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A 6-dimensional simply connected

complex and symplectic manifold

with no Kähler metric

Giovanni Bazzoni, Marisa Fernández, and Vicente Muñoz

We construct a simply connected compact manifold which has com-
plex and symplectic structures but does not admit Kähler metric,
in the lowest possible dimension where this can happen, that is,
dimension 6. Such a manifold is automatically formal and has even
odd-degree Betti numbers but it does not satisfy the Lefschetz
property for any symplectic form.

1. Introduction

A Kähler manifold (M,J, ω) is a smooth manifold M of dimension 2n en-
dowed with an integrable almost complex structure J and a symplectic form
ω such that g(X,Y ) = ω(X, JY ) defines a Riemannian metric, called Kähler
metric. In order to check that a compact manifold does not carry any Kähler
metric, one can use a collection of known topological obstructions to the ex-
istence of such a structure: theory of Kähler groups, evenness of odd-degree
Betti numbers, Lefschetz property or the formality of the rational homotopy
type (see [1, 7, 25]).

If M is a compact Kähler manifold, then it has a complex and a sym-
plectic structure. However, the converse is not true. The first example of
a compact manifold admitting complex and symplectic structures but no
Kähler metric is the Kodaira-Thurston manifold [16, 23]. This 4-manifold is
not simply connected (it is actually a nilmanifold) hence the fundamental
group plays a key role in this property. The classification of complex and
symplectic nilmanifolds of dimension 6 was given by Salamon in [22]. Gener-
alizations to higher dimension 2n ≥ 6 of the Kodaira-Thurston manifold are
the generalized Iwasawa manifolds considered in [6]. Such manifolds have
complex and symplectic structures but carry no Kähler metric. Note that,
in dimension 2, every oriented surface admits a Kähler metric.
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If one restricts attention to manifolds with trivial fundamental group,
then every complex manifold of real dimension 4 admits a Kähler structure.
Indeed, by the Enriques-Kodaira classification [16], if M is a complex surface
whose first Betti number b1 is even (this holds in particular when b1 = 0),
then M is deformation equivalent to a Kähler surface (see also [2, Theorem
3.1, page 144] for a direct proof of this fact). We point out that Gompf [13]
has constructed the first examples of simply connected compact symplectic
but not complex 4-manifolds. Also Fintushel and Stern [12] have given a
family of simply connected symplectic 4-manifolds not admitting complex
structures (the latter was proved by Park [21]).

In dimensions higher than 4, we have the following results. The first
examples of simply connected compact symplectic non-Kählerian manifolds
were given in dimension 6 by Gompf in the aforementioned paper [13] and in
dimension ≥ 10 by McDuff in [18] (these examples are not known to admit
complex structures). Fine and Panov in [10] (see also [11]) have produced
simply connected symplectic 6-manifolds with c1 = 0 which do not have
a compatible complex structure (but it is not known if they admit Kähler
structures). Furthermore, Guan in [14] constructed the first family of simply
connected, compact and holomorphic symplectic non-Kählerian manifolds of
(real) dimension 4n ≥ 8. On the other hand, the first and third authors have
proved [3] that the 8-dimensional manifoldX constructed in [9] is an example
of a simply connected, symplectic and complex manifold which does not
admit a Kähler structure (since it is not formal). For higher dimensions 2n =
8 + 2k, k ≥ 1, one can take X × CPk. This is simply connected, complex and
symplectic but not Kähler. Thus, a natural question arises:

Does there exist a 6-dimensional simply connected, compact, sym-
plectic and complex manifold which does not admit Kähler met-
rics?

In this paper we answer this question in the affirmative by proving the
following result:

Theorem 1.1. There exists a 6-dimensional, simply connected, compact,
symplectic and complex manifold which carries no Kähler metric.

In order to construct such an example, we start with a 6-dimensional nil-
manifold M admitting both a complex structure J and a symplectic struc-
ture ω. Then we quotient it by a finite group preserving J and ω to obtain a
simply connected, 6-dimensional orbifold M̂ with an orbifold complex struc-
ture Ĵ and an orbifold symplectic form ω̂. By Hironaka Theorem [15], there
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is a complex resolution (M̃c, J̃) of (M̂, Ĵ). As in [5], we resolve symplecti-

cally the singularities of (M̂, ω̂) to obtain a smooth symplectic 6-manifold

(M̃s, ω̃). However, in our situation, the singular locus of the orbifold M̂ does
not consist only of a discrete set of points, in contrast with [5]. For a complex
and symplectic orbifold, we provide conditions under which the complex and
the symplectic resolution of singularities are diffeomorphic (Theorem 3.1).

Using this we prove that the resolutions M̃c and M̃s are diffeomorphic. Thus,
M̃ = M̃c is not only a complex manifold but also a symplectic one.

