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Sharp minimum degree conditions for disjoint
doubly chorded cycles
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In 1963, Corradi and Hajnal proved that if G is an n-vertex graph
where n > 3k and §(G) > 2k, then G contains k vertex-disjoint
cycles, and furthermore, the minimum degree condition is best
possible for all n and k& where n > 3k. This serves as the moti-
vation behind many results regarding best possible conditions that
guarantee the existence of a fixed number of disjoint structures in
graphs. For doubly chorded cycles, Qiao and Zhang proved that if
n > 4k and §(G) > L%j, then G contains k vertex-disjoint dou-
bly chorded cycles. However, the minimum degree in this result
is sharp for only a finite number of values of k. Later, Gould Hi-
rohata, and Horn improved upon this by showing that if n > 6k
and 0(G) > 3k, then G contains k vertex-disjoint doubly chorded
cycles. Furthermore, this minimum degree condition is best pos-
sible for all n and k where n > 6k. In this paper, we prove two
results. First, we extend the result of Gould et al. by showing their
minimum degree condition guarantees k disjoint doubly chorded
cycles even when n > 5k, and in addition, this is best possible for
all n and k where n > 5k. Second, we improve upon the result
of Qiao and Zhang by showing that every n-vertex graph G with
n > 4k and §(G) > [1%=1] contains k vertex-disjoint doubly
chorded cycles. Moreover, this minimum degree is best possible for
all k € Z+.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 05C35, 05C38.
KEYWORDS AND PHRASES: Cycles, chorded cycles, doubly chorded cy-
cles, minimum degree.

1. Introduction

All graphs in this paper are simple with no loops and no multiple edges.
Given a graph G, we use V(G) and E(G) to denote the sets of vertices and
edges of G, respectively, and for a vertex v, we often use v € G to denote
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v € V(G). For a subgraph H of G, and for a vertex v € G (where v is not
necessarily in H), the neighborhood of v in H is denoted by Np(v), and
the number of neighbors of v in H will be written by dg(v). We use |G| for
|V(G)], G for the complement of G, and §(G) for the minimum degree of G.
Furthermore, 02(G) denotes the minimum Ore degree of G (sometimes called
the minimum degree sum), which is given by the minimum of dg(z) + dg(y)
over all non-adjacent pairs of distinct vertices  and y in G (when G is
complete, we say 02(G) = 00).

K, is used to denote the complete graph on n vertices, and Ky, , is
the complete t-partite graph with parts of size kq,..., k;. Also, the Paw is
the 4-vertex graph formed by adding an edge to K 3.

If a graph H contains a spanning cycle C and |E(H)| > |E(C)|, then H
is called a chorded cycle, and every edge in E(H) \ E(C) is called a chord.
If a chorded cycle H has at least two chords, then we say H is a doubly
chorded cycle. Lastly, two graphs are said to be ‘disjoint’ if they have no
vertices in common.

In 1963, Corradi and Hajnal proved the following theorem, which verified
a conjecture of Erdés.

Theorem 1 (Corradi and Hajnal [1]). For all k € Z, if G is an n-vertex
graph where n > 3k and 6(G) > 2k, then G contains k disjoint cycles.

The condition on the number of vertices in this result is clearly best
possible as every cycle requires at least three vertices. The minimum degree
condition is also best possible as there exist n-vertex graphs with n > 3k
and minimum degree 2k — 1 that do not have k disjoint cycles (see [5] for a
complete characterization). In fact, for every k € Z* and every n > 3k, there
exists an n-vertex graph with minimum degree 2k — 1 that does not have
k disjoint cycles. Thus, the minimum degree condition in Theorem 1 is not
just best possible in general, but is actually best possible for all n,k € Z*
where n > 3k.

Theorem 1 has been extended in a number of ways, and serves as the
motivation behind finding best possible conditions that guarantee the exis-
tence of a fixed number of similar objects in a graph. One such extension is
an analogue for chorded cycles proved by Finkel in 2008.

Theorem 2 (Finkel [2]). For all k € Z", if G is an n-vertex graph where
n >4k and 6(G) > 3k, then G contains k disjoint chorded cycles.

The condition on the number of vertices in this result is clearly best
possible as every chorded cycle requires at least four vertices. Furthermore,
the minimum degree condition is also sharp, as there exist n-vertex graphs
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with n > 4k and minimum degree 3k — 1 that do not contain k disjoint
chorded cycles. The complete characterization of such graphs is given by
the following result.

Theorem 3 (Molla, Santana, and Yeager [6]). For all k € ZT with k > 2, if
G is an n-vertex graph where n > 4k and o2(G) > 6k — 2, then G contains
k disjoint chorded cycles unless either:

o G = Ksp 1 p3k+1 withn > 6k —2, or
o G K1,3k72,3k72 where n = 6k — 3.

One consequence of Theorem 3 is that every n-vertex graph with min-
imum degree 3k — 1 that does not contain k disjoint chorded cycles, must
have n > 6k — 3. Therefore, the minimum degree condition in Theorem 2
is not best possible when 4k < n < 6k — 4, and it is currently unknown as
to what the best possible minimum degree condition might be for n in this
range. A possible answer to this is the following conjecture from [7]. As a
note, the authors from [7] actually pose a more general conjecture in regards
to finding both cycles and chorded cycles in a graph, and they prove an ap-
proximate version of the following conjecture as well as the more general
version.

Conjecture 4 (Molla, Santana, and Yeager [7]). For allk € Z7, if G is an
n-vertex graph with 4k <n < 6k —4 and 6(G) > 3—2k + %, then G contains k
disjoint chorded cycles.

We now turn our attention to doubly chorded cycles, which is main con-
cern of this paper. To begin, a well-known theorem by Hajnal and Szemerédi
on packings of cliques yields the following.

Theorem 5 (Hajnal and Szemererédi [4]). For all k € Z7T, if G is an n-
vertex graph where n = 4k and 6(G) > 3k, then G contains k disjoint copies
of K4.

As K4 is the smallest doubly chorded cycle, Theorem 5 guarantees the
existence of k disjoint doubly chorded cycles. Furthermore, the minimum
degree condition is known to be best possible for all k € Z™T.

In 2010, Qiao and Zhang sought to extend this result for graphs on at
least 4k vertices.

Theorem 6 (Qiao and Zhang [8]). For all k € Z™, if G is an n-vertex graph
where n > 4k and 6(G) > | £ |, then G contains k disjoint doubly chorded
cycles.
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The condition on the number of vertices in this result is clearly best pos-
sible as every doubly chorded cycle requires at least four vertices. However,
the only sharpness examples for the minimum degree condition are Kj o,
K333, K455, and Kggg, which show it best possible for £ = 1,2, 3, and 5,
respectively.

This result was later improved upon by Gould, Hirohata, and Horn in
2013, who proved the following Ore degree version and subsequent minimum
degree corollary.

Theorem 7 (Gould, Hirohata, and Horn [3]). For all k € Z*, if G is an
n-vertex graph where n > 6k and 02(G) > 6k —1, then G contains k disjoint
doubly chorded cycles.

Corollary 8 (Gould, Hirohata, and Horn [3]). For all k € Z*, if G is an
n-vertex graph where n > 6k and §(G) > 3k, then G contains k disjoint
doubly chorded cycles.

The minimum degree condition in Corollary 8 is best possible for all
n,k € Z™ where n > 6k, and we will show this in Section 2.

The main purpose of this paper is attempt to determine the best possible
minimum degree condition for n-vertex graphs with 4k < n < 6k that
guarantees the existence of £ disjoint doubly chorded cycles. In particular,
we prove the following two results.

Theorem 9. For all k € Z™, if G is an n-vertex graph where n > 5k and
d(G) > 3k, then G contains k disjoint doubly chorded cycles.

Theorem 10. For all k € ZT, if G is an n-vertex graph where n > 4k and
§(G) > Y=L then G contains k disjoint doubly chorded cycles.

Theorem 9 extends the result of Gould, Hirohata, and Horn in Corollary
8 by showing that the minimum degree condition in Corollary 8 also suffices
for n-vertex graphs with n > 5k. Furthermore, in Section 2 we show that this
minimum degree condition is best possible for all n, k € Z* where n > 5k.

Theorem 10 improves upon the result of Qiao and Zhang in Theorem 6.
In particular, in Section 2 we show that our minimum degree is best possible
for all k € Z*, while the minimum degree condition in Theorem 6 is sharp
only when k € {1,2,3,5}.

That said, the sharpness examples that we will construct in Section 2 for
Theorem 10 will all be n-vertex graphs with n = 5k — 1. These graphs will
also demonstrate that the condition on the number of vertices in Theorem
9 is best possible for the minimum degree condition of 3k. That is, it is
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impossible to replace the condition ‘n > 5k’ in Theorem 9 with ‘n > z’
where x < bk and still guarantee k disjoint doubly chorded cycles.

This still leaves the question as to what is the best possible minimum
degree condition for n-vertex graphs with 4k < n < bk that guarantees
the existence of k disjoint doubly chorded cycles? We pose the following
conjecture, which if true, would completely answer this question, and we
prove an approximate version of this conjecture in Section 9.

Conjecture 11. For all k € Z*, if G is an n vertex graph where 4k < n <
5k and §(G) > [5'“;"], then G contains k disjoint doubly chorded cycles.

The remainder of the paper is structured as follows. As mentioned, in
Section 2, we construct the sharpness examples to Theorems 9 and 10. In
addition, we construct graphs which show that if Conjecture 11 is true, it is
best possible. The proofs of Theorems 9 and 10 are spread across Sections
3-8, and in some sense, are proved simultaneously. In Section 3, we define
some notation and begin the setup of our proofs, and in Section 4, we prove
several structural lemmas that are foundational to our proofs. Sections 5 and
6 deal with separate cases and culminate in a proof of Theorem 9, subject
to a lemma, whose detailed proof is contained in Section 7. Theorem 10 is
proved in Section 8 based on all our prior work. Lastly, we address Conjecture
11 in Section 9, and there prove an approximate version of this conjecture.

2. Sharpness examples

In this section, we construct sharpness examples which show that Theorems
9 and 10 are sharp. Furthermore, we construct examples that show that if
Conjecture 11 is true, then it is also sharp.

The following observations will be used in our arguments. In complete
bipartite graphs, every doubly chorded cycle requires at least three vertices
from each partite set. In complete tripartite graphs, every 5-vertex doubly
chorded cycle requires exactly one vertex from one partite set and exactly
two vertices from each of the other two partite sets.

Observe that for all k € ZT and n > 6k — 2, K3,_1,-3k+1 1S an n-
vertex graph with minimum degree 3k — 1. Furthermore, K3j_1 ,—3x+1 does
not have k disjoint doubly chorded cycles, as each doubly chorded cycle
requires at least three vertices from each partite set. This construction shows
that the minimum degree condition in Theorem 9 is best possible for all
n,k € ZT where n > 6k — 2. This same construction shows the minimum
degree condition in Corollary 8 is also best possible for such £ and n.



222 Michael Santana and Maia Van Bonn

For k,n € ZT such that 5k < n < 6k—1, let Hy = Kok—n—1,n—3kn—3k+1-
Since 5k < n < 6k — 1, the smallest partite set has size 6k — n — 1, where
0<6k—-n—1<k—1,sothat Hy, could be bipartite. Observe that Hj,,
is an n-vertex graph, and 6(H) =6k —n—1+n—3k =3k — 1.

We claim that Hj,, does not have k disjoint doubly chorded cycles. If
on the contrary, Hj, contains k disjoint doubly chorded cycles, then each
one has either five vertices, or at least six. By our observations above, the
maximum number of doubly chorded cycles that have exactly five vertices is
6k —n— 1. This means we need to still find k— (6k—n—1) = n—5k+1 more
disjoint doubly chorded cycles, each with at least six vertices. So in total, the
number of vertices we need is at least 5(6k —n—1)+6(n—5k+1) =n+1,
which is impossible as Hj,, is an n-vertex graph. So Hj,, is a sharpness
example to Theorem 9. Thus, for every n,k € Z* where n > 5k, we can
construct an n-vertex graph with minimum degree 3k — 1 that does not
have k disjoint doubly chorded cycles.

The last family of graphs we will construct will be sharpness examples
to both Theorem 10 and Conjecture 11 (if true) Let ¢,n € Z such that
0 <t < 7. Define the graph

G(t,n) = Kypy | ntt) | 2zst |papr| 255 |15

where if n — 4t = 0 mod 3, then a = = 0; if n — 4t = 1 mod 3, then
a=0and f=1;if n — 4t = 2 mod 3, then a = § = 1. Observe that in
each case, the number of vertices in G(¢,n) is exactly n, and furthermore, if
t =0, then G(t,n) is tripartite.

Lemma 12. If 4k < n < 5k, then G' = G(5k — n,n) contains k disjoint
doubly chorded cycles, and furthermore the only way to find k disjoint doubly
chorded cycles is to use every vertez.

Proof. Since 4k < n < bk, we have 0 < bk —n < %. If n = 5k, then
G’ is tripartite, and if n < 5k, then the smallest partite set of G’ has size
5k — n. Regardless, the maximum number of disjoint copies of K4 we can
find in G’ is 5k — n. If the number of disjoint copies of Ky we create is say
¢ < 5k —n, then in order to find & disjoint doubly chorded cycles in G’, each
of the remaining k — ¢ disjoint doubly chorded cycles must have at least five
vertices. This requires

n >4+ 5k —¢) =5k —{>5k— (5k—n)=n,

which is a contradiction. Thus, the only way to find k& disjoint doubly chorded
cycles in G’ is create 5k — n disjoint copies of Kj.
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Now if we remove these 5k — n disjoint copies of K4 from G’, this leaves
a new graph G” that is a complete tripartite graph with partite sets of size

{5@;4]@) J | {5@;4’% T, and {MJ 5.

Let x = n — 4k. Since 4k < n, we have z > 0. We induct on = to show
that G” contains z disjoint copies of K1 22 and this covers all of the vertices
of G”. This is clear if = 0,1, 2 as G” is empty, K1 22, or K3 3 4, respectively
(recall that o and 8 are defined based on 5(n — 4k), as t = 5k — n). For
x > 3, we remove a copy of K555 from G”, which contains 3 disjoint copies
of K122, and induct on the remaining graph.

Thus, G’ will contain 5k —n disjoint copies of K4 and x = n— 4k disjoint
copies of K7 22, and so G’ will have 5k—n+n—4k = k disjoint doubly chorded
cycles, and furthermore the only way to find k disjoint doubly chorded cycles
is to use every vertex. ]

Let k,n’ € Z* such that 4k < n’ < 5k, and let H' = G(5k —n/,n’). Note
that t = 5k —n/ > 0 so that H' is a 4-partite graph, and furthermore, the
sizes of the partite sets of H' depend on n/ — 4t = 5n/ —20k. If 5n' — 20k =0
or 2 mod 3, then form the graph H from H’ by deleting a vertex from the
smallest partite set with size 5k — n/; in these cases 6(H) = 6(H') — 1. If
5n’ — 20k =1 mod 3, then form the graph H from H' by deleting a vertex
from the largest partite set with size 5k —n’ + L@J + f3; recall that in
this case, « = 0 and 8 = 1 so that §(H) = 6(H).

By Lemma 12, H does not contain k disjoint doubly chorded cycles as
it does not have enough vertices. Let n = |V(H)| so that n = n’ — 1 and
4k < n < 5k. We claim §(H) = [2£12] — 1, which will show that H is a
sharpness example to Theorem 10 (when n = 5k — 1) and Conjecture 11.

If 50" — 20k = 0 mod 3, then LE’”EQO’“J = 5”/520’“, and §(H') = 3(5k —
n') + 2[5”/520kj = 5’“?{”/, so that 3|(5k +n’) and 3|(5k + n + 1). Therefore,

/

3 3

Similarly, if 5n’ — 20k = 2 mod 3, then 6(H') = 5]”'3#_1 so that 3|(5k +
n). Therefore,

_5kz+n’71 )
a 3 3

S(H) = (H') — 1 :5k+n_1:[5k‘+n-‘_1'

3
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Laslty, if 50/ — 20k = 1 mod 3, then §(H') = 2t2=2 5o that 3|(5k +
n — 1) and 3|(5k + n + 2). Note that in this case,

,_ J—
S(H) = 6(H') = Sk+n'—2 Sk+n—-1_ 5l<;+n—|—2_1: F)k#—n-‘_l.

3 3 3 3

So for all n, k € Z where 4k < n < 5k —1, we can construct an n-vertex
graph with minimum degree (5]’“%1 — 1 that does not contain k disjoint
doubly chorded cycles. These graphs are sharpness examples to Conjecture
11, if it is true. Furthermore, for all k£ € Z* and n = 5k — 1, these graphs
will have minimum degree [W“T*W — 1 and so are sharpness examples to
Theorem 10.

3. Setup and notation

In this section, we provide the setup behind our proofs of Theorems 9 and
10. To start, we present notation that will be used throughout our proofs.

3.1. Notation

Let G be a graph, v € V(G), and A and B be two subsets of V(G), not
necessarily disjoint. We let Np(v) denote Ng(v) N B, and let both ||v, B||
and dp(v) denote |[Np(v)|. We also let ||[A, B|| = > c 4 llv, B|. For every
collection of subgraphs H of G, we let V(H) = Upyey V(H). If H is a
subgraph of G, we often replace V(H) with H in the above notation (e.g.,
Nut(v) = Ny (0), o, H|| = llo, V(H), and | A, 7| = |4, V(H)]). Simi-
larly, we often replace V' (H) with H when # is a collection of subsets of G
(e.g., |A,H| = ||A, V(H)]]). Furthermore, this notation is commutative so
that ||A, B|| = || B, 4]|.

If G is a graph and A C V(G), we let G[A] denote the subgraph of G
induced by the vertices of A. If H is a subgraph of G, we let H + A =
GIV(H)UA] and H—- A = G[V(H) \ A]. If |A| is small, we often replace
A with the vertices of A in the above notation (e.g., if A = {v}, we use
H+4+v=H+Aand H—v = H— A). If F is a subgraph of G, we let
H+F=H+V(F)and H—-F=H-V(F).

For each doubly chorded cycle C' € C, we fix a spanning cycle and assume
an inherent orientation of this cycle, say clockwise. So for any v;,v; € C,
there are exactly two paths from v; to v; along the spanning cycle of C. We
let v;Cv; denote the path that follows the orientation of the spanning cycle

and let v; C'v; denote the path that follows the reverse orientation. Similarly,
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given a path P, we assume an inherent orientation of this path, say from
left-to-right. So in following the orientation of P, if v; appears before v,

then define v; Pv; (resp. vjﬁvi) as the unique subpath of P that starts at
v; (resp. vj) and ends at v; (resp. v;).

We also let [v;,vj]c and [v;,v;]p denote V (v;Cv;) and V(v;Pvj), re-
spectively. We also let (v;,v;)c and (v;,v;)p denote V(v;Cuj) \ {vs,v;}
and V(v;Pvj) \ {vi,v;}, respectively. We similarly define (v;, vj]c, [vi, v5)c,
(vi,vj]lp, and [v;,vj)p. When it is clear from context what the host object
is, we will often supress the subscripts (e.g., [vi,v;]). Note that [v;,v;]c N
[vj, vile = {vi, v;}-

At times we will identify a doubly chorded cycle by first describing its
spanning cycle and then providing at least two chords. For example, if C' =
v1 ... is a cycle with ¢ > 6 and vyvs, viv4,v1v5 € E(G), then we say
v1Cvsv1 is a doubly chorded cycle with chords viv3 and viv4.

Given a fixed path P, a hop is an edge in E(G[P])\ E(P); that is, a hop
is an edge whose endpoints are both on P, but are not consecutive along P.
Given a vertex v € P, a hop neighbor of v is a vertex adjacent to v via a
hop.

Lastly, to keep from writing ‘doubly chorded cycle’ throughout the rest
of this paper, we will often use ‘DCC’ in its place.

3.2. Setup

We now begin the proofs of Theorems 9 and 10. Suppose that for some
k € Z7T, there exist n-vertex graphs with n > 4k and minimum degree at
least 3k that do not contain k disjoint DCCs. Among these graphs choose
G to be one that is edge-maximal with respect to not having k disjoint
DCCs. That is, G does not contain k disjoint DCCs, however for each edge
e ¢ E(G), G+ e does contain k disjoint DCCs. Since G cannot be complete
(otherwise it would contain k disjoint DCCs as n > 4k), there exists an edge
e ¢ E(G).

Since G + e contains k disjoint DCCs, G must contain k — 1 disjoint
DCCs, and furthermore these DCCs cover all but at least four vertices of
G. That is, we can partition G into a collection of k — 1 disjoint DCCs and
some nonempty remainder with at least four vertices.

Over all possible collections of £ — 1 disjoint chorded cycles in G, we say
an optimal collection C is a collection of k — 1 disjoint DCCs which satisfies
the following conditions, where R is the graph G — V(C):
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(O1) the number of vertices in C is minimum,

(02) subject to (O1), the total number of chords in the DCCs of C is maxi-
mum,

(03) subject to (O1) and (02), the length of the longest path in R is max-
imum, and

(04) subject to (O1), (02), and (03), the number of edges in R is maximum.

In the rest of this paper, we fix an optimal collection C and remainder
R =G —-V(C). We will also refer to this as an optimal partition of G. As we
already know that GG has a partition into a collection of k — 1 disjoint DCCs
and some nonempty remainder with at least four vertices, (O1) implies that
given our optimial collection C, we have |R| > 4. Furthermore, by (O1) and
(02), G[C) = C for all C e C.

Our goal is to first show that n < 5k, which will prove Theorem 9 due
to the following. Any counterexample to Theorem 9 is an n-vertex graph H
with n > 5k and 6(H) > 3k that does not contain k disjoint DCCs. From
H, we can construct a sequence of graphs H = Hy, H1, Ho, ..., such that
for each i > 1, H; is obtained from H; i by adding an edge to H;_; that
does not result in H; containing k disjoint DCCs. At some point this process
must stop and the resulting graph, say H;, will be an n-vertex graph with
n > 5k and §(H;) > 3k that is edge-maximal with respect to not having k
disjoint DCCs. This will contradict our showing that every such graph will
have less than 5k vertices.

Once we have shown that n < 5k, we will then assume that in fact,
(G) > 10%_1. As 10’3_1 > 3k for all k € Z*, all of the previous properties
proven for G will still hold. We then show arrive at contradictions in all pos-
sible situations, showing that G does not exist, and by the above argument,
no counterexample to Theorem 10 exists.

4. Structural lemmas

In this section, we prove several structural lemmas that will be used through-
out the remaining sections.

