, there
are at most two vertices (x1, x3) other than x2. Lastly, since xx2Cx1yx is a
DCC with chords xx3 and yx2, there are at most two vertices in (x1, x2).

However, due to these restrictions on the number of vertices in C, we
deduce that |C| ≤ 5, which contradicts the assumption that |C| ≥ 6.

Case 2. |NC(x) ∩NC(y)| = 1.

Without loss of generality, suppose x1 = y1. Up to symmetry, we have
two cases to consider here: either y2 ∈ (x1, x2) or y2 ∈ (x2, x3).

Subcase 2.1. y2 ∈ (x1, x2)

Since xyx1Cx2x is a DCC with chords xx1 and yy2, there is at most
one vertex in (x2, x1) other than x3; since xx3Cy2yx is a DCC with chords
xx1 and yx1, there is at most one vertex in (y2, x3) other than x2; since
xx2Cx1yx is a DCC with chords xx3 and xx1, there is at most one vertex in
(x1, x2) other than y2. By these inequalities, |C| ≤ 6 so that equality holds.
Let {v1, v2} = V (C) − NC({x, y}) so that v1 and v2 appear in this order
along C (not necessarily consecutive). We have three cases:

1. C = x1v1y2x2v2x3x1,
2. C = x1y2v1x2x3v2x1, and
3. C = x1v1y2x2x3v2x1.

In each of these situations we can replace C with the DCC xx2Cx1yx
with chords xx3 and xx1; call it C ′. Now |C ′| = |C|, so by the observation
‖{y2, v1}, C̃‖ ≤ 6. Furthermore, the number of chords in C is equal to the
number of chords incident to vertices in {y2, v1} together with the number
of hops in [x2, x1]. As the number of chords in C ′ is equal to the number of
hops in [x2, x1] plus two, there must be at least two chords with an endpoint
in {y2, v1} otherwise replacing C with C ′ yields a collection that satisfies
(O1) but contradicts (O2).
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Similarly, xyx1Cx2x is a DCC with chords xx1 and yy2 that implies
‖{x3, v2}, C̃‖ ≤ 6 and there are at least two chords in C with an endpoint in
{x3, v2}. Lastly, xx2Cx1x is a chorded cycle with xx3 as a chord; so there are
no hops in [x2, x1] otherwise we replace C with a DCC with fewer vertices.

We now consider each option for C separately and in each, we either
contradict (O1) or show ‖{x1, x2}, C̃‖ ≤ 6, which implies ‖C, C̃‖ ≤ 3|C̃|, a
contradiction to ‖C, C̃‖ ≥ 3|C̃|+ 1.

Subcase 2.1.1. C = x1v1y2x2v2x3x1.

If x3v1 ∈ E(G), then xx3v1x1yx is a DCC with chords x1x3 and xx1 that
contradicts (O1). If x3y2 ∈ E(G), then xx1x3y2yx is a DCC with chords yx1
and xx3 that contradicts (O1). Therefore, since C has at least two chords
with an endpoint in {x3, v2} and there are no hops in [x2, x1], we must have
v2y2 and v2v1. Now replacing C with the DCC xx1v1y2v2x3x with chords
v1v2 and x1x3, and the DCC xx3v2v1y2x2x with chords x2v2 and y2v2, yields
‖{x1, x2}, C̃‖ ≤ 6 by the observation, a contradiction.

Subcase 2.1.2. C = x1y2v1x2x3v2x1.

If y2v2 ∈ E(G), then xx1v2y2yx is a DCC with chords x1y2 and yx1 that
contradicts (O1). If y2x3 ∈ E(G), then xyx1y2x3x is a DCC with chords xx1
and yy2 that contradicts (O1). Therefore, since C has at least two chords
with an endpoint in {x3, v2} and there are no hops in [x2, x1], we must have
v1x3 and v1v2. However, xx3v2v1x2x is a DCC with chords v1x3 and x2x3
that contradicts (O1).

Subcase 2.1.3. C = x1v1y2x2x3v2x1.

If y2x3 ∈ E(G), then xx3x2y2yx is a DCC with chords xx2 and x3y2
that contradicts (O1). Since C has at least two chords with an endpoint
in {x3, v2} and there are no hops in [x2, x1], we must have at least two of
the edges in {x3v1, v2y2, v2v1}. Suppose we have v2y2, v2v1 ∈ E(G). Now
replacing C with the DCC xx3v2v1y2x2x with chords x2x3 and v2y2, and
the DCC xx3v2y2v1x1x with chords v1v2 and x1v2, yields ‖{x1, x2}, C̃‖ ≤ 6
by the observation, a contradiction.

So we must have x3v1 ∈ E(G). If v2v1 ∈ E(G), then xx1v2v1x3x is a
DCC with chords x1v1 and x3v2 that contradicts (O1). So v2y2 ∈ E(G). Now
replacing C with the DCC xx1v2y2v1x3x with chords x1v1 and x3v2, and
the DCC yy2v1x3x2xy with chords y2x2 and xx3, yields ‖{x1, x2}, C̃‖ ≤ 6
by the observation, a contradiction.

This completes all cases when y2 ∈ (x1, x2).

Subcase 2.2. y2 ∈ (x2, x3).
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Since xx1Cy2yx is a DCC with chords xx2 and yx1, there is at most
one vertex in (y2, x1) other than x3. By symmetry, there is at most one
vertex in (x1, y2) other than x2. Since |C| ≥ 6, we must have exactly one
vertex in (x1, y2) other than x2, and exactly one vertex in (y2, x1) other
than x3. By these inequalities, |C| ≤ 6 so that equality holds. Let {v1, v2} =
V (C) − NC({x, y}) so that v1 and v2 appear in this order along C (not
necessarily consecutive). Up to symmetry, we have three cases:

1. C = x1v1x2y2x3v2x1,
2. C = x1x2v1y2x3v2x1, and
3. C = x1x2v1y2v2x3x1.

In each of these situations we can replace C with the DCC yy2Cx1xy
with chords yx1 and xx3; call it C

′. Now |C ′| = |C|, so by the observation,
‖{v1, x2}, C̃‖ ≤ 6. Furthermore, the number of chords in C is equal to the
number of chords with an endpoint in {v1, x2} together with the number of
hops in [y2, x1]. As the number of chords in C ′ is equal to the number of hops
in [y2, x1] plus two, there must be at least two chords with an endpoint in
{v1, x2}, otherwise C′ yields a collection that satisfies (O1) but contradicts
(O2). Similarly, yxx1Cy2y is a DCC with chords yx1 and xx2 that implies
‖{x3, v2}, C̃‖ ≤ 6 and there are at least two chords in C with an endpoint
in {x3, v2}.