To prove that M̃ satisfies the conditions of Theorem 1.1, we show that
M̂ is simply connected (Proposition 6.1), this resulting from the careful

choice of the action of the finite group on M . Then, we have that M̃ is also
simply connected because any desingularization of a complex analytic variety
with quotient singularities has the same fundamental group as the original
variety [17, Theorem 7.8.1]. Since M̃ is a 6-dimensional simply connected

compact manifold, then b1(M̃) = 0, and b3(M̃) is even by Poincaré duality.

Also M̃ is automatically formal by [8, Theorem 3.2]. Therefore, to ensure

that M̃ does not carry any Kähler metric, we use the Lefschetz property;
more precisely, we prove that the map L[Ω] : H

2(M̃)→ H4(M̃) given by the
cup product with [Ω] is not an isomorphism for any possible symplectic
form Ω. Again the choice of nilmanifold M and finite group action makes
possible to have a non-zero [β] ∈ H2(M̃) such that [β] ∧ [α1] ∧ [α2] = 0 for

every [α1], [α2] ∈ H2(M̃), which gives the result.
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2. Orbifolds

Definition 2.1. A (smooth) n-dimensional orbifold is a Hausdorff, para-
compact topological space X endowed with an atlas A = {(Up, Ũp,Γp, ϕp)}
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of orbifold charts, that is Up ⊂ X is a neighbourhood of p ∈ X, Ũp ⊂ Rn an

open set, Γp ⊂ GL(n,R) a finite group acting on Ũp, and ϕp : Ũp → Up is a

Γp-invariant map with ϕp(0) = p, inducing a homeomorphism Ũp/Γp ∼= Up.
The charts are compatible in the following sense: if q ∈ Uq ∩ Up, then

there exist a connected neighbourhood V ⊂ Uq ∩ Up and a diffeomorphism
f : ϕ−1

p (V )0 → ϕ−1
q (V ), where ϕ−1

p (V )0 is the connected component of
ϕ−1
p (V ) containing q, such that f(σ(x)) = ρ(σ)(f(x)), for any x, and σ ∈

StabΓp
(q), where ρ : StabΓp

(q)→ Γq is a group isomorphism.

For each p ∈ X, let np = #Γp be the order of the orbifold point (if np = 1
the point is smooth, also called non-orbifold point). The singular locus of
the orbifold is the set S = {p ∈ X | np > 1}. Therefore M − S is a smooth
n-dimensional manifold. The singular locus S is stratified: if we write Sk =
{p | np = k}, and consider its closure Sk, then Sk inherits the structure of
an orbifold. In particular Sk is a smooth manifold, and the closure consists
of some points of Skl, l ≥ 2.

We say that the orbifold is locally oriented if Γp ⊂ GL+(n,R) for any

p ∈ X. As Γp is finite, we can choose a metric on Ũp such that Γp ⊂ SO(n).
An element σ ∈ Γp admits a basis in which it is written as

σ = diag

((
cos θ1 − sin θ1

sin θ1 cos θ1

)
, . . . ,

(
cos θr − sin θr
sin θr cos θr

)
, 1, . . . , 1

)
,

for θ1, . . . , θr ∈ (0, 2π). In particular, the set of points fixed by σ is of codi-
mension 2r. Therefore the set of singular points S ∩ Up is of codimension
≥ 2, and hence X − S is connected (if X is connected). Also we say that the
orbifold X is oriented if it is locally oriented and X − S is oriented.

A natural example of orbifold appears when we take a smooth manifold
M and a finite group Γ acting on M effectively. Then M̂ = M/Γ is an
orbifold. If M is oriented and the action of Γ preserves the orientation, then
M̂ is an oriented orbifold. Note that for every p̂ ∈ M̂ , the group Γp̂ is the

stabilizer of p ∈M , with p̂ = π̂(p) under the natural projection π̂ : M → M̂ .

Definition 2.2. A complex orbifold is a 2n-dimensional orbifold X whose
orbifold charts have Ũp ⊂ Cn, Γp ⊂ GL(n,C), and in the compatibility of
charts the maps f are biholomorphisms. Note that X is automatically ori-
ented.

If M is a complex manifold and Γ is a finite group acting effectively on
M by biholomorphisms, then M̂ = M/Γ is a complex orbifold.
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The complex structure of a complex orbifold X can be given by the
orbifold (1, 1)-tensor J with J2 = −id. This is given by tensors Jp on each

Ũp defining the complex structure, which are Γp-equivariant, for each p ∈ X,
and which agree under the functions f defining the compatibility of charts.

Definition 2.3. A complex resolution of a complex orbifold (X, J) is a
complex manifold X̃ together with a holomorphic map π : X̃ → X which is
a biholomorphism X̃ − E → X − S, where S ⊂ X is the singular locus and
E = π−1(S) is the exceptional locus.