An immediate corollary of (O1) is that, for any C' € C, no vertex of C
is incident to three chords; otherwise, we could replace C' with a DCC on
fewer vertices. So every vertex in C' is incident to at most two chords.
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Lemma 13. If C' € C, then C contains at most one vertex incident to two
chords, and furthermore, if such a vertex exists and |C| > 6, then there is
another vertex in C that is not incident to any chord in C.

Proof. Let C € C and let x € C such that x is incident to two chords zz;
and xxe, where z1 € (z,x2). Suppose e is a chord in C other than zz; and
xxo. Both endpoints of e cannot be in [z, z3], otherwise xCzox is a DCC
with chords zz; and e, on fewer vertices than C, contradicting (O1). By
symmetry, both endpoints of e cannot be in [z}, z]. Therefore, every chord
in C other than xx; and xxe must have one endpoint in (z,z;) and the
other in (xg, ).

Suppose there exists y € C' — z such that y is incident to two chords,
yy1 and yye, where y; € (y,y2). By symmetry, we may assume y € (z,x1)
and y1,y2 € (x9,x). If there exists z € (y,x1), then is not an edge, then
zx1Cyoy Cx is a DCC with chords xzxo and yy;, on fewer vertices than C,
contradicting (O1). Hence, (y,z1) = 0. However, xa:lely(ax is a DCC with
chords zxy and yz1, on fewer vertices than C, contradicting (O1). Thus, C
contains at most one vertex incident to two chords.

Now suppose |C| > 6. We now show there exists a vertex in C'— x that is
not incident to a chord. If there exists z € (x1, z2), then as shown above, it
cannot be incident to a chord, as the other endpoint would either be in [z, x9]
or [x1,z]. So we may assume (z1,22) = (), and without loss of generality,
(x, 1) has at least two vertices. So let w; and we be two such vertices such
that x,w, and wy are consecutive along C.

So each w; is incident to a chord w;w}, where w} € (x2,x). Note also
that w] # wh as otherwise we have two vertices in C' that are incident to
two chords. If w), € (w], z), then zxoCw wiCxyz is a DCC with chords zw;
and z1ze without wh. If w) € (wh,z), then xgw’lwlcxgx is a DCC with
chords zw; and zz; without wh. In either case, we contradict (O1). O

Note that the following three lemmas apply to collections of £ — 1 dis-
joint DCCs that satisfy (O1) and possibly (02). So while they apply to our
optimal collection C, they may also apply to other collections of k—1 disjoint

DCCs.

Lemma 14. Let C' be a collection of k — 1 DCCs that satisfies (O1), and
let R = G\ V(C'). For allv € R and C € C', ||v,C|| < 4 and if equality
holds, |C| < 5.

Proof. We will start by showing that ||v,C|| < 4, so suppose ||v,C|| > 5. If
there exists a c1,co € C that are adjacent along the cycle of C' such that
||v,C—c1—ca| > 4, then G[C'—c1 —ca+v] contains a DCC with strictly fewer
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vertices than C, contradicting (O1). Since ||v, C|| > 5 this implies ||v,C|| =5
and |C| = 5. Since |C| = 5, then every chord in C' will form a triangle, and
so v together with this triangle in C' will form a K4, contradicting (O1).
Hence, |jv,C|| < 4.

Suppose ||v, C|| = 4. We will prove that |C| < 5 by considering cases.

Case 1. |C] >9

In this case, we can always find c1,cy € C that are adjacent along the
cycle of C, such that ||v,C' — ¢; — ¢2]| > 4, which as we stated, leads to a
contradiction.

Case 2. |C]| =38

Label the vertices so that C = wvjvevsvivsvgvrvgvy. To avoid having
c1,c2 € C that are adjacent along the cycle of C, such that [[v,C — ¢ —
c2|| > 4, we may assume N¢(v) = {vi,vs,v5,07}. If C has a chord with
both endpoints in [v1, v5], then vv;Cvsv is a DCC with this chord and vvs,
contradicting (O1). So by symmetry, we may assume the chords in C are
v9vg and vqvg. However, vvgCugvoviv forms a DCC with chords vsv3 and
vus, that contradicts (O1).

Case 3. |C| =7

Label the vertices so that C' = vyvov3v4v5vgv7v1. To avoid having c1, co €
C that are adjacent along the cycle of C, such that ||v,C —¢; — 2] > 4, we
can conclude without loss of generality that No(v) = {vi,v2,v4,v6}. If C
has a chord with both endpoints in [v1, v4], then vv1Cvqv is a DCC with this
chord and vwve, contradicting (O1). If C' has a chord with both endpoints in
[v4, v1], then voyCviv is a DCC with this chord and vvg, contradicting (O1).
By symmetry, C' has no chords with both endpoints in [va, vg] or in [ve, va].
However, this leaves C' with only one possible chord, vsvr, a contradiction.

Case 4. [C| =6

Label so that C = wvivevsvqvsvgvi. To avoid having ci,co € C that
are adjacent along the cycle of C, such that ||v,C — ¢1 — 2] > 4, we can
conclude without loss of generality that either No(v) = {v1,ve,v4,v5} or
Ne(v) = {v1,v2,v3,v5}.

Suppose first that No(v) = {v1,v2,v4,v5}. If C has a chord with both
endpoints in [v1, v4], then vv; Cvgv is a DCC with this chord and vvs, contra-
dicting (O1). If C has a chord with both endpoints in [v4, v1], then vosCviv
is a DCC with this chord and vvy that contradicts (O1). So vy, v4, and by
symmetry, vg, v5 are not incident to chords in C'. Yet this implies the only
possible chord is v3vg, a contradiction.
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Now suppose N¢(v) = {v1,v2,v3,vs5}. If C has a chord with both end-
points in [v1,v4], then vv;Cvgv is a DCC with this chord and vwve, contra-
dicting (O1). By symmetry, C' has no chord with both endpoints in [vg, v1].
If vov; € E(G) for i € {5,6}, then vuav;Cviv is a DCC with chords vv2 and
vvg, contradicting (O1). So vy, ve,v4, and by symmetry, vg, are not incident
to any chords in C'. However, this implies the only possible chord is v3vs, a
contradiction.

This completes all cases and proves the lemma. O

Lemma 15. Let C' be a collection of k—1 disjoint DCCs that satisfies (O1)
and (02), and let R' = G\ V(C'). For allv € R and C € C', ||v,C]| < 4,
and if equality holds, either C = K4 or C = Kj 29 and G[C + v] = Ky 9.
As a result, for allz € C, G|C —z+v]=C.

Proof. By Lemma 14, we can conclude that ||v, C|| <4 and that |C| < 5.

Suppose ||v,C|| = 4. If |C| = 4, then C = K4, and we are done. So
assume |C| = 5, and label C' = vjv9v3v4v5v1 where vs is the non-neighbor
of v. Observe that vviCvyv forms a DCC including all chords with both
endpoints in [v1, v4]c and two additional chords, vvy and vvs. The number of
chords in C' is exactly the number of chords with both endpoints in [v1, v4]c
together with those incident to vs. Thus, if vs is not incident to two chords,
we contradict (02). Hence vsva, vsv3 € E(G).

These cannot be the only chords in C, otherwise vvzvsCvov forms a DCC
with chords vyvs, vou3, and vvy, contradicting (O2). If there exists a triangle
in G[N¢(v)], then we can replace C' with a copy of K4, contradicting (O1).
Therefore, the only other chord in C' is v1v4, so that C' = K 25. O

We will often encounter the situation in which for some v € R and
C €, ||v,C|| = 4. Therefore, as a consequence of Lemma 15, we will use the
following labels for the vertices of C' in the situation where C' € {Ky, K 22}.
If C' = K, label the vertices ay, a2, a3, and ay. If C' = K 99, then label the
vertex in the part of size one as b, label the two vertices in one of the parts
of size two as ¢; and ¢z, and label the remaining two vertices in the final
part as di and ds.

Lemma 16. Let C' be a collection of k — 1 disjoint doubly chorded cy-
cles that satisfies (01) and (02), and let R' = G \ V(C'). Suppose there
exists C € C' such that C = Ky 29. Then for any edge xy € E(R'), we
have |{z,y},C|| < 7, and if equality holds, then without loss of generality,
Nc(x) = {c1,c2,d1,da} and No(y) € {{b,c1,c2}, {b,d1,d2}}. Furthermore,
if |l=,C|| = |ly,C|| = 3, then |[No(x) N Neo(y)| < 2, and if equality holds,
then No(z) N Ne(y) € {{c1,c2}, {d1,d2}}.
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Proof. Let C' € C' be such that C' = K 22, and let zy € E(R'). Observe the
following:

if  and y have two common neighbors in C, say u and v, such
(1)  that wv € E(G), then G[{z,y,u,v}] = K4, which contradicts
(O1).

Therefore, if we say ||z, C|| = 4 and ||y, C|| > 3, then by Lemma 15, N¢(z) =
{c1,¢2,d1,d2}, and the only way to avoid (1) is for No(y) € {{b,c1,c2},
{b,d1,d2}}. Similarly, if ||z, C|| = ||y, C|| = 3 and |N¢(z) "N (y)| > 2, then
the only way to avoid (1) is for No(z) N Neo(y) € {{c1,c2}, {d1,d2}}. O

We now return to our optimal collection C with R = G \ V(C).

Lemma 17. Suppose Py and Py are two disjoint, non-trivial paths in G.
If there exist u,v € P such that ||{u,v}, P > 5, then G[Py + P»] con-
tains a DCC. Furthermore, if |[{u,v}, P2|| > 4, then G[P, + P»| contains a
DCC, unless one of the following configurations exists up to symmetry and
relabelling of vertices:

1. Np,(u) = {u1,us,us}, Np,(v) ={v1}, and v1 € (ui,u3)p,;

2. Np,(u) = {ur,u2}, Np,(v) = {v1,v2}, Np,(u) N Np,(v) = 0, and
u1,v1,v2,uz appear in this order along Ps (not mecessarily consecu-
tive).

Proof. Suppose ||[{u,v}, P2|| > 4, and without loss of generality, suppose
|lv, Po|| < |ju, P2||. Let wy and wg be the endpoints of P, where P, =
wLPQwR.

If |ju, P2|| > 4, then G[P2» + u] contains a DCC. So 1 < |jv, Pf| <
Ju, By < 3.

If ||u, Po|| = 3, let Np,(u) = {ui,u2,us} where uj,ug, and ug appear
in this order along P, (not necessarily consecutive). Let v; € Np,(v). If
v1 € [wp,u1]p,, then uPjvvy Pyusu is a DCC with chords uwu; and wus.
So v ¢ [wg,u1]p,, and by symmetry, v1 ¢ [us, wr|p,. So v1 € (u1,us)p,.
If ||v, P2|| > 2 so that vo € Np,(v) exists, then by the same argument,
vg € (u1,us)p,. Without loss of generality, we may assume vy € (u1,v2)p,.

If vy € [ug,us3)p,, then uuy PyvovPiu forms a DCC with chords wus and
vuy. If vg € (u1,u2)p,, then vvy PyusuPyv forms a DCC with chords uug and
vvg. Thus, vo does not exist, and configuration 1 holds.

So ||v, Po|| = ||u, P2|| = 2. Let Np,(u) = {u1,us} where uy and us appear
in this order along P» (not necessarily consecutive), and similarly define
Np,(v) = {v1,v2}. If v1 € [ug, wRr]p,, then uuy Pyvov Piu is a DCC with
chords wug and vvi. So v ¢ [ug, wr]p, and by symmetry, vy ¢ [wr, u1]p,.
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Suppose v = uj. If vg € (uy,u2)p,, then vy PouguPivv; is a DCC with
chords uuy and vvy. If ve € [ug, wg|p,, then uy Pyvov Pyuuy is a DCC with
chords vv; and uus. So v # uy and by symmetry ve # us. Thus, either vy €
[wr,u1)p, or v1 € (u1,u2)p,, and either vy € (u1,u2)p, or vy € (uz, Wg|p,.

If v1 € [wp,u1)p, and vy € (u1,u2)p,, then uPjvv Pyusu is a DCC with
chords wu; and vve. A symmetric argument holds if v; € (u1,ug)p, and vy €
(u2, wg]p,. So either v1 € (ui,us2)p, and ve € (uy,u2)p,, or v € [wr,u1)p,
and vy € (ug,wg|p,. The former immediately gives configuration 2, while
the latter gives configuration 2 after switching u; with v;. O

Lemma 18. Suppose P and P> are two disjoint, non-trivial paths in G. If
there exist u,v € Py such that ||[{u,v}, P2|| > 6, then G[Py + P»] contains
a DCC on fewer than |Py| + |P| vertices. Furthermore, if |[{u,v}, Ps2|| > 5,
then G[Py + P3] contains a DCC on fewer than |Py| + |P2| vertices, unless
one of the following configurations exists up to symmetry and relabelling of
vertices:

1. Np,(u) = {u1,ug,us}, Np,(v) = {vi,v2}, Np,(u) N Np,(v) = 0, u
and v are the endpoints of P, v1 and us are the endpoints of P, and
V1, UL, U2, V2, us appear in this order on Py (not necessarily consecu-
tive) so that |Py| > 5. Furthermore, if |Py| = 2, then (ui,us)p, # 0,
(u2,v2)p, =0, and in particular, |Py| > 6;

2. Np,(u) = {ui,u2,us}, Np,(v) = {vi,v2}, ug = v1, uz = v9, u and v
are the endpoints of P1, uy = v1 and ug = vy are the endpoints of P,
and u; = vy, ug,u3 = ve appear in this order on P (not necessarily
consecutive). Furthermore, if say |Py| = 2, then P» = ujugug; that
is,]P2| = 3.

Proof. Suppose ||[{u,v}, P2|| > 5 for some u,v € P;. If say ||u, P»2|| > 4, then
we can easily form a DCC in G[P + u], which avoids v. So 2 < ||u, P3| < 3
and by symmetry 2 < |jv, P»|| < 3.

Let X = Np,(u)UNp,(v), and label the vertices in X = {z1,72,...,7x}
such that x1,x9, ..., 7 x| appear in this order along P, (not necessarily con-
secutive). If |X| = 3, then as ||[{u,v}, P2|| > 5, without loss of generality,
X = Np,(u). If 1,29 € Np,(v), then $1UP1”U1L'2$2$1 is a DCC with chords
uxg and vx) that avoids x3. A symmetric argument holds if x9, x3 € Np,(v).
So Np,(v) = {z1,z3} and uPyvx) Pyzsu is a DCC with chords uz; and uxs.
Thus, we must have |[{u,v}, P»|| = 5. Further, u, v, 1, and 3 must be the
endpoints of their respective paths, otherwise we have a DCC with fewer
than |Pi| 4+ | P2| vertices. This yields the first part of configuration 2.

To complete configuration 2, assume |Pi| = 2. If (x1,22)p, # 0, then
riure Poxsvry is a DCC with chords uv and uxs that avoids all the vertices
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in (z1,22)p,- So (z1,22)p, = 0 and by symmetry (z2,23)p, = 0. Thus,
|P2| = 3. So when | X| = 3, configuration 2 holds.

Now suppose | X| = 4. Since |[{u, v}, Po|| > 5, either |[{u, v}, [x1,x3]p,| >
4, or |[{u,v},[z2, z4]p,|| > 4. Without loss of generality, suppose ||{u,v},
[z1,23]p,|| > 4. By Lemma 17, either configuration 1 or 2 from Lemma 17
holds, otherwise G[P; + [x1, z3]p,] contains a DCC that avoids x4. Since u
and v only have three neighbors all together on [x1, z3]p,, only configuration
1 from Lemma 17 holds, and so without loss of generality, u is adjacent to
x1, T2, and x3, and x4 is the only neighbor of v in [z, 23]p,. As 2 < ||v, Pa||,
we must have z4 € Np,(v). However, x4v PjuzoPoxy4 is a DCC with chords
uxg and vry that avoids x.

Lastly suppose | X| > 5. So by the definition of X, ||{u, v}, [x1, z4]p,| > 4
and ||{u, v}, [z, z5]p,|| > 4. In each, either configuration 1 or 2 from Lemma
17 holds, otherwise G[Py + [z1,z4]p,] contains a DCC that avoids x5 or
G[P1 + [z2, x5 p,| contains a DCC that avoids z.

Suppose configuration 1 from Lemma 17 holds for [x1, z4] p, so that with-
out loss of generality, u have exactly three neighbors in [z, 4], namely z1,
x4, and exactly one vertex from {z2,z3}, and v is only adjacent to the ver-
tex from {z2,z3} that u is not adjacent to. Since ||u, P2|| < 3, we know
x5 € Np,(v), and furthermore, Np,(u) = {x1, x4, x;} where i € {2,3} and
Np,(v) = {5, x5_;}. However, we know either configuration 1 or 2 from
Lemma 17 holds for [zr2,x5]p,. As u and v only have two neighbors each
in [z9,25]p,, we must have configuration 2 from Lemma 17. This implies
Np,(u) = {x1,x3,24} and Np,(v) = {x2,25}. Now $1P21U5U$1Ul‘1 isa DCC
with chords uxs and uxy. Thus, we must have u, v, 1, and x5 be the end-
points of their respective paths, otherwise we have a DCC with fewer than
| P1|+ | P2| vertices. This yields the first part of configuration 1 in our lemma.
We will deal with the case where |P;| = 2 in a moment.

If configuration 2 from Lemma 17 holds for [z1,z4]p,, then without loss
of generality, u is only adjacent to x9 and x3 from [z, z4]p,, and v is only
adjacent to 1 and z4. However, we know either configuration 1 or 2 from
Lemma 17 holds for [z2, z5]p,. Configuration 2 from Lemma 17 cannot hold
as neither u or v is adjacent to both x5 and x4. So configuration 1 from
Lemma 17 holds, and Np,(u) = {z2, 23,25} and Np,(v) = {z1,24}. Just
as above, u,v,z1, and x5 must be the endpoints of their respective paths,
otherwise we have a DCC with fewer than |P;| + |P| vertices. This yields
the first part of configuration 1 in our lemma.

Now to complete configuration 1, suppose |P;| = 2, and relabel the
vertices so that Np,(u) = {u1, uz,uz}, Np,(v) = {v1,v2}, Np,(u) N Np,(v) =
0, v and v are the endpoints of P;, v; and us are the endpoints of P, and
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v1, U1, U2, V2, u3 appear in this order on P, (not necessarily consecutive).
If (ui,u2)p, = 0 so that ujuy € E(G), then vy PyujuugPyvovvy is a DCC
with chords wv and ujug with fewer vertices than |Py| + |P»| as it skips us.
Thus, (u1,us)p, # 0 so that |Py| > 6. Furthermore, if (u2,v2)p, # 0, then
’U2P2’U,3UU2<P?2U1’U’UQ is a DCC with chords uv and uwu; with fewer vertices
than |Pi| + |P»| as it skips all the vertices in (ug,v2)p,. This completes
configuration 2, and prove the lemma. O

Lemma 19. Suppose Py and Py are two disjoint, non-trivial paths in G.
If there exist u,v,w € Pj such that |[{u,v,w}, Ps|| > 6, then G[P; + P]
contains a DCC on fewer than |Py|+|Pa| vertices, unless one of the following
configurations exists up to symmetry and relabelling of vertices.

1. Np,(u) = {u1,ug,us}, Np,(v) = {vi,v2}, Np,(w) = {w1}, Np,(u) N
Np,(v) N Np,(w) =0, uw and v are the endpoints of Py, v1 and uz are
the endpoints of Py, and vi,u1,us, v, w1, us appear in this order along
P, (not necessarily consecutive).

2. NPQ(U) = {ul,uQ}, NPQ(U) = {1}1,1}2}, sz(w) = {wl,wg}, NPQ(’LL) N
Np,(v) " Np,(w) =0, w € (u,v)p,, and w1, u,v1,v2, Uz, W appear in
this order along Py (not necessarily consecutive).

3. Np,(u) = {u1,us2}, Np,(v) = {vi,v2}, Np,(w) = {w1, w2}, u and v
are the endpoints of Py, u1 = v1, ug = v2, u1 and us are the endpoints
of Py, and uy, w1, ws, uz appear in this order along Py (not necessarily
consecutive).

In particular, if ||{u,v,w}, Ps|| > 6, then G[P1 + P»] contains a DCC' (not
necessarily on fewer than |Pi|+|Pa| vertices) unless ||{u,v,w}, P2|| = 6 and
configuration 2 occurs.

Proof. Suppose |[{u,v,w}, P2|| > 6, and let 1, and zr be the endpoints of
P, such that Py = zpPyxg. If say |lu, P2|| > 4, then G[Py + u| contains
a DCC that avoids v and w. Suppose in the following, |lu, P2|| = 3. Since
I{u,v,w}, Po|| > 6, either ||w, P2|| > 2 or ||v, P2|| > 2. Suppose ||v, P2|| > 2.
If |jv, P2|| > 3, then |[{u,v}, P2|| > 6, and we are done by Lemma 18. So
|lv, P2|| = 2. Since ||[{u, v}, P2|| = 5, by Lemma 18 either configuration 1 or
2 from Lemma 18 holds. Furthermore, we must have w € (u,v)p,, otherwise
we are done by Lemma 17, and since |[{u,v,w}, P2|| > 6, there exists w; €
Np2 (w)

We claim configuration 1 from Lemma 18 holds. If on the contrary,
configuration 2 from Lemma 18 holds, then Np,(u) = {u1, u2,us}, Np,(v) =
{v1,v2}, u1 = v1, ug = v, u and v are the endpoints of P;, u; = v; and
ug = v9 are the endpoints of P, and u; = v1, ug, u3 = v appear in this order
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on P, (not necessarily consecutive). If wy € [u1, uz]p,, then uPjvu; Pyugu is
a DCC with chords wu; and ww; that avoids ug. A symmetric argument
holds if w; € [ua, us]p,, so we must have configuration 1 from Lemma 18.

So Np,(u) = {uy,uz,us}, Np,(v) = {v1,v2}, Np,(u) N Np,(v) = 0, u
and v are the endpoints of P, v; and ug are the endpoints of P, and
v1, U1, U2, V2, uz appear in this order on P, (not necessarily consecutive) so
that |Py| > 5. Note that ||{u, w}, P2|| > 4. If G[Pa+[u, w]p,| contains a DCC,
then it avoids v; so by Lemma 17, wy € (u1,us)p,. If w1 € (u1,v2]p,, then
quw? uiu is a DCC with chords uuo and ww, that avoids vq. If wi = ug,
then wyw Puuy Powy is a DCC with chords uus and uwug that avoids v1. So
wy € (ve,u3)p,. Suppose there exists a we € Ny, (Ps). By a similar argument
wy € (vg,us). Then, vugPousuPyv forms a DCC with chords ww; and wws
that avoids v. Therefore N, (P2) = {w1}. Furthermore, uPjvv; Pyugu is a
DCC with chords uu; and uus. Therefore, u, v, vy, and ug are the endpoints
of their respective paths, otherwise we have a DCC with fewer than | P} |+|Ps|
vertices. This yields configuration 1 in this lemma.

