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We study Legendrian singular links up to contact isotopy. Using
a special property of the singular points, we define the singular
connected sum of Legendrian singular links. This concept is a gen-
eralization of the connected sum and can be interpreted as a tangle
replacement, which provides a way to classify Legendrian singular
links. Moreover, we investigate several phenomena only occur in
the Legendrian setup.
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1. Introduction

A Legendrian singular link of degree m with n-components is the image of an
immersion of n-copies of S1 into S3 whose tangent vectors are contained in
the contact structure (S3, ξstd) and which has m transverse double points as
its only singularities. Legendrian singular links are discussed in [FT, Tc] as a
theme of Vassiliev type invariants, and appeared in [Ch] to give an algorithm
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for producing possible Lagrangian projections of Legendrian knots. To the
best of the authors’ knowledge, Legendrian singular links have not yet been
studied in their own right.

The h-principle [EM, §16.1] says that the study of Legendrian singular
links up to Legendrian regular homotopy reduces to a homotopic theoretic
question, thus there can be no interesting phenomena from the perspective
of contact topology. We instead study Legendrian singular links up to (am-
bient) contact isotopy, which preserves transversality1 and the Legendrian
property at each singular point.

The degree of a given Legendrian singular link can be reduced via reso-
lutions2 as usual for singular links. So Legendrian singular links (LSK) can
be reduced to singular links (SK) via the forgetful map ‖ · ‖, which takes the
underlying singular link type, and to Legendrian links (LK) via resolutions
R with the following commutative diagram of various link theories:

LSK R //

‖·‖
��

LK
‖·‖
��

SK R // K

See §2.1 and 2.3 for the precise definitions.
The goal of this article is twofold. First, we investigate various invariants

for LSK including Thurston-Bennequin number, rotation number, and the
resolutions with supporting examples and argue that LSK is not a straight-
forward combination of LK and SK. The other is to develop a useful tool,
called singular connected sum, and show that it distinguishes a particular
pair of Legendrian singular links that can not be distinguished in LK under
any resolution or in SK under ‖ · ‖.

The above two goals are deeply related to a special property of the
singular points of Legendrian singular links. Specifically, through contact
isotopy, one can keep track of the relative position of two tangent vectors at
each singular point by the co-orientation of the contact structure ξstd on S3.
This allows to define an order at each singular point which is equivariant
under contact isotopy.

Moreover this property enables us to define the notion of connected sum
at singular points. We define a singular connected sum (L1, p1)⊗ (L2, p2) by

1This is not to be confused with the transverse knots. Here ‘transverse’ means
that the two tangent vectors at the singular point span the contact plane at that
point.

2Sometimes called ‘smoothing’ in the literature.
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simultaneously performing connected sums on two pairs of arcs near singular
points pi of Li.

Theorem 1.1. For a given pair of Legendrian singular links L1, L2 with
singular points p1, p2, the singular connected sum (L1, p1)⊗ (L2, p2) is well-
defined.

Theorem 1.2. Let L be a Legendrian singular link and S be a separating
sphere for L inducing a decomposition L = (L1, p1)⊗ (L2, p2). Then this
decomposition is well-defined up to order-preserving contact isotopy of S
with respect to L.

It is worth remarking that neither the singular connected sum nor the
decomposition are well-defined in SK. Moreover we have the following rigid-
ity phenomenon that only occurs in LSK.

Theorem 1.3. With respect to the singular connected sum, there exists the
identity element, and moreover the only unit of degree 2 is the identity itself.

It would be interesting to study more about algebraic aspects of the
singular connected sum on LSK.

On the other hand, the singular connected sum is the same as the re-
placement of a singular point p1 ∈ L1 with a specific singular Legendrian
tangle obtained from (L2, p2), and vice versa. Indeed, the idea of Legen-
drian tangles and their replacement is already discussed in the literature
including [NTr, MS, S], although their approaches are slightly different from
ours. There is a diagrammatic interpretation of the singular connected sum
as well, which allows us to handle the operation in a convenient way. This
interpretation is related to the vertical cut of the front projection, discussed
in [S].

As an application of the singular connected sum, we have the following
theorem which implies that LSK is more than the pull-back of LK and SK
in the commutative diagram above.

Theorem 1.4. There exist two Legendrian singular links sharing all clas-
sical invariants, Legendrian link types of all resolutions, and invariants from
the orders, which are not contact isotopic to one another.

For a given L ∈ LSK of degree k one can obtain a double D(L), a Leg-
endrian link in #k−1(S2 × S1), by a multiple singular connected sum of L
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with itself. Thanks to the work of [EN] we can assign a Legendrian contact
homology algebra of D(L) to L, as an algebraic invariant of L.

Furthermore, the resolutions can be regarded as special cases of tangle
replacements, and each resolution has a unique inverse operation, called
a splicing, under certain splitting conditions. These splicings provide full
descriptions of Legendrian singular links with certain singular link types.
See Theorem 6.2 and Corollary 6.3.

Acknowledgment. We are grateful to Gabriel C. Drummond-Cole for
his valuable and detailed comments on a previous draft. This work was
supported by Center for Geometry and Physics, Institute for Basic Science
(IBS-R003-D1).

2. Preliminaries

2.1. Legendrian singular links in S3

Throughout this paper, we regard S3 as the unit sphere in C2. Then the
standard contact structure ξstd on S3 is given by

ξstd = kerλstd;

λstd = r21dθ1 + r22dθ2

= x1dy1 − y1dx1 + x2dy2 − y2dx2,

where z = r1e
iθ1 = x1 + iy1, w = r2e

iθ2 = x2 + iy2.
For convenience’s sake, we frequently consider S3 = R3 ∪{∞} as the one-

point compactification of R3 with two contact structures ξrot and ξ0 which
are contactomorphic and defined as follows.

ξrot = kerαrot, αrot = dz + r2dθ = dz + xdy − ydx;

ξ0 = kerα0, α0 = dz − ydx.

From now on, we assume that the contact structure on S3 is always
co-oriented by λstd.

We define Legendrian singular links and describe its relation to known
knot theories. All types of links we will consider in this article are oriented
unless otherwise stated.

Let nS1 be a disjoint union
∐n
i=1 S

1
i of n-copies of S1. A link K with n-

components is the oriented image of a smooth embedding nS1 ↪→ S3, and a
singular link Ks of degree m is a link defined by using an immersion instead
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of an embedding with precisely m transverse double points, called singular
points. We denote the set of singular points by P(Ks).

Now we endow S3 with the standard contact structure ξstd described
above. A Legendrian link L is a link with every tangent vector lying in the
contact structure ξstd, and a Legendrian singular link Ls is a singular link
with the same tangency condition.

We say that two (Legendrian) links K0, K1 are equivalent if there exists
a (contact) ambient isotopy ht : S3 → S3 such that h0 is the identity and
h1(K0) = K1. We call the equivalence class a (Legendrian) link type. We
denote by K (LK) and SK (LSK) the collections of (Legendrian) link types
and (Legendrian) singular link types, respectively.

For Ks ∈ SK, we denote by L(Ks) the set of all Legendrian singular
links of singular link type Ks. Conversely, we denote by ‖Ls‖ singular link
type of Ls.

2.2. Projections

Since any Legendrian isotopy of a Legendrian immersion can be assumed
not to touch a designated point ∞ in S3, we may assume that Legendrian
singular links lie in (R3, ξ0) as usual for LK.

The front projection πF and Lagrangian projection πL are defined as
the projections of (R3, ξ0) onto the xz-plane and xy-plane, respectively, as
follows.

πF (x, y, z) = (x, z), πL(x, y, z) = (x, y).

Note that we are able to recover L from πL(L) up to a shift in the z-
coordinate or πF (L) by using the Legendrian condition, and the projections
near p ∈ P(L) look like ‘ ’ in the Lagrangian projection and ‘ ’ in the
front projection. See Figure 1. For each singular point, we indicate a dot
to avoid confusion with ordinary double points (crossings) in both the front
and Lagrangian projections.

A diagram D ⊂ R2
xz consists of piecewise smooth closed curves in the

xz-plane without a vertical tangency, which may have cusps with a smooth
tangency condition3.

We assume further that every non-transversal double point p in D is
parameterized like one of front projections depicted above. Then it is easy

3If D is parametrized by t and has a cusp at t0, then y(t0) = limt→t0
z′(t)
x′(t) is

well-defined and smooth near t0.
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Front

Lagrangian

Figure 1: Projections near a singular point.

to see that any diagram D can be realized by πF (L) for some L ∈ LSK and
vice versa. Therefore we do not distinguish a front projection and a diagram
unless any ambiguity occurs.

A diagram D is said to be regular if D has no triple (or more) point, and
none of its double points is a cusp. Note that in all possible diagrams, the
set of regular diagrams are dense, and therefore for any L ∈ LSK, we may
assume that the front projection πF (L) is regular by perturbing L slightly.
Non-regular examples are shown in Figure 2.

Figure 2: Examples of non-regular front projections near a singular point.

Moreover, for a given contact isotopy φt starting with L, the 1-parameter
family Dt of diagrams, defined by Dt = πF (φt(L)), is regular for all but
finitely many t’s. Let {t1, . . . , tk} be the set of such t’s such that at each
ti, there is exactly one point in Dti violating the regularity. Then during
ti < t < ti+1 for each i, the variance of Dt can be regarded as the result
under a plane isotopy on Rxz, which does not produce the vertical tangency.
On the other hand, the diagrams Dti−ε and Dti+ε for a small ε > 0 essentially
differ by (a composite of) the Reidemeister moves depicted in Figure 3.