Let X be an orbifold. An orbifold k-form α consists of a collection of
k-forms αp on each Ũp which are Γp-equivariant and that match under the
compatibility maps between different charts.

Definition 2.4. A symplectic orbifold (X,ω) consists of a 2n-dimensional
oriented orbifold X and an orbifold 2-form ω such that dω = 0 and ωn > 0
everywhere.

If M is a symplectic manifold and Γ is a finite group acting effectively
on M by symplectomorphisms, then M̂ = M/Γ is a symplectic orbifold.

Definition 2.5. A symplectic resolution of a symplectic orbifold (X,ω)
consists of a smooth symplectic manifold (X̃, ω̃) and a map π : X̃ → X such
that:

• π is a diffeomorphism X̃ − E → X − S, where S ⊂ X is the singular
locus and E = π−1(S) is the exceptional locus.

• ω̃ and π∗ω agree in the complement of a small neighbourhood of E.

3. Desingularization of orbifold points

In this section we suppose that X is an oriented orbifold whose singular locus
S consists of a discrete set of points. Assume that X admits a complex
structure J and a symplectic structure ω. Therefore we have a complex
orbifold (X, J) and a symplectic orbifold (X,ω).

It is well-known that (X, J) admits a complex resolution (X̃c, J̃) by
Hironaka’s desingularization [15]. Also, the symplectic orbifold (X,ω) admits
a symplectic resolution (X̃s, ω̃) by Theorem 3.3 in [5]. We want to compare
the two resolutions.

First, let us look at the complex resolution of (X, J). Consider p ∈ S,
and let Up = Ũp/Γp be an orbifold neighbourhood. Recall that we denote
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ϕp : Ũp → Up the quotient map. By definition of complex orbifold, Ũp ⊂
Cn = R2n and Γp ⊂ GL(n,C). As Γp is a finite group, we can choose a Kähler
metric invariant by Γp. With a linear change of variables, we can transform
the Kähler metric into standard form. That is, we can suppose that there is
an inclusion

(3.1) ı : Γp ↪→ U(n).

Shrinking Ũp if necessary, we can assume that Ũp = Bε(0), for some
ε > 0.

Consider now an algebraic resolution of the singularity of Y = Cn/Γp,
provided by [15]. Denote it π : Ỹ → Y , and let E = π−1(p) be the excep-
tional locus. Write B = Bε(0)/Γp and B̃ = π−1(B). The complex resolution
is defined as the smooth manifold

X̃c = (X − {p}) ∪π B̃,

where the identification uses the map π : B̃ − E → B − {p} = Up − {p}. This
has a natural complex structure since π is a biholomorphism.

Now we move to the construction of the symplectic resolution of (X,ω),
as done in [5]. For p ∈ S, take an orbifold neighbourhood U ′p = Ũ ′p/Γ

′
p, with

ϕ′p : Ũ ′p → U ′p. By the equivariant Darboux theorem (see [20, Theorem 7.3.1]),

there is a Γ′p-equivariant symplectomorphism (Ũ ′p, ωp)
∼= (V, ω0), where V ⊂

R2n is an open set, and ω0 is the standard symplectic form (shrinking Ũ ′p if

necessary). So without loss of generality, we can assume that Ũ ′p ⊂ (R2n, ω0),
where ω0 is the standard symplectic form, and Γ′p ⊂ Sp(2n,R). As Γ′p is
a finite group, and U(n) ⊂ Sp(2n,R) is the maximal compact subgroup,
we can choose a complex structure J on R2n such that the pair (J, ω0)
determines a Kähler metric, which is invariant by Γ′p. We perform a linear
change of variables, which transforms the complex structure into standard
form (so Ũ ′p has the standard Kähler structure). Equivalently, we can suppose
that there is an inclusion

(3.2) ı′ : Γ′p ↪→ U(n).

Shrinking Ũ ′p if necessary, we can assume that Ũ ′p = Bε′(0), for some
ε′ > 0.

Consider an algebraic resolution of singularities of Y ′ = Cn/Γ′p, call it

π′ : Ỹ ′ → Y ′, and let E′ = (π′)−1(p) be the exceptional locus. Write B′ =
Bε′(0)/Γ′p and B̃′ = (π′)−1(B′). The symplectic resolution is defined as the
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smooth manifold

X̃s = (X − {p}) ∪π′ B̃′,

where B̃′ − E′ and B′ − {p} = U ′p − {p} are identified by π′. This has a
symplectic structure that is constructed by gluing the symplectic structure
of X − {p} and the Kähler form of B̃′ by a cut-off process, as done in
Theorem 3.3 of [5].

Now we are going to compare X̃c and X̃s. First note that for p ∈ S,
we have Γp ∼= Γ′p. This follows from Γp ∼= π1(B − {p}) and Γ′p

∼= π1(B′ −
{p}), and the fact that B,B′ are homeomorphic. So we shall denote