We now consider each option for C separately and in each, we either
contradict (O1) or show ‖{x1, y2}, C̃‖ ≤ 6, which implies ‖C, C̃‖ ≤ 3|C̃|, a
contradiction to ‖C, C̃‖ ≥ 3|C̃|+ 1.

Subcase 2.2.1.
C = x1v1x2y2x3x2x1

If x2x3 ∈ E(G), then xx2x3y2yx is a DCC with chords xx3 and x2y2
contradicting (O1). If x1x2 ∈ E(G), then xyy2x2x1x is a DCC with chords
xx2 and yx1 contradicting (O1), and a symmetric argument holds if x1x3 ∈
E(G). So x2x3, x1x2, x1x3 /∈ E(G). Suppose v1x3 ∈ E(G). Now replacing
C with the DCC xx2v1x3y2yx with chords xx3 and x2y2, and the DCC
xx3Cx2x with chords v1x3 and xx1, yields ‖{x1, y2}, C̃‖ ≤ 6 by the obser-
vation, a contradiction.

So v1x3 /∈ E(G), and by symmetry v2x2 /∈ E(G). Since C has at least two
chords with an endpoint in {x2, v1} and at least two chords with an endpoint
in {v2, x3}, we must have v1y2, v2y2, v1v2 ∈ E(G). Now replacing C with
the DCC xx3v2y2v1x2x with chords x2y2 and y2x3, and the DCC xx3Cx2x
with chords xx1 and v1v2, yields ‖{x1, y2}, C̃‖ ≤ 6 by the observation, a
contradiction.
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Subcase 2.2.2.

C = x1x2v1y2x3v2x1

Since xx3Cx2x is a chorded cycle with chord xx1, there can be no hops

in [x3, x2], otherwise it is a DCC contradicting (O1). Suppose x3v1 ∈ E(G).

Now replacing C with the DCC xyx1x2v1x3x with chords xx1 and xx2, and

the DCC xx2v1x3y2yx with chords v1y2 and xx3, yields ‖{x1, y2}, C̃‖ ≤ 6

by the observation, a contradiction. So x3v1 /∈ E(G).

Since C has at least two chords with an endpoint in {x3, v2} and there

are no hops in [x3, x2], we must have v1v2 and v2y2. Now replacing C with the

DCC xx3v2y2v1x2x with chords v1v2 and y2x3, and the DCC xx2v1v2x1yx

with chords x1x2 and xx1, yields ‖{x1, y2}, C̃‖ ≤ 6 by the observation, a

contradiction.

Subcase 2.2.3.

C = x1x2v1y2v2x3x1.

If x2y2 ∈ E(G), then xx1x2y2yx is a DCC with chords xx2 and yx1
contradicting (O1). If x1v1 ∈ E(G), then xyx1v1x2x is a DCC with chords

xx1 and x1x2 contradicting (O1). If x2v2 ∈ E(G), then xx1x2v2x3x is a DCC

with chords xx2 and x1x3 contradicting (O1). So x2y2, x1v1, x2v2 /∈ E(G),

and by symmetry, x3y2, x1v2, v1x3 /∈ E(G) respectively. However, C has at

least two chords with an endpoint in {v2, x3}, so that we must have x2x3
and v1v2. However, G[x1Cx3 + x] ∼= K4, contradicting (O1).

This completes the case when y2 ∈ (x2, x3), and completes the case when

|NC(x) ∩NC(y)| = 1.

Case 3. Suppose that NC(x) ∩NC(y) = ∅

To complete this final case, we proceed based on |C|.

Subcase 3.1. |C| = 6

Here we relabel the vertices of C so that C = v1v2v3v4v5v6v1 with

xv1, yv1 �∈ E(G). Note that if v2v4 ∈ E(G), then G[{v2, v3, v4}] ∼= K4 and as

‖xy, {v2, v3, v4}‖ = 3, Lemma 22.3 implies G[xy + v2Cv4] contains a DCC

that contradicts (O1). Therefore, v2v4 /∈ E(G), and similarly, v3v5, v4v6 /∈
E(G). Since C is a DCC, we know that there must exists two additional

edges from {v1v3, v1v4, v1v5, v2v5, v2v6, v3v6}.

Claim 46.1. v1v3, v1v5 /∈ E(G).
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Proof. Suppose v1v3 ∈ E(G). Note that either x or y is adjacent to at least
two vertices from v2, v3, v6. So if v2v6 ∈ E(G), then G[{v1, v2, v3, v6}] ∼= K−

4

with chord v1v2. So, by Lemma 23, either G[x + v6Cv3] or G[y + v6Cv3]
contain a DCC that contradicts (O1). Therefore, v2v6 �∈ E(G). A similar
argument shows how v3v6, v1v4 �∈ E(G).

Hence either v2v5 ∈ E(G) or v1v5 ∈ E(G). Suppose first that v2v5 ∈
E(G) so that v2Cv5v2 is a 4-cycle. Then, by Lemma 24, G[xy + v2Cv5]
contains a DCC on |C| vertices, otherwise we contradict (O1). In particular,
this is a triply chorded cycle, so that C must have three chords, as it would
contradict (O2). Therefore, v1v5 ∈ E(G). However, either x or y is adjacent
to at least two vertices from v2, v5, v6, and G[{v1, v2, v5, v6}] ∼= K−

4 with
chord v1v5. So, by Lemma 23, either G[x+ v5Cv2] or G[y+ v5Cv2] contains
a DCC on fewer vertices than C. Hence v2v5 �∈ E(G), so that v1v5 ∈ E(G),
and C has exactly two chords.

Now we consider which vertices are the neighbors of x. If NC(x) =
{v3, v4, v5}, then xv3v1v5v4x forms a DCC with chords xv5 and v3v4 con-
tradicting (O1). So x is adjacent to at least one of v2 or v6. Without loss
of generality, suppose it is v2. If xv3 ∈ E(G), then note that G[v1Cv3 + vj ]
contains a Paw for each j ∈ {4, 5, 6}. Therefore, for some j ∈ {4, 5, 6},
‖x, {v2, v3, vj}‖ = 3 so that by Lemma 25, G[v1Cv3+vj ] will contain a DCC
contradicting (O1). So xv3 /∈ E(G), and by a similar argument we cannot
have both xv5 and xv6. So we must have xv4 ∈ E(G).