This follows from a result about Legendrian graphs in [BI] by regarding
L as a Legendrian graph which has 4-valent vertices only and satisfies certain
tangency conditions at each vertex. Conversely, at each vertex of valency 4,
there is a canonical way to smooth edges and obtain two transverse arcs.
Hence there is essentially no difference between Legendrian singular links
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and Legendrian 4-valent graphs. Note that the moves in Figure 3 are slightly
different from those in [BI] because we do not allow cusps to be double points.

V

VI

IVI

III

II

Figure 3: Reidemeister moves for LSK.

Proposition 2.1. Let L1, L2 be Legendrian singular links. Then L1 and
L2 are equivalent in LSK if and only if πF (L1) and πF (L2) are related by a
sequence of plane isotopies and moves (I) ∼ (VI) including their reflections
about the x and z-axes, depicted in Figure 3.

Proof. We refer to the result for Legendrian graphs in [BI]. Then two types
of moves in [BI, Figure 9] involve the forbidden front projection as shown
in Figure 4. We call these moves forbidden moves. Note that (VI∗) is a
composition of (VI) and (IV∗) for each ∗ ∈ {a, b}. Hence we need not consider
the moves (VI∗).

Then we have the following lemmas which are easy observations whose
proofs we omit.

Lemma 2.2. Let D
F1−→ D′

F2−→ D′′ be a sequence of diagrams connected by
forbidden moves Fi ∈ {(IVa), (IVb)} at singular points pi. Then F2 ◦ F1 is
either

1) the identity if p1 = p2 and F1 = F2;

2) (IV) if p1 = p2 but F1 6= F2;
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3) F1 ◦ F2 if p1 6= p2.

Lemma 2.3. Let D
F−→ D′

R−→ D′′ be a sequence of diagrams connected
by a forbidden move F ∈ {(IVa), (IVb)} at singular points p and a regular
move R ∈ {(I), . . . , (VI)}. Suppose D is regular near p. Then D′′ is non-
regular near p, and R ◦ F is F ◦R.

Let Di = πF (Li). Then there is a sequence R of Reidemeister moves
{(I), . . . , (VI), (IVa), (IVb)}, which transforms D1 into D2. We use the in-
duction on the number of forbidden moves in R.

Let F1 be the first occurrence of a forbidden move in R involving a
singular point p. Then since both D1 and D2 are regular near p, there must
be another occurrence of a forbidden move at p in R after F1. Let F2 be the
second one. Then by definition, there is no move involving a singular point
p between F1 and F2 in R. Therefore by Lemma 2.2 (3) and 2.3, F1 moves
forward in R until it meets F2. Then by Lemma 2.2 (1) or (2), they are
cancelled or become a regular move (IV). Hence the number of forbidden
moves decreases by 2, and the proposition follows by induction. �

IVa IVb

VIa VIb

Figure 4: Moves (IV∗) and (VI∗).

2.3. Resolutions

In SK, a resolution is the standard way to reduce the number of singular
points, and eventually to obtain nonsingular links. By virtue of Proposi-
tion 2.1, links in LSK are described diagrammatically, and so are resolutions
as follows.
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Definition 2.4. Let L ∈ LSK and p ∈ P(L). For η ∈ {+,−, 0,∞}, an η-
resolution Rη(L, p) of L at p is defined by replacing a small neighborhood
of p in πF (L) with the corresponding diagram Rη depicted in Figure 5.

(L, p) R+(L, p) R−(L, p) R0(L, p) R∞(L, p)

Figure 5: R+, R−, R0 and R∞ in the front projection.

The well-definedness for all Rη under ambient isotopy also follows from
the fact that the push-forwards of each Reidemeister move (I) ∼ (VI) along
any resolution Rη are reduced to (sequences of) Reidemeister moves (I) ∼
(III). Therefore Rη does not depend on the diagram but only on the LSK
type.

Since the resolutions R± and R0 are local replacement of oriented di-
agrams, the order of taking these resolutions does not matter. Note that
R± preserves the number of components but R0 increases or decreases the
number of components by 1. On the other hand, R∞ does not induce an
orientation and that it may preserve the number of components or decrease
it by 1.

Let R(L) ⊂ LK be the set of full resolutions consisting of Legendrian
nonsingular links obtained from L by resolving all singular points via 3-
ways R± and R0. Indeed R(L) is indexed by I = {f : P(L)→ {0,+,−}}.

2.4. Stabilizations and classical invariants

For L ∈ LSK and a nonsingular point p ∈ L \ P(L), the positive and nega-
tive stabilizations S±(L, p) of L at p are Legendrian singular links S±(L, p)
defined by the diagram replacement in the front projection as Figure 6. Note
that ‖S±(L, p)‖ = ‖L‖ by definition.

Lemma 2.5. [FT] For a nonsingular link K ∈ K, two Legendrian links
L1, L2 ∈ L(K) are equivalent up to positive and negative stabilizations.
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S+(−, p)

S−(−, p)
p

Figure 6: Positive and negative stabilizations.

On the contrary, it is not true that any two Legendrian singular links
sharing the same singular link type can be connected by a sequence of posi-
tive and negative stabilizations in general. The corresponding result for LSK
will be given in Proposition 3.6.

For L ∈ LSK, there are two classical invariants, which are generaliza-
tions of those in LK (see [E]), and can be used to separate LSK as follows.
For convenience sake, we label the components of L as L1, . . . , Ln.

The total Thurston-Bennequin number tb(L) measures the twisting of the
contact structure along L, such that tb(L) is a linking number lk(L,L+) with
the positive push-off L+, and therefore is invariant under contact isotopy.
Indeed, each singular point of L contributes 1 or −1 to tb(L) according to
the orientation. Practically, it can be computed from πF (L) as

tb(L) = #
{

, , ,
}
−#

{
, , , ,

}
.

Moreover, one can consider the Thurston-Bennequin number for each
component Li as follows.

tb(L) = (tb(L1), . . . , tb(Ln)) ∈ Zn .

It is easy to check that

tb(L) =
∑
i

tb(Li) +
∑
i<j

(lk(Li, Lj+) + lk(Li, Lj−)).

Notice that if L is nonsingular, then both lk(Li, Lj+) and lk(Li, Lj−)
are equal to lk(Li, Lj). However, these two linking numbers are different in
general if L is singular.

Now we fix the trivialization of the contact structure (R3, ξ0) given by
the Lagrangian projection. Then the componentwise rotation number r(L) =
(r(L1), . . . , r(Ln)) ∈ Zn is also defined as the n-tuple of winding numbers
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r(Li) of tangent vectors of Li in the contact plane. In the front projection

r(Li) =
1

2

(
#{ , } −#{ , }

)
.

We also define the total rotation number r(L) by the sum of r(Li)’s.
Then it is easy to check that

tb(S±(L, p)) = tb(L)− 1, r(S±(L, p)) = r(L)± 1,

and for η ∈ {0,+,−},

tb(Rη(L, p)) = tb(L) + η · 1, r(Rη(L, p)) = r(L).

3. A hierarchy of invariants

3.1. Legendrian simplicity

Recall that a nonsingular knot K ∈ K is Legendrian simple if L(K) are clas-
sified by tb and r, and there are several knot types which are Legendrian
simple. For example, the unknot, torus knots, the figure-8 knot 41 are Leg-
endrian simple [EF, EH1]. For both singular and nonsingular links, it is
natural to consider tb and r, which are finer than tb and r. Moreover, we
can extend the notion of Legendrian simplicity as follows.

Definition 3.1. Let I be a set of invariants of LSK, and K ∈ SK. We say
that K is I-simple if Legendrian singular links in L(K) are classified by the
invariants in I.

Then by definition, any Legendrian simple knot is {tb, r}-simple, and
any split link with Legendrian simple components is not {tb, r} but {tb, r}-
simple.

The stabilizations S±, defined in the previous section, obviously depend
on where the kinks will be attached. However in LSK, neither tb nor r have
sufficient information to know that. A typical example, which is {tb, r}-
nonsimple, is the simplest singular knot K0 of degree 1 with the singular
point 0. Let L0 ∈ L(K0) be the simplest Legendrian singular knot as follows.

L0 =
p q

0
∈ L(K0), K0 = 0 .
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Then two stabilizations at the marked points p and q in L0 shown in Figure 7
are distinguished by {tb, r} after 0-resolution, but never distinguished as
they are. Note that this phenomenon does not occur in LK.

S2
+(L0, p) = 6= = S+(S+(L0, p), q)

Figure 7: Two different positive stabilizations of L0 sharing {tb, r}.

Therefore it is natural to consider tb and r for all possible resolutions
R(L), that is, {tb(R), r(R)}. If the link types ‖R(L)‖ of resolutions of L are
nonsimple, however, {tb(R), r(R)} can not capture the whole Legendrian
information of L. So one could consider the set of Legendrian link typesR(L)
as invariants. Note that R is the strongest among all invariants mentioned
above, since all nonsingular links are tautologically {R}-simple.

At first glance, all Legendrian link types in R(L) together with the
singular link type ‖L‖ seem to recover L itself, but this is not true. For
example, we will prove later that K0 is {R}-nonsimple.

3.2. Orders, markings, and flips

We discuss the distinctive properties of the singular points of Legendrian
singular links. The standard sphere Sstd ⊂ R3 is defined by

Sstd = {(r, θ, z) | r4 + 4z2 = 1}

in cylindrical coordinates.4 We denote by Bstd the inside of Sstd, and call it
the standard 3-ball.