This completes the case when ||u, P2|| = 3. So without loss of generality,
as |[{u,v,w}, Po|| > 6, we have ||u, || = ||v, P2|| = ||w, P2|| = 2. Suppose
without loss of generality that w € (u,v)p,. If either G[Py + [u,w]p,] or
G[P, + [w,v]p,] contain a DCC then we are done, as either would avoid v or
u, respectively. So by Lemma 17, we must have configuration 2 from Lemma
17 hold for each.

As a result, Np,(u) = {uy,us}, Np,(v) = {v1,v2}, Np,(w) = {w1,ws},
Np,(u) N Np,(w) = 0, and Np,(v) N Np,(w) = 0. We now have two cases
depending on the order of uy, us, w1, wo along Ps.

Case 1. uj,wp,ws,us appear in this order along P» (not necessarily con-
secutive).

If v; € (wy,w2)p,, then we must have wy, vy, ve, wa, in this order, so that
vg € (v1,w2)p,. However, uPyvv; Pougu is a DCC with chords wws and vve
that avoids u;. So v1 € (w1, w2)p,, and by symmetry, ve ¢ (w1, w2)p, .

Now suppose v; = uj. Note that by Lemma 17, vo € (wa,zr]p,. If
vg € (u2,xR|p,, then uPjvvy Pyugu is a DCC with chords ww; and wws that
avoids vg. If vo € (wa, uz)p,, then vov P 1uu; Povy is a DCC with chords ww;
and wwsy that avoids ug. So va = wug. Note that uPivui Pyusu is a DCC
with chords ww; and wws. So u,v,u;, and ue must be the endpoints of
their respective paths, otherwise we have a DCC with fewer than |Pj|+ |Ps|
vertices. This yields configuration 3 in this lemma.

A symmetric argument holds if vy = wg. So either vy € [zp,u1)p, or
v1 € (u1,w1)p,, and by symmetry, vo € (wa,us)p, or va € (ug,zg|p,. If
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vy € (up,wi)p,, then uPjvv; Pyugu is a DCC with chords ww; and wws
that avoids u;. So we must have vy € [xp,u1)p,, and by symmetry, vo €
(u2, x| p,.- However, uPvv; Pyugu is a DCC with chords ww; and wws that
avoids vo. This completes the case.

Case 2. wi,up,us,ws appear in this order along P» (not necessarily con-
secutive).

Recall that by Lemma 17, configuration 2 from Lemma 17 holds for
G[Py + [w,v]p,]. In particular, either vy, w1, wa, vy Or Wy, v1, vV, We appear in
this order along P» (not necessarily consecutive).

If vi € [z, wi]p,, then uPvv; Pyugu is a DCC with chords wu; and
ww; that avoids we. So v1 & [zr,w1]p, and by a symmetric argument
v1 & [wa,TR]p,. SO we must have v; € (w1, w2)p,, and by symmetry, vy €
(w1, w2)p,. Now, G[P; + (w1, ws2)p,] cannot have a DCC, as it would avoid
wi. So as |[{u,v}, (wi,w1)p,| > 4, by Lemma 17, either configuration 1 or
2 from Lemma 17 holds, and in particular, it must be configuration 2. So
either ui,v1,v9,uz or vy, u;,ug,ve appear in this order along P, (not nec-
essarily consecutive). In either case, we get configuration 2 in this lemma.
This completes the case, and proves the lemma. O

Lemma 20. Suppose Py and P» are two disjoint, non-trivial paths in G
such that |P1| = 3. If | P1, P2|| > 6, then G[Py + P contains a DCC on
fewer than |Py| + | Py| vertices.

Proof. Suppose P; = uwv. By Lemma 19, we are done unless one of the three
configurations in Lemma 19 holds. If configuration 1 holds, then v{ Pousuww;
ov9vvy is a DCC with chords uu; and wv on fewer than | Py |+ |P;| vertices
as it skips ug. If configuration 2 holds, then 'U)lPQ’U/l'LL'U/Q?QUlU'LU with chords
uw and vvy on fewer than |P| + | P| vertices as it skips us. If configuration
3 holds, then u Pywiwvvsuuy is a DCC with chords uw and vu; on fewer
than |Pi| + | P2| vertices as it skips wa.
Thus, in every case G[P; + P»| contains a DCC on fewer than | P |+ | P
vertices. O]

Lemma 21. Suppose P; and P are two disjoint paths such that min{|P;|,
|Po|} > 4. If | P1, P2l > min{|P1|, |P2|}+4, then G[Py + P»| contains a DCC
on fewer than |Py| + | Pa2| vertices.

Proof. Suppose without loss of generality that |P;| < |P,|. Therefore, if we
show that satisfying || Py, P2|| > |Pi| + 4 implies the existence of a DCC on
fewer than |Pi| + | P2| vertices in G[P; + P], then we are done.
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If there exists w € P; such that ||u, P2|| > 4, then G[P; + u| contains a
DCC, and we are done. Thus we assume ||u, P»|| < 3 for all u € P;. Suppose
there exists u € P; such that ||u, P2|| = 3. If ||v, P5]| < 1 for all v € P, — u,
then || Py, Po|| < |Pi| 42, which is a contradiction. So there exists v € Py —u
such that ||v, P»|| > 2. If ||v, P2|| = 3, then [[{u,v}, P2]| > 6 and by Lemma

18 we are done; so ||v, P2|| = 2. Again, there must exist w € Py —u — v such
that ||w, Pa|| > 1. If ||w, P2|| = 2, then ||{u,v,w}, P2|| > 7 and by Lemma 19
we are done; so ||w, P»|| = 1. Similarly, there exists z € P, —u — v — w such

that ||z, P2]] > 1. So ||[{u,v,w}, P5|| > 6, and by configuration 1 in Lemma
19, Np,(u) = {u1,u2,us}, Np,(v) = {v1,v2}, Np,(w) = {wi}, Np,(u) N
Np,(v) N Np,(w) = 0, u and v are the endpoints of P, v; and ugz are the
endpoints of Py, and vy, uq, ug, v, w1y, us appear in this order along P (not
necessarily consecutive). Similarly, |[{u,v,z}, P»2|| > 6, so that x € (u,v)p,,
Np,(x) = {z1}, and x1 € (v2,u3)p,. However, uPjvve Pousu is a DCC with
chords ww; and zx; on strictly fewer vertices than |P;| + | Py|.

Thus in the remainder of this proof we assume that for all v € P,
|lu, Po|| < 2. Since || Py, P|| > |P1|+4, there exist distinct vertices u, v, w,z €
Pp such that ||u, P2|| = [|v, P2|| = ||w, P2|| = ||z, P2|| = 2. Suppose there ex-
ist three distinct vertices from {u, v, w, z} such that they form configuration
3 in Lemma 19, and without loss of generality suppose it is u,v,w. Then
Np,(u) = {uy,us}, Np,(v) = {v1,v2}, Np,(w) = {w1, w2}, u and v are the
endpoints of P;, u; = vy, uo = w9, and u; = vy, w1, ws, Uy = Vo appear
in this order along P> (not necessarily consecutive). Since u and v are the
endpoints of P;, without loss of generality, we may assume x € (u,w)p,.
When we consider x,w,v, either configuration 2 or 3 in Lemma 19 holds.
If configuration 2 holds, we must have v,vy € (w1, ws3)p,, which is a con-
tradiction as wy,wy € (v1,v2)p,. So configuration 3 holds, and z; = v; and
r9 = v9. However, xPjvvy Poxix is a DCC with chords zxs and vvy with
fewer vertices than |Pi| 4 || as it does not include u.

So for every three vertices from {u,v,w,x}, configuration 2 in Lemma
19 holds. Without loss of generality, suppose u,w, x,v appear in this order
along P;. When we consider u, w, z, we see that x1, x2 € (w1, w2)p,, however
when we consider w, z, v, we must have wy,ws € (21, z2)p,, & contradiction.

This completes the proof of the lemma. O

Lemma 22. Suppose Q1 and Q2 are disjoint subgraphs in G such that Q1 =2
K3 and Q5 contains a nontrivial, spanning path. Then

1. 4f |Q1, Q2| > 5, then G[Q1 + Q2] contains a DCC on fewer than
Q1] + [Q2] vertices;
2. if |Q1, Q2] > 4, then G[Q1 + Q2] contains a DCC;
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3. for any x,y € Q2, if ||Q1,{x,y}|| > 3, then G[Q1 + Q2] contains a
DCC;

4. if |Q2] = 3 and ||Q1, Q2| > 4, then G[Q1 + Q2] contains a DCC on
fewer than |Q1| + |Q2| vertices.

Proof. Suppose V(Q1) = {u,v,w}, and let P, be a spanning path of Q2
with endpoints ¢ and ¢’. The following claim will be useful in proving the
above statements.

Claim 22.1. For any e € E(Q1), if |le, Q2| > 4, then G[Q1 + Q2] contains
a DCC with fewer vertices than |Q1] + |Q2].

Proof. If G[uv + Q2] contains a DCC, then we are done as we skip w. So
by Lemma 18, we assume [|uv, Q2| < 4. If |juv, Q2| = 4, then by Lemma
17, Gluv 4+ Q2] is one of the two configurations in Lemma 17. If the first
configuration holds, then without loss of generality we may assume v; €
[ug, u3)q,. However, ui Pyvivwuuy is a DCC with chords wv and wug with
fewer than |Q1| + |Q2| vertices as it skips ug. If the second configuration
holds, then w1 Pyvsvwuug is a DCC with chords uv and vv; with fewer than
|Q1] + |Q2| vertices as it skips ug. O

Proof of 1. Suppose ||@Q1, Q2| > 5. Then there exists some edge in @)1, say
uv, such that ||uv, Q2| > 4. So by the claim, we are done. O

Proof of 2. Suppose [|Q1,Q2]|] > 4. By the claim, if we consider the edge
uv, then ||uv,@Q2|| < 3 otherwise we are done. As this holds for every
edge in @1, we get ||Q1,Q2| < 4, so that in fact equality holds. In par-
ticular, we may assume |lu,Q2| = 2 and ||v,Q2| = ||lw, Q2] = 1. Let
No,(u) = {u1,u2}, No,(v) = {v1}, and Ng,(w) = {wi}. If v1 € [u2,q]Q,,
then u; Povivwuuy is a DCC with chords wv and wus. By symmetry, we
may assume v; € (u1,u2)q,, and furthermore, w; € (u1, u2)g,. Without loss
of generality, suppose v1 € (u1,wi]g,. Then u; Pwjwvuu is a DCC with
chords vv; and wv.

So in any case we get a DCC in G[Q1 + Q2] O

Proof of 3. Fix x,y € Q2. If either ||z, Q1] = 3 or ||y, Q1] = 3, then we are
done as Gz + Q1] or Gy + Q1] contain a DCC, respectively. So ||z, Q1] < 2
and ||y, Q2|| < 2. Thus, if ||{x,y}, Q2] > 3, then without loss of generality,
|z, Q1|| = 2 with Ng, (z) = {u,v}. If yw € E(G), then zuvwyz is a DCC
with chords uw and xv. So y has a neighbor in {u, v}, say u. Then yuwvzy is
a DCC with chords uv and zv. A similar DCC exists when yv € E(G). O
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Proof of 4. Let Q2 = qxq'. By the Proof of 3 above, [|Q1,qz| < 2 and
|Q1,z¢'|| < 2, otherwise we find a DCC that skips ¢ and ¢, respectively.
So if ||Q1, Q2] > 4, we must have ||¢, Q1] = ||¢, Q1] = 2 and |z, Q1] = 0.
Without loss of generality, suppose Ng, (¢) = {u,v}. If Ng,(¢') = {u,v} as
well, then uvg’zqu is a DCC with chords uq’ and vq that skips w. So we
may assume Nq,(¢') = {w, v}. However, ¢'wuquq’ is a DCC with chords uv
and wv that skips x. O

This proves all the statements, and so proves the lemma. O

Lemma 23. Suppose Q is a subgraph of G such that G|Q] = K, where
V(Q) ={q1,92,q3,94} and qiqs is its chord. Let v € G be disjoint of Q. If
lv, QI = 3, or ||v,Q|| = 2 and at most one of the edges vq1 and vqs ezist,
then G[Q + v| contains a DCC.

Proof. Suppose that ||v, Q|| > 3. Without loss of generality either {q1, g2, g3}

C Ng(v) or {q1,92,q4} € Ng(v). In both cases, G[Q + v] contains a DCC.
Suppose ||v, Q]| = 2 and at most one of the edges vg; and vgqs exist.
Suppose vq1 € E(G), so that vgs ¢ E(G). Without loss of generality, assume
Ng(v) = {q1,¢2}. Then vq1q4g3g2v forms a DCC with chords ¢i1¢3 and ¢1gs.
A similar DCC exists if vgs € E(G). If neither edge vq; and vgs exists,
Ny(v) = {g2, qa}. Then vg2q3q1gsv forms a DCC with chords ¢i1¢2 and g¢3qa.
]

Lemma 24. Suppose Q is a subgraph of G such that |Q| = 4 and G[Q)]
contains a cycle on four vertices. Let xy be an edge disjoint from Q. If
|lzy, Q| > 3 such that No(z) N Ng(y) = 0, then G[Q + zy] contains a DCC.

Proof. Since @ has a spanning cycle, we can label it as cjcaczeqcy. If ||z, Q|| >
3, then without loss of generality {ci,c2,c3} € Ng(z). Then zcaczeaciz
forms a DCC with chords zcy and cico. So, ||z, Q| < 2 and by symmetry
ly, Q|| < 2. Since [[{z,y}, Q| > 3, we may assume ||z, Q|| =2 and ||y, Q|| >
1. Since Ng(z) N Ng(y) = 0, without loss of generality, we can assume
that yc1,xeo € E(G). Then xeaescqciyx forms a DCC with chord ¢qeg and
another chord incident to z. O

Lemma 25. Suppose Q is a subgraph of G such that G[Q] = Paw, and let
v € G disjoint from Q. If ||v, Q|| > 3, then G|Q + v] contains a DCC.

Proof. Label V(Q) = {z1, 2, 23,24} where dg(xz1) = 1 and dg(z2) = 3.
If v has three neighbors in @ — x1, then G[Q + v] contains a K. So we
may assume vx; € F(G), and without loss of generality, vz4 € E(G). Then
vr1xox3r4v is a DCC with chords xox4 and another chord incident to v. O
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5. V(R) # V(P)

In this section, we assume that V(R) # V(P) with the goal of arriving at a
contradiction. Note that since V(R) # V(P), there exists v € V(R) \ V(P).
In addition, we define P to be the set of all vertices p in R such that p is an
endpoint of a path P where V(P) = V(P). In other words, P contains all
the endpoints of every spanning path of G[V (P)]. Furthermore, p is always
assumed to be an endpoint of P.

Lemma 26. Let v € V(R)\V(P), then ||{v,p},C|| <6 for all C € C.

Proof. Suppose there exists a C' € C such that ||[{v,p},C|| > 7. By Lemma
15 either ||v,C|| = 4 or ||p, C|| = 4. Suppose that ||v, C|| = 4 and ||p,C|| > 3.
Let 2 € N¢(p). By Lemma 15, we can replace C' with G[C' — z +v] = C so
that we obtain a new partition ' and R’ = R — v + z that satisfies (O1)
and (O2). However, since zp € E(G), the longest path in R’ is longer than
the longest path in R, which contradicts (03).

So suppose that ||v,C|| = 3 and ||p,C|| = 4. If C = K4, then the same
argument above holds. So suppose C' = K 25. Since |v,C|| = 3, then up
to symmetry, either N¢(v) = {b,c1,c2} or No(v) = {c1,ca,d1}, otherwise
G[C + v] will contain a copy of Ky, contradicting (O1). By Lemma 15,
pds € E(G), so that in either case, we can replace C' with G[C —dy+v] =2 C
so that we obtain a new partition C’ and R’ = R — v + dy that satisfies (O1)
and (02). However, since dop € E(G), the longest path R’ is longer than
the longest path in R, which contradicts (O3). This concludes all cases and
proves the lemma. ]

Lemma 27. There exists a p € P such that ||p, R|| < 2.

Proof. Note that for each p € P, there exists a path P in R such that
V(P) = V(P) and p is an endpoint of P. Observe that ||p, R|| = ||p, P||, as
otherwise we can construct a longer path than P in R, contradicting (O3).
For all p € P, we assume ||p, P|| > 3 so that in particular, |P| > 2.

Let p and p’ be the endpoints of P. Since ||p, P|| > 3, let p1, p2, and ps3
are the neighbors of p on P such that p, p1, p2, and ps appear in this order
(not necessarily consecutive) along P.

Let p be the vertex immediately preceding po in [p, p2] (note that perhaps
p = p1). Observe that P = ﬁ?ppgpp’ is a path such that V(P) = V(P). So
p € P, and ||p, R|| > 3. We know that p is already adjacent to pe, as well as
the vertex immediately preceding it on P. So p must be adjacent to a third
vertex p'.



240 Michael Santana and Maia Van Bonn

If p’ € [p,ps], then pPps is a DCC with chords ppy and pp'. If ' € (ps, p),
then pPpp’ $p2p] is a DCC with chords pps and ppo. Either case yields a
contradiction, which proves the lemma. O

By Lemma 27, we may assume that P and p € P are chosen so that
Ip, RI| < 2.

Lemma 28. For every v € V(R)\V(P), v, R|| > 4.

Proof. Tt follows from our minimum degree constraint and Lemma 26 that
2(3k) < da(v) +da(p) = [{v,p},Cll + [{v, p}, R|| < 6(k — 1) + [{v, p}, R|,

so ||{v,p}, R|| > 6. Recall that p was chosen so that ||p, R|| < 2, and hence
v, R|| > 4. O

We now look to complete the case where V(R) # V(P). Observe that
for all x € V(R) \ V(P), ||z, P|| < 3, otherwise G[P + z] contains a DCC.
Consequently, Lemma 28 implies every such 2 must have a neighbor in R\ P,
which implies the existence of nontrivial paths in R\ P, and furthermore
implies |P| > 2.

Now let @ be a longest path in R\ P, and let v and v’ be its endpoints.
Since (Q is nontrivial, v and v’ are distinct vertices. Furthermore, every
neighbor of v and v’ that is in R, is specifically contained in P or Q, as
otherwise we contradict the construction of Q).

By Lemma 28, |[{v,v'}, R|| > 8. By Lemma 17, ||{v,v'}, P|| < 4, oth-
erwise R will contain a DCC. So |[{v,v'}, Q| > 4. If either ||v,Q]| > 4 or
v/, Q|| > 4, then G[Q)] contains a DCC. So ||v, P|| > 1 and ||v, P|| > 1. Yet,
because [[{v,v'}, Q| > 4, G[P + Q] will contain a DCC with chords incident
to either v or v’.

This leads us to our contradication and completes the case when V(R) #
V(P).

6. V(R) = V(P)

In this section, we assume V(P) = V(R). So for every v € V(G), ||v, P|| =
|v, R||. Since |R| > 4, we can specify p,q,q’,p’ as the vertices in R such
that P =pq...q'p’. If |R| > 5, then we let r denote the vertex immediately
following ¢ along P, and if |R| > 6, then we also let 7 denote the vertex
immediately preceeding ¢’ on P. Since R has no DCC, we see that ||p, R|| <
3, llg,R|| < 4, and ||r, R|] < 5. The same bounds hold for p/,¢’, and 7/,
respectively. Furthermore, for every v € P\ {p,q,7,v',¢,p'}, ||v, R|]| < 6.
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Lemma 29. If |P| > 6, then there ezists QQ = {v1, v, vs3,v4,v5,06} along P
such that ||Q, R|| < 17.

Proof. Label the vertices of P as P = pqr---r'¢'p’. For each a € {p, q,r}, let
a1, o, ... denote the neighbors of « in (7, p’| such that for each i > 2, if a; 41
exists, then a; 11 € (a4, p]. In particular, 1 always exists and is possibly 7.

In the following, we will often consider pgr and r1Pp’ as two separate
non-trivial paths and apply lemmas from Section 4 regarding the num-
ber of edges between two non-trivial paths. We will also use the fact that
lp, (r,P']]| <2 and ||g, (r,p]|| <2, as otherwise we get a DCC in R.

Claim 29.1. If pr € E(G), then ||pgr, R|| < 9 and if equality holds then
either ||p, R|| = ||¢, R|| = 2 and ||r, R|| = 5, or ||r, R|| = 4 and without loss
of generality, ||p, R|| = 3, ||¢, R|| = 2, and further, p; € (r1,72).

Proof. Suppose pr € E(G). Then G[pgr] = Ks, and p and ¢ are similar
vertices as they are both endpoints of a path spanning R. So by Lemma 22.2,
we have ||pgr, (r,p']|| < 3, otherwise R contains a DCC. As ||pgr, pgr|| = 6,
we get ||pgr, R|| < 9.

Suppose ||pgr, R|| = 9. If ||, R|| = 5, then ||p, R|| = |l¢, R|| = 2, which
proves one part of the claim. Now as pr € E(G), we have |r, R|| > 3. If
|lr, R|| = 3, then |[{p,q}, (r,P]|| = 2, and as we noted at the beginning of
this section, ||p, R|| < 3. So ||g, (r,p']|]| > 1 and ¢ exists. If g2 also exists,
then qgo Prpq is a DCC with chords qq; and gr. If pq exists, then as p and ¢
are similar vertices, without loss of generality, p; € [q1,p']. However, pp; Pp
is a DCC with chords pr and qq;.

So we must have ||, R|| = 4, and rq exists. Furthermore, ||{p, ¢}, (r, ]| =
1 and either p or ¢ exists. As p and ¢ are similar, suppose without loss of
generality, that p; exists. If p1 € [rq,p'], then pp; Pp is a DCC with chords
pr and rre. If py = rq, then rro Pripgr is a DCC with chords pr and rr;.
So we must have p; € (r1,r2), which completes the proof of the claim. [

Claim 29.2. If pr ¢ F(G), then ||pgr, R|| < 8.