If xv5 ∈ E(G), then xv5v1Cv4x is a triply chorded cycle on |C| vertices
with chords v4v5, v1v3, and xv2. However, this contradicts (O2) as C has
exactly two chords. So NC(x) = {v2, v4, v6} and NC(y) = {v3, v5}.

We now use the observation to show ‖C, C̃‖ ≤ 3|C| ≤ 3|C̃|. Observe that
xv2Cv5yx is a DCC on |C| vertices with chords yv3 and xv4, avoiding v1
and v6. By symmetry, we obtain a similar DCC avoiding v2. Also yv5Cv2xy
is a DCC on |C| vertices with chords xv6 and v1v5, avoiding v3 and v4. By
symmetry, we obtain a similar DCC avoiding v5.

Therefore, v1v3 �∈ E(G) and by symmetry v1v5 �∈ E(G).

Claim 46.2. v2v5, v3v6 /∈ E(G).

Proof. Suppose v2v5 ∈ E(G). If v2v6 ∈ E(G), then v2v5v6v2 is a K3, and by
Lemma 3, G[xy+ v2v5v6] contains a DCC on strictly fewer vertices than C,
contradicting (O1). Hence v2v6 �∈ E(G).

We now use the observation. Note that G[v2Cv5] and G[v5Cv2] are each
4-cycles. By Lemma 24, G[v2Cv5 + xy] and G[v5Cv2 + xy] contain DCCs
on |C| vertices, else we contradict (O1). These avoid v1, v6, and v3, v4, re-
spectively. So we only need to find DCCs on |C| vertices that avoid v2 and
v5.



Disjoint doubly chorded cycles 269

As v2v6 /∈ E(G), the only other possible chords are v1v4 or v3v6. However,
either of these will allow us to create 4-cycles in C such that we can repeat the
above argument to form our desired DCCs that avoid v2 and v5. Therefore,
v2v5 �∈ E(G) and by symmetry v3v6 �∈ E(G).

By the previous two claims, the only available chords are v1v4 and v2v6.
We now use the observation. Note that G[v1Cv4] and G[v4Cv1] are both 4-
cycles. By Lemma 24, G[v1Cv4+xy] and G[v4Cv1+xy] contain DCCs on |C|
vertices (else we contradict (O1)). These avoid, v5, v6 and v2, v3, respectively.
So we only need to find DCCs on |C| vertices that avoid v1 and v4.

Note that if v3 and v5 different neighbors in {x, y}, say xv3 and yv5,
then xv3v2v6v5yx is a DCC with chords incident to v2 and v6 on |C| vertices
avoiding v1 and v4. So v3 and v5 have the same neighbor in {x, y}, say
u. Both v2 and v6 cannot both be adjacent to u as well, so without loss
of generality, suppose v2 is adjacent to v, where {x, y} = {u, v}. However,
uv5Cv2vu is a DCC on |C| vertices with chords incident to v6, and vv2Cv5uv
is a DCC on |C| vertices with chords incident to v3 and v4, avoiding v4 and
v1, respectively.

This completes all cases when |C| = 6, so 7 ≤ |C| ≤ |C̃|.
Subcase 3.2. |C| = 7

As in the case where |C| = 6, we relabel the vertices of C as C =
v1v2 . . . v7v1 where v1 is not adjacent to either x or y. We know another
vertex in C, say v∗, is not adjacent to either x or y, so we proceed based on
those cases.

Claim 46.3. v∗ /∈ {v2, v7}.
Proof. Suppose v2 is not adjacent to either x or y. Note that xy and [v3, v7]
are nontrivial paths such that ‖xy, [v3, v7]‖ ≥ 5. So, by Lemma 18, either
G[xy+[v3, v7]] contains a DCC on at most six vertices, contradicting (O1), or
configuration 1 or 2 holds. However, neither configuration holds as |xy| = 2,
and [v3, v7] has only five vertices. So v2, and by symmetry v7, is adjacent to
either x or y.

Claim 46.4. v∗ /∈ {v3, v6}.
Proof. Suppose v3 is not adjacent to either x or y. Note that xy and [v4, v7]
are nontrivial paths such that ‖xy, [v4, v7]‖ ≥ 4. So, by Lemma 17, either
G[xy + [v4, v7]] contains a DCC on at most six vertices, or configuration 1
or 2 holds. Suppose configuration 2 holds, and without loss of generality,
v4, v7 are neighbors of x and v5, v6 are neighbors of y. Then xv4v5yv6v7x
is a DCC with chords v5v6 and xy, contradicting (O1). So configuration
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1 holds. As ‖x,C‖ = 3 and ‖y, C‖ = 2, we must have ‖x, [v4, v7]‖ = 3
and ‖y, [v4, v7]‖ = 1. So along with symmetry, we may assume NC(x) =
{v4, v6, v7} and NC(y) = {v2, v5}.

Note that yv2Cv6xy is a DCC on |C| vertices in which the number of
chords is exactly 2 plus the number of chords with both endpoints in [v2, v6].
Since the number of chords in C is exactly the number of chords with both
endpoints in [v2, v6] plus the number of chords with at least one endpoint in
{v1, v7}, C must have at least two chords with an endpoint in {v1, v7}, else
we contradict (O2). Similarly, yv5v6xv7Cv2y shows that C has at least two
chords with an endpoint in {v3, v4}. We now show that v7 and v4 cannot be
incident to a chord.

No chord in C has both endpoints in [v4, v7] otherwise xv4Cv7x is a
DCC with xv6 and this additional chord, contradicting (O1). Similarly, all
of the following edges result in DCCs that contradict (O1). If v2v7 ∈ E(G),
then xv6Cv2yx is a DCC with chords xv7 and v2v7. If v3v7 ∈ E(G), then
xv7v3Cv6x is a DCC with chords xv4 and v6v7. If v1v4 ∈ E(G), then
xv7v1v4Cv6x is a DCC with chords xv4 and v6v7. If v2v4 ∈ E(G), then
yv2v4Cv6xy is a DCC with chords yv5 and xv4.