Lemma 3.2. Let L ∈ LSK and p ∈ P(L). There exists a neighborhood
Bp ⊂ (S3, ξstd) of p and a contactomorphism φp between pairs of contact
3-balls with co-orientation and oriented arcs such that

φp : (Bp, Bp ∩ L)→ (Bstd, Ix ∪ Iy)

where Ix = Bstd ∩ (x-axis), and Iy = Bstd ∩ (y-axis).

4The reason why we use this standard sphere will be explained in Appendix A.
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Proof. By the Darboux theorem [Ge, Theorem 2.5.1], there exists a neigh-
borhood U of p and a contactomorphism φ0 between (U,U ∩ L) and (V, V ∩
φ0(L)) such that φ0(p) = 0 ∈ R3 is a singular point. We may assume that
V ∩ φ0(L) is connected by choosing a small U .

We parametrize V ∩ φ0(L) into two curves γ1(t) = (r1(t), θ1(t), z1(t)),
and γ2(t) = (r2(t), θ2(t), z2(t)), −ε ≤ t ≤ ε which match the orientation of
φ0(L) with the following conditions:

1) γ1(0) = γ2(0) = 0 ∈ R3;

2) r′1(t) > 0, r′2(t) > 0 for t ∈ (−ε, ε);

3) θ1(0) = 0, θ2(0) ∈ (0, π);

4) |θ1(t)| < δ
3 , |θ2(t)− θ2(0)| < δ

3 where δ = θ2(0)− θ1(0).

The conditions (2) and (4) are guaranteed by taking a sufficiently small
neighborhood U of p and condition (3) is possible by the rotational symmetry
of the contact structure ξrot. Note that conditions (2) and (3) determine the
choice of γ1 and γ2. There is a Legendrian singular isotopy hs, s ∈ [0, 1]
which satisfies

hs|γ1(t) = (r1(t), (1− s)θ1(t), (1− s)z1(t)),
hs|γ2(t) = (r2(t), (1− s)θ2(t) + sπ/2, (1− s)z2(t)).

and hence sends γ1(t) to (r1(t), 0, 0) and γ2(t) to (r2(t),
π
2 , 0) simultaneously.

Let φ1 be a contact isotopy of (R3, ξrot) which realizes ht. Then we may
assume that Bstd ⊂ φ1(V ). Consequently Bp = φ−10 ◦ φ

−1
1 (Bstd) and φp =

φ1 ◦ φ0|Bp satisfies the desired condition. �

We call Bp a standard neighborhood of p and identify it with Bstd via
φp. Then Sstd ∩ L consists of {0x,0y,−0x,−0y}, where 0x and 0y are the
unit vectors along x and y-axes. We simply denote φ−1p (±0x), φ−1p (±0y) by
±px,±py, which we collectively call the nearby points at p. Notice that the
nearby points are well-defined up to reparametrization of L, which can be
regarded as isotopy on the domain nS1 of L and thus safely ignored.

Definition 3.3. Let L ∈ LSK and Bp be a standard neighborhood of p ∈
P(L). An order σ(L, p) of L at p is a quadruple of nearby points of p given
by

σ(L, p) = (px, py,−px,−py).
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Front py

−px

−py
px py
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−py
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−py
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Lagrangian
−py

−px

py
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−py

−px
py
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−py
−px

−px
py

px
−py

Figure 8: Projections near a singular point p.

Since the contact structure ξstd is co-oriented, any co-orientation pre-
serving contactomorphism φ : (S3, L1)→ (S3, L2) gives bijections between
not only singular points but also nearby points up to contact isotopy. That
is,

φ(±px) = ±qx, φ(±py) = ±qy,

where p ∈ P(L1) and q = φ(p) ∈ P(L2).
During the contact isotopy, the local shape ‘ ’ at each singular point in

the Lagrangian projection can be translated and rotated, but never flipped
as ‘ ’ since our contact structure (R3, ξ0) is tight. Hence there is an obvious
correspondence between singular points, and ordered nearby points as well.
This implies the equivariance of σ as above.

In general, we can define the equivariant order for a singular point of a
Legendrian singular link in any co-oriented contact 3-manifold (M, ξ).

Notice that σ(L, p) is well-defined only for L ∈ LSK because there is no
constraint on the tangent plane at p ∈ P(L) in SK and so it can be flipped
freely. Consequently, the order σ is a property exclusive to LSK.

We extend the concept of the order at singular points to arcs in Legen-
drian singular links.

Definition 3.4. Let L ∈ LSK and γ : (I, ∂I)→ (L,P(L)) be an oriented
arc which is piecewise smooth and injective except at P(L). A marking m(γ)
of γ on L is a sequence of nearby points in L that γ meets.

Note that the marking m itself is also equivariant under co-orientation
preserving contactomorphism φ as follows:

φ(m(γ)) = m(φ(γ)).
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Hence for any invariant f on LSK, we can consider the enhanced invariant
fm with marking m, which may use the information from the marking m.
For example, the results of enhanced full resolutions are Legendrian links
with labels on each component.

In general, the marking gives an obstruction for the given arc to be the
same as another arc via contact isotopy, which will be discussed in §3.3.

Definition 3.5. Let L ∈ LSK and p ∈ P(L). A flip move Fl(L, p) is a
diagram replacement of the front projection depicted as in Figure 9.5

p
oo

Fl(L,p)
//

p

Figure 9: Fl(L, p) of flipping at p.

Note that not all diagrams have a local picture as depicted in Figure 9
so a flip is not always applicable. Moreover, it preserves the singular link
type and resolutions and commutes with S±. That is,

‖Fl‖ = ‖ · ‖, R(Fl) = R, F l(S±) = S±(Fl),(1)

and see Figure 10 for an example.

oo
Fl(L,p)

//

R+

��

R−

%%

R0

**

R+

tt

R−

zz

R0

��

=

Figure 10: Resolutions and flip moves.

5This move has been discussed before. Indeed the flip Fl is the Legendrian hori-
zontal flype in [NTr].
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Another simple but important observation is that σ(L, p) is not equivari-
ant under Fl in general, so it may not be realized by a Legendrian isotopy.
Therefore the flip can not be replaced with ±-(de)stabilizations since S±
preserves σ, and we have a singular version of Lemma 2.5.

Proposition 3.6. Let K ∈ SK. Then any two Legendrian singular links
L1, L2 in L(K) can be connected by a sequence of S± and Fl. Indeed, at
most one flip for each singular point is necessary.

Proof. Since L1 and L2 have the same topological type, there is a smooth
isotopy φt between L1 and L2. Consider 1-parameter family πF (φt(L1)) of
diagrams as before. Then by definition, both ends are regular but being
regular fails for almost all t because the front projection at singular point
depicted in Figure 1 is never generic in the smooth setting. However, we
avoid this anomalous situation by relaxing the definition of regularity of the
front projection as follows.

Let v1, v2 be two tangential vectors at p ∈ P(L1). Then the plane gener-
ated by vi’s may rotate during the isotopy φt. For the notational convenience,
we introduce a function γp : [0, 1]→ S2 defined by

γp(t) =
(φt)∗(v1 × v2)
‖(φt)∗(v1 × v2)‖

.

We say that πF (φt(L1)) is almost regular near p ∈ P(L) at t if γp(t) does
not lie on the equator S1

xy. Then since S1
xy is closed in S2, almost regularity

is an open condition and therefore there are only finitely many exceptions
for almost regularity near p. Moreover, since S2 is simply connected, we may
perturb φt so that γp(t) intersects S1

xy at most once at t(p) ∈ (0, 1) for each
p ∈ P(L).

Let {t1, . . . , tk} ⊂ I be the finite subset such that πF (φt(L1)) is not al-
most regular near pi at ti. Then for each interval (ti−1, ti) we can find a dia-
gram Di by projecting tangential vectors (φt)∗(vi) to the contact plane ξstd
at φt(pi) so that Di is regular near φt(pi). Moreover, Di+1 is obtained from
Di by performing one flip move at φt(pi) possibly with ±-(de)stabilizations
at the nearby points.

Recall that all other kinds of failures of regularity correspond to S±
together with Reidemeister moves depicted in Figure 3. �

Remark 3.7. The following move which looks like a vertical flip preserves
a Legendrian singular link type and can be obtained by applying the Reide-
meister move (VI) twice.



i
i

“1-Bae” — 2019/1/20 — 22:40 — page 901 — #17 i
i

i
i

i
i

Legendrian singular links and singular connected sums 901

p oo
(VI)◦(VI)

//

p

Figure 11: A vertical flip.

3.3. Obstruction from the marking

Let L1, L2 ∈ LSK, and γ be an arc in L1 defined as in Definition 3.4. Then
the marking m(γ) corresponds to a smooth arc of some full resolution R of
L1. Especially, if γ is a loop, m(γ) represents a link component of R(L1),
denote it by R(γ).

Now suppose that there is a contact isotopy φ between L1 and L2. Since
the marking is equivariant under φ, the link component R(γ) of R(L1)
should map to the link componentR(φ(γ)) ofR(L2). In other words, if there
is no contact isotopy between R(L1) and R(L2) sending R(γ) to R(φ(γ))
then L1 is different from L2 in LSK.

Hence the obstructions obtained in this way are related with more in-
trinsic structures of Legendrian or smooth link types, such as, topological
non-switchability (Example 1), Legendrian non-switchability (Example 2),
and Legendrian non-invertibility (Example 3).