Proof. Suppose pr ¢ E(G), and suppose on the contrary |pgr, R| > 9.
So |lpgr,pqr|| = 4 and ||pgr, (r,p']|| = 5. By Lemma 20, |pgr, (r,p]| < 5,
otherwise R contains a DCC. So ||pgr, (r,p']|| = 5. As a result, we must have
a pair of distinct vertices x,y € {p,q,r}, such that |[{z,y}, (r,p']]| > 4. In
fact, equality must hold as otherwise if |[{z,y}, (r,p']|| > 5, R will contain a
DCC by Lemma 17. Thus for all « € {p,q,r}, ||, (r,']|| > 1.

Note that we cannot have {z,y} = {p, ¢} as otherwise, ||{p, ¢}, [r, /]| >
5 and R will contain a DCC by Lemma 17. So r € {z,y} and furthermore, as
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rr1 € E(G), r must play the role of v in Lemma 17 in both configurations,
where u; = 1.

If configuration 1 holds, then as ||q, (r, p']||||p, (r,p']|| = 1, both ¢ and p
play the role of v so that ¢1,p1 € (r1,73). Suppose p1 € (r1,72]. If @1 € [r1,p1],
then rrq1 Pqi1qpp1 Prsr is a DCC with chords ¢r and rro. If ¢1 € (p1,73), then
rqpp1 Prsr is a DCC with chords 79 and ¢q;. So we must have p; € (ro,73).
If g1 € (r1,p1] then pPpip is a DCC with chords ¢¢q; and rre, and if ¢; €
(p1,73), then rr1 Pp1pgqi Prsr is a DCC with chords ¢r and rre. So in all
cases we get contradictions so that configuration 2 holds from Lemma 17
where r plays the role of u and either p or ¢ plays the role of v.

Suppose p plays the role of v so that r1,p1,p2, 7o appear in this or-
der along P (not necessarily consecutive) and |{r1,p1,p2,72}| = 4. If ¢1 €
[r1,p1), then pPpop is a DCC with chords ¢q; and ppy. If ¢1 € [p1,72], then
rrgéplpqr is a DCC with chords ¢q; and pps. Lastly, if g1 € (ro,p’], then
qq1 P papp1 Prirq is a DCC with chords pg and rrs.

So we must have ¢ playing the role of v in Lemma 17. If p; € [go, p/], then
pPpip is a DCC with chords ¢q; and qgo. If p1 € [r1,q1], then ppi Prorqgp
is a DCC with chords ¢gq; and gg2. So we must have p; € (q1,¢2), however
rPqi1qpp1 Prar is a DCC with chords gqo and ¢r. This completes all the cases
and proves the claim. O

Now by Claims 29.1 and 29.2, we must have ||pgr, R|| = ||*'¢'p’, R|| = 9,
otherwise we are done, and furthermore pr,r'p’ € E(G). Suppose first that
lp, R|| = ||l¢, R|| = 2 and ||r, R|| = 5, and so 2 and 73 exist. Note that by
Claim 29.1, r1 # ' as otherwise ro = ¢/, 73 = p/, and as a result both
ld", R, [Ip', RI| = 3.

We must have ||r1, R|| > 5, otherwise ||{p,q,r1,7,¢,p'}, R|] < 17, and
we are done. Now the only neighbors of r; are r and those in (r1,p']. So r
has two hop neighbors, say 21 and x9 in (r1,p'] where x5 € (21,p']. If 21 €
(r1,73], then 7”7“3?7“ is a DCC with chords 77y and r121. So 21,22 € (r3,/].
However, rixzo Prorry is a DCC with chords rrg and r1xz1.

So by Claim 29.1, we must have ||r, R|| = 4 and without loss of generality,
|lp, R|| = 3 and ||q, R|| = 2, with py € (r1,72). As before, r1 # ', otherwise
p1 =, re =p, and both ||¢, R||, ||p’, R|| > 3. We also must have ||r1, R|| >
4, otherwise |{p,q,7m1,7,¢',p'}, R|| < 17, and we are done. So r; has two
hop neighbors, say 1 and x5 € (rq1,p’] where z9 € (z1,p']. If 22 € (r1,72],
then 7 Pror is a DCC with chords riz1 and r125. So x9 € (re, p']. However,
r1x2$p1pPr1 is a DCC with chords pr and rrs.

So in all cases we get a contradiction, which proves the lemma. O
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Lemma 30. If |P| > 5, then there exists Q = {v1,v2,v3,v4,v5} along P
such that ||Q, R|| < 14.

Proof. 1f |P| = |R| = 5, then we claim that |[E(R)| < 7. If for all v € R,
|v, R|| < 3, then |E(R)| < L2 and we are done. So there exists = € R such
that ||z, R|| = 4, that is, x is a dominating vertex in R. Since R has no DCC,
R — x must be acyclic. Thus, |E(R — z)| < 3 and |E(R)| < 7. Therefore, if
|P| =5, then we can let QQ = V(P) to obtain ||@Q, R|| < 14.

So we may assume |P| > 6. By Lemma 29, there exists Q C V(P)
such that |Q| = 6 and ||Q, R|| < 17. If ||Q, R|| < 14, then for any = € @,
|Q — x, R|| < 14 and we are done. So ||@, R|| > 15 and there exists y € Q
such that ||y, R|| > 3. However, ||Q — vy, R|| < 14, and we are done. O

Lemma 31. Let |P| > 5, let Q = {v1,va,v3,v4,05} C V(P), and let C € C.
If |1Q,C| > 16, then ||Q,C|| < 17, and furthermore, one of the following
configurations occurs.

1. C = Ky with No({v1,v3,v5}) C {a1,a9,a3} and No({ve,v4}) C V(C),

2. C = K9 with No({vi,v3,v5}) € {b,c1,c2} and No({ve,v4}) C
{Cl,CQ,dl,dz}, or

3. C = K172’2 with Nc({vl,vg,vg,}) = {b, 61,62}, Nc(’U4) = {b, dl,dg},
and N¢(va) = {c1,¢2,dy1,da}, or

4. C = K1,272 with Nc({vl,vg,v4,v5}) = {b, 01,02}, cmd Nc(vg) = {61,02,
dy,da}.

Note that in configurations 1 and 2, ||Q,C|| € {16,17}, and in configu-
rations 3 and 4 ||Q, C|| = 16.

Proof. Suppose that |P| > 5, and let Q = {v1,v2,v3,v4,v5} C V(P), labeled
so that vy, va, v3,v4, and vs appear in this order (not necessarily consecutive)
along P. Suppose also that ||@Q,C|| > 16 for some C € C. Thus |jv,C|| = 4
for some v € @, and by Lemma 15, C = K, or C = Kj22. Recall that
if C = Ky, then V(C) = {a1,a2,a3,a4}, and if C = K39, then V(C) =
{b,c1,c2,d1,da}, where ¢; and co are the vertices in one partite set of size
two, di and dsy are the vertices in the other partite set of size two, and b is
the dominating vertex.

Case 1. C = Ky4.
Our goal in this case is to prove that configuration 1 of this lemma holds.

Claim 31.1. There exists a; € C such that either |[{v1,v2},C —a;|]| =6 or
||{U4,U5},C - CLZH = 6.
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Proof. Suppose on the contrary that for all a; € C, we satisfy ||{vi,v2},C —
a;l| <5 and ||[{vg,v5},C — ai]| < 5. We claim |[{v1,v2},C|| < 6. Indeed, if
[{v1,v2},C|| > 7, then we may assume |jv1,C|| =4 and a1, a2,a3 € No(v2).

However, [[{vi,v2},C — a4 = 6, a contradiction.
So ||[{v1,v2}, C|| < 6 and by symmetry, |[{vs, vs}, C|| < 6. Since ||Q,C|| >
16, we have ||vs, C|| = 4. So, in fact, we must have |[{vi,v2}, C| = |[{va,v5},

C|| =6, else |Q, C|| < 16. Since |[{v1,v2},C|| = 6, v1 and ve have two com-
mon neighbors, say a; and ag; thus, Gv; Pva+ a1 +az] contains a DCC. If we
can show G|vg Pvs+as+ay] also contains a DCC, then we are done by contra-
diction. Since ||[{v4, v5}, C—a;|| < 5 for each i € {3,4}, and |[{v4,v5},C|| = 6,
we deduce that ||[{v4, v5}, {as,as}|| > 2. So ||{as, as}, v3Pvs|| > 4. By Lemma
17, we must have equality and either configuration 1 or 2 occurs where azay
plays the role of P; and vsPuvs plays the role of P». However, in neither
configuration is |lvs, agas|| = 2. So G[vsPvs + ag + a4 contains a DCC by
Lemma 17, and we are done. O

Claim 31.2. If |[{v1,v2},C — a;|| = 6 for some a; € C, then each of the
following hold:

1. for all ay € C — ay, ||aga;, {vs, v, v5}]] < 4,
2. |{v1,v2},Cl <7, and
3. Nc({’l)g,’l}5}) g V(C - ai).

Symmetric statements hold if ||{vs, vs}, C — ;]| = 6.

Proof. In all the following we assume without loss of generality that||{v1, v2},
C'—ay|| = 6. Observe Gv1 Pva+a;+a;| contains a DCC forall 1 <i < j < 3.

We cannot have G[vs Pvs+as+ay] contain a DCC for all ¢ € {1, 2, 3}, else
we get two disjoint DCCs in G[R+ C]. Thus, by Lemma 18, ||agas, vz Pus|| <
4, and in particular, ||agaq, {vs, v, v5}|| < 4, for all £ € {1,2,3}. This proves
the first item in the claim.

We now prove item 2. Suppose on the contrary that |{vi,v2},C| =
8, which is the most it can possibly be by Lemma 15. This implies that
for all a; € C, |[{vi,v2},C — a;j|| = 6, and so by item 1 of this claim,
laiaj, {vs,va, v5}]] < 4 forall 1 <i<j <4 Asaresult, ||C,{v3,vs,v5}] <
8. However, as ||{v1,v2},C|| = 8 and ||@,C|| > 16, we must have equality
so that ||C, {vs, v, v5}| = 8 and furthermore, ||a;a;, {vs, v, v5}|| = 4 for all
1<i<j<d

In particular, ||aiag,{vs,vs,v5}|| = 4, and since we can form a DCC
in with G[v1Pvy + a3 + a4, Lemma 17 implies either configuration 1 or 2
holds with ajae as P; and v3Puvs as P,. Configuration 1 must hold other-
wise we would need four vertices in {vs, v4,v5}. So without loss of gener-
ality, ||la1,{vs,vs,vs}|| = 3 and ||ag, {vs, v4,vs5}|| = 1. However, since ||a;a;,
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{vs,vg,v5}|| =4 for all 1 <i < j <4 and ||ar,{vs,vs,v5}| = 3, we would
have ||C, {vs,v4,v5}|| < 6, a contradiction. This proves item 2 of the claim.

To prove item 3, suppose that |la4, {vs, vs}|| > 1. Since ||[{v1,v2},C|| <7
by item 2 of this claim, we must have |[{vs,vs,v5},C| > 9. Addition-
ally, as ||agaq, {vs,va,v5}| < 4, for all £ € {1,2,3}, if ||aq, {vs,va,v5}] >
2, then ||C,{vs,vs,v5}|| < 8, a contradiction. So ||as, {vs,va,v5}] < 1,
and in fact equality holds. Further, |{a1,a2,as},{vs,vs,v5}|| > 8. Since
lai, {vs,va,v5}|| < 3 for each i, we may assume |la,{vs,vs,v5}]| = |lag,
{vs,v4,v5}]| = 3. So |Jaraq, {vs, v, v5}| = 4.

Recall that G[viPva + a; + a;] contains a DCC for all 1 <i < j < 3. In
particular, G[v1Pvs + ag + ag] contains a DCC so that G[vsPus + a1 + a4]

cannot contain a DCC. So as ||aia4, {vs,vs,v5}|| = 4, by Lemma 17, either
configuration 1 or 2 holds. Similar to the above, we must have configura-
tion 1. So as ||as, {vs,vs,v5}|| = 1, a1 plays the role of u and a4 plays the

role of v. In particular, v3 and v5 are not adjacent to a4, a contradition to
llag, {vs,v5}|| > 1. Thus, Ne({vs,vs}) C {a1,az,as}, which proves item 3,
and finishes the proof of the claim. O

By Claim 31.1, we may assume without loss of generality that ||[{vi,va},
C — a4|| = 6. By item 3 in Claim 31.2, we know N¢({vs,vs}) C {a1,a2,as}.
So it remains to show N¢(v1) C {a1,ag,as} to complete this case. So suppose
vias € E(G). By item 2 in Claim 31.2, ||[{v1,v2}, C|| < 7, and since N¢(v3) C
{a1, a9, a3}, we have ||{vy,vs,v3}, C|| < 10, which implies ||{v4,vs},C| > 6.
If [[{v4,v5},C — a4| = 6, then by item 3 in Claim 31.2, No({v1,vs3}) C
{a1,a2,a3}, a contradiction as we assumed viaq € E(G). So we must have
I{vs, v5},C — aq]| <5, and as No({vs,vs}) C {a1,a2,as}, we deduce that
II{vs,v4,v5}, C|| <9 and furthermore, the only way equality holds is if vjas €
E(G) and N¢(v3) = {ai1,a2,a3}. Since |[{vi,v2},C| < 7 and ||Q, C|| > 16,
we must have [[{vs,vq,v5},C|| = 9, and consequently, ||{vi,v2},C| = 7,
vgay € E(G), No(vs) = {a1,a2,a3}, and ||[{vs,v5},C — a4]| = 5.

Recall that we are assuming vias € E(G). If vaas € E(G), then as
II{v1,v2}, C|| = 7, we may assume without loss of generality that G[v; Pvy +
a1 +ay) contains a DCC. As [[{vs, v4,v5}, C|| = 9 and No({vs,vs}) C V(C)—
a4 by item 3 in Claim 31.2, we get |[{vs, v4,v5}, azag|| > 5. However, Lemma
18 implies G[vzPvs + as + as3] contains a DCC.

So veas ¢ E(G), which implies |[vy, C|| = 4 and ||ve, C — a4|| = 2. Thus
|Q — v1,C — ay4]| > 10, and in particular, there exists a; € C' — a4 such that
lai, @ — v1|| = 4. However, this results in two disjoints DCCs in C' — a; + v;
and voPus + a; in G[R + C], a contradiction.

Thus, we must have N¢({v1,v3,v5}) C {a1, a2, as}, which completes this
case.
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Case 2. ' = K.

A (T, e)-partition is a partition of C' into two subgraphs, T' and e, in
which T is a triangle and e is an edge.

Claim 31.3. For every (T, e)-partition, G[v1Pvs + €] (and by symmetry
GlvsPvs + €]) does not contain a DCC.

Proof. Fix a (T, e)-partition of C. Suppose G[v1Pvs + €] contains a DCC,
and suppose also that G[v1 Pva+T] also contains a DCC. Since G[R+C] does
not contain two disjoint DCCs, we cannot have G|vs Pvs+1T1] or G[vsPvs+e]
contain a DCC. So by Lemmas 22 and 18, ||vsPvs, T'|| < 3 and ||vsPvs, e|| <
4. As aresult, |[{vs, v, v5}, C|| < 7. However, since ||@Q, C|| > 16, this implies
[{v1,v2},C|| > 9, which contradicts Lemma 15.

So suppose Glv1 Pvy + €] contains a DCC, but G[vy Pvy 4+ T does not.
Again, by Lemma 22, |[{vs,vs,v5},T|| < 3. The same lemma implies that
since G[v; Pvy 4+ T'| does not contain a DCC, ||{vi,ve}, T|| < 2. So |[{v1,v2},
T|| <2, and |[{vi,v2}, C| < 6. However, since |[{vs,v4,v5}, T|| < 3, we have
I{vs, v, v5}, €|| > 7, a contradiction as this can be at most six. O

Claim 31.4. For every (T, e)-partition, G[viPvy + T] (and by symmetry
G[v4Pvs 4+ T']) must contain a DCC. Furthermore, |le, Q|| < 7.

Proof. Fix a (T, e)-partition of C, say T" = bcid1b and e = cady. By Claim
31.3, G[viPva + €] does not contain a DCC so that |{vi,v2},el| < 3.
We wish to show that GlviPvs + T contains a DCC; so if not, then by
Lemma 22, ||{vi,ve},T|| < 2. Thus, ||[{vi,v2},C|| <5 and as ||Q,C| > 16,
I{vs,v4,v5},C|| > 11. Note that if ||[{vg,v5},C|| > 8, then GlvyPvs + €]
would contain a DCC, contradicting Claim 31.3. So we must have ||{v4, v5},
Cl| =17, ||lvs,C|| =4, and by Lemma 15, N¢(v3) = V(C — b). Furthermore,
{v1, v2}, Cf| = 5.

Since ||{v1,v2}, C|| = 5, the inequalities of ||{vi,ve}, T|| < 2 and ||{v1,v2},
el| < 3 must be equality. As N¢(vs) = V(C —b), G[vi Pvs + €] contains a
DCC. However, as ||[{v4,v5},C|| = 7, we have |[v4Pvs,T| > 3, which by
Lemma 22 implies G[vgPvs + T contains a DCC. So G[R + C] contains two
disjoint DCCs, a contradiction. This proves that G|vyPvg + T contains a
DCC.

To show |le, Q|| < 7, recall that by Claim 31.3 neither G[v; Pvg + €] or
G[vgPvs+e] contain a DCC. Therefore, |le, {vi,v2}|| < 3 and ||e, {vg, v5}|| <
3. If |le,vs]| = 2, then |[vsPuvs,e|]| > 5 and by Lemma 17, G[vsPuvs + €]
contains a DCC. However, we just showed that G[viPvs + T contains a
DCC. This completes the proof of the claim. O
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By Claim 31.4, ||{¢;,d;}, Q| < 7 for each i € {1,2}. Hence ||C —b,Q| <
14, which implies ||b, Q|| > 2. Note that by Lemma 15, if ||b, Q|| = 5, then
for all v € @, ||v, C|| < 3 contradicting ||@,C|| > 16. So 2 < ||b, Q|| < 4.

Subcase 2.1. ||b, Q| = 4.

We will show that configuration 3 or 4 of this lemma holds. By Lemma
15 and to satisfy ||@,C|| > 16, there exists only one vertex, call it v € @,
such that ||v,C|| = 4, and all others are adjacent to b. Without loss of
generality, v € {v1,va,v3} so that [[{vi,ve,vs3},b|| = 2. For i € {1,2},
let T; = beid;b, and e; = c¢;d;. By Claim 31.4, GlvyPvs + T;] contains a
DCC for each ¢ € {1,2}. So G[v;Pvs + e;] cannot contain a DCC. By
Lemma 17, |[{vi,v2,v3},€;]] < 4 for each i. So [{v1,va,v3},C —b]] < 8
and |[{v1,v2,v3},C| < 10. Since ||Q,C|| > 16, we have |[{v4,v5},C|| > 6;
however since v € {v1,v2,v3}, we know |[{vs,vs}, C|| = 6 so that the previ-
ous inequalities must be equality. For example, ||[{v1,v2,v3}, e;|| = 4 for each
i, and in particular, when ¢ = 1. By Lemma 17, we must have configuration
1 or 2 in which e; plays the role of P, and v; Pvs plays the role of P». Since
configuration 2 requires {v1, vy, v3} to have at least four vertices, we must
have configuration 1. Thus, vy is adjacent to both ¢; and dy, and v; and vs
have the same neighbor, say c.

Note that bcodib and cidy is another (7, e)-partition for which all the
previous arguments hold. In particular, vy is adjacent to both ¢; and do,
and v; and v3 are not adjacent to dy as they are already both adjacent to
c1. Again, when considering 7' = beydib and T = cods, we get No(ve) =
V(C =b), and N¢(v1) = Ne(vs) = {b, c1, c2}-

Recall that bvy,bvs € E(G). We cannot have vsd; € E(G) for some
i € {1,2}, as otherwise vsd;bvsPvs is a DCC with chords vsb and v4b, and
voci1dg_;cov1 Pvg is a DCC with chords vic; and vecs. So we must have
Nc(’l)5) = {b, c1, CQ}.

To show that either configuration 3 or 4 of this lemma holds, we only need
to show N (vg) is either {b,c1,ca} or {b,d;,da}. Suppose on the contrary
that without loss of generality, N¢(vq4) = {b,c1,d1}; however, this results
in replacing C' with the Ky in G[{v4,b,c1,d; }] which contradicts (O1). This
completes the case when ||b, Q|| = 4.

Subcase 2.2. 2 < ||b, Q| < 3.

Here we will show configuration 2 of this lemma holds. Since ||@Q, C|| >
16, we have ||C — b, Q| > 13. So for e¢; = ¢;d; where i € {1,2}, we may
assume without loss of generality, |le1, Q|| > 7. However, recall by Claim
31.4 that |le,Q|| < 7 for all e in a (T, e)-partition, which each e; is. Thus,
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lle1, Q| = 7. By Claim 31.3, ||e1, {va,v5}|| < 3 so that ||e1, {v1, v, v3}|| > 4.
However, if G[v1Pvs + e1] contains a DCC, then we get a contradiction as
Claim 31.4 implies G|vg Pvs + b+ co + da] contains a DCC. So by Lemma 17,
lle1, {v1, v2, v3}|| = 4, and one of two configurations holds where e; plays the
role of P; and vy Pvs plays the role of P5. Since configuration 2 of Lemma 17
requires at least four vertices in {v1,v2,v3}, we must have configuration 1;
furthermore, vo is adjacent to both ¢; and di, and without loss of generality,
v1 and v3 are both adjacent to ¢; and not adjacent to d

Recall |le1, Q|| = 7, so we may also argue that ||e1, {vs,vq,v5}| > 4,
and by symmetry, v4 is adjacent to both c¢; and d;, and vs and v5 are both
adjacent to ¢; and not adjacent to d;. We now let e] = c1d2 and e} = cad;.
As ||C = b,Q] > 13 and |le, Q| = 7 for all e in a (T, e)-partition, either
llet, @l = 7 or ||e3, Q|| = 7. In either case, all the above arguments apply.

If |le7, Q|| = 7, then because we already know every vertex in @ is ad-
jacent to c1, the above argument implies that v, v3, vs are not adjacent to
dy, but v and vy are. Since vy and v4 are both adjacent to ¢; and dy, we
cannot have bvy or bvy € E(G), otherwise we can replace C' with a copy of
K4, contradicting (O1). This yields configuration 2, as we allow any vertex
in @ to be ajdacent to cs.

If ||}, Q|| = 7, then because we already know that the only vertices in @
that are adjacent to d; are vy and vy4, the same argument implies that ¢y is
adjacent to all the vertices in ). As a result, b and ds cannot have common
neighbors in @), otherwise we can replace C with a copy of K4 that includes
co. Since v9 and vy are both adjacent to ¢; and dy, then bvy,bvy ¢ E(G),
otherwise we can replace C' with a copy of K4 contradicting (O1). So the
only vertices possibly adjacent to b are vi,vs, and vs. So if ||b, Q|| = 3, then
because every vertex in ) is adjacent to ca, do can only be adjacent to v
and vg, which yields configuration 2. If ||b, Q|| = 2, then we actually have
|C' —b,Q| > 14, from which we can conclude ||e}, Q| = 7, and we again get
configuration 2.