So v4 and v7 cannot be incident to a chord, however this implies that
both v1 and v3 are incident to two chords, which contradicts Lemma 13.

By the previous two claims, v∗ ∈ {v4, v5}. By symmetry, we may assume
v∗ = v4 so that v4 is not adjacent to either x or y.

Claim 46.5. v2 and v5 have the same neighbor in {x, y}, and by symmetry
v3 and v7 have the same neighbor in {x, y}.
Proof. Let {u, v} = {x, y}, and suppose uv2, vv5 ∈ E(G). Note vv5Cv2uv is
a DCC on |C| vertices, in which the number of chords is exactly the number
of chords in C with both endpoints in [v5, v2] plus two. The number of chords
in C is exactly the number of chords with both endpoints in [v5, v2] plus the
number of chords with at least one endpoint in {v3, v4}. So C must have at
least two chords with an endpoint in {v3, v4}, otherwise we contradict (O2).
We will show this cannot happen.

Note that every chord of the form vivi+3 modulo 7 creates a 4-cycle in
C. So unless the chord is v1v4, we get a DCC by Lemma 24 that contradicts
(O1). So every chord in C is either v1v4 or it creates a K3 in C. If there
exists a chord in C with both endpoints in [v2, v5], then uv2Cv5vu is a DCC
with this chord and either uv3 or vv3, contradicting (O1). So the only chords
with an endpoint in {v3, v4} are v1v3, v1v4, and v4v6.

We cannot have both v1v3 and v1v4. If so, and v3 is adjacent to u, then
uv2v1v4v3u is a DCC with chords v2v3 and v1v3, contradicting (O1). Also if
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v3 is adjacent to v, then uv2v1v4v3vu is a DCC with chords v2v3 and v1v3,
contradicting (O1).

So v4v6 ∈ E(G), and either v1v4 or v1v3 exists. Now v3 must be a
neighbor of v, otherwise vv5v6v4v3uv is a DCC with chords v4v5 and either
uv6 or vv6, contradicting (O1). Also v6 must a be a neighbor of u, otherwise
G[v3Cv6] contains a Paw, and ‖v, [v3Cv6]‖ = 3. So, by Lemma 25,G[v3Cv6+
v] contains a DCC contradicting (O1). However, vv3Cv6uv is a DCC with
chords vv5 and v4v6, contradicting (O1).

This completes the proof of the claim.

By the claim, we may assume without loss of generality, NC(x) = {v2, v5,
v6} and NC(y) = {v3, v7}. If any chord exists in [v2, v6], then xv2Cv6x forms
a DCC containing this chord and xv5 that contradicts (O1). Similarly, if any
chord exists in [v5, v2], then xv5Cv2x forms a DCC containing this chord
and xv6, contradicting (O1). Hence the only possible chords in C have one
endpoint in {v3, v4} and the other endpoint in {v7, v1}. If v3v1 ∈ E(G), then
yv7v1v3v2x forms a DCC with chords v1v2 and yv3, and if v3v7 ∈ E(G), then
by Lemma 24 G[xy + [v7, v3]] contains a DCC, each contradicting (O1).

Therefore, v4v7, v4v1 ∈ E(G). But then, xv5v4v1v7v6x forms a DCC
contradicting (O1).

This completes the case when |C| = 7.

Subcase 3.3. |C| ≥ 8.

In our final case we return to the labelling of NC(x) = {x1, x2, x3} and
NC(y) = {y1, y2}. Up to symmetry, we have two cases for how x1, x2, x3, y1, y2
appear along C (not necessarily consecutive): x1, x2, x3, y1, y2, or x1, y1, x2, x3,
y2.

Claim 46.6. x1, y1, x2, x3, y2 appear in this order along C (not necessarily
consecutive).

Proof. Suppose on the contrary that x1, x2, x3, y1, y2 appear in this order
along C (not necessarily consecutive). Since xx2Cy2yx is a DCC with chords
xx3 and yy1, there is at most one vertex in (y2, x2) other than x1. By sym-
metry, there is at most one vertex in (x2, y1) other than x3. Since xx1Cy1yx
is a DCC with chords xx2 and xx3, there is at most one vertex in (y1, x1)
other than y2. By symmetry, there is at most one vertex in (x3, y2) other
than y1.

If there is a vertex in (y2, x1), then |C| ≤ 7. Similarly, if there is a
vertex in (x3, y1). As |C| ≥ 8, we must have exactly one vertex in each of
(x1, x2), (x2, x3), and (y1, y2); label these vertices v1, v2, and v3, respectively.
In particular, |C| = 8 in this case.
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Now xx2Cy2yx is a DCC on |C| vertices whose number of chords is
exactly two plus the number of chords in C with both endpoints in [x2, y2].
As the number of chords in C is exactly the number of chords with both
endpoints in [x2, y2] plus the number of chords with at least one endpoint
in {x1, v1}, C has at least two chords with an endpoint in {x1, v1}, else we
contradict (O2). By symmetry, C has at least two chords with an endpoint
in {v2, x3}. We now show x1 and x3 are not incident to any chords in C.

If there exists a chord in C with both endpoints in [x1, x3], then xx1Cx3x
is a DCC with this chord and xx2, contradicting (O1). If there exists a chord
in C with both endpoints in [y1, x1], then yy1Cx1xy is a DCC with this chord
and yy2, contradicting (O1). So x1 is not incident to a chord in C, and by
symmetry, the same holds for x3. However, this implies v1 and v2 are both
incident to two chords, contradicting Lemma 13.

By the above claim, we assume x1, y1, x2, x3, y2 appear in this order along
C (not necessarily consecutive). Since yy2Cx2xy is a DCC with chords xx1
and yy1, there is at most one vertex in (x2, y2) other than x3. By symmetry,
there is at most one vertex in (y1, x3) other than x2. Since yy1Cx1xy is a
DCC with chords xx2, xx3, yy2, there are at most two vertices in (x1, y1).
By symmetry, there are at most two vertices in (y2, x1).