Example 1 (Topological non-switchability). Let L ∈ LK be a Legen-
drian knot with ‖L‖ different from the unknot, and L1, L2 be Legendrian
singular knots of degree 1 with p ∈ P(L1), q ∈ P(L2) as in Figure 12. One
can directly check that ‖L1‖ = ‖L2‖ in SK and furthermore R(L1) = R(L2)
in LK.

Let γ1, γ2 be arcs in L1 starting and ending at p which satisfy

m(γ1) = (px,−py), m(γ2) = (py,−px).

Then R(γ1) and R(γ2) correspond to the unknot and L in R0(L1, p), re-
spectively. But in R0(L2, q) the corresponding components are switched.
Therefore L1 and L2 are different Legendrian singular knots in LSK, and
never connected by stabilizations because both stabilizations S± commute
with the 0-resolution R0. Hence one flip is necessary to connect them in
L(‖L1‖) by Proposition 3.6.
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L = , L1 = , L2 =

R+(L1, p) = = =R+(L2, q)

R−(L1, p) = = =R−(L2, q)

R0(L1, p) = = =R0(L2, q)

Figure 12: Positive and negative singular stabilizations.

Example 2 (Legendrian non-switchability). Let us provide another
pair of Legendrian singular knots of degree 1, (La, p), (Lb, q) depicted in
Figure 13. It is easily checked that they are different by exactly one flip
move and by (1) we have

‖La‖ = ‖Lb‖ ∈ SK,
R+(La, p) = R+(Lb, q) ∈ L(82),

R−(La, p) = R−(Lb, q) ∈ L(62),

R0(La, p) = R0(Lb, q) ∈ L(L7a6),

where L7a6 is a link in the Thistlethwaite link table.
Suppose La = Lb via a contact isotopy φt in LSK. Let γ1, γ2 be arcs in

La starting and ending at p satisfying that

m(γ1) = (py,−px), m(γ2) = (px,−py).

Figure 14 shows two components of both R0(La, p) and R0(Lb, q), deter-
mined by the markings m(γi) and m(φ1(γi)), respectively. Note that

m(φ(γ1)) = (qy,−qx), m(φ(γ2)) = (qx,−qy).

Hence, φ1 must switch the components as shown in Figure 14, and the
link type ‖R0(La, p)‖ = L7a6 is topologically switchable. However R0(La, p)
is not Legendrian switchable, i.e., there is no Legendrian isotopy inter-
changing its components, see [CN]. Therefore this contradiction implies that
La 6= Lb in LSK.
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p
px

py−py

−px
q

qx

qy−qy

−qx

Figure 13: A pair of Legendrian singular knots La and Lb.

py−py

−px px qx

qy−qy

−qx

Figure 14: Two 0-resolutions R0(La) and R0(Lb).

Example 3 (Legendrian non-invertibility). Since there is no canon-
ical orientation of R∞, it seems less natural compared to the other three
resolutions. However, by using the aid of marking, there is a way for as-
signing an orientation consistently as follows. For L ∈ LSK and p ∈ P(L),
the ∞-resolution R∞(L, p) at p is a modification so that px and py (or −px
and −py) are joined by an arc. Hence by the equivariance of marking, we
may assign an orientation near p as from px to py, or the opposite way. It
is easy to check that this assignment defines an orientation on R∞(L, p) no
matter how the arcs passing through p are joined in L globally. This is the
enhancement Rm∞ of the ∞-resolution R∞.

There exists a pair of examples which can be distinguished by Rm∞ but
not by the classical invariants and Rη, η ∈ {+,−, 0} as follows. Let (Lc, p)
and (Ld, q) be Legendrian singular knots of degree one as depicted in Fig-
ure 15.

Since Ld can be obtained by one negative flip move as before, one can
check that ‖Lc‖ = ‖Ld‖ ∈ SK and

R+(Lc, p) = R+(Ld, q) ∈ L(81),

R−(Lc, p) = R−(Ld, q) ∈ L(61),

R0(Lc, p) = R0(Ld, q) ∈ L(KH).
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p

py

px

−py

−px q

qy

qx

−qy

−qx

Figure 15: A pair of Legendrian singular knots Lc and Ld.

Here KH is the Hopf link having the linking number −1. Moreover,
Rm0 (Lc, p) and Rm0 (Ld, q) are labelled Legendrian Hopf links which look like

Rm0 (Lc, p) = , Rm0 (Ld, q) = .

Therefore, they are same as Legendrian links, and the enhanced 0-resolution
Rm0 is not useful for this pair.

The enhanced∞-resolutions Rm∞(Lc, p) and Rm∞(Ld, q) can be considered
as oriented Legendrian knots, whose orientations are given by arcs from px
to py and qx to qy, respectively. More precisely, we have

Rm∞(Lc, p) = S−(L(µ(72))), Rm∞(Ld, q) = S−(L(−µ(72))),

where µ(72) is a topological mirror of 72 knot, and L(µ(72)) looks like as
follows.

It is known that L(µ(72)) is Legendrian non-invertible6, that is, L(µ(72))
and −L(µ(72)) are not same in LK. Moreover, their stabilizations are pair-
wise different as well [CN], and so Rm∞(Lc, p) 6= Rm∞(Ld, q).

Therefore Lc 6= Ld in LSK, and this means that the enhanced resolutions
are strictly stronger than the Legendrian switchabilities of resolutions as
obstructions.

Remark 3.8. Topological non-invertibility can be used to produce another
distinct pairs in LSK. Then as Example 1, the resulting pairs are not con-
nected by a sequence of stabilizations.

6Here a given Legendrian knot L is non-invertible means that L 6= −L as a Leg-
endrian knot type and L(µ(72)) is the simplest Legendrian non-invertible knot.
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Example 4. In Example 1, 2 and 3, we heavily use the properties of link
types, such as switchability and invertibility. But there still exist subtle
phenomena which are not captured by any invariant defined above. Let Le
be the Legendrian singular knot described in Figure 16 with p ∈ P(Le).

py−py

−px px
p

−qyqy

qx −qx
q

Figure 16: A pair of Legendrian singular knots Le and −Le.

One can readily check that Le and −Le share the all the invariants
defined above. In order to distinguish them we need a certain preparation,
a singular connected sum or a tangle replacement near the singular point.
We will come back to this example when we are ready.

4. Singular connected sum and decomposition

The main content of this section is to define a singular connected sum of two
Legendrian singular links as a generalization of the connected sum of two
Legendrian links.

4.1. Singular connected sum

For a given L ∈ LSK and p ∈ P(L), we have the local standard neighbor-
hood Bp of p with a contactomorphism φL,p as in Lemma 3.2.

φL,p : (Bp, Bp ∩ L)→ (Bstd, Ix ∪ Iy).

Let (L1, p) and (L2, q) be pairs of Legendrian singular links and singular
points, and let Bp and Bq be standard neighborhoods. We define φ : ∂Bp →
∂Bq as the composition of three diffeomorphisms

φ : (∂Bp, σ(L1, p))
φL1,p−→ (Sstd, σ(Ix ∪ Iy,0))

−xy−→ (Sstd,−σ(Ix ∪ Iy,0))
φ−1
L2,q−→ (∂Bq,−σ(L2, q)),
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where −xy(x, y, z) = (−x,−y, z) is π-rotation along the z-axis7. Hence φ
maps nearby points of p to those of q as

φ : (px, py,−px,−py) 7→ (−qx,−qy, qx, qy).

Then the connected sum of two (S3, ξstd) can be defined by using the
gluing map φ. To give an orientation on the connected sum S3#S3, it
is necessary that either φL1,p

or φL2,q
is orientation-reversing. Then φ is

an orientation-reversing diffeomorphism. Note that φ gives an orientation-
reversing isomorphism on the oriented characteristic foliations (∂Bp)ξstd and
(∂Bq)ξstd . Then by Colin’s gluing theorem [Co] the resulting manifold is
again (S3, ξstd).

Definition 4.1. The singular connected sum (L1, p)⊗ (L2, q) is the Legen-
drian singular link in S3 defined by

(L1, p)⊗ (L2, q) = (L1 \ (L1 ∩ B̊p))
∐
φ

(L2 \ (L2 ∩ B̊q)).

Proof of Theorem 1.1. Notice that the only possible ambiguities occur when
we choose standard neighborhoods. If there are two standard neighborhoods,
then we may assume that one contains the other. However, the complemen-
tary region is diffeomorphic to S2 × [0, 1] whose contact structure is deter-
mined uniquely by the characteristic foliations at boundaries up to contact
isotopy [Ge, Theorem 4.9.4]. Hence all standard neighborhoods are contact
isotopic in S3. �

When p ∈ L1 and q ∈ L2 are non-singular, the standard neighborhoods
Bp and Bq can be identified with (Bstd, Ix). Then the above gluing homeo-
morphism φ : ∂Bp → ∂Bq recovers the usual connected sum (L1, p)#(L2, q)
discussed in [EH2]. Roughly speaking, the singular connected sum looks like
usual connected sums of two pairs of components simultaneously.

Recall that a Legendrian unknot L© is the identity of the connected
sum operation. The following plays a role of the identity under the singular
connected sum.

Definition 4.2. Let L©© be a 2-component Legendrian singular link of
degree 2 defined by

L©© = (x-axis) ∪ (y-axis) ∪ {∞} ⊂ R3 ∪{∞} = S3.