This completes all cases and proves the lemma. O

Lemma 32. |P| <5.

Proof. Let |P| > 6. Then by Lemma 29 there exists Q = {v1, va, v3,v4, V5, Vg }
C V(P) such that ||Q, R| < 17. As 6(G) > 3k, we get 6(3k) < ||Q,R|| +
1Q,C|| < 17+ [|Q,C]|. Therefore, ||Q,C|| > 18(k — 1), which implies there
exists a C' € C such that ||@,C| > 19. Thus ||z,C| = 4 for some z € @,
and by Lemma 15, C = Ky or C = Kj 9. If there exists u € @ such
that [ju,C|| < 1, then ||Q — u,C|| > 18 which contradicts Lemma 31. So,
|lu, C|| > 2 for all u € Q.
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Suppose there exists v € ) such that ||v, C|| = 2. Relabel the vertices in
Q—v as u1, u2, us, uq and us so that they appear in this order, not necessarily
consecutive, along P. Without loss of generality, either v € [p,u;), v €
(ui,u2), or v € (ug,us). Since ||v,C|| = 2 and ||Q,C|| > 19, we have ||Q —
v,C|| > 17. So by Lemma 31, equality holds and G[(Q — v) + C] is either
configuration 1 or 2 in Lemma 31.

Suppose first that we have configuration 1. Since [|Q — v, C| = 17, we
must have Ngo({ui,us,us}) = {a1,a2,a3} and No({uz,us}) = V(C) by
Lemma 31. Since ||v, C|| = 2, without loss of generality, va; € E(G). Note
that GlugPus+ C — ay] contains a DCC. If v € (uy,u2) or v € (ug,us3), then
uy Pugajug is a DCC with chords va; and ugay. If v € [p, u1), then vPugaiv
is a DCC with chords uja; and woai. In either case, we get two disjoint
DCCs, which is a contradiction. This completes the case when configuration
1 holds.

Now suppose we have configuration 2. Since ||Q —v, C|| > 17, by Lemma
31, we know equality holds and furthermore, N ({u1,us,us}) = {b, c1,c2}
and Neo({ug,us}) = {c1, c2,d1,da}. Since ||v, C|| = 2, we may assume that v
is adjacent to either ¢; or d;. In either case, note that GlugPus + co + da + b
contains a DCC. Suppose first that v is adjacent to ¢;. If v € (u1,ug) or
v € (ug,us), then uj Pusciuy is a DCC with chords uge; and vug. If v €
[p,u1), then vPugciv is a DCC with chords ujc; and ugep. Now suppose v

is adjacent to d;. If v € [p,u1) or v € (uy,usz), then vdiciug Pv is a DCC
with chords uge; and wad;. If v € (ug,u3), then u; Pvdiciug is a DCC with
chords usc; and wady. In any case, we get two disjoint DCCs, which is a
contradiction. This completes the case when configuration 2 holds.

This implies that for all v € @, ||v, C|| > 3. We now return to our original
labeling of the vertices of @ as {v1,v2,v3,v4, v5,v6}. Let’s now assume that
V1, V2,3, 04, V5, and vg appear in this order (not necessarily consecutive)
along P. Suppose ||vs,C|| = 3 so that ||Q — vs,C|| > 16. In this case,
Lemma 31 holds, and one of the configurations listsed occurs. Note that in
each configuration, at least one of vy or vy has four neighbors on C, and
furthermore, vy, v3, and vs each have at most three neighbors on C. Since
we showed above that for all v € Q, ||v,C|| > 3, we know in particular that
|lvi,C|| = 3. Yet this implies that || — v1,C|| > 16, so that one of the
configurations in Lemma 31 holds here as well. However, this would imply
that at least one of v3 or vs would need to have four neighbors on C', which
cannot happen as we just saw that each has at most three neighbors.

So |lvs, C|| = 4 and by symmetry, ||v1, C|| = 4. Since ||v,C|| > 3 for all
v € @, we see that ||Q—wvg|| > 16, which implies that one of the configurations
in Lemma 31 holds. However, in none of the configurations is ||vi, C|| = 4,
a contradiction. This proves the lemma. O
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Lemma 33. If |P| =5, then R = Ky 3.

Proof. Let |P| = 5. Since |P| = |R| = 5, by Lemma 30, ||R, R|| < 14. We
claim there exists C' € C such that |R,C|| > 16. If not, then as 6(G) > 3k,
we get: 5(3k) < ||R, R||+||R,C|| < 144+15(k—1). However, this implies 15k <
15k — 1, a contradiction. So ||R, C|| > 16 for some C € C, and by Lemma 31,
one of the four configurations hold. First note that if configuration 4 holds,
then we can replace C' = Kj 29 with G[{b, c1,v3,v4}] = K4, contradicting
(O1). So we only need to consider configurations 1-3.

Now since ||R, R|| < 14, we know |E(R)| < 7. Furthermore, by inspec-
tion, the only 5-vertex graph with seven edges and no DCC is Ky ;3. So if
R % Ky ,13, then |E(R)| < 7. Our goal in the following is to consider each of
the remaining three configurations from Lemma 31, and show that in each
one, we can find disjoint graphs H; and Hs in R+ C such that H; & C and
Hjy = Kj 3. This results in a new collection that will satisfy (O1), (02),
and (O3), but contradict (O4).

First, if configuration 3 occurs, then G[{b,c1,v3,v4,v5]} = Kj 22, and
G{vi,v2,c2,d1,d2}] = Ky 1 3. Now consider configuration 1. Since ||Q, C|| >
16, at most one edge is missing between ) and C'. If a1 is not adjacent to vy
or va, then G[{Ul, V2, a2, ag}] = K4 and G[{al, a4, V3, V4, 1)5}] = K17173. If aq is
not adjacent to vs or if a4 is not adjacent to ve, then G[{a1, az,v1,v2}] = Ky
and G[{as, a4, v3,v4,v5}] = K1 1,3. This covers all the cases by symmetry.

Lastly, consider configuration 2. Once again since [|@Q, C|| > 16, at most
one edge is missing between @) and C'. There are a few cases to consider. Sup-
pose ¢ is not adjacent to either vy, vy, or vs, then G[{vi,ve,vs,co,da}] =
K13 and G[{vs,vs,c1,d1,b}] = Kj29. Notice these same structures ex-
ist if buy € E(G) or bvg ¢ E(G). If dy is not adjacent to vy, then then
G{vi,v2,v3,c1,b}] = K292 and G[{v4,vs,c2,d1,do}] = Kq1,3. By symme-
try, this covers all cases and proves the lemma. O

Lemma 34. |P|=4.

Proof. By Lemma 32, |P| < 5. So suppose |P| = 5. By Lemma 33, G[P] &
K 13. Let v1,vg,v3 be the vertices in P such that dr(v;) = 2 for each 4, and
let F' = {v1,v2,v3}. We claim that for all C € C, ||F,C|| < 9.

Suppose on the contrary that ||F, C|| > 10 for some C' € C. Without loss
of generality, suppose |vi,C|| = 4. By Lemma 15, |C| < 5. Since || F,C|| >
10, vy and vz have a common neighbor in C, say x. Then G[C — z + v;] and
G[P — v1 + z] each contain a DCC, a contradiction. So | F,C|| < 9.

However, this yields the following contradiction: 3(3k) < || F,C||+ || F, R||
<9(k—1)+6 =9k — 3. 0
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6.1. |[R|=|P|=4
In the following, we assume the vertices of R are labeled so that P =
V1U20V3V4.

Lemma 35. There exists C € C such that ||R,C|| > 13, and consequently,
R= K171,2.

Proof. Suppose that for all C € C, ||R,C|| < 12. Note that ||R, R||
10 as R % K. However, this yields the following contradiction: 4(3k)

4
S de(vi) = |R, R + |R.C|| <10+ 12(k — 1) = 12k — 2.
=1

<
<

This proves the first part of the statement of Lemma 35. So suppose
|R,C|| > 13 for some C' € C, and suppose R % Kj12. Since |R,C| >
13, there exists v; € R such that ||v;,C|| = 4. So, by Lemma 15, C €
{Ky4, K122}

Note that K12 is the only 4-vertex graph with five edges. So if R 2
Ki1,2, then |E(R)| < 5. In each of the following cases we will find disjoint
graphs H and Hs in R+ C such that H; = C and Hy = K1 1 2. This results
in a new collection that will satisfy (O1), (02), and (O3), but contradict
(04).

Case 1. C = Ky4.

Suppose ||v1, C|| = 4. Then ||[R—v1, C|| > 9. So without loss of generality,
|la1, R — v1]] = 3. Thus, we can replace C and R with G[C — a1 + v1] = K4
and G[R — v1 + a1] = K} 1,2, respectively.

So ||v1, C|| < 3, and by symmetry, ||vg, C|| < 3. Without loss of gener-
ality, suppose ||ve, C|| = 4. Then, as in the previous case, we may assume
a1, R—vs|| = 3. Observe that if we replace C' and R with G[C'—aj+v3] = Ky
and G[R — v2 + a1], respectively, then G|R — va + a;] has at least four edges.
So R must have at least four edges, otherwise we contradict (O4). Thus
R € {Cy, Paw}. However, if R = Cy, as ||ve, C|| = 4, then by symmetry we
are done by the previous case. Therefore R = Paw.

Note that in the Paw, three of the four vertices are endpoints of paths
spanning the Paw. As we have assumed ||vs, C|| = 4 and have shown that
|lvi, C|| < 3 above, we may assume that dr(v2) = 3, so that ||v;,C| < 3
for i € {1,3,4}, otherwise we are again done by the previous case. In fact,
equality must hold as ||R,C|| > 13.

As a result, v and vq have a common neighbor, say a1, in C'. However,
we can replace C' and R with G|R — v + a1] = Ky and G[C — a1 +v1] €
{K4, K112}, respectively. This completes the case when C' = Kjy.
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Case 2. ' = K.
In this case, we first prove the following claim.
Claim 35.1. |E(R)| > 4.

Proof. Suppose that |E(R)| < 4. As |R| = |P| = 4, we have R = P,. If
|lv1, C|| = 4, then ||R — vy, C|| > 9, which implies that there exists distinct
v;,vj; € R — vy such that v; and v; have a common neighbor, say = €
C. However, we can then replace C' and R with G[C — x + v1] = C and
G[R — v1 + z], respectively, where G[R — vy + x| has at least four edges,
contradicting (O4).

So |lv1, C|| < 3, and by symmetry, ||vq, C|| < 3. Since |R,C|| > 13, we
may assume ||vg, C|| = 4 and ||R — ve,C|| > 9. Note that if ||vs,C|| = 4,
then |lvavs, C|| = 8, which contradicts Lemma 16. So ||v;, C|| = 3 for all
i € {1,3,4}. Also by Lemma 16, we may assume Nc(vi1) = {b,c1,c2} and
Ne(vs) € {{b,c1,c2},{b,d1,da}}. If v4b € E(G), then we can replace C' and
R with G[C —b+wv2] = C and G[R —v2+b], respectively, where G[R —va +b]
has at least four edges, contradicting (04). So N¢(v4) C {c1, c2,d1,do} and
in fact, v4 is adjacent to some ¢;. If No(vs) = {b, c1,ca}, then we can replace
C and R with G[C' — ¢; + v2] = C and G[R — va + ¢;], respectively, where
G[R — v2 + ¢;] has at least four edges. So N¢(v3) = {b,d1,d2}. Now vy must
also be adjacent to some d;. However, we can then replace C' and R with
G[C —dj +v1] = C and G[R — v1 + d;], respectively, where G[R — v1 + d;]
has at least four edges. This completes all cases where R =2 Py, and proves
the claim. O

So |E(R)| > 4. As we are assuming R 2 K 1 2, we have R € {C4, Paw}.
We now show that if R =2 (4, then in fact, we may assume R & Paw.
Indeed, if R = Cjy, then as |R,C|| > 13, we may assume without loss of
generality that |lv;,C| = 4. Note that either ve and vs have a common
neighbor in C, or vz and v4 have a common neighbor, call it . Then we can
replace C and R with G[C' — = + v;] and G[R — vy + ], respectively, where
G[R — v + 2] = Paw.

So R = Paw, and we may assume dg(vy) = 3. If ||vg,C|| = 4, then
by Lemma 16 and the assumption ||R,C|| > 13, we have ||v;,C|| = 3 for
i € {1,3,4}. Again, by Lemma 16, we may assume without loss of generality
Ne(v1) = Ne(vs) = {b,c1,c2} and Ne(vy) = {b,d1,d2}. However, we can
replace C' and R with G[C' — ¢; +v4] = C and G[R —vq4 + 1] = Ky,
respectively, contradicting (O4).

So ||vg, C|| < 3. If ||u, C|| = 4, then we have |[{vs,vs}, C|| > 6, which
means v3 and v4 have a common neighbor, say x € C. We can then replace
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C and R with G[C — z + v1] =2 C and G[R — v; + 2| = K 1 2, respectively,
contradicting (O4). So [|v1,C|| < 3, and by Lemma 16, |[{vs,v4},C| < 7.
Since ||R,C|| > 13, equality must hold in each case. So, by Lemma 16, we
may assume ||vg, C|| = 4, No(va) = {b,c1,c2} and Ne(vs) = {b,d1,da}. If
vib € E(G), then we can replace C' and R with G[C' — b+ v4] = C and
G[R — vs + b] = K12, respectively, contradicting (O4). If vib ¢ E(G),
then v; must be adjacent to some c¢;. However, we can replace C and R
with G[C — ¢; + v3] = C and G[R — v3 + ¢;| = Kj,12, respectively, again
contradicting (O4). This completes the proof of the lemma. O

Since R = K 12, we may assume the vertices of R are labeled so that
dr(v1) = dgr(vs) = 2.

Lemma 36. Let C € C. For i € {1,4}, if ||v;,C|| = 4 and C = Ky, then
|R —v;, C <8.

Proof. Without loss of generality, suppose [|v1,C|| = 4 for some C € C,
and suppose C' = Ky. If we have |la;, R|| = 4 for any a; € V(C), then
G[C — a; + v1] and G[R — v1 + a;] each form Ky, a contradiction. Thus
llai, R|| < 3 for all i. So ||R,C|| < 12, and since ||v1, C|| = 4, the lemma is
proved. O

For a graph H, we let H™ to denote any graph that is obtained from H
be removing a single edge. That is, H~ represents any arbitrary graph from
a particular family of graphs.

Lemma 37. For all C € C, ||R,C| < 14, and if ||R,C|| > 13, then one of
the following configurations holds:

IR, C| = 14, ||Jv1,C| = ||va, C|| = 3, and G[R+ C] = K5 V K3,
IR, Cl =13, 5 < |[{v1,v4},C|| <6, and G[R+ C] = (K5 V K3)~,
IR, C|| =13, ||u1,C|| = ||va, C|| =3, and GI[R+ C] = Ka 34,
IR, C|| =14, ||u1,C|| = ||lva,C|| =4, and GIR+ C] = K333, or
MR, Cl =13, 7 < [[{v1,v4}, C|| <8, and G[R+ C] = Ky 3 5.

Gr A Lo M~

Proof. Fix C' € C such that || R, C|| > 13. There exists some u € R such that
|lu, C|| > 4, so by Lemma 15 equality holds and C' € {K4, K122}

Case 1. C' = K4.

By Lemma 36, ||v1, C|| < 3 and ||vs, C|| < 3. So we may assume |lvg, C|| =
4.

Suppose that ||vs, C|| = 4. Since | R, C|| > 13, we may assume N¢(v1) =
{a1,a9,a3} and further ||vg, C|| > 2 with a3 € Neo(v4). If v4a4 € E(G), then
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we can replace C' with two disjoint DCCs in C' — a3 — a4 + v3 + v4 and
R —v3—v4+ a3+ ay, a contradiction. So N¢(ayq) C {a1, az,as}, which yields
either configuration 1 or 2.

Now suppose ||vs, C|| = 3. Then as ||R, C|| > 13, we must have ||v;, C|| =
3 for i € {1,3,4}. Without loss of generality, we may assume N¢(vi) =
{a1,as,a3}. Suppose N¢(vs) # Ne(v1), so that we may assume N¢(vq) =
{ag,as,as}. Without loss of generality, as € N¢(vs). If vsay € E(G), then
we can replace C' with two disjoint DCCs in C' — a1 +v4 and R—wv4+a1. So
Nec(vs) = {ag,a2,a4}. However, we can again replace C' with two disjoint
DCCsin C —ay — a4q +v1 +v9 and R — v1 — v3 + as + a4. So we must have
Nc(vq4) = Ne(v1). However, this yields configuration 2.

Note that in each situation ||R, C|| < 14, which completes this case.

Case 2. C = KLQ’Q.

Note that by Lemma 16, |{vi,vit1},C|| < 7 for i € {1,3}. Thus,
|R,C| < 14.

Suppose |[v2,C|| = 4. By Lemma 16, |jv;,C|| < 3 for ¢ € {1,3,4}, and
since ||R,C|| > 13, we must have equality. So, by Lemma 16, we may as-
sume N¢(v1) = Ne(va) = {b,c1,c2} and Ng(vs) = {b,d1,ds}. This yields
configuration 3.

So |lvz, C|| < 3 and by symmetry |vs, C|| < 3. Without loss of generality,
|lv1, C|| =4, and so ||v;, C|| = 3 for some i € {2,3}. As R = K 12, we may
assume without loss of generality, that ||vs, C|| = 3, and by Lemma 16, we
may assume N¢(vy) = {b,c1,co}. Note that if v is adjacent to some c¢;,
then we can replace C' with G[{c;, v1,v2,v3}] = K4, contradicting (O1). So
Nc(Ug) - {b, dl, d2}

Now since ||R,C|| > 13, |[{vs,vsa},C| > 6. Since |lvs, C|| < 3, we have
|va, C|| > 3. If ||vg, C|| = 4, then because N¢(vs) C {b,d1,d2}, we get either
configuration 4 or 5. If ||vg, C|| = 3, then by Lemma 16, N¢(v4) = {b, d;, d2}.

Howevever, this would mean |jvs, C|| = 3 as well as N¢(vs) € {{b,c1,c2},
{b,d1,d2}}, which in either case contradicts Lemma 16.
This completes both cases and proves the lemma. O

Let C' € C such that |C| is largest amongst all DCCs in C. The proof
of the following lemma requires many structural lemmas and cases, and is
proven in Section 7.

Lemma 38. For all C € C\ {C}, if |C| > 6, then |R+C,C| < 3(|C| +4).
Using this lemma we can prove the following.

Lemma 39. For all C €C, |C| <5.
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Proof. First observe that ||R, R|| = 10. By the definition of C, if |C’| <5,
then we are done. So we may assume |C| > 6, and by Lemma 15 |jv,C|| < 3
for all v € R; so ||R, C|| <12

We now claim ||C, C|| < 3|C|. Indeed, if for all v € C, ||v, C|| < 3, then
we are done. So suppose we have ||v,C| = 4 for some v € C so that v is
incident to two chords in C. By Lemma 13, v is the only vertex incident to
two chords, and since ]C’ | > 6, there is at least one other vertex in C that is
not incident to a chord. Thus, ||C,C|| <4+ 2+ 3(|C| - 2) = 3|C].

This together with Lemma 38 yields the following:

EICI+4) < ) da(v
veR+C
=||[R+C,R|+||[R+C,C| +||R+C,C\{C}|
< (10 +12) + (12 + 3|C|) + 3(|C| + 4)(k — 2)
=22+ 3(|C| + 4)(k — 1)

This simplifies to 3(|C| + 4) < 22. However, since [C| > 6, we get 30 < 22,
which is a contradiction. O

We are now able to prove Theorem 9.

Proof of Theorem 9. By Lemma 35, |R| = 4, and by Lemma 39, >  |V(C)|
cecC
< 5(k—1). Thus, n <44 5(k —1) < 5k. So every n-vertex graph H with

n > 4k and 6(H) > 3k without k disjoint DCCs satisfies n < 5k. O
7. Proof of Lemma 38

The goal of this section is to prove Lemma 38. So let C' € C be such that
|C| is largest amongst all doubly chorded cycles in C, and assume |C| > 6.
We show that for all C' € C — {C}, |R+ C,C|| < 3(|C| + 4). We first show
this holds if any vertex in the remainder has four neighbors on C.

Lemma 40. Let C € C\{CY andv € R. If |v,C|| = 4, then |R+ C,C| <
3(|Cl+4).

Proof. Fix C € €\ {C} and v € R such that ||v,C|| = 4. By Lemma 15,
C € {K4,Ki22}. Observe that for all z € C, C — z + v creates a DCC
C' such that replacing C' with C’ yields a new collection of k — 1 disjoint
DCCs, call it C’, that satisfies (O1). Let R’ denote G \ C’, and note that
z € R'. So, by Lemma 14, since |C| > 6, we must have ||z, C|| < 3. Thus,
|C,C|| < 3|C| < 15.
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Now by Lemma 37, |R,C|| < 14. Thus ||[R+ C,C|| <29 < 3(6 +4) <
3(1C] + 4). O

As a result of Lemma 40, we may assume that for all v € R and C €
C\{C}, |lv,C|| < 3, and furthermore, || R, C|| < 12. In the rest of this section,
we consider ||C, C|| for each the following cases: when C' = K4, when |C| = 5,
when |C| > 6 and there exists zy € E(R) such that ||zy, C| > 5, and when
|C| > 6 and ||R,C| < 8.

Lemma 41. Let C1,Cy € C. If ||C1, Co|| > 3(max{|C1|, |C2|}) + 1, then for
each i € [2], there exist consecutive vertices x and y along the cycle of C;
such that |[{z,y},Cs_i|| > 7.

Proof. Let C1,C3 € C so that [|C1, Oz > 3(max{|C1],|C2[}) + 1. Label the
vertices of C; as v1vg - - - V|| Suppose first that |C;| is even. Consider the set
of consecutive pairs of vertices along the cycle of C;, {vve, v3vy, . .. V|c,|~1Y|C| }.