Claim 46.7. (x2, x3) �= ∅.
Proof. If (x2, x3) = ∅, then yy1Cx2xx3Cy2y is a DCC with chords x2x3 and
xy, so that there is at most one vertex in (y2, y1) other than x1. As |C| ≥ 8,
we may label C by symmetry as C = x1v1y1v2x2x3v3y2x1. Now xx3Cy1yx
is a DCC on |C| vertices whose number of chords is exactly two plus the
number of chords with two endpoints in [x3, y1]. As the number of chords
in C is exactly the number of chords with two endpoints in [x3, y1] plus the
number of chords with at least one endpoint in {v2, x2}, C must have at least
two chords with an endpoint in {v2, x2}, else we contradict (O2). Similarly,
yy2Cx2xy implies there are at least two chords in C with an endpoint in
{x3, v3}. We claim no chord is incident to either x2 or x3.

Indeed, if C has a chord with both endpoints in [x1, x3], then xx1Cx3x
is a DCC with this chord and xx2, contradicting (O1). Similarly, if C has
a chord with both endpoints in [x2, x1], then xx2Cx1x is a DCC with this
chord and xx3. Thus, neither x2 nor x3 can be incident to a chord. So v2 and
v3 must both be incident to two chords each, contradicting Lemma 13.

Let v1 ∈ (x2, x3). This implies that y1, x2, v1, x3, y2 are all consecutive
along C. Now yy2Cx2xy is a DCC on |C| vertices whose number of chords
is exactly two plus the number of chords with both endpoints in [y2, x2].
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As the number of chords in C is exactly the number of chords with both
endpoints in [y2, x2] plus the number of chords with at least one endpoint in
{v1, x3}, C must have at least two chords with an endpoint in {v1, x3}, else
we contradict (O2). By symmetry, C must have at least two chords with an
endpoint in {v1, x2}. As a result, v1 must be incident to a chord, otherwise
x2 and x3 are both incident to two chords, contradicting Lemma 13.

Since |C| ≥ 8, without loss of generality, there exists v2 ∈ (x1, y1). C
has no chords with both endpoints in [x2, x1], otherwise xx2Cx1x is a DCC
with this chord and xx3, contradicting (O1). Similarly, if C has a chord
with both endpoints in [y1, x3], then yy1Cx3xy is a DCC with this chord
and xx2, contradicting (O1). Therefore, every chord with an endpoint in
{v1, x3} (recall that there are at least two such chords) has its other endpoint
in (x1, y1), and the same holds for every chord with an endpoint in {v1, x2}
(recall that there are at least two such chords).

As a result, (y2, x1) = ∅, otherwise xx1Cx3x is a DCC with chords xx2
and at least one chord with its endpoints in {v1, x3} and (x1, y1), contradict-
ing (O1). Therefore, we can label the vertices of C as C = x1v2v3y1x2v1x3y2x1.
So, in particular, every chord with an endpoint in either {v1, x2} or {v1, x3}
has its other endpoint in {v2, v3}, and we know there are at least two such
chords.

Recall that v1 must be incident to a chord. If v1v2 ∈ E(G), then xx3v1v2
Cx2x is a DCC with chords x2v1 and at least one other chord with its
endpoints in {v1, x2} and {v2, v3}, contradicting (O1). So v1v3 ∈ E(G). As
C has at least two chords with an endpoint in {v1, x2}, x2 is incident to a
chord with an endpoint in {v2, v3}, and the same holds for x3. If either x2
or x3 is adjacent to v3, then xx3v1v3Cx2x is a DCC with this chord and
x2v1, contradicting (O1). However, this implies both x2v2, x3v2 ∈ E(G), yet
v2Cx3v2 is a DCC with chords v1v3 and x2v2, contradicting (O1).

This completes all cases and proves the lemma.

Lemma 47. Let C1, C2 ∈ C such that |C1| ≥ 6 and |C2| ≥ 6, then ‖C1, C2‖ ≤
3max{|C1|, |C2|}+ 4.

Proof. Let C1, C2 ∈ C with |C1| ≥ 6 and |C2| ≥ 6, and assume that
‖C1, C2‖ ≥ 3max{|C1|, |C2|}+ 5.

Claim 47.1. Let v ∈ Ci and u ∈ C3−i. If ‖v, C3−i − u‖ ≥ 4 and ‖u,Ci −
v‖ ≥ 4, then equality holds, and furthermore, u and v are each incident to
two chords in their respective DCCs. Consequently, if ‖v, C3−i‖ ≥ 5 and
‖u,Ci‖ ≥ 5, then equality holds, uv ∈ E(G), and u and v are each incident
to two chords in their respective DCCs.
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Proof. Let v ∈ Ci and u ∈ C3−i such that ‖v, C3−i − u‖ ≥ 4 and ‖u,Ci −
v‖ ≥ 4. Label four neighbors of v in C3−i as v1, v2, v3 and v4 such that
they appear in this order along C3−i (not necessarily consecutive), where
NC3−i

(v) ∩ [v1, v4]C3−i
= {v1, v2, v3, v4} and u ∈ (v4, v1)C3−i

. Similarly, label
four neighbors of u in Ci as u1, u2, u3, and u4.

If (u, v1)C3−i
∪(v4, u)C3−i

�= ∅, then G[u+[v1, v4]C3−i
] and G[v+[u1, u4]Ci

]
contain DCCs on strictly fewer vertices than |C1|+ |C2|, contradicting (O1).
Therefore v4, u, and v1 are consecutive along C3−i and by symmetry, u4, v,
and u1 are consecutive along Ci. This implies ‖v, C3−i−u‖ = ‖u,Ci−v‖ = 4.

Note that vv1C3−iv4v forms a DCC with chords vv2 and vv3 and uu1Ciu4u
forms a DCC with chords uu2 and uu3, call these Cv and Cu respectively.
Furthermore, the number of chords in Cv is exactly two more than the num-
ber of chords in C3−i not incident to u, and the number of chords in Cu is
exactly two more than the number of chords in Ci not incident to v. There-
fore, u and v must both be incident to at least two chords otherwise Cv and
Cu forms DCC on the same number of vertices as |C1| and |C2|, but with
more chords, contradicting (O2).

Claim 47.2. Let v ∈ Ci and xy be an edge along the cycle of C3−i such
that ‖v, C3−i‖ ≥ 5 and ‖{x, y}, Ci‖ ≥ 7. Then, xv, yv ∈ E(G).