7If a 0, π/2 or−π/2 rotation is used instead, then it defines an unoriented singular
connected sum. See §4.2.



i
i

“1-Bae” — 2019/1/20 — 22:40 — page 907 — #23 i
i

i
i

i
i

Legendrian singular links and singular connected sums 907

Alternatively, since each axis represents the Legendrian unknot L© in
S3, L©© is a union of 2 copies of L© with 2 singular points {0,∞}, as
depicted in Figure 17. Since (S3, L©©) is obtained by gluing two copies of
(Bstd, Ix ∪ Iy), it is the identity under the singular connected sum. Note that
since L©© has rotational symmetry, it has a unique choice of orientation up
to isotopy.

0

∞

0

∞

0x−0x
∞y −∞y −∞x

0y−0y
∞x 0 ∞

∞x

−∞y

−∞x

∞y

−0x

0y

0x

−0y

Figure 17: The Legendrian singular link L©© and its projections.

4.2. Unoriented singular connected sum

Let (L1, p), (L2, q) be pairs of Legendrian singular links and singular points.
Then the orders σ(L1, p) and σ(L2, q) are

σ(L1, p) = (px, py,−px,−py), σ(L2, q) = (qx, qy,−qx,−qy).

Recall the gluing map φ defined by φ(±p∗) = ∓q∗, which uses the π-
rotation about z-axis and the only option resulting in a canonical orientation
of (L1, p)⊗ (L2, q). However, if we relax the condition about the induced
orientation, there are 3 more options φ0, φ+ and φ− to glue nearby points of
L1 and L2, where φ0 uses 0-rotation and φ± uses the ±π/2-rotation about
z-axis, respectively. In other words,

φ0(px, py,−px,−py) = (qx, qy,−qx,−qy)
φ+(px, py,−px,−py) = (qy,−qx,−qy, qx)

φ−(px, py,−px,−py) = (−qy, qx, qy,−qx).

Then for η ∈ {+,−, 0}, we define the η-unoriented singular connected
sum (L1, p)⊗η (L2, q) by using φη as follows.

(L1, p)⊗η (L2, q) = (L1 \ (L1 ∩ B̊p))
∐
φη

(L2 \ (L2 ∩ B̊q)).
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It is obvious that as unoriented Legendrian links

(L1, p)⊗0 (L2, q) = |(L1, p)⊗ (−L2, q)| = |(−L2, q)⊗ (L1, p)|
= |(L2, q)⊗ (−L1, p)| = (L2, q)⊗0 (L1, p).

where |L| and −L are obtained by forgetting and reversing orientations of
L, respectively. Therefore ⊗0 is commutative. However, neither ⊗+ nor ⊗−
is commutative. Instead, we have

(L1, p)⊗+ (L2, q) = (L1, p)⊗− (−L2, q).

Indeed, when one of Li’s is the same as its reverse, then both ⊗± are the
same and commutative on the Li’s. The ∞-resolution is a typical example.

4.3. Singular connected sum decomposition

Recall the standard sphere Sstd is defined by the equation r4 + 4z2 = 1.
Then its characteristic foliation (Sstd)ξrot given by αrot looks as depicted in
Figure 18.

Figure 18: The standard sphere Sstd in (R3, ξrot).

A separating sphere S of L is a sphere in S3 such that

1) there exists a contactomorphism (R3, S)→ (R3, Sstd), and therefore an
oriented characteristic foliation Sξstd has exactly two elliptic singular
points e+ and e− (such a characteristic foliation is called standard);

2) S intersects L transversely at four points;
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3) each intersection in S ∩ L lies in a distinct leaf of Sξstd .

Then there is a projection map τ : S \ {e+, e−} → S1 along the leaves
which allows us to define the following.

Definition 4.3. Let L ∈ LSK and S be a separating sphere of L. A cyclic
order σcyc(L, S) is defined as an order on L ∩ S up to cyclic permutations
induced by τ .

A contact isotopy Ht is order-preserving on S with respect to L if Ht(S)
is a separating sphere of L for each t.

Then we have the following lemma which is an analogue of Lemma 3.2.

Lemma 4.4. Let L ∈ LSK and S be a separating sphere of L. Then there
exists a neighborhood N(S) ⊂ S3 of S and a contactomorphism φS of pairs
such that

φS : (N(S), N(S) ∩ L)→ (R3 \{0}, Ix ∪ Iy \ {0}).

Moreover φS(S) and Sstd are order-preserving contact isotopic with re-
spect to φS(L).

Proof. By definition, there is a neighborhood N0(S) ⊂ S3 and contactomor-
phism φ0 : N0(S)→ R3 \{0}, where φ0(S) = Sstd. Now consider φ0(L) as a
parametrized curve (r(t), θ(t), z(t)) with respect to the cylindrical coordi-
nate. Then we can perturb L slightly to obtain r′ 6= 0 on Sstd ∩ L. Therefore
there is a small enough ε > 0 such that on Sstd × (−ε, ε) ∩ L ⊂ R3,

r′ 6= 0, −π <θ < π, ε ·max |θ′| � 1.

We identify Sstd × (−ε, ε) with R3 \{0} via φ. Then the image (φ1 ◦
φ0)(L) of L is a union of four arcs which are strictly increasing in the radial
directions, and by the same isotopies as in the proof of Lemma 3.2, they
can be isotoped to Ix ∪ Iy \ {0} via Ht. Then by the choice of ε, the order
σ(Ht((φ1 ◦ φ0)(L)), Sstd) is well-defined for all t, and we can let φ2 = H1.

We define N(S) as φ−10 (Sstd × (−ε, ε)), and φS as φ2 ◦ φ1 ◦ φ0. Then
N(S) and φS are the desired neighborhood and contactomorphism. �

We consider a decomposition for L ∈ LSK which is an inverse of the
singular connected sum. At first, suppose a separating sphere S of L is given.
If we assign + or − for each point in S ∩ L according to the orientation of L,
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then the sign of σcyc(L, S) is either (+,+,−,−) or (+,−,+,−)8 up to cyclic
permutations. However, the latter case (+,−,+,−) is not the configuration
we want because a singular connected sum never gives this kind of order.

We define a non-cyclic order σ(L, S) by a representative of σcyc(L, S)
whose signs realize (+,+,−,−), when it is possible. Note that this sign
configuration coincides with Definition 3.3.

Now we consider a separating sphere S0 = φ−1S (Sstd) given by the lemma
above. Then S0 bounds two 3-balls B1 and B2, which are contactomorphic to
Bstd via φ1 and φ2. We may assume that φi and φS coincide on Bi ∩N(S).
Therefore φi(L ∩Bi) satisfies the conditions for the Legendrian tangle.

We define two Legendrian singular links Li as closures of tangles φi(L ∩
Bi), or equivalently,

Li = (L ∩Bi)
∐
−∂φS

(Ix ∪ Iy) ⊂ Bi
∐
−∂φS

Bstd = S3

where −∂φS = (−xy ◦ φS) : S0 → Sstd is a composition of φS and −xy, and
it maps σ(L, S0) to −σ(Ix ∪ Iy,0).

Proposition 4.5. Let L, S and Li’s be as above. Then L is the same as
the singular connected sum (L1,0)⊗ (L2,0).

Proof. This follows obviously from the well-definedness of the singular con-
nected sum. �

We prove Theorem 1.2, the well-definedness of the singular connected
sum decomposition up to order-preserving contact isotopy.

Proof of Theorem 1.2. Let S and S′ be separating spheres of L which are
order-preserving contact isotopic. We choose S0 and S′0 as before and obtain
the singular connected summands Li and L′i by using S0 and S′0. Then it
suffices to show that Li = L′i. There are two parts where the ambiguities can
occur, but we may assume that S = S0 and S′ = S′0. In other words, both
φS(S) and φS′(S

′) are Sstd.
Let Ht be the order-preserving contact isotopy between S and S′, and

let B′i be two 3-balls that S′ bounds. Then without loss of generality, we
may assume that S and S′ are disjoint and bound a subspace diffeomorphic
to S2 × I, by dividing the interval I = [0, 1] and by the convexity of Ht(S)
for all t, see [Ge, Lemma 4.12.3 (ii)].

8This corresponds to the unoriented singular connected sum as before. See §4.2.
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Therefore there is a contact embedding ι : S2 × I → S3 such that
ι0(S

2) = S and ι1(S
2) = S′, and induce the isomorphisms between char-

acteristic foliations. Hence B1
∐
ι0

(S2 × I) = B′1 and (S2 × I)
∐
ι1
B′2 = B2.

Moreover, it is obvious that ι−1(L) is Legendrian in S2 × I and the order
σ(ι−1(L), S2 × {t}) is well-defined for all t.

Then we consider the singular Legendrian link LS,S′

LS,S′ = (Ix ∪ Iy)
∐

−∂φS◦ι0

ι−1(L)
∐

−∂φS′◦ι1

(Ix ∪ Iy)

⊂ Bstd
∐

−∂φS◦ι0

S2 × I
∐

−∂φS′◦ι1

Bstd = S3.

Lemma 4.6. The singular Legendrian link LS,S′ is the same as L©©.

Proof. It suffices to show that LS,S′ lies in a sphere whose characteristic
foliations are standard. We construct such a sphere SS,S′ as follows.