If \\{vj,vj+1},(73_i\| <6 for all VjVj4+1 S {U1U2,U3U4, ce 7”\6@;\—1”\@\}7 then
|C1, Co|| < 3(max{|C1],|C2|}) which is a contradiction. Therefore, there ex-
ists at least one pair of consecutive vertices zy € {v1va, v3vy, .. ., 'U|C7¢|—1U|C7~,|}

such that ||[{z,y}, Cs_|| > 7.
Now suppose that |C;| is odd. Consider the consecutive pairs of vertices

{v2v3, V405, . . ., )¢, —1V|c, | }- If there exists a pair vjvj11 € {vavs, vavs, ...,
V)¢, |-1V|c;| } such that [[{vj,vj11}, Cs—il| > 7, we are done. So let |[{vj, vj41},
Cg_iH S 6, for all VU541 S {7121}3, V405, ... 7U|Ci|71U|C’i|}' Then HCi_Ulp C3—i||

< 3(|C;| — 1). Since we assumed that ||C1, Ce|| > 3(max{|C1]|,|C2|}) + 1, we
can conclude that ||vy, Cs_;|| > 4. If |Jve, C5_;|| > 3, then ||{vi, va}, Cs—i|| > 7
as desired. So we have |lva, C3_;|| < 2. Now consider the consecutive pairs
of vertices {v‘0i|v1, V34, - - .’U|CI_|_2’U|Ci|_1}. The same argument which shows
that ||v1,Cs—_i|| > 4, shows that |ve, C3_;|| > 4. However, this contradicts
||va, C5—;|| < 2. Hence there must exist a consecutive pair of vertices x and
y along the cycle of C; such that |[{x,y}, Cs_i|| > 7. O

Lemma 42. Let C1,Cy € C. If ||C1, Co|| > 3(max{|C1|, |C2|}) + 1, then for
all z € Cy, ||Z,037i” <6.

Proof. Let C1,Cy € C so that [|C1, Co > 3(max{|C1],[Ca|})+1 and suppose
there exists a vertex z € C; such that ||z, C5_;|| > 7. Label the neighbors of
z as 21, 29, 23, 24, 25, 26, 27, - - . in this order along the cycle of C'5_; not neces-
sarily consecutive. From Lemma 41, we can conclude that there exist consec-
utive vertices x,y € C5_; along the cycle portion such that |[{z,y}, Ci|]| > 7.
Both z and y could be neighbors of z, and so ||{z,y}, C;—z|| > 5. By Lemma
17 we can conclude that G[(Cs_; — z) + = + y] contains a doubly chorded
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cycle. Since ||z, C3_;|| > 7 there exists at least five neighbors of z that are
not x or y. Without loss of generality, suppose these five are z1, 2, 23, 24 and
z5. Hence G|z + 21Q3-;24] and G[(C5-; — z) + x + y| form DCCs on fewer
vertices than |C;| and |Cs|, contradicting (O1). Therefore, ||z, C5_;|| < 6 for
all z € C; as desired. O

Lemma 43. Let C € C. If C = Ky, then, ||C,C| < 3|C|.

Proof. Let C' € C and C = Kj. Suppose ||C,C|| > 3|C| + 1. By Lemma
41, there exist consecutive vertices  and y along the cycle of C, such that
II{x,y},C|| > 7. Suppose ||{z,y}, C|| = 8 so that each edge in C forms a K,
with xzy. Let e € E(C). The remaining vertices in C, form a K4 with xy, and
so if e forms a DCC with C' — z —y on fewer vertices than |V (e +C —z —1y)|,
this contradicts (O1). Therefore, by Lemma 18 |le,C — x — y|| < 5 for all
e € E(C). If there is a v € C, such that ||v,C — 2 — y|| > 4, then for any
v € (C —w), |v/,C —x —y|| <1 and consequently |C,C —z —y| < 7.
If there is a v € C, such that |v,C| = 3, then for any v € (C —v),
||v C —z—y| <2and consequently [|C, C—z—y| <9 If forall v €

C, v, C—xz—y| <2, then |C,C — z —y| < 8. Therefore, in all cases
||C’ C—z—y| <09, meaning ||C, C|| < 17 < 3|C|, which contradicts our
assumption that ||C, C|| > 3|C| + 1.

Suppose that ||{z,y}, C|| = 7, and without loss of generality, ||z, C|| = 4
and ||y, C|| = 3. Recall that the vertices of C' = K, are labelled aq, as, ag and
ay. Without loss of generality, suppose that yai,yaz,yas € E(G). Note that
for all e € {a1az,a1a3,a2a3}, Gle + x +y] = Ky. Therefore, if aja4, azaq, or
azay form a DCC with C'—z —y on strictly fewer vertices than |C|, this would
contradict (O1). Thus, by Lemma 18, ||{a;,a4},C — 2 — y|| < 5, for each
i € {1,2,3}, and furthermore if equality holds for each 4, then a4, C| > 2
by the configurations in Lemma 18.

If||a4,C r—yl|| = 5, then [|{a1, a2, as}, C—z—y||=0and |C, C|| <12.
If ||ag, C—z—y|| = 4, then ||{a1, as, az}, C—z—y|| < 3, meaning ||C, C|| < 14.
If ||ag, C—z—y|| = 3, then ||{a1, as, az}, C—z—y|| < 6, meaning ||C, C|| < 16.
If ||ag, C—z—y|| = 2, then ||[{ay, as, a3}, C—z—y|| < 9, meaning ||C, C|| < 18.
In all of these cases ||C,C|| < 18 < 3]0 |, which contradicts our assumption
that ||C,C|| > 3|C|+ 1. So let |las,C —x —y|| < 1. As noted above, Lemma
18 implies that [|{a;,a1},C — x — y|| < 4, for each i € {1,2,3}. Then if
las, C—z—y|| = 1, |{a1,a2,a3}, C—z—y|| < 9, meaning ||C, C’|| < 17, which
contradicts our assumption that ||C, C|| > 3|C’\ +1.So [las, C —x —y| = 0.
Recall that C'—a;+x = K4 for each j € {1,2,3}. So if G[C — r+aj] contains
a DCC on less than |C| vertices, this contradicts (O1). Thus, Jla;, C — x| < 4
so that [aj, C|| < 5. However, as Ha4,C’H < 3, we get ||C, C|| < 18, which
contradicts our assumption that ||C,C|| > 3|C| + 1. O
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Lemma 44. Let C1,Cy € C. If ||C1, Co|| > 3(max{|C1|, |C2|}) + 1, then for
all v e C;, HU,CgfiH <5.

Proof. Let C1,Cy € C so that ||C1,Ca| > 3(max{|C1], |C2|}) + 1. Suppose
there exists a vertex v € C; such that ||v,C3_;|| > 6. By Lemma 42, we
can conclude that ||v, C3_;|| = 6. By Lemma 41, we know that there exists
consecutive vertices x and y along the cycle of C3_; such that ||{z,y}, C;|| >
7. Notice that |[{z,y}, (C; —v)| > 5. If G[(C; —v) + = + y] contains a DCC
on fewer vertices than |(C; — v) + = + y|, then G[(C; — v) + x + y| and
G[(Cs3-; — x — y) + v] contain DCCs on fewer vertices, contradicting (O1).
Therefore, by Lemma 18, we can conclude that [[{z,y}, (C; —v)|| = 5 and
so vz, vy € E(G).

Let v, v9, v3, and v4 be the four remaining neighbors of v so that y, x, vy,
vo,v3, and vy appear in this order along the cycle of Cs_;, not necessarily
consecutive, and so that x,y € (v4,v1)c,_,. Furthermore, from Lemma 17,
we can conclude that G[(C; — v) + x 4 y] contains a DCC. Therefore, if
there exists z € (z,v1)c,_, or 2z € (v4,Y)c,_,, then G[(C; —v) + z + y] and
G[(C3—; —x — y — z) + v] contain DCCs on fewer vertices than |C| + |Ca],
contradicting (O1). Hence vy, y, x,v1 are consecutive along Cs_;.

If ||vay, Ci|| > 8, then |lvgy, C; — v|| > 6 and by Lemma 18, G[C; — v +
v4 + y] contains a DCC on fewer than |C; — v + vg + y| vertices. However,
G[Cs_;—vs—y+v] also contains a DCC, contradicting (O1). So ||vay, Ci|| < 7
and by symmetry, ||viz, C;|| < 7. Therefore, ||{z,y,v1,v4}, Ci|| < 14.

Note that G[{v,v4,y,x,v1}] forms a DCC. So H = G[(viv4)c,_, + (Ci —
v)] cannot contain a DCC on fewer vertices than |H|. Suppose first that
|C3_;| > 8 so that |(vi,v4)c,_,| > 4. By Lemma 21:

(01, v4)c, 5 Ci = wf| < min{|(v1,v4) e, |, [Ci = v[} +3
< |(vi,v4)c,_,| +3
<|C3-i| —4+3
<|Cs-i| - 1.

Since |lv,C3_;|| = 6, we know that v is only adjacent to ve and vz in
(v1,v4)c,_,, and so

[ (v1,v4)cs,, Cill < [C3—i] + 1.
Since ‘|{37:Z/7U17U4}7Ci” S 14a

HCg_Z',CiH < ‘Cg_i‘ + 15.
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However |C3_;| > 8, which implies ||C3_;, C;|| < 3|Cs_;], a contradiction to
|Cy, Co|| > 3(max{|C1]|,|C2|}) + 1. Therefore |C5_;| =6 or 7.

If |C3_;|, then a similar argument to the above holds so that by Lemma
20:

“(7)171)4)037“01‘ - UH S 5.

Since [|v,C3_;|] = 6, we know that v is only adjacent to vy and wvs in
(v1,v4)0,_,, and so

H(U17U4)C3,“C72H < 7.
Since [[{z,y,v1,v4}, Cif| < 14,
|Cs—s, Cs|| < 21.

However, |Cs_;| = 7, which implies ||Cs_;, C;|| < 3|C3_;|, a contradiction to
|C1, Co|| > 3(max{|C1]|,|C2|}) + 1. Therefore, |C5_;| = 6.

Note that for any pair of consecutive vertices along C5_;, say w and
z, G[C3_; — w — z + v| contains a DCC. So, by Lemma 18, we must have
|lwz, C; — v|| <5, else G[C; — v + w + 2] will contain a DCC on less than
|C; — v+ w + z| vertices, contradicting (O1). Therefore, ||Cs_;, C; —v|| < 15
and so ||Cs—;, Ci|| < 21. As ||C5-;,Ci|| > 3(max{|C1]|,|C2|}) + 1, we get
|Ci| < 6.

Recall that ||zy, C;—v|| = 5 and G[Cs_;—x—y-+v] contains a DCC. So we
must either have configuration 1 or 2 in Lemma 18. Configuration 1 cannot
occur as it requires |C; — v| > 6. So configuration 2 holds, which implies
|C; —v| = 3 so that C; = K4, and without loss of generality, ||z, C; —v|| = 3.
However, G[C; — v + z] =2 K4 and G[C3_; — x — y + v] form DCCs on fewer
than |Cy| 4 |Cy| vertices, contradicting (O1).

This completes the proof of the lemma. O

Lemma 45. Let C € C\ {C}. If |C| = 5, then ||C,C|| < 3|C|.
Proof. Let C € C\ {C} such that |C| = 5, and suppose ||C,C|| > 3|C|.
Claim 45.1. For all c € C, ||c,C|| < 4.

Proof. Let ¢ € C such that ||, C|| = 5, and let v € C. Label C' = vvjvpv3040.
We will consider the number of chords incident to v. Note that by Lemma
13 v is incident to at most two chords.

Suppose v is incident to two chords so that vve,vvs € E(G). Label
e1 = vive, ex = v3vy, 11 as triangle vvzvgv and Th as triangle vvivov.
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Note that G[T; 4 ¢] = K4. So if G[C — c+ ;] contains a DCC on fewer than
|C'—c+e;| vertices, this contradicts (O1). Hence by Lemma 18 ||e;, C—¢| < 5,
implying |e;, C|| < 7. Therefore, ||{e1,e2},C|| < 14. Note that ||C,C|| > 19,
by our assumption that ||C,C|| > 3|C|, and so ||v,C|| > 5. By Lemma 44,
HU,QH = 5, implying ||C, C|| = 19, ||[{e1,e2}, C|| = 14, and more specifically
lei,C —¢|| = 5. )

As argued above e; cannot form a DCC with C' — ¢ on fewer vertices that
|C’ — ¢+ €;]. Therefore, by Lemma 18, either configuration 1 or 2 occurs,
implying |C' — ¢| > 6 or |C' — ¢| = 3. The latter cannot hold as |C| > 6. If
the former holds, then |C| > 7, so that ||C,C|| > 22. However, we showed
|C, C|| = 19, a contradiction. So v cannot be incident to two chords in C,
and by symmetry, the same holds for all vertices in C.

As C'is a DCC, we can assume without loss of generality that vvs and
vivyg are the only chords in C. We now label e; = wvous, es = v3vy, 11 as
triangle vvyv4v, and Th as triangle vovivav. As above G[T; + ¢] = Ky. So we
must have |les_;, C' — ¢|| < 5, otherwise by Lemma 18, G[C' — ¢ + e3_;] will
contain a DCC on fewer than |C' — ¢ 4 e3_;| vertices, contradicting (O1).
Similarly, ||1)le~' —¢| < 3 for each j € {2,3,4}. From here we can deduce
[{v2,v3,v4},C —¢|| < 8. .

Note that G[C —v+¢| = K 2,2, which has three chords. If ||v, C'—c¢|| = 4,
then G[C' — ¢ + v] contains a DCC that is either on fewer vertices than C,
or has the same number of chords as C, as ¢ can only be incident to at most
two chords by Lemma 13. However, this either contradicts (O1) or (02). So
|v,C — ¢| < 3, and the same argument shows |v1, C' — ¢/ < 3.

Thus, ||C,C — ¢|| < 14 so that ||C, C|| < 19. However, as ||C, C|| > 3|C|
and |C| > 6, we must have |C| = 6, and furthermore, we must have equality
in our prior inequalities. In particular, ||{ve,vs,v4}, C - c|]| = 8 so that we
may assume without loss of generality that ||vovs, C' — ¢|| = 5. Therefore,
cither configuration 1 or 2 in Lemma 18 holds, and either |C' — ¢[ > 6 or
|C' — ¢| = 3, respectively. However, both yields contradictions as |C| = 6.

This proves the claim. O

Claim 45.2. For every edge e along the cycle of C', and for every edge zy
along the cycle of C, Gle + xy| % K4. In particular, |le, zy|| < 3.

Proof. Let e be an edge along the cycle of C, let H be the remaining 3-vertex
path along the cycle of C' (perhaps G[H] = K3), and let xy be an edge along
the cycle of C.

Suppose first that both G[H +xy] and G[e+ zy] contain DCCs. If G[C —
x — 1y 4+ H] contains a DCC on fewer vertices than |C' — x — y + H|, this
contradicts (O1). Therefore, |H,C — 2 — y|| < 5 by Lemma 20. Similarly,
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Gle+C —z —1y] cannot contain a DCC on fewer vertices than |C' —z —y+ €|,
so by Lemma 18 |le,C — 2 — y|| < 5. Together we get ||C,C — z — y| < 10.
Since we assumed that ||C,C|| > 3|C|, we have ||C, {z,y}|| > 9. However,
this implies either ||z, C| > 5 or ||y, C|| > 5, contradicting Claim 45.1.

Next suppose G[e + zy] contains a DCC, but G[H + xy| does not. As
above, |H,C —z — y|| <5 by Lemma 20. As G[H + xy] does not contain
a DCC, Lemma 17 implies |H,zy|| < 4 and if equality holds, then either
configuration 1 or 2 holds. Configuration 2 cannot hold as |H| = 3, and if
configuration 1 holds, then either x or y is adjacent to all the vertices of H,
say x. However, Gle + zy| = Ky, so that ||z, C|| = 5, contradicting Claim
45.1. So we must have ||H,zy|| < 3.

This implies ||H,C|| < 8, and since we assumed ||C, C|| > 3|C]|, ||le,C|| >
11. However, this implies there exists z € T such that ||z, C|| > 6 contra-
dicting Lemma 44. O

Claim 45.3. Given a partitioning of C' into a triangle, T, and a disjoint
edge, e, there exists an edge xy along the cycle of C' such that G[T + zy]
contains a DCC.

Proof. Let T and e be such a partition of C. Suppose T does not form a
DCC with any edge zy along the cycle of C. By Lemma 22.3, |lzy, T|| < 2
and by Claim 45.2 ||zy, e|| < 3. Therefore ||zy, C|| < 5. However, since this
is for all edges zy along the cycle of C' this contradicts Lemma 41. OJ

Claim 45.4. Given a partitioning of C into a triangle, T', and a disjoint
edge, e, |le,C|| < 7.

Proof. Let T and e be such a partition of C' and suppose that ||e, C|| > 8. By
Claim 45.3, there exists an edge xy along the cycle of C such that G [T+ zy]
contains a DCC. So if G[C' — & — y + €] contains a DCC on strictly fewer
vertices than |C' — z — y + e| this contradicts (O1). Therefore, by Lemma
18, |le,C — z — y|| < 5 and so |le,C|| < 8 by Claim 45.2. As |le,C| > 8,
we must have equality, and furthermore, |le,C — x — y|| = 5. Therefore,
either configuration 1 or 2 from 18 holds, implying that |C' — z — y| > 6 or
|C' — x — y| = 3, respectively. The latter cannot hold as |C| > 6, so that the
former holds and |C| > 8.

As ||C,C|| > 3|C| > 24 and ||e,C|| = 8, we have ||T,C|| > 17. However,
this implies there exists a vertex € T such that ||z, C|| > 6, contradicting
Lemma 44. O

Claim 45.5. |C| =6
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Proof. Partition C' into triangle, T', and disjoint edge, e. By Claim 45.4,
le,C|| < 7, and so if |C| > 8, ||T, C|| > 18 contradicting Lemma 44.

So suppose |C| = 7. By our assumption that [|C, C|| > 3|C| and by
Claim 45.4, we can conclude that ||T,C|| > 15. This implies that there is a
vertex v € C such that ||T,v|| = 3, and so G[T + v] = K. If G[C — v + €]
contains a DCC on strictly fewer vertices than |C' — v 4 e| this contradicts
(O1). Therefore, by Lemma 18 |le,C —v| < 5. As ||Jv, T|| = 3 and ||v,C|| < 4
Claim 45.1, we get ||e,C|| < 6. However, this implies |T,C| > 16, and
furthermore, there is a vertex « € T such that |z, C|| > 6 which contradicts
Lemma 44. Therefore, \C’\ =6. O

Claim 45.6. Let H be a 3-vertex path along the cycle of C' (perhaps G[H] =
K3). Given a partition of C' into triangle T and disjoint edge e, G[e + H]
does not contain a DCC.

Proof. Partition C into a triangle T and disjoint edge e, and let H be a
3-vertex path along the cycle of C, where possibly G [H] = K3. Suppose on
the contrary that Gle + H] contains a DCC. If G[C' — H + T contains a
DCC on strictly fewer vertices than |C' — H + T/ this contradicts (O1). By
Claim 45.5, the vertices along the cycle of C' disjoint from H form a K 1,2 SO
that by Lemma 22.4, ||T,C — H|| < 3.

By Claim 45.4, |le,C|| < 7. So as ||C,C|| > 3|C|, we have |T,C| > 12,
and further |7, H|| > 9. This implies that each vertex in T is adjacent to
all vertices in the H. However, this contradicts Claim 45.2. Il

Claim 45.7. Given a partitioning of C' into a triangle, 7', and a disjoint
edge, e, |le,C|| <6 and and ||T,C|| > 14.

Proof. Let C be partitioned into a triangle T" and disjoint edge e. By Claim
45.4 |le, C|| < 7. Suppose that ||e,C|| = 7. By Claim 45.2 ||e, zy|| < 3 for all
edges zy along the cycle of C. Since |le, C|| = 7 and |C| = 6 by Claim 45.5,
there exists an edge xy along the cycle of C such that ||e, zy|| > 3, and by
Claim 45.2, equality holds.

Label C' = zyvivav3vs. Without loss of generality, we can assume that
lle,z|| = 2 and |le,y|| = 1. We must have |le,v1|| = 0 otherwise Gle +
xyv1] will contain a DCC, contradicting Claim 45.6. Similarly, we must have
le,val| < 1. If |le,va]| = 0O, then as [le,vavs]| < 3 by Lemma 45.2, we get
le, C|| < 6, a contradiction as we assumed |le, C|| = 7. So ||e, v4]| = 1. Yet to
avoid contradicting Claim 45.6, we must have ||e, v3|| = 0, which again gives
le, C|| < 6 as ||e, va|| < 2.

So we may assume |le, C|| < 6. Since ||C,C|| > 3|C’| this implies that
IT,C|| > 13. As |C| = 6, there exists a vertex = € C such that ||T,z|| = 3



Disjoint doubly chorded cycles 263

and hence G[T + z] = Kj. If e forms a DCC with C — z on strictly fewer
vertices than |C' — z + ej this contradicts (O1). Therefore, by Lemma 18 we
can conclude that |le,C — z|| < 5. However, if equality holds, then either

configuration 1 or 2 of Lemma 18 occurs, implying IC| = 7 or |C] = 4,
contradicting |C| = 6. Hence [le,C — z|| < 4, and as [T, z|| = 3, we get
lle, || <5 by Claim 45.1. So, in fact, ||T,C| > 14. O

Label the vertices of C' so that C' = ryrottatsry, where e = riry and
t1totsty is T'; in particular, t1t3 is a chord of C. C must have at least one
more chord, and up to symmetry it is r1t1 or rate. In either case, Claim 45.7
implies |le,C|| < 6 and ||T,C|| > 14.

Suppose r1t; € E(G). Then we can apply Claim 45.7 to the edge tots
and triangle 717otor) to get ||tats, C|| < 6. This together with ||C, C| > 3|C],
implies that ||t,C|| > 7, which contradicts Lemma 44.

So we may assume 1oty € F(G). Here we apply Claim 45.7 to the edge
t3ry and triangle rotitors to get Hrgtltg,C'H > 14. By Lemma 44, Hz,C‘H <
5 for all z € {ro,t1,t2,t3}. However, the only way for |7, C|| > 14 and
|ratita, C|| > 14, is for some edge in e € {roty,t1ta, tat3} to have ||e/, C|| >
10. Thus, for some edge €’ along the spanning cycle of C, we must have
|l€’, "] > 4, however, this contradicts Claim 45.2.

As all cases result in contradictions, this proves the lemma. O

Lemma 46. Let C € C\{C}. If vy € E(R) such that ||{z,y},C|| > 5, then
1C, ¢l < 3[C.

Proof. Let C € C\ {C}. Note that if |C| < 5, then by Lemmas 43 and
45, ||C,C|| < 3|C|, and we are done. So suppose in all the following that
IC| > |C| > 6.