Proof. Let v ∈ Ci and xy be an edge along the cycle of C3−i such that
‖v, C3−i‖ ≥ 5 and ‖{x, y}, Ci‖ ≥ 7. Suppose that either xv �∈ (E)G or yv �∈
E(G). This means that ‖v, C3−i−x−y‖ ≥ 4 and soG[C3−i−x−y+v] contains
a DCC. Furthermore, ‖{x, y}, Ci− v‖ ≥ 6 and by Lemma 18, G[Ci− v+xy]
contains a DCC on strictly fewer vertices than |Ci − v + xy|, contradicting
(O1). Therefore, xv, yv ∈ E(G).

We will consider the following cases:

Case 1. Suppose there exists a vertex v ∈ Ci such that ‖v, C3−i‖ ≥ 5.

By Lemma 44, ‖v, C3−i‖ = 5. Label the neighbors of v in C3−i as
v1, v2, v3, v4 and v5 in this order along the cycle, not necessarily consecu-
tive. Note that by Claim 47.1, for all x ∈ V (C3−i) − NC3−i

(v), we have
‖x,Ci‖ ≤ 3. As a result, we must have ‖{v1, v2, v3, v4, v5}, Ci‖ ≥ 20, other-
wise ‖C3−i, Ci‖ ≤ 3(|C3−i| − 5) + 19 ≤ 3|C3−i|+ 4, a contradiction.

Therefore, if ‖vi, C3−i‖ = 4, for all 1 ≤ i ≤ 5, then ‖{v1, v2, v3, v4, v5}, Ci‖
= 20 and ‖x,Ci‖ = 3 for all vertices x ∈ V (C3−i) − NC3−i

(v). Since
|C3−i| ≥ 6, there does exist x ∈ V (C3−i) − NC3−i

(v), and we can assume
without loss of generality that x ∈ (v5, v1)C3−i

and that xv1 is an edge along
the cycle of C. However ‖{x, v1}, Ci‖ ≥ 7, which contradicts Claim 47.2.
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Therefore, suppose that ‖v1, C3−i‖ = 5. By Claim 47.1, v and v1 are
each incident to two chords in their respective DCCs. Therefore, for j ∈
{2, 3, 4, 5}, ‖vj , Ci‖ ≤ 4, otherwise vj would be incident to two chords by
Claim 47.1, which will contradict Lemma 13. Since ‖C1, C2‖ ≥ 3max{|C1|,
|C2|} + 5, we get that for all j ∈ {2, 3, 4, 5}, 3 ≤ ‖vj , Ci‖ ≤ 4, and further,
there can only be one j ∈ {2, 3, 4, 5} where ‖vj , Ci‖ = 3. Lastly, if ‖vj , Ci‖ =
3 for some j ∈ {2, 3, 4, 5}, then for all z ∈ V (C3−i)−NC3−i

(v), ‖z, Ci‖ = 3.
Since |C3−i| ≥ 6, there exists a vertex u ∈ V (C3−i) − NC3−i

(v). So u ∈
(vj , vj+1)C3−i

for some j ∈ {1, 2, 3, 4, 5} where j is taken modulo 5. As noted,
either ‖vj , Ci‖ ≥ 4 or ‖vj+1, Ci‖ ≥ 4. Without loss of generality, we may
assume it is vj , and furthermore, we may assume vj and u are consecutive
along C3−i. However, this implies ‖u,Ci‖ ≤ 2, otherwise we contradict Claim
47.2. However, in order to satisfy ‖C1, C2‖ ≥ 3max{|C1|, |C2|}+5, we must
have |C3−i| = 6, ‖u,Ci‖ = 2, and ‖vj , Ci‖ = 4 for all j ∈ {2, 3, 4, 5}. Also
u cannot be adjacent to v1 along the cycle of C3−i, otherwise we contradict
Claim 47.2.

By symmetry, we may assume u ∈ (v2, v4)C3−i
. Recall that v1 is incident

to two chords in C3−i. There can be at most one chord in [v4, v1]C3−i
, meaning

v1 must be incident to a chord in [v1, v4)C3−i
. Note that regardless of the

location of the chord in [v1, v4)C3−i
, and regardless of the location of u ∈

(v2, v4)C3−i
, G[v+[v1, v4)C3−i

] contains a DCC. However, since ‖{v4, v5}, Ci−
v‖ = 6, by Lemma 18, G[Ci − v + v4 + v5] contains a DCC on strictly fewer
vertices than |Ci− v+ v4+ v5|, contradicting (O1). This completes the case.

Case 2. Suppose for all vertices v ∈ Ci, ‖v, C3−i‖ ≤ 4.

By symmetry, we may assume that for all z ∈ C3−i, ‖z, Ci‖ ≤ 4. As
‖C1, C2‖ ≥ 3max{|C1|, |C2|}+5, there exists v ∈ Ci such that ‖v, C3−i‖ = 4.
Label the neighbors of v in C3−i as v1, v2, v3, and v4 in this order along the
cycle, not necessarily consecutive. Since ‖C1, C2‖ ≥ 3max{|C1|, |C2|} + 5
and for each j, ‖vj , Ci‖ ≤ 4, there exists u ∈ V (C3−i)−NC3−i

(v), such that
‖u,Ci‖ = 4, and we can label the neighbors of u in Ci as u1, u2, u3 and u4 in
this order along the cycle, not necessarily consecutive, with u ∈ (v4, v1)C3−i

and v ∈ (u4, u1)Ci
.

By Claim 47.1, u and v are both incident to two chords in their respective
DCCs. If there exists another vertex u′ ∈ V (C3−i)−NC3−i

(v), then ‖u′, Ci‖ ≤
3 otherwise by Claim 47.1, u′ is also incident to two chords, contradicting
Lemma 13. Thus as ‖C1, C2‖ ≥ 3|Ci| + 5, we have ‖vj , C3−i‖ = 4 and by
symmetry, ‖uj , Ci‖ = 4 for each j ∈ {1, 2, 3, 4}.

Now consider v1. If v1u1 �∈ E(G), then by Claim 47.1, v1 is incident to
two chords, contradicting Lemma 13. Hence, v1u1, v1u2, v1u3, v1u4 ∈ E(G).
However, this implies ‖v1, Ci‖ = 5, which is a contradiction.
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This completes all cases and proves the lemma.

We can now prove Lemma 38.

Proof of Lemma 38. Let C ∈ C \ {C̃}. We show that in every possibility,

‖R+ C̃, C‖ ≤ 3(|C̃|+ 4).