Choose two standard discs D1, D2 containing Ix ∪ Iy’s in the standard
neighborhood of two singular points in LS,S′ . Then the characteristic folia-
tion on each Di has exactly one singularity, which is elliptic. Since the or-
der σ(ι−1(L), S × {t}) is well-defined for each t ∈ [0, 1], there exists a circle
S1
t ⊂ S × {t} which is transverse to foliations on S × {t} and passes through

four intersection points ι−1(L) ∩ (S2 × {t}). We may choose a family S1
t of

circles as varying smoothly by t.
Hence it defines an annulus A whose characteristic foliations has no

singularity by definition, and we obtain the desired sphere SS,S′ by gluing
two discs D1, D2. �

This lemma directly implies that

L1 = (L ∩B1)
∐
−∂φS

(Ix ∪ Iy)

= (L1,0)⊗ (L©©,0) = (L1,0)⊗ (LS,S′ ,0)

= (L ∩B1)
∐
ι0

(S2 × I)
∐

−∂φS′◦ι1

(Ix ∪ Iy)

= (L ∩B′1)
∐

−∂φS′◦ι1

(Ix ∪ Iy) = L′1

Similarly, we have L2 = L′2 by the same argument, and Theorem 1.2 is
proved. �
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Recall that for K ∈ SK, the existence of an embedded sphere S with
|K ∩ S| = 0 or 2 ensures that K can be decomposed into Ki’s via the dis-
joint union or the usual connected sum, respectively. For L ∈ LSK, we can
decompose L further via a separating sphere S with well-defined σ(L, S).

Remark 4.7. One may ask whether similar notions of the singular con-
nected sum and decomposition are possible in more general settings such as
SK or 4-valent graphs V4.

In the case of SK, the singular connected sum is not well-defined. Be-
cause of the lack of order there are two possibilities. The singular connected
sum decomposition in SK, however, has as many possibilities as the mapping
classes of S2 with 4-marked points.

On the contrary, the decomposition in V4 is well-defined as in [M], since
the flexibility of vertices excludes ambiguities. A corresponding operation
to the singular connected sum in V4 also has the same ambiguities as the
mapping classes of S2 with 4-marked points.

SK V4 LSK
singular connected sum 2 ∞ 1

decomposition ∞ 1 1

Table 1: The numbers of ambiguities for the singular connected sum and
the decomposition.

4.4. Units of singular connected sum

Now we consider unit elements of the singular connected sum, which is a
left (or right) summand of the identity.

Definition 4.8. A pair (L, p) with L ∈ LSK and p ∈ P(L) is a unit if there
exists L′ and p′ ∈ P(L′) such that

(L, p)⊗ (L′, p′) = L©©,

and (L′, p′) is an inverse of (L, p).

Note that the notion of the unit is different from the singular connected
summand. The difference occurs when L©© is decomposed into 3 or more
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summands, and so a unit is a special kind of summand of L©© so that its
degree is either 1, 2 or 3.

While there is only one summand under the connected sum # of the
identity element L©, which is L© itself, there are infinitely many units for
degree 1 and 3 including all closures of tangles for resolutions, where each
of them has infinitely many inverses.

Nevertheless, we can say that there are no units of degree 2 except the
identity. In order to clarify the argument, we need the following preparations.

Lemma 4.9. Let L be a unit of degree 2. Then L ∈ L(©©) and tb(L) = −2.

Proof. Note first that L©© can be considered as the trivial θ4-curves and so
is its factor L as a θ4-curve. See [M, Lemma 2.1]. Therefore ‖L‖ is the same
as ©© up to twisting at vertices,

←→ ,

which implies that ‖L‖ can be represented by a four strand braid βL on the
sphere. It is known that βL is well-defined up to conjugate and the following
two moves.9

β
oo // β oo //

β

βσ1σ
−1
3
oo // β oo // βσ1σ2σ1

Then one can choose βL so that βL is σ1-free and its standard projection
is an alternating diagram with C crossings10. Moreover, there exists a pair
(Rη1 , Rη2) of resolutions so that the number of crossings in Rη1(Rη2(L, p), q)
is exactly C + 2.

For an inverse L′ of L, since L′ is represented by β−1L , we have the mirror
pair of reduced alternating diagrams for resolutions:

9These moves correspond to the generators for Mexican plaits as described in
[Mu1].

10This process is exactly the same as the way how to obtain an alternating normal
form for two bridge links. See [Mu2] for detail.
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K1 := ‖Rη1(Rη2(L,p), q)‖, K2 := ‖R−η1(R−η2(−L′, p′), q′)‖,

whose crossing numbers are exactly C + 2. Since both K1 and K2 are alter-
nating links, by [Ta, Corollary 1.4], the sum of maximal Thurston-Bennequin
numbers tb of the mirror pair (K1,K2) satisfies

tb(K1) + tb(K2) = −c(Ki)− 2,

where c(K) is the minimal crossing number of K.
Now we obtain

−2 = tb(L©©) = tb(L) + tb(L′) + 2

= tb(Rη1(Rη2(L, p), q)) + tb(R−η1(R−η2(−L′, p′), q′)) + 2

≤ tb(K1) + tb(K2) + 2

= −c(Ki) = −C − 2.

Therefore C = 0 and so βL = 1 ∈ B4(S
2), which implies that both L and L′

are contained in L(©©). Since L©© has the maximal tb, neither tb(L) nor
tb(L′) can not exceed tb(L©©) = −2. Therefore they must be equal to −2 as
claimed. �

Theorem 4.10. A Legendrian singular link L ∈ L(©©) has the maximal
tb, i.e., tb(L) = −2, if and only if L = L©©.

Proof. The “if” part is obvious.
Assume that L ∈ L(©©) with tb(L) = −2. We can take a sphere S ⊂ R3

containing L. We then may assume that Sξrot is Morse-Smale and has two
elliptic singularities at p and q.

Let a1, a2, a3, a4 be Legendrian arcs which are the closures of L \ {p, q}
and are labelled by σ(L, p). Now let ti be a (clock-wise) twisting number
of contact planes from p to q along ai with respect to S, then ti should be
contained in 1

2 Z.
Note that R+(R−(L,p), q), R0(R0(L,p), q), and R0(R0(L,p), q) are the

two components unlinks with tb = −2, where L is the same as L with one
component reversed. This implies that each component of them is the unknot
with tb = −1. By the definition of Thurston-Bennequin number, we have
ti + tj = −1 where i 6= j and i, j ∈ {1, 2, 3, 4}.

The only possible case is that ti = −1
2 for i = 1, . . . , 4. Then we can

perturb S in such a way that Sξrot |ai has singularities only at p, q. By Giroux
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elimination process, we may assume that S has only two elliptic singularities
at p, q which is contactomorphic to Sstd. This completes the theorem. �

Proof of Theorem 1.3. As mentioned right after Definition 4.2, the identity
is L©©.

Let L be a unit of degree 2, then by Lemma 4.9, we have tb(L) = −2
and L ∈ L(©©). Hence Theorem 4.10 implies that L = L©©. �

Remark 4.11. As shown in Table 1, there are infinitely many singular links
of degree 2 in SK which decompose ©©, and so which are units. Indeed, for
any given rational tangle we can make a corresponding degree 2 unit.

5. Diagrammatic interpretations of singular connected sum

5.1. Tangle representatives

A Legendrian singular tangle T is an oriented Legendrian immersion

T :
(

2I
∐

nS1, 2∂I
)
→ (Bstd, {0x,0y,−0x,−0y})

such that T has only double point singularities in the interior and intersects
∂Bstd perpendicularly at {0x,0y,−0x,−0y} matching the orientation with
x and y-axes.

Then the (singular) closure T̂ ∈ LSK of T is obtained by

(S3, T̂ ) = (Bstd, T )
∐
φ

(Bstd, Ix ∪ Iy),

where φ is a diffeomorphism on Sstd preserving the characteristic foliation
such that

φ((0x,0y,−0x,−0y)) = −σ(Ix ∪ Iy,0)

as before. See Figure 19 for a pictorial definition of a tangle closure.
We say that two tangles T1 and T2 are equivalent if they are contact

isotopic relative to their boundaries, or equivalently, two pairs (T̂1,0) and
(T̂2,0) are contact isotopic. If there is a contact isotopy between closures,
then we can modify the isotopy so that 0 and its neighborhood are fixed
during the isotopy and the support is contained in B̊std. The other direction
is clear.
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̂
T =

T

Figure 19: A Legendrian Tangle T and its closure T̂ .

For a Legendrian singular tangle T , let (T̂ ,0) be the closure of T and
φ : S3 → S3 be a contactomophism such that φ(0) =∞ ∈ S3. Then

φ(T ) \ {∞} ⊂ (S3 \ {∞}, ξstd) = (R3, ξ0),

and the front projection πF (T, φ) of T with respect to φ is defined as

πF (T, φ) := πF (φ(T ) \ {∞}),

and we call φ a way of the projection of F .
Similar to the front projection of a singular point, we obtain four types

of front projections of a tangle T with respect to some contactomorphisms
φN , φE , φS and φW according to the local pictures near 0 as depicted in
Figure 1. Intuitively, these also correspond to the ways in which the tangles
are projected. Figure 20 shows the corresponding projections.

πF (T, φN ) = T πF (T, φE) = T

πF (T, φS) = T πF (T, φW ) = T

Figure 20: Front projections for a Legendrian tangle T .

It is obvious that if two front projections of tangles are connected by a se-
quence of Reidemeister moves (I) ∼ (VI), then they are equivalent. However
all Reidemeister moves preserve the orientation at the boundary of tangle,
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so we need a global move (VIT) as depicted in Figure 21, which changes the
way of the projection and therefore the configuration at the boundary. In
the closure T̂ , this move is nothing but a Reidemeister move (VI) at 0.