Let zy € E(R) such that ||[{z,y},C| > 5, and suppose on the contrary
that ||C,C|| > 3|C| + 1. Without loss of generality suppose |z, C|| > 3. By
Lemma 15, if ||z, C|| = 4, then |C| < 5, a contradiction. So |z, C|| = 3 and
lly, C|| > 2. Note that it suffices to consider ||y, C|| = 2, as when ||y, C|| = 3,
we can delete and edge incident to y and still obtain our results below.

Let No(z) = {x1,2z2,23}, and Neo(y) = {y1,vy2}, such that z1,z2, 23
appear along C' in this order, but not necessarily consecutive, and similarly
order y; and .

In many of the following arguments we will use the following observation:

Observation. If we replace C with a DCC C’ contained in G[C + zy] such
that |C| = |C’|, then by Lemma 14, for all z € V(C) - V(C"), ||z,C|| < 3 as
otherwise |C] < 5.



264 Michael Santana and Maia Van Bonn

Using this observation, we will in many cases show that for all z € C,
||z, C|| < 3, which will contradict ||C, C|| > 3|C|+ 1. We now proceed based
on the size of |[N¢(z) N N (y)|.

Case 1. [N¢o(z) N Ne(y)| > 2.

Without loss of generality, suppose x1 = y1 and x5 = 9. Since xyx1Cxox
is a DCC with chords xzz; and yxo, there is at most one vertex in (xg,x1)
other than z3, else we would get a DCC with fewer vertices than C, contra-
dicting (O1). Similarly, since yzoCxsxx1y is a DCC with chords xy and x4,
there are at most two vertices (z3,z2) other than x;. By symmetry, there
are at most two vertices (x1,z3) other than zo. Lastly, since zax2Cxiyz is a
DCC with chords xxs and yxs, there are at most two vertices in (z1, z2).

However, due to these restrictions on the number of vertices in C, we
deduce that |C| < 5, which contradicts the assumption that |C| > 6.

Case 2. |N¢(z) N Ne(y)| = 1.

Without loss of generality, suppose 1 = y1. Up to symmetry, we have
two cases to consider here: either yo € (z1,x2) or y2 € (z2,x3).

Subcase 2.1. y3 € (21, x2)

Since xyx1Cxox is a DCC with chords xzx1 and yys, there is at most
one vertex in (xg,x1) other than x3; since xx3Cyyx is a DCC with chords
xxy and yzxp, there is at most one vertex in (y2,x3) other than xs; since
xxoCxyryx is a DCC with chords zz3 and zx1, there is at most one vertex in
(21, x2) other than ys. By these inequalities, |C] < 6 so that equality holds.
Let {vi,v2} = V(C) — Ne({z,y}) so that v; and vy appear in this order
along C' (not necessarily consecutive). We have three cases:

1. C = zv1y22v20371,
2. C' = x1y2v1x0230071, and
3. C= T1U1Y22230211 -

In each of these situations we can replace C' with the DCC zzoCziyz
with chords zxzs and xx; call it C'. Now |C’'| = |C|, so by the observation
I{y2,v1},C|| < 6. Furthermore, the number of chords in C' is equal to the
number of chords incident to vertices in {y2,v1} together with the number
of hops in [z2,z1]. As the number of chords in C’ is equal to the number of
hops in [z9, 1] plus two, there must be at least two chords with an endpoint
in {y2,v1} otherwise replacing C' with C’ yields a collection that satisfies
(O1) but contradicts (02).
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Similarly, xyz1Czex is a DCC with chords xx; and yy» that implies
|[{z3,v2},C|| < 6 and there are at least two chords in C' with an endpoint in
{z3,va}. Lastly, zzoCz1x is a chorded cycle with zz3 as a chord; so there are
no hops in [x2, z1] otherwise we replace C' with a DCC with fewer vertices.

We now consider each option for C separately and in each, we either
contradict (O1) or show ||{z1,z2},C|| < 6, which implies ||C,C|| < 3|C], a
contradiction to ||C, C|| > 3|C| + 1.

Subcase 2.1.1. C = x1v1y222v22321.

If z3v; € E(G), then zxzvix1yzx is a DCC with chords 123 and zzq that
contradicts (O1). If z3ys € E(G), then xxix3y2y2 is a DCC with chords yx;
and xxg that contradicts (O1). Therefore, since C has at least two chords
with an endpoint in {z3,v2} and there are no hops in [z2, 2], we must have
voyo and vovi. Now replacing C with the DCC zxivi1y2vex3x with chords
vive and z1xs, and the DCC zx3v9v1y2xox with chords zeve and ysvs, yields
|{z1, 22}, C|| < 6 by the observation, a contradiction.

Subcase 2.1.2. C' = z1ysv12223V2T 1.

If yove € E(G), then zxivay2yx is a DCC with chords x1y, and yx; that
contradicts (O1). If yox3 € E(G), then xyxziysxsz is a DCC with chords xxq
and yys that contradicts (O1). Therefore, since C' has at least two chords
with an endpoint in {z3,v2} and there are no hops in [z, 1], we must have
vizs and vivy. However, xzsvovizox is a DCC with chords vz and xoz3
that contradicts (O1).

Subcase 2.1.3. C = z1v1Y2x223V2T1.

If yoxs € E(G), then zzsxoysyxr is a DCC with chords zxo and z3ys
that contradicts (O1). Since C has at least two chords with an endpoint
in {x3,v2} and there are no hops in [x9,z1], we must have at least two of
the edges in {z3v1, vay2,vov1}. Suppose we have voys, vov1 € E(G). Now
replacing C' with the DCC xx3vviyoxox with chords zox3 and wveys, and
the DCC zxgvayoviz1x with chords vivy and xjve, yields |[{z1,z2}, C~'H <6
by the observation, a contradiction.

So we must have zzv, € E(G). If vov; € E(G), then zzivovizsx is a
DCC with chords zjv; and z3ve that contradicts (O1). So vays € E(G). Now
replacing C with the DCC xziveysvizsz with chords xiv; and x3ve, and
the DCC yysvix3202y With chords yexs and zxs, yields |\{x1,$2},C~'|| <6
by the observation, a contradiction.

This completes all cases when ys € (21, x2).

Subcase 2.2. y; € (22, x3).
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Since xx1Cysyzr is a DCC with chords xx9 and yzx1, there is at most
one vertex in (yz,x1) other than z3. By symmetry, there is at most one
vertex in (z1,y2) other than xs. Since |C| > 6, we must have exactly one
vertex in (x1,y2) other than zo, and exactly one vertex in (y2,x1) other
than x3. By these inequalities, |C'| < 6 so that equality holds. Let {vy,v2} =
V(C) — Ne({z,y}) so that v; and vy appear in this order along C' (not
necessarily consecutive). Up to symmetry, we have three cases:

1. C = zv122y2730221,
2. C = x1x0v1yox3v221, and
3. C = T1T20V1Y2022321 .

In each of these situations we can replace C' with the DCC yy.Czizy
with chords yz1 and zxs; call it C’. Now |C’| = |C|, so by the observation,
|[{v1, 22}, C|| < 6. Furthermore, the number of chords in C' is equal to the
number of chords with an endpoint in {v1, z2} together with the number of
hops in [y2, 21]. As the number of chords in C’ is equal to the number of hops
in [y2,z1] plus two, there must be at least two chords with an endpoint in
{v1, 22}, otherwise C’ yields a collection that satisfies (O1) but contradicts
(02). Similarly, yxz1Cy2y is a DCC with chords yx; and zzy that implies
{3, v2},C|| < 6 and there are at least two chords in C' with an endpoint
in {z3,v2}.

We now consider each option for C separately and in each, we either
contradict (O1) or show ||{z1,y2},C|| < 6, which implies ||C,C|| < 3|C|, a
contradiction to ||C, C|| > 3|C| + 1.

Subcase 2.2.1.
C = 210122Y2237271

If zoxs € E(G), then xxoxsysyx is a DCC with chords zxs and zoys
contradicting (O1). If x129 € E(G), then zyysxsx 1z is a DCC with chords
xxe and yz; contradicting (O1), and a symmetric argument holds if x;23 €
E(G). So zaxs, x172, 2123 ¢ E(G). Suppose vizs € E(G). Now replacing
C with the DCC zxouvizsysyxr with chords zxs and zoys, and the DCC
xx3Crox with chords vizs and zxq, yields ||{z1,y2}, C’|| < 6 by the obser-
vation, a contradiction.

Sovizz ¢ E(G), and by symmetry vaxe ¢ E(G). Since C has at least two
chords with an endpoint in {x2, v1 } and at least two chords with an endpoint
in {vy,x3}, we must have v1ys, voye, v1vs € E(G). Now replacing C' with
the DCC zz3voyovizox with chords xzoys and yoxg, and the DCC zax3Cxox
with chords zzq and vjve, yields H{xl,yg},C’H < 6 by the observation, a
contradiction.
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Subcase 2.2.2.
C = T1X2V1Y223V2T1

Since zx3Cxox is a chorded cycle with chord zx1, there can be no hops
in [x3,x2], otherwise it is a DCC contradicting (O1). Suppose z3v1 € E(G).
Now replacing C' with the DCC zyzizovix3z with chords zx1 and xzs, and
the DCC zxoviz3ysyx with chords viys and xxs, yields H{xl,yg},C’H <6
by the observation, a contradiction. So z3v1 ¢ E(G).

Since C has at least two chords with an endpoint in {z3,v2} and there
are no hops in [x3, z2], we must have v;vy and voys. Now replacing C with the
DCC zx3veysvixox with chords vive and yoxsg, and the DCC zxoviveziyx
with chords x129 and zxq, yields H{ml,yg},C’H < 6 by the observation, a
contradiction.

Subcase 2.2.3.
C = T1T2V1Y2022327 .

If zoys € E(G), then zzyxoysyx is a DCC with chords zzo and yx;
contradicting (O1). If z1v; € E(G), then xyxjvizox is a DCC with chords
xx1 and x129 contradicting (O1). If x9ve € E(G), then zz1x2vaz32 is a DCC
with chords xxe and xjx3 contradicting (O1). So zoy2, x1v1, 2202 ¢ E(G),
and by symmetry, x3ys, r1v2, v123 ¢ E(G) respectively. However, C' has at
least two chords with an endpoint in {vg,z3}, so that we must have zoxs
and vjvy. However, G[z1Cx3 + x] = K4, contradicting (O1).

This completes the case when y2 € (22, 23), and completes the case when
|[Ne(z) N Ne(y)| = 1.

Case 3. Suppose that Neo(z) N Neo(y) =0
To complete this final case, we proceed based on |C/.
Subcase 3.1. |C| =6

Here we relabel the vertices of C' so that C' = wivovzvavsvgvy with
zvi,yv1 € E(G). Note that if vovg € E(G), then G[{ve,vs3,v4}] = K4 and as
llzy, {ve,v3,v4}|| = 3, Lemma 22.3 implies G[zy + v2Cv4] contains a DCC
that contradicts (O1). Therefore, vovy ¢ E(G), and similarly, vsvs, vave ¢
E(G). Since C is a DCC, we know that there must exists two additional
edges from {vjvs, v1v4, V105, VU5, V2VE, U3VE } -

Claim 46.1. vyv3,v1v5 ¢ E(G).
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Proof. Suppose vivs € E(G). Note that either = or y is adjacent to at least
two vertices from vy, v3,v6. So if vavs € E(G), then G[{v1,v2,v3,v6}] = K
with chord vjva. So, by Lemma 23, either G[z 4+ vgCus] or Gy + vgCvs]
contain a DCC that contradicts (O1). Therefore, vovg ¢ E(G). A similar
argument shows how vzvg, vivs € E(G).

Hence either vqvs € E(G) or vivs € E(G). Suppose first that vevs €
E(G) so that vaCvsvy is a 4-cycle. Then, by Lemma 24, G[zy + voCvs]
contains a DCC on |C| vertices, otherwise we contradict (O1). In particular,
this is a triply chorded cycle, so that C must have three chords, as it would
contradict (O2). Therefore, v1v5 € E(G). However, either x or y is adjacent
to at least two vertices from wvq,vs,vs, and G[{vi, v, vs,v6}] = K, with
chord vjvs. So, by Lemma 23, either G[z + v5Cv2] or Gy + v5Cvs] contains
a DCC on fewer vertices than C. Hence vovs ¢ E(G), so that vivs € E(G),
and C has exactly two chords.

Now we consider which vertices are the neighbors of z. If Ng(x) =
{vs,v4,v5}, then zvsvivsvax forms a DCC with chords zvs and vzvy con-
tradicting (O1). So z is adjacent to at least one of vg or vg. Without loss
of generality, suppose it is vy. If zv3 € E(G), then note that G[v;Cvz + vj]
contains a Paw for each j € {4,5,6}. Therefore, for some j € {4,5,6},
|z, {v2,v3,v;j}| = 3 so that by Lemma 25, G[v1Cv3+v;] will contain a DCC
contradicting (O1). So xzvs ¢ E(G), and by a similar argument we cannot
have both zvs and zvg. So we must have xvy € E(G).

If xvs € E(G), then zvsv;Cvgx is a triply chorded cycle on |C| vertices
with chords vqvs, viv3, and zve. However, this contradicts (02) as C' has
exactly two chords. So N (x) = {va, va,v6} and Ne(y) = {vs, vs}.

We now use the observation to show ||C, C|| < 3|C| < 3|C|. Observe that
xveCusyz is a DCC on |C| vertices with chords yvs and zv4, avoiding v;
and vg. By symmetry, we obtain a similar DCC avoiding vo. Also yvsCvazy
is a DCC on |C| vertices with chords xvg and vyvs, avoiding vs and v4. By
symmetry, we obtain a similar DCC avoiding vs.

Therefore, v1v3 € E(G) and by symmetry vivs ¢ E(G). O

Claim 46.2. VoU5, V3Vg ¢ E(G)

Proof. Suppose vovs € E(G). If vovg € E(G), then vavsvgvs is a K3, and by
Lemma 3, G[zy + v2vsvg] contains a DCC on strictly fewer vertices than C,
contradicting (O1). Hence vyvs € E(G).

We now use the observation. Note that G[vaCvs] and G[vsCuvs] are each
4-cycles. By Lemma 24, GvaCvs + xy| and GlvsCvs + zy| contain DCCs
on |C| vertices, else we contradict (O1). These avoid v1,vs, and vs, v4, re-
spectively. So we only need to find DCCs on |C| vertices that avoid vy and
V5.
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Asvyvg ¢ E(G), the only other possible chords are viv4 or vsvg. However,
either of these will allow us to create 4-cycles in C' such that we can repeat the
above argument to form our desired DCCs that avoid vy and vs. Therefore,
vovs € E(G) and by symmetry vsvg € E(G). O

By the previous two claims, the only available chords are viv4 and vovg.
We now use the observation. Note that G[v;Cvs] and G[vsCv] are both 4-
cycles. By Lemma 24, G[v1Cvs+ 2y and G[vyCv1+xy] contain DCCs on |C|
vertices (else we contradict (O1)). These avoid, vs, v and va, v3, respectively.
So we only need to find DCCs on |C] vertices that avoid v1 and vy.

Note that if v3 and vs different neighbors in {x,y}, say xvs and yuvs,
then xvsvovgusyx is a DCC with chords incident to vy and vg on |C| vertices
avoiding v; and v4. So vs and vs have the same neighbor in {z,y}, say
u. Both vs and wvg cannot both be adjacent to u as well, so without loss
of generality, suppose vq is adjacent to v, where {x,y} = {u,v}. However,
uvsCvovu is a DCC on |C| vertices with chords incident to vg, and vvaCvsuv
is a DCC on |C| vertices with chords incident to v and vy, avoiding v4 and
v1, respectively.

This completes all cases when |C| =6, so 7 < |C| < |C|.

Subcase 3.2. |[C| =7

As in the case where |C| = 6, we relabel the vertices of C' as C =
V1V ... V701 where vy is not adjacent to either z or y. We know another
vertex in C, say v*, is not adjacent to either x or y, so we proceed based on
those cases.

Claim 46.3. v* ¢ {vy,v7}.

Proof. Suppose vy is not adjacent to either x or y. Note that zy and [vs, v7]
are nontrivial paths such that ||zy, [vs,v7]|] > 5. So, by Lemma 18, either
G[zy+[vs,v7]] contains a DCC on at most six vertices, contradicting (O1), or
configuration 1 or 2 holds. However, neither configuration holds as |zy| = 2,
and [vs, v7] has only five vertices. So vy, and by symmetry vy, is adjacent to
either x or y. O

Claim 46.4. v* ¢ {v3,v6}.

Proof. Suppose vs is not adjacent to either = or y. Note that zy and [vy, v7]
are nontrivial paths such that ||zy, [vs, v7]]] > 4. So, by Lemma 17, either
G[zy + [v4,v7]] contains a DCC on at most six vertices, or configuration 1
or 2 holds. Suppose configuration 2 holds, and without loss of generality,
vy, vy are neighbors of x and wvs,vg are neighbors of y. Then zvivsyvgvrT
is a DCC with chords vsvg and zy, contradicting (O1). So configuration
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1 holds. As ||z,C|| = 3 and ||y,C|| = 2, we must have ||z, [vs4,v7]||] =
and ||y, [v4,v7]|| = 1. So along with symmetry, we may assume N¢(z )
{va,v6,v7} and Ne(y) = {v2, vs}-

Note that yveCuvgzy is a DCC on |C| vertices in which the number of
chords is exactly 2 plus the number of chords with both endpoints in [va, vg].
Since the number of chords in C' is exactly the number of chords with both
endpoints in [vy, vg] plus the number of chords with at least one endpoint in
{v1,v7}, C must have at least two chords with an endpoint in {v1, v}, else
we contradict (O2). Similarly, yvsvgzvrCuvoy shows that C has at least two
chords with an endpoint in {vs, v4}. We now show that v7; and v4 cannot be
incident to a chord.

No chord in C has both endpoints in [v4, v7] otherwise zvsCurz is a
DCC with zvg and this additional chord, contradicting (O1). Similarly, all
of the following edges result in DCCs that contradict (O1). If vovy € E(G),
then xvgCvoyz is a DCC with chords zvy and vevy. If vgvy € E(G), then
xv7v3Cugr is a DCC with chords xvy and vgvr. If vivg € E(G), then
xv7vv4Coszx is a DCC with chords zvy and wvgvy. If vovy € E(G), then
yuovgCvgry is a DCC with chords yvs and xvy.

So v4 and vy cannot be incident to a chord, however this implies that
both v1 and v3 are incident to two chords, which contradicts Lemma 13. [

By the previous two claims, v* € {v4, v5}. By symmetry, we may assume
v* = vy so that vy4 is not adjacent to either x or y.

Claim 46.5. v9 and vs have the same neighbor in {z,y}, and by symmetry
v3 and v7 have the same neighbor in {z,y}.

Proof. Let {u,v} = {z,y}, and suppose uvy, vvs € E(G). Note vvsCvauv is
a DCC on |C| vertices, in which the number of chords is exactly the number
of chords in C with both endpoints in [vs, v2] plus two. The number of chords
in C' is exactly the number of chords with both endpoints in [vs, v2] plus the
number of chords with at least one endpoint in {vs,v4}. So C' must have at
least two chords with an endpoint in {vs, v4}, otherwise we contradict (O2).
We will show this cannot happen.

Note that every chord of the form wv;v;43 modulo 7 creates a 4-cycle in
C. So unless the chord is viv4, we get a DCC by Lemma 24 that contradicts
(O1). So every chord in C' is either vjvy or it creates a K3 in C. If there
exists a chord in C' with both endpoints in [va, vs], then uvaCvsvu is a DCC
with this chord and either uvs or vvs, contradicting (O1). So the only chords
with an endpoint in {vs,v4} are vivs, v1v4, and v4ve.

We cannot have both vyvg and vivy. If so, and vs is adjacent to u, then
uvgvvgvgu is a DCC with chords vevs and vjvs, contradicting (O1). Also if
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vg is adjacent to v, then uvsvivivsvu is a DCC with chords vovs and vyvs,
contradicting (O1).

So vqvg € E(G), and either vjvy or vivs exists. Now vs must be a
neighbor of v, otherwise vvsvguavsuv is a DCC with chords v4vs and either
uvg or vug, contradicting (O1). Also vg must a be a neighbor of u, otherwise
G[v3Cuvg] contains a Paw, and ||v, [v3Cvg]|| = 3. So, by Lemma 25, GlvsCvg+
v] contains a DCC contradicting (O1). However, vvsCvguv is a DCC with
chords vvs and vyvg, contradicting (O1).

This completes the proof of the claim. O

By the claim, we may assume without loss of generality, No(z) = {ve, vs,
ve} and No(y) = {vs, v7}. If any chord exists in [ve, vg], then zvaCvgz forms
a DCC containing this chord and zvs that contradicts (O1). Similarly, if any
chord exists in [vs,vo], then zvsCvex forms a DCC containing this chord
and xvg, contradicting (O1). Hence the only possible chords in C' have one
endpoint in {v3, v4} and the other endpoint in {v7,v1}. If v3v1 € E(G), then
yvrv1vsvx forms a DCC with chords vyvg and yvs, and if vsvy € E(G), then
by Lemma 24 G[zy + [v7, vs]] contains a DCC, each contradicting (O1).

Therefore, vyv7,v4v1 € E(G). But then, xvsvgvivrvgr forms a DCC
contradicting (O1).

This completes the case when |C| = 7.

Subcase 3.3. |C| > 8.

In our final case we return to the labelling of N¢(z) = {x1,z2, z3} and
Nc(y) = {y1,y2}. Up to symmetry, we have two cases for how x1, 9, x3, Y1, Y2
appear along C' (not necessarily consecutive): 1, 2, T3, y1, Y2, Or Z1, Y1, T2, T3,

Y2-

Claim 46.6. z1,y1, 22,23, y2 appear in this order along C' (not necessarily
consecutive).

Proof. Suppose on the contrary that xi,x2,x3,y1,y2 appear in this order
along C' (not necessarily consecutive). Since zx2Cysyz is a DCC with chords
xxs and yyp, there is at most one vertex in (y2, z2) other than x;. By sym-
metry, there is at most one vertex in (x2,y;) other than z3. Since xx;Cy yx
is a DCC with chords xzzo and zzs, there is at most one vertex in (y1,z1)
other than yo. By symmetry, there is at most one vertex in (z3,y2) other
than y;.