If there exists v ∈ R such that ‖v, C‖ ≥ 4, then by Lemma 15 equality

holds, and by Lemma 40 ‖R + C̃, C‖ ≤ 3(|C̃|+ 4). So we may assume that

‖R,C‖ ≤ 12.

If there exists an edge xy ∈ E(R) such that ‖xy,C‖ ≥ 5, then by Lemma

46 ‖C̃, C‖ ≤ 3|C̃|. So ‖R+C̃, C‖ ≤ 12+3|C̃| = 3(|C̃|+4). So we may assume

that ‖R,C‖ ≤ 8.

If |C| = 4 so that C ∼= K4, then by Lemma 43, ‖C̃, C‖ ≤ 3|C̃|. So
‖R+ C̃, C‖ ≤ 8 + 3|C̃| ≤ 3(|C̃|+ 4).

If |C| = 5, then by Lemma 45, ‖C̃, C‖ ≤ 3|C̃|. So ‖R+C̃, C‖ ≤ 8+3|C̃| ≤
3(|C̃|+ 4).

If |C| ≥ 6, then by Lemma 47, ‖C̃, C‖ ≤ 3|C̃| + 4. So ‖R + C̃, C‖ ≤
8 + 3|C̃|+ 4 = 3(|C̃|+ 4).

This completes the proof of the lemma.

8. Proof of Theorem 10

In this section we prove Theorem 10. So we are assuming G is an n-vertex

graph with n ≥ 4k such that δ(G) ≥ 10k−1
3 , and furthermore, G is edge-

maximal with respect to not having k disjoint doubly chorded cycles. It is

important to note that in all of the previous lemmas we were assuming that

G was an n-vertex with n ≥ 4k and δ(G) ≥ 3k. Since 10k−1
3 ≥ 3k for k ≥ 1,

all of the previous lemmas apply in this section as well. So, in particular, by

Lemma 35, R ∼= K1,1,2. We will also heavily rely on Lemma 37 below.

Lemma 48. If there exists C ′ ∈ C such that ‖R,C ′‖ ≥ 13, then G[R+C ′] /∈
{K−

3,3,3,K3,3,3}.

Proof. Suppose on the contrary that there exists C ′ ∈ C such that ‖R,C ′‖ ≥
13 and G[R+C ′] ∈ {K−

3,3,3,K3,3,3}. Note that by Lemma 37, G[C ′] ∼= K1,2,2.

In the following we will assume that G[R+C ′] ∼= K−
3,3,3, as all the arguments

will hold if G[R + C ′] ∼= K3,3,3. Let u and v be the nonadjacent vertices in

R+C ′ such that if we added the edge uv, we would have G[R+C ′] ∼= K3,3,3.

Claim 48.1. For all C ∈ C − {C ′}, ‖R+ C ′, C‖ ≤ 30.
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Proof. Suppose there exists C ∈ C −{C ′} such that ‖R+C ′, C‖ ≥ 31. Note

that for every vertex z ∈ R+C ′, we can arrange G[R+C ′] into two disjoint

subgraphs R∗ and C∗ such that z ∈ R∗, R∗ ∼= R, and G[C∗] ∼= G[C ′] ∼=
K1,2,2. Therefore, R

∗ and C∗ = (C ∪ {C∗}) − {C ′} is an optimal partition

with z ∈ R∗. So, by Lemma 15, ‖z, C‖ ≤ 4 for all z ∈ R+ C ′.
Since ‖R + C ′, C‖ ≥ 31, there exist at least four vertices in R + C ′,

say v1, v2, v3, v4, such that ‖vi, C‖ = 4 for each i. So, by Lemma 15, C ∈
{K4,K1,2,2}, and furthermore, for each i and y ∈ C, G[C − y + vi] ∼= C.

Note that regardless of whether C ∼= K4 or C ∼= K1,2,2, since ‖R +

C ′, C‖ ≥ 31, there exists a vertex x ∈ C such that ‖x,R + C ′‖ ≥ 7. In

particular, as G[R+C ′] ∼= K−
3,3,3, x must be adjacent to all three vertices of a

triangle in G[R+C ′]. Furthermore, some vi is not one of these three vertices.

Therefore, x with these three vertices forms a K4 and G[C − x + vi] ∼= C.

So replacing C ′ and C with these DCCs respectively, contradicts (O1). This

proves the claim.

By the above claim:

9

(
10k − 1

3

)
≤ ‖R+ C ′, R+ C ′‖+ ‖R+ C ′, C − {C ′}‖ ≤ 54 + 30(k − 2).

However, this yields 30k − 3 ≤ 30k − 6, a contradiction.

We are now ready to prove Theorem 10.

Proof of Theorem 10. For each i where 0 ≤ i ≤ 8, let Ci = {C ∈ C :

‖{v1, v4}, C‖ = i}. Note that
8∑

i=0
|Ci| = k − 1. By the definition of Ci:

2

(
10k − 1

3

)
≤ dG(v1)+dG(v4) = ‖{v1, v4}, R‖+‖{v1, v4}, C‖ = 4+

8∑
i=0

i·|Ci|.

This yields:

(2) 2

(
10k − 1

3

)
≤ 4 +

8∑
i=0

i · |Ci|.

By Lemma 37, ‖R,C‖ ≤ 14 for all C ∈ C. If C ∈ C8 and ‖R,C‖ ≥ 13,

then by Lemma 37, G[R + C] ∈ {K−
3,3,3,K3,3,3}. However, this contradicts

Lemma 48. So if C ∈ C8, then ‖R,C‖ ≤ 12. Similarly, if C ∈ C7 and
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‖R,C‖ ≥ 13, then by Lemma 37, G[R+C] ∼= K−
3,3,3. Again this contradicts

Lemma 48 so that for all C ∈ C7, ‖R,C‖ ≤ 12. These yield the following:

4

(
10k − 1

3

)
≤ ‖R,R‖+ ‖R, C‖ ≤ 10 +

(
14

6∑
i=0

|Ci|
)

+ 12|C7|+ 12|C8|.

This gives us:

(3) 4

(
10k − 1

3

)
≤ 10 +

(
14

6∑
i=0

|Ci|
)

+ 12|C7|+ 12|C8|.

However, adding (2) to (3) yields the following contradiction.

20k − 2 ≤ 14 + 14|C0|+ 15|C1|+ 16|C2|+ 17|C3|+ 18|C4|+ 19|C5|
+ 20|C6|+ 19|C7|+ 20|C8|

≤ 14 + 20

8∑
i=0

|Ci|

= 14 + 20(k − 1)

= 20k − 6.