T oo
(VIT)

//

T

Figure 21: A global move (VIT) for tangles.

Lemma 5.1. Let T1 and T2 be two Legendrian singular tangles. Suppose
that D1 = πF (T1, φ1) and D2 = πF (T2, φ2) are regular front projections with
respect to some φ1 and φ2, respectively. Then T1 and T2 are equivalent if
and only if D1 and D2 are connected by a sequence of (local) Reidemeister
moves (I) ∼ (VI), and the global move (VIT).

Proof. The “if” part is obvious since the moves (I) ∼ (VI) and (VIT) can be
realized via contact isotopy.

Conversely, suppose that T1 and T2 are equivalent. Then by taking (VIT)
several times, we may assume that both Di’s have the same configurations
at the boundary. Since two tangles are contact isotopic relative to boundary,
two diagrams Di’s are connected by Reidemeister moves (I) ∼ (VI) inside
the standard 3-ball by Proposition 2.1. �

Lemma 5.2. Let L ∈ LSK and p ∈ P(L). Then there exists a tangle T(L,p)
whose closure T̂(L,p) is equivalent to L, where the designated singular point

p corresponds to 0 of T̂(L,p).

Proof. Let Bp be a standard neighborhood of p. Then the complement
T(L,p) = L ∩ (S3 \Bp) satisfies the tangle conditions. Hence by the defini-

tion of a closure, (L, p) is nothing but (T̂(L,p),0). �

Note that 0 ∈ Bstd is a singular point of T̂ produced by the closure, and
T̂ can be isotoped so that T becomes arbitrarily small. This means that T̂
can be isotoped into a union of L©© and a small neighborhood B∞ of a
singular point ∞ ∈ L©©.

In Figure 17, the xy-plane in the first figure corresponds to the dotted
line in the second figure. There is a contact isotopy between second and third
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front projections which maps the horizontal dotted line to the vertical dotted
line. Thus by this isotopy, the small ball B∞ containing T is transformed to
a neighborhood of ∞ in the each diagrams.

Similarly, since two singular points {0,∞} in L©© are equivalent in the
sense that there is a contact isotopy interchanging those points, we may also
change the role of given tangle T and singular point 0 in T̂ . Therefore by
Lemma 5.2, T̂ has two special types of front projections, called left and right
normal forms at 0, as depicted in Figure 22. We can also consider left and

0x

−0y

−0x

0y

0
T =

̂
T =

−0x

0y

0x

−0y

0 T

Figure 22: Left and right normal form of T̂ .

right normal forms for each front projection of T depicted in Figure 20.
Here are the relationships between singular and regular closures of given

tangle. The regular closures D(T ) and N±(T ) of T in the front projection
are as depicted in Figure 23. Note that these closures are mimics of the
denominator and numerator closures of rational tangles. Then by definition,

D(T ) = R0

(
T̂ ,0

)
and N±(T ) = R±

(
T̂ ,0

)
. Hence, the singular closure can

be thought of as a generalization of the regular closure of tangles.

D
(

T
)

= T = R0

(
T̂ ,0

)
,

N+

(
T

)
= T = R+

(
T̂ ,0

)
,

N−

(
T

)
= T = R−

(
T̂ ,0

)
.

Figure 23: Numerator and denominator closures of T .

In particular, the simplest singular tangle under D and N± corre-
sponds to the simplest Legendrian singular knot L0 and links L± having
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tb(L±) = ±1− 2, whose link types K± = ‖L±‖ are called the ±-pinched
Hopf links. Notice that Lη = Rη(L©©,0) and R−η(Lη) is the Legendrian
unlink for any η ∈ {+,−, 0}.

L+ = , L− =

Figure 24: The pinched Hopf links L±.

5.2. Singular connected sum in the projection

Let (L1, p) and (L2, q) be pairs of Legendrian singular links and singular
points. Suppose that the front projections πF (L1) and πF (L2) are of left
and right normal forms at p and q, respectively. Then the front projection
πF ((L1, p)⊗ (L2, q)) of singular connected sum of (L1, p) and (L2, q) is the
diagrammatic concatenation of the left part of (L1, p) and the right part
of the (L2, q) as depicted in Figure 25. Note that the above diagrammatic
gluing of the pair of nearby points coincides with the condition σ(L1, p) =
−σ(L2, q). For the reader’s convenience we provide an abstract diagram for
the singular connected sum in R3 in Figure 26.

px

−py

−px

py

p
T1 ⊗

−qx

qy

qx

−qy

q
T2 = T1 T2

−qx

qy

qx

−qy

px

−py

−px

py

Figure 25: Singular connected sum in the front projection.

The behaviour of the classical invariants tb and r under the singular
connected sum are as follows.

tb((L1, p)⊗ (L2, q)) = tb(L1) + tb(L2) + 2,

r((L1, p)⊗ (L2, q)) = r(L1) + r(L2).



i
i

“1-Bae” — 2019/1/20 — 22:40 — page 920 — #36 i
i

i
i

i
i

920 B. H. An, Y. Bae, and S. Kim

⊗ =

L1 L2 L2L1

Figure 26: Singular connected sum in R3.

Obviously, the set of singular points after a singular connected sum is as
follows.

P((L1, p)⊗ (L2, q)) = (P(L1) \ {p}) ∪ (P(L2) \ {q}).

5.3. Tangle replacements

We define an operation called the tangle replacement as follows. It is essen-
tially same as the singular connected sum but is easier to describe. Indeed,
normal forms are not necessary.

Definition 5.3. Let L ∈ LSK, p ∈ P(L), and T be a Legendrian tangle.
The tangle replacement 〈(L, p), T 〉 of L and T is defined as the singular
connected sum (L, p)⊗ (T̂ ,0).

Then in a diagrammatic view, this is nothing but the replacement of
a small neighborhood of p in L with the given tangle T with the obvious
matching condition at the boundary. Note that there is no problem in realiz-
ing the resulting diagram as a Legendrian singular link since we can make T
sufficiently small. Moreover the diagrammatic replacement is valid for both
the front and the Lagrangian projections. See Figure 27.

〈
, T

〉
= T

Figure 27: A tangle replacement with a tangle T .
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Moreover, the resolutions R±, R0 can be interpreted as special cases of
tangle replacements, described below.

R0 =
〈
−,

〉
, R+ =

〈
−,

〉
, R− =

〈
−,

〉
.

Remark 5.4. The ∞-resolution R∞ is an unoriented tangle replacement
with . See §4.2.

Equivalently, by Figure 23, we have the dual descriptions of resolutions
as follows.

Rη
(
−̂,0

)
= 〈Lη,−〉, η ∈ {+,−, 0}

In general, for each tangle T , a tangle replacement 〈−, T 〉 gives us an
operation on Legendrian singular links which may be used to produce new
invariants and to distinguish Legendrian singular links which are indistin-
guishable even by the Legendrian singular link types of all resolutions.

6. Applications

6.1. Proof of Theorem 1.4

Now we are ready to use the singular connected sum to distinguish two
Legendrian singular links described in Example 4.

Suppose Le and −Le are the same in LSK. Let p, q be the singular
points of Le and −Le respectively. Then any isotopy between them should
map p to q. Hence by the well-definedness of the singular connected sum,
two singular connected sums (Le, p)⊗ (L,0) and (−Le, q)⊗ (L,0) are the
same in LSK for any pair (L,0) of Legendrian singular link L and 0 ∈ P(L).

First, we choose L of degree one as follows.

−0x

0y

0x

−0y

0

Now we find the left normal forms of both Le and −Le at each singular
point as described below.



i
i

“1-Bae” — 2019/1/20 — 22:40 — page 922 — #38 i
i

i
i

i
i

922 B. H. An, Y. Bae, and S. Kim

Le =
p

px

−py

−px

py

, −Le =
q

qx

−qy

−qx

qy

Then the Legendrian knots (Le, p)⊗ (L,0), (−Le, q)⊗ (L,0) are as fol-
lows.

−0x

0y

0x

−0y

px

−py

−px

py

−0x

0y

0x

−0y

qx

−qy

−qx

qy

Alternatively, we can interpret the above resulting diagrams in terms of
the tangle replacement. Let us consider a tangle T satisfying (T̂ ,0) = (L, ∗)
as follows.

Finally, the resulting Legendrian knots are given as follows.

〈(Le, p), T 〉 = =

〈(−Le, p), T 〉 = =

The second equality for 〈(Le, p), T 〉 is given by one translation move11, while
the second equality for 〈(−Le, p), T 〉 needs two translation moves on doubled
arcs. The topological knot types of the resulting Legendrian knots are same

11Legendrian isotopies can be interpreted in terms of combinatorial moves in the
grid diagram: translations, commutations, (de)stabilizations, see [NTh].
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as m(61). But their Poincaré-Chekanov polynomials, introduced in [Ch], are
known to be different.

P(Le,p)⊗(L,0)(t) = t−3 + t+ t3, P(−Le,q)⊗(L,0)(t) = t−1 + 2t.

Hence the resulting Legendrian knots are not the same in LK, and therefore
Le 6= −Le in LSK which proves Theorem 1.4. In other words, the singular
knot type ‖Le‖ is {Rm}-nonsimple.

6.2. Doubles in LSK and Legendrian contact homology

For a given L ∈ LSK, by virtue of the singular connected sum, we also have
a Legendrian link from L not obtained by the resolutions nor by a specific
tangle choice.