If there is a vertex in (y2,21), then |C| < 7. Similarly, if there is a
vertex in (z3,y1). As |C| > 8, we must have exactly one vertex in each of
(x1,x2), (x2,x3), and (y1,y2); label these vertices v1, ve, and vs, respectively.
In particular, |C| = 8 in this case.
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Now zx2Cysyz is a DCC on |C| vertices whose number of chords is
exactly two plus the number of chords in C' with both endpoints in [z, y2].
As the number of chords in C' is exactly the number of chords with both
endpoints in [z2,y2] plus the number of chords with at least one endpoint
in {x1,v1}, C has at least two chords with an endpoint in {x1,v1}, else we
contradict (02). By symmetry, C' has at least two chords with an endpoint
in {vy,x3}. We now show z; and z3 are not incident to any chords in C.

If there exists a chord in C with both endpoints in [z1, z3], then zz1Cx3z
is a DCC with this chord and zxs, contradicting (O1). If there exists a chord
in C' with both endpoints in [y, z1], then yy; Cz1zy is a DCC with this chord
and yys, contradicting (O1). So x; is not incident to a chord in C, and by
symmetry, the same holds for x3. However, this implies v; and vy are both
incident to two chords, contradicting Lemma 13. O

By the above claim, we assume x1, 41, T2, 3, y2 appear in this order along
C' (not necessarily consecutive). Since yysCzozy is a DCC with chords xxz;
and yyi, there is at most one vertex in (x2,y2) other than z3. By symmetry,
there is at most one vertex in (yi,z3) other than xy. Since yy;Czixy is a
DCC with chords zzo, zx3, yys2, there are at most two vertices in (x1,y1).
By symmetry, there are at most two vertices in (yo, z1).

Claim 46.7. (z3,73) # 0.

Proof. 1f (x2,x3) = 0, then yy; Cxoxx3Cysy is a DCC with chords zox3 and
xy, so that there is at most one vertex in (y2,y1) other than z1. As |C| > 8,
we may label C' by symmetry as C' = xyv1y1v2x223v3y221. Now xxsCyiyx
is a DCC on |C| vertices whose number of chords is exactly two plus the
number of chords with two endpoints in [z3,y1]. As the number of chords
in C' is exactly the number of chords with two endpoints in [z3,y;1] plus the
number of chords with at least one endpoint in {ve, x2}, C' must have at least
two chords with an endpoint in {ve, 22}, else we contradict (0O2). Similarly,
yy2Crxoxy implies there are at least two chords in C' with an endpoint in
{x3,v3}. We claim no chord is incident to either zy or z3.

Indeed, if C' has a chord with both endpoints in [z1, z3], then zz1Cx3z
is a DCC with this chord and zz9, contradicting (O1). Similarly, if C has
a chord with both endpoints in [z2, 1], then zax2Cxiz is a DCC with this
chord and xx3. Thus, neither xs nor x3 can be incident to a chord. So vo and
vs must both be incident to two chords each, contradicting Lemma 13. [

Let v1 € (x2,x3). This implies that y1,x2,v1,x3,y2 are all consecutive
along C. Now yysCrzoxy is a DCC on |C| vertices whose number of chords
is exactly two plus the number of chords with both endpoints in [y2, z2].
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As the number of chords in C is exactly the number of chords with both
endpoints in [y2, z2] plus the number of chords with at least one endpoint in
{v1,23}, C must have at least two chords with an endpoint in {v1, z3}, else
we contradict (02). By symmetry, C' must have at least two chords with an
endpoint in {vy,x9}. As a result, v; must be incident to a chord, otherwise
z9 and x3 are both incident to two chords, contradicting Lemma 13.

Since |C| > 8, without loss of generality, there exists vy € (z1,y1). C
has no chords with both endpoints in |2, x1], otherwise zxoCz1x is a DCC
with this chord and xxs, contradicting (O1). Similarly, if C' has a chord
with both endpoints in [y, z3], then yy;Cxsxy is a DCC with this chord
and xxg, contradicting (O1). Therefore, every chord with an endpoint in
{v1,x3} (recall that there are at least two such chords) has its other endpoint
in (z1,y1), and the same holds for every chord with an endpoint in {vi,z2}
(recall that there are at least two such chords).

As a result, (y2,21) = 0, otherwise zz1Czsz is a DCC with chords zz,
and at least one chord with its endpoints in {v1, z3} and (z1,y1), contradict-
ing (O1). Therefore, we can label the vertices of C as C' = z1v903y1 L201Z3Y221 .
So, in particular, every chord with an endpoint in either {vi,z2} or {v1, z3}
has its other endpoint in {vs,v3}, and we know there are at least two such
chords.

Recall that v1 must be incident to a chord. If vjve € E(G), then zz3vivs
Czox is a DCC with chords zov; and at least one other chord with its
endpoints in {v1,z2} and {vg, v3}, contradicting (O1). So vivz € E(G). As
C has at least two chords with an endpoint in {v1,x2}, x2 is incident to a
chord with an endpoint in {ve,v3}, and the same holds for x3. If either xo
or x3 is adjacent to vz, then xzszvivsCxox is a DCC with this chord and
x9v1, contradicting (O1). However, this implies both zqvy, x3v2 € E(G), yet
v9Cx3v9 is & DCC with chords viv3 and xavg, contradicting (O1).

This completes all cases and proves the lemma. O

Lemma 47. Let C1,Cy € C such that |C1| > 6 and |Cs| > 6, then |Cy, Cal| <
3max{|C1|, |Ca|} + 4.

Proof. Let C1,Cy € C with |C1] > 6 and |C3] > 6, and assume that
ICy, Ca|| > 3max{|C1|,|Ca|} + 5.

Claim 47.1. Let v € C; and u € Cs_;. If ||v,C5_; — ul| > 4 and |ju,C; —
v|| > 4, then equality holds, and furthermore, u and v are each incident to
two chords in their respective DCCs. Consequently, if ||v,C3_;|| > 5 and
|lu, Ci|]| > 5, then equality holds, uv € E(G), and u and v are each incident
to two chords in their respective DCCs.
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Proof. Let v € C; and u € Cs_; such that ||v,Cs_; — u|| > 4 and |ju,C; —
v|]| > 4. Label four neighbors of v in C5_; as vy, vs,v3 and vy such that
they appear in this order along Cs_; (not necessarily consecutive), where
Ne, . (v) N [v1,vd]e,_, = {v1,v2,v3,v4} and u € (v4, v1)c,_,. Similarly, label
four neighbors of u in C; as w1, us, us, and uy.

If (w,v1)e,_,U(va, u) oy, # 0, then Glu+[v1, va]e,_,] and Glo+[ug, ua]c;]
contain DCCs on strictly fewer vertices than |C1|+ |C2|, contradicting (O1).
Therefore v4, u, and vy are consecutive along Cs_; and by symmetry, uq, v,
and u; are consecutive along C;. This implies ||v, C3_; —u|| = ||u, C; —v|| = 4.

Note that vv,C3_;v4v forms a DCC with chords vvy and vvsg and uuq Ciugu
forms a DCC with chords wue and wus, call these C, and C,, respectively.
Furthermore, the number of chords in C), is exactly two more than the num-
ber of chords in C'5_; not incident to u, and the number of chords in C, is
exactly two more than the number of chords in C; not incident to v. There-
fore, u and v must both be incident to at least two chords otherwise C,, and
C, forms DCC on the same number of vertices as |C| and |Cy|, but with
more chords, contradicting (02). O

Claim 47.2. Let v € C; and xy be an edge along the cycle of C3_; such
that ||v,Cs—;|| > 5 and |[{z,y},C;|| > 7. Then, zv,yv € E(G).

Proof. Let v € C; and xy be an edge along the cycle of C5_; such that
|lv,C3—;|| > 5 and |[{z,y}, Ci|]| > 7. Suppose that either zv € (E)G or yv &
E(G). This means that ||v, Cs_;—z—y|| > 4 and so G[C3_;—x—y-+v] contains
a DCC. Furthermore, ||{z,y}, C; —v| > 6 and by Lemma 18, G[C; — v + xy]
contains a DCC on strictly fewer vertices than |C; — v 4+ zy|, contradicting
(O1). Therefore, zv,yv € E(G). O

We will consider the following cases:
Case 1. Suppose there exists a vertex v € C; such that |lv, C5_;|| > 5.

By Lemma 44, ||v,C3_;|| = 5. Label the neighbors of v in C3_; as
v1,V92,v3,v4 and vs in this order along the cycle, not necessarily consecu-
tive. Note that by Claim 47.1, for all x € V(C3_;) — N¢,_,(v), we have
|z, Ci|| < 3. As a result, we must have ||[{v1,v2,v3,v4,v5}, Ci|| > 20, other-
wise ||C3_;, Cs|| < 3(|C3—;] —5) + 19 < 3|Cs_;| + 4, a contradiction.

Therefore, if ||v;, C5_;|| = 4, for all 1 <14 <5, then ||{v1,v2, v3,v4, v5}, G|
= 20 and ||z,C;|| = 3 for all vertices z € V(C3—;) — N¢,_,(v). Since
|C3—i| > 6, there does exist z € V(C3_;) — N¢,_,(v), and we can assume
without loss of generality that x € (vs,v1)c,_, and that zv; is an edge along
the cycle of C. However |{x,v1}, C;|| > 7, which contradicts Claim 47.2.
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Therefore, suppose that ||v1,C3_;|| = 5. By Claim 47.1, v and v; are
each incident to two chords in their respective DCCs. Therefore, for j €
{2,3,4,5}, ||vj, Cs|| < 4, otherwise v; would be incident to two chords by
Claim 47.1, which will contradict Lemma 13. Since ||Cy, Cs|| > 3max{|C4],
|Ca|} + 5, we get that for all j € {2,3,4,5}, 3 < ||vj, Ci|]| < 4, and further,
there can only be one j € {2,3,4,5} where ||v;, Cj|| = 3. Lastly, if ||v;, C;|| =
3 for some j € {2,3,4,5}, then for all z € V(C5_;) — N¢,_, (v), ||z, C;|| = 3.

Since |Cs_;| > 6, there exists a vertex u € V(Cs_;) — N¢,_,(v). So u €
(vj,vj4+1)c,_, for some j € {1,2,3,4,5} where j is taken modulo 5. As noted,
either [|v;, Ci|| > 4 or |[vjq1,Cs|| > 4. Without loss of generality, we may
assume it is vj, and furthermore, we may assume v; and u are consecutive
along C3_;. However, this implies ||u, Cj|| < 2, otherwise we contradict Claim
47.2. However, in order to satisty ||C1, Ca|| > 3max{|C1[, |C2|} + 5, we must
have |Cs_;| = 6, |lu,Ci|| = 2, and |lvj,Cs|| = 4 for all j € {2,3,4,5}. Also
u cannot be adjacent to v; along the cycle of Cs_;, otherwise we contradict
Claim 47.2.

By symmetry, we may assume u € (v2,v4)c,_,. Recall that vy is incident
to two chords in C3_;. There can be at most one chord in [v4, v1]¢c;,_,, meaning
v; must be incident to a chord in [v1,v4)c,_,. Note that regardless of the
location of the chord in [vi,v4)c,_,, and regardless of the location of u €
(v2,v4)cy_, s Glu+(vi,v4)c,_,] contains a DCC. However, since ||{v4,vs5}, Ci—
v|| = 6, by Lemma 18, G[C; — v + v4 + v5] contains a DCC on strictly fewer
vertices than |C; — v 4 v4 +v5|, contradicting (O1). This completes the case.

Case 2. Suppose for all vertices v € C;, ||v, Cs—;|| < 4.

By symmetry, we may assume that for all z € Cs_;, [|z,C;|| < 4. As
|C1, Cal| > 3max{|C1|, |Ca|}+5, there exists v € C; such that ||v, C5_;|| = 4.
Label the neighbors of v in C3_; as v1,ve,v3, and v4 in this order along the
cycle, not necessarily consecutive. Since ||C1,Cs| > 3max{|C4|,|Ca|} + 5
and for each j, ||v;, Ci|| < 4, there exists u € V(Cs—;) — N¢,_,(v), such that
||lu, Ci|| = 4, and we can label the neighbors of u in C; as uy, ug, us and u4 in
this order along the cycle, not necessarily consecutive, with u € (v4,v1)c,_,
and v € (ug,u1)c;.

By Claim 47.1, v and v are both incident to two chords in their respective
DCCs. If there exists another vertex u’ € V(Cs_;)—Ng,_,(v), then ||u/, Ci|| <
3 otherwise by Claim 47.1, v’ is also incident to two chords, contradicting
Lemma 13. Thus as ||C1,Cs|| > 3|Ci| + 5, we have ||vj, Cs_;|| = 4 and by
symmetry, |luj, C;|| = 4 for each j € {1,2,3,4}.

Now consider vy. If viu; € E(G), then by Claim 47.1, vy is incident to
two chords, contradicting Lemma 13. Hence, viuy, viug, vius, viug € E(G).
However, this implies ||v1, C;|| = 5, which is a contradiction.
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This completes all cases and proves the lemma. O
We can now prove Lemma 38.

Proof of Lemma 38. Let C € C\ {C}. We show that in every possibility,
IR+ C,C| < 3(]C| + 4).

If there exists v € R such that ||v, C|| > 4, then by Lemma 15 equality
holds, and by Lemma 40 ||R + C,C|| < 3(|C| + 4). So we may assume that
|R,C < 12.

If there exists an edge xy € E(R) such that ||zy, C|| > 5, then by Lemma
46 ||C, C|| < 3|C|. So |[R+C, C|| < 12+3|C| = 3(|C|+4). So we may assume
that | R, C|| < 8.

If |C| = 4 so that C' = Ky, then by Lemma 43, ||C,C| < 3|C|. So
IR+ C,C| <8+3|C| <3(IC| +4).

If |C| = 5, then by Lemma 45, |C, C|| < 3|C|. So |R+C, C|| < 8+3|C| <
3(1C| + 4).

If |C| > 6, then by Lemma 47, ||C,C| < 3|C| +4. So |R+ C,C| <
8+3|C| +4=3(]C| +4).

This completes the proof of the lemma. O

8. Proof of Theorem 10

In this section we prove Theorem 10. So we are assuming G is an n-vertex
graph with n > 4k such that 6(G) > 10{?;1, and furthermore, G is edge-
maximal with respect to not having k disjoint doubly chorded cycles. It is
important to note that in all of the previous lemmas we were assuming that
G was an n-vertex with n > 4k and §(G) > 3k. Since &371 >3k for k>1,
all of the previous lemmas apply in this section as well. So, in particular, by

Lemma 35, R = Kj 12. We will also heavily rely on Lemma 37 below.

Lemma 48. If there exists C' € C such that |R,C'|| > 13, then G[R+C"] ¢
{K:;3,37 K373,3}'

Proof. Suppose on the contrary that there exists C’ € C such that ||R,C’|| >
13 and G[R+C"] € {Kj3 33, K333} Note that by Lemma 37, G[C'] = K 2.
In the following we will assume that G[R+C'] = K 3, as all the arguments

will hold if G[R + C'] = K333. Let u and v be the nonadjacent vertices in
R+ C" such that if we added the edge uv, we would have G[R+C'] & K33 3.

Claim 48.1. For all C € C — {C"}, |R+ C’,C| < 30.
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Proof. Suppose there exists C € C — {C'} such that ||[R+ C’,C|| > 31. Note
that for every vertex z € R+ C’, we can arrange G[R + C'] into two disjoint
subgraphs R* and C* such that z € R*, R* = R, and G[C*] & G[C'] &
K 29. Therefore, R* and C* = (CU{C*}) — {C"} is an optimal partition
with z € R*. So, by Lemma 15, ||z,C|| < 4 for all z € R+ C".

Since |R 4+ C',C|| > 31, there exist at least four vertices in R + C’,
say v1,v2, V3,4, such that ||v;, C|| = 4 for each i. So, by Lemma 15, C €
{K4, K122}, and furthermore, for each i and y € C, G|[C —y +v;] = C.

Note that regardless of whether C' = Ky or C = Kj 22, since ||R +
C’,C|| > 31, there exists a vertex € C such that ||z, R+ C’|| > 7. In
particular, as G[R+C'] & K3_7373, x must be adjacent to all three vertices of a
triangle in G[R+ C"]. Furthermore, some v; is not one of these three vertices.
Therefore, x with these three vertices forms a K4 and G[C — z + v;] = C.
So replacing C’ and C with these DCCs respectively, contradicts (O1). This
proves the claim. O

By the above claim:

9<10k3—1) <|[R+C",R+C'| +|R+C",C— {C"}]| < 54+30(k — 2).

However, this yields 30k — 3 < 30k — 6, a contradiction. ]
We are now ready to prove Theorem 10.

Proof of Theorem 10. For each ¢ where 0 < i < 8, let C; = {C € C :
8

I{vi,v4},C|| = i}. Note that > |C;| = k — 1. By the definition of C;:
i=0

8
10k — 1 .
2 < 3 > < dg(v1)+d(;(v4) = H{’Ul,’l)4},RH+H{U1,v4},CH = 4+Z Z|Cz’
1=0

This yields:

8
10k —1 .
2) 2( - >§4+Z§:0:2-|Ci|.

By Lemma 37, ||R,C|| < 14 for all C € C. If C € Cs and ||R,C|| > 13,
then by Lemma 37, G[R + C] € {Kj33 3, K333}. However, this contradicts
Lemma 48. So if C' € Cg, then ||R,C| < 12. Similarly, if ¢ € C; and
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IR, C|| > 13, then by Lemma 37, G[R+ C] & K3 5 3. Again this contradicts
Lemma 48 so that for all C' € Cr, | R, C|| < 12. These yield the following:

6
10k —1
4( 3 ) < IR, R|| + | R.C|| < 10+ (MZ!@) +12[Cq| + 12/Cs-
=0

This gives us:

(3) g (221N g0y 14iC»| + 12|C7| + 12|Cs|
3 > ) 7 8-

=0
However, adding (2) to (3) yields the following contradiction.

20k —2<14+ 14|Co| + 15|Cl| + 16|Cz| + 17’03| + 18‘C4| + 19‘C5|
+ 20|Cq| + 19|C7| + 20|Cs|

8
<14+420) |Gl
=0
=14+ 20(k — 1)
= 20k — 6.

This completes the proof of Theorem 10. U
9. Exploring Conjecture 11

In this final section we provide some evidence to support Conjecture 11. In
particular, we prove an approximate version of Conjecture 11 using a result
on near-tilings of graphs by Shokoufandeh and Zhao in [9]. To state their
result, we first need a few definitions.

For any graph H, let o(H) denote the size of the smallest color class
over all proper x(H)-colorings of H. Define the critical chromatic number
of H, denoted by x.(H), to be

(c(H) = DIH|

XCT‘(H) = ‘H’ _ O'(H)

As examples, Xor(K1,2,2) = 5, Xer(K1,12) = §, and yer(Ky) = 4.
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Theorem 49 (Shokoufandeh and Zhao [9]). For every H with x(H) > 2,
there exists no = no(H) such that for every n > ng the following holds. If G
s an n-vertex graph and

5102 (1 o )

then G contains a collection of disjoint copies of H that covers all but at
most
5(x(H) — 2)(|H| - o(H))
o(H)(x(H)—1)

vertices.

Using Theorem 49, we now prove a proposition that shows an approxi-
mate version of Conjecture 11 holds.

Proposition 50. For every e > 0, there exists ng = no(e) such that for
all n > no, if G is an n-vertex graph with 4k + en < n < 5k and 6(G) >
(% + % + 6) n, then G contains k disjoint doubly chorded cycles.

Proof. Fix e > 0, and let C = Z+3. For all graphs H on at most [C'] vertices,
Theorem 49 returns an ng(H). Denote the maximum of these ng(H) as ng,
and let our ng be the maximum of n; and {%03]

Let G be an n-vertex graph where n > ng with 4k + en < n < 5k and
5(G) > (3£ + % + €) n. Define h and &' as follows:

C n—2C? k
(4) h:2{—-n—3 ,andk:/:[C-—w

2 n n

n— 002
We now derive two useful inequalities involving h. First, as ——2— < 1
— 102
and h =2 {g-nisz,weget:
2 n

(5) h<C.

Second, observe that

_ 102 _ 10,2 103
h:QF.MJZ2<Q.M_1>:c_2_30.

2 n 2 n n
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As n was chosen so that n > ng > %C?’, we get:
(6) h>C —3.

Recall the definition of the graph G(t,n) from Section 2. Let H =
G(5k" — h,h) so that by the construction of G(5k" — h,h), H will have
exactly h vertices and by (5), h < C so that by our choice of n > ng, we can
apply Theorem 49 to H.

Claim 50.1. 4k’ < h < 5k'.

Proof. We first show h < 5k’ by showing =/ 5K > 5k . Since k' = [%1 > Ck
and h < C by (5), we have:
5k 5%E 5k
= >In 7
h — C n
Since n was chosen so that n < 5k, we get % > 1 so that 571“/ > 1. Thus,
h < 5K'.
We now show h > 4k’. Since k' = [€£] < €% + 1 and h > C — 3 by (6),
we have:

Ck 3k
K_SE+l kSl
h

T3 anCc-3
Since n was chosen so that n > 4k + en, we know that £ <7 L By this
and the fact that C = £ + 3, we get:

IS ES O A
n C—-3 n C-3 n 4
So
K ke
7 NorLe
(7) h_n+47

As mentioned above, % < i so that % < % and consequently % < 1.

Thus, h > 4K'. O

Thus by this claim and Lemma 12, H contains k&’ disjoint doubly chorded

cycles. Furthermore, as the claim states h < 5%, we get 5k’ —h > 0 so that H
is 4 partite Thus, X(H) = 4 and o(H) = 5k’ — h. S0 xer(H) = 1525 =

This gives:

Xer(H)) 3h “\3h "3)7

2h 5k’ :
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Recall that 6(G) > (2£ + 1 4+ €)n. By (7),

_ _ > = — > — —.
s T3t 3 tytez g, T3

5k 1 5 (K € 1 5k 1
h 4
So §(G) > (1 - X+(H)> n, and by Theorem 49, G contains a collection of

disjoint copies of H that covers at least n — % vertices.

As 4k’ < h < 5K, we have 5" — h > 0 and 0 < 2h — 5k’ < h. So

(2}51,;5_'6};)2 < h? < C?, where the last inequality is due to (5). Therefore, GG

contains a collection of disjoint copies of H that covers at least n — %CQ
vertices. As each copy of H contains has h vertices and contains k" disjoint
doubly chorded cycles, G contains at least (n — %C’Q)(%) disjoint doubly
chorded cycles.

By (4),
_ 102 _ 102
K — [%—‘ z%andhzg\‘g.wJ §0<M>_
n n 2 n n
Therefore, the number of disjoint doubly chorded cycles in G is at least:
10 K 10 Ck n
- —C%*) = > - ) = =L
(" 3 )h—(” 3 > n C(n—9¢?)
This proves the proposition. ]
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