This completes the proof of Theorem 10.

9. Exploring Conjecture 11

In this final section we provide some evidence to support Conjecture 11. In

particular, we prove an approximate version of Conjecture 11 using a result

on near-tilings of graphs by Shokoufandeh and Zhao in [9]. To state their

result, we first need a few definitions.

For any graph H, let σ(H) denote the size of the smallest color class

over all proper χ(H)-colorings of H. Define the critical chromatic number

of H, denoted by χcr(H), to be

χcr(H) =
(χ(H)− 1)|H|
|H| − σ(H)

.

As examples, χcr(K1,2,2) =
5
2 , χcr(K1,1,2) =

8
3 , and χcr(K4) = 4.
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Theorem 49 (Shokoufandeh and Zhao [9]). For every H with χ(H) > 2,
there exists n0 = n0(H) such that for every n ≥ n0 the following holds. If G
is an n-vertex graph and

δ(G) ≥
(
1− 1

χcr(H)

)
n,

then G contains a collection of disjoint copies of H that covers all but at
most

5(χ(H)− 2)(|H| − σ(H))2

σ(H)(χ(H)− 1)

vertices.

Using Theorem 49, we now prove a proposition that shows an approxi-
mate version of Conjecture 11 holds.

Proposition 50. For every ε > 0, there exists n0 = n0(ε) such that for
all n ≥ n0, if G is an n-vertex graph with 4k + εn ≤ n < 5k and δ(G) ≥(
5k
3n + 1

3 + ε
)
n, then G contains k disjoint doubly chorded cycles.

Proof. Fix ε > 0, and let C = 7
ε+3. For all graphsH on at most �C� vertices,

Theorem 49 returns an n0(H). Denote the maximum of these n0(H) as n∗
0,

and let our n0 be the maximum of n∗
0 and

⌈
10
3 C

3
⌉
.

Let G be an n-vertex graph where n ≥ n0 with 4k + εn ≤ n < 5k and
δ(G) ≥

(
5k
3n + 1

3 + ε
)
n. Define h and k′ as follows:

(4) h = 2

⌊
C

2
·
n− 10

3 C
2

n

⌋
, and k′ =

⌈
C · k

n

⌉
.

We now derive two useful inequalities involving h. First, as
n− 10

3 C
2

n
≤ 1

and h = 2

⌊
C

2
·
n− 10

3 C
2

n

⌋
, we get:

(5) h ≤ C.

Second, observe that

h = 2

⌊
C

2
·
n− 10

3 C
2

n

⌋
≥ 2

(
C

2
·
n− 10

3 C
2

n
− 1

)
= C − 2−

10
3 C

3

n
.
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As n was chosen so that n ≥ n0 ≥ 10
3 C

3, we get:

(6) h ≥ C − 3.

Recall the definition of the graph G(t, n) from Section 2. Let H =
G(5k′ − h, h) so that by the construction of G(5k′ − h, h), H will have
exactly h vertices and by (5), h ≤ C so that by our choice of n ≥ n0, we can
apply Theorem 49 to H.

Claim 50.1. 4k′ ≤ h < 5k′.

Proof. We first show h < 5k′ by showing 5k′

h ≥ 5k
n . Since k′ = �Ck

n � ≥ Ck
n

and h ≤ C by (5), we have:

5k′

h
≥

5Ck
n

C
=

5k

n
.

Since n was chosen so that n < 5k, we get 5k
n > 1 so that 5k′

h > 1. Thus,
h < 5k′.

We now show h ≥ 4k′. Since k′ = �Ck
n � ≤ Ck

n + 1 and h ≥ C − 3 by (6),
we have:

k′

h
≤

Ck
n + 1

C − 3
=

k

n
+

3k
n + 1

C − 3
.

Since n was chosen so that n ≥ 4k + εn, we know that k
n < 1

4 . By this
and the fact that C = 7

ε + 3, we get:

k

n
+

3k
n + 1

C − 3
<

k

n
+

7
4

C − 3
=

k

n
+

ε

4
.

So

(7)
k′

h
≤ k

n
+

ε

4
, .

As mentioned above, k
n < 1

4 so that k′

h < 1+ε
4 and consequently 4k′

h ≤ 1.
Thus, h ≥ 4k′.

Thus by this claim and Lemma 12,H contains k′ disjoint doubly chorded
cycles. Furthermore, as the claim states h < 5k′, we get 5k′−h > 0 so thatH

is 4-partite. Thus, χ(H) = 4 and σ(H) = 5k′ − h. So χcr(H) = (4−1)h
h−(5k′−h) =

3h
2h−5k′ . This gives:(

1− 1

χcr(H)

)
n =

(
1− 2h− 5k′

3h

)
n =

(
5k′

3h
+

1

3

)
n.
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Recall that δ(G) ≥
(
5k
3n + 1

3 + ε
)
n. By (7),

5k

3n
+

1

3
+ ε ≥ 5

3

(
k′

h
− ε

4

)
+

1

3
+ ε ≥ 5k′

3h
+

1

3
.

So δ(G) ≥
(
1− 1

χcr(H)

)
n, and by Theorem 49, G contains a collection of

disjoint copies of H that covers at least n− 10(2h−5k′)2

3(5k′−h) vertices.

As 4k′ ≤ h < 5k′, we have 5k′ − h > 0 and 0 ≤ 2h − 5k′ < h. So
(2h−5k′)2

5k′−h ≤ h2 ≤ C2, where the last inequality is due to (5). Therefore, G

contains a collection of disjoint copies of H that covers at least n − 10
3 C

2

vertices. As each copy of H contains has h vertices and contains k′ disjoint
doubly chorded cycles, G contains at least (n − 10

3 C
2)(k

′

h ) disjoint doubly
chorded cycles.

By (4),

k′ =

⌈
Ck

n

⌉
≥ Ck

n
and h = 2

⌊
C

2
·
n− 10

3 C
2

n

⌋
≤ C

(
n− 10

3 C
2

n

)
.

Therefore, the number of disjoint doubly chorded cycles in G is at least:(
n− 10

3
C2

)
k′

h
≥

(
n− 10

3
C2

)
Ck

n

n

C(n− 10
3 C

2)
= k.

This proves the proposition.
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