Let P(L) = {p1, p2, . . . , pk} and consider (L, pi)⊗ (L, pi) for each i. Let
Bpi be the standard neighborhood of pi and

φi : (∂Bpi , σ(L, pi))→ (∂Bpi ,−σ(L, pi))

be the gluing map defined as before.
Now we introduce a multiple singular connected sum as follows. Consider

two copies of S3 \ (
∐
i B̊pi). Then we obtain #k−1(S2 × S1) by gluing them

via the map φ =
∐
i φi which admits the unique tight contact structure. The

Legendrian link

D(L) =

(
L \

∐
i

(L ∩ B̊pi)

)∐
φ

(
L \

∐
i

(L ∩ B̊pi)

)
⊂ #k−1(S2 × S1)

is called a double of L. By the construction, D(L) has no singular points
while the ambient contact manifold becomes a bit complicated.

Recently a combinatorial description of the Legendrian contact homol-
ogy algebra (DGA) of Legendrian links in #m(S2 × S1) was developed in
[EN]. So we can assign an algebraic invariant, the DGA of D(L), to L. It
would be interesting to investigate the relation between the DGA of D(L)
and the DGAs of its resolutions R(L).

Especially when L is of degree one, we still have D(L) in (S3, ξstd). So we
can use the ordinary Legendrian link invariants to study L. As an example,
the Legendrian singular knot Le depicted in Figure 16 has the following
front diagram in Figure 28 which can be obtained by concatenating the
front diagram of Le with itself. One can check that D(Le) is Legendrian
isotopic to D(−Le).
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−px

py

px

−py

px

−py

−px

py

Figure 28: A front diagram of D(Le).

6.3. Splicing

Another operation we can consider is η-splicing (L1, p1) ∗η (L2, p2) of two
Legendrian singular links L1 and L2 at regular points p1 and p2 for each
η ∈ {+,−, 0}.

As mentioned before, the (−η)-resolution of Lη at the singular point
0 gives a canonically ordered pair of Legendrian unknots L©,x and L©,y
whose labels come from σ(Lη,0), that is, marked by 0x and 0y. Then the
η-splicing (L1, p1) ∗η (L2, p2) is defined by

(L1, p1) ∗η (L2, p2) = ((L1, p1)#(Lη,0x),0y) #(L2, p2)

= (L1, p1)# ((Lη,0y)#(L2, p2),0x) .

Indeed, all splicings are defined via connected sums and are therefore
defined on SK as well.

It is important to note that the splicing operation is not commutative
in general. More precisely, this is because the triple (Lη,0x,0y) is not the
same as (Lη,0y,0x). Indeed, (L2, p2) ∗η (L1, p1) is obtained from (L1, p1) ∗η
(L2, p2) by performing the flip operation exactly once, and so they share
many invariants such as (i) the classical invariants: SK type, tb and r; and
(ii) Legendrian link types of resolutions R.

As shown in Example 1, even the two splicings (− ∗0 L©) and (L© ∗0 −)
with the Legendrian unknot L© are different in general. We call them posi-
tive and negative singular stabilization and denote them by SS±(L, p). The
precise definitions are shown in Figure 30. Topologically, these operations
add a singular kink at p. We remark that singular stabilizations interpolate
Legendrian links between given Legendrian singular links and their trans-
verse stabilizations via (+) and (−)-resolutions.
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∗0 = # # =

∗+ =

#

#

= , ∗− =

#

#

=

Figure 29: Front projections of splicings.

SS+

( )
= ∗0 =

SS−

( )
= ∗0 =

Figure 30: Positive and negative singular stabilizations SS±(L, p).

Moreover, by definition, the 0-resolution R0((L1, p1) ∗0 (L2, p2),0) is a
disjoint union L1

∐
L2, and the (+)-resolution R+((L1, p1) ∗0 (L2, p2),0) is

precisely a regular connected sum (L1, p1)#(L2, p2). Hence a 0-splicing may
be regarded as an intermediate state between the disjoint union and the
connected sum.

On the other hand, η-splicings act like the inverses for the enhanced
(−η)-resolutions Rm−η as follows.

Let L ∈ LSK and p ∈ P(L). Suppose R−η(L, p) is a split link of 2-
components for some η ∈ {+,−, 0}. Then there is a sphere S separating
the components of R−η(L, p). Let S1 and S2 be parallel copies of S. By
perturbing the Si’s, we may assume that Si intersects L at 2 nearby points
of p, and the arcs of L contained between the Si’s are precisely those in
the standard neighborhood. The separating spheres S1 and S2 can be used
to decompose L into 3 connected summands, which coincide with those in
the definition of η-splicing. Therefore L is a η-splicing of two components of
R−η(L, p) with the order coming from σ(L, p).
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Conversely, let L = (L1, p1) ∗η (L2, p2) for some η ∈ {+,−, 0}. Then we
have R−η(L) = L1

∐
L2, and lose the order of the splicing. However, the

marking gives a label on each component of L1
∐
L2, which is equivalent

to σ(L,0), and we can recover L from the Li’s by using this order. Hence
the enhanced (−η)-resolution Rm−η is the inverse of ∗η in both directions. In
summary, we have the following theorem.

Theorem 6.1. Let K1 and K2 be two singular links and p1 and p2 be
regular points of K1 and K2, respectively. Then for each η ∈ {+,−, 0}, the
map

∗η : L(K1)× L(K2) ∪ L(K2)× L(K1)→ L((K1, p1) ∗η (K2, p2)),

is bijective.

Note that when K1 = K2, then the union above is not disjoint. As a
corollary, we have the following theorem.

Theorem 6.2. Let K1,K2 ∈ SK be {f1, . . . , fk}-simple and pi ∈ Ki be a
nonsingular point. Then (K1, p1) ∗η (K2, p2) is {f1(Rm−η), . . . , fk(Rm−η)}-
simple.

The proof is obvious from the above discussion, and we omit the proof.

Corollary 6.3. For each η ∈ {+,−, 0}, Kη = ‖L© ∗η L©‖. Then Kη is
{tb(Rm−η), r(Rm−η)}-simple but {R}-nonsimple.

Appendix A. Projection from S3 to R3

In this section, we will give a concrete way to describe the singular connected
sum.

Recall that we regard S3 as the unit sphere in C2 whose coordinates are
(z, w), and the one-point compactification of R3. Let us regard (0,−1) ∈ S3

as ∞ which compactifies R3. Then there is a well-known contactomorphism
Φ : (S3 \ {(0,−1)}, ξstd)→ (R3, ξrot) as follows.

Φ(z, w) =

(
z

1 + w
,

Imw

|1 + w|2

)
∈ C×R ' R3 .

Recall that S3 can be decomposed into two solid tori separated by the
torus |z|2 = |w|2 = 1/2, and their core curve corresponds to the two circles
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|z| = 1 and |w| = 1 in C2. Then via the map Φ, they are mapped to the unit
circle S1

xy and z-axis in R3.
We consider the rotations on S3 as follows. The first one Rot0t : S3 → S3

comes from the rotation about the origin in C2 as follows.

Rot0t (z) = z cos t+ w sin t, Rot0t (w) = −z sin t+ w cos t.

It is easy to check that Rot0t gives a contact isotopy on S3. That is, it
preserves ξstd for all t.

The other ones are the rotations Rotzt and Rotwt about z and w axes,
respectively, which are defined by

Rzt (z) = z, Rzt (w) = weit, Rwt (w) = w, Rwt (z) = zeit.

We denote the push-forwards of Rot0t , Rot
z
t and Rotwt via Φ by the same

notation.
Recall the standard unit disc Dstd ⊂ Rxy ⊂ R3. Then Dstd corresponds

to when w is real and positive in S3, and the image of Dstd under Rotz±π/2
forms a sphere corresponding to when w is purely imaginary, that is, w = iy2
for y2 ∈ [−1, 1].

Then Φ gives equations

r2 =
1− y22
1 + y22

, z =
y2

1 + y22

satisfying r4 + 4z2 = 1, the defining equation for Sstd. Furthermore Sstd is
an invariant subspace under the π-rotation about z-axis in C2 by definition.

Note that the 4 regions in R3 separated by Sstd and xy-plane are cycli-
cally related by π/2 rotation Rotzπ/2. Moreover, it is not hard to check that

the gluing map φ defined in §4.1 is nothing but a restriction of Rot0π to Sstd.
On the other hand, Rot0π/2 changes the roles of z and w up to π/2-

rotation on w. Therefore the unit circle S1
xy ⊂ R3 be mapped to the z-axis

in R3, and the standard surfaces Sstd and Dstd correspond to non-compact
surfaces Ŝstd and D̂std, called dual surfaces, in R3 as depicted in Figure A1.
Moreover, they correspond to when z is purely imaginary, and when z is
real and positive, respectively. Hence for given L ∈ R3 with a singular point
p = 0, the left normal form is obtained by Rot0π/2(L). Similarly, the right

normal form essentially comes from Rot0−π/2(L), but the orientation does
not match. Hence by compositing Rotwπ , we have the exact right normal
form, and the gluing map φ now becomes Rotzπ instead of Rot0π.
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D̂std

Ŝstd

Îx

Îy

Figure A1: Dual surfaces of Sstd and Dstd.

In summary, the front projections of Rot0π/2(L) and Rotwπ ◦Rot0−π/2(L)
give us the left and right normal forms, respectively, and the gluing map
φ is just π-rotation about Ŝ1

std = z-axis. This is the justification for the
diagrammatic definition for the singular connected sum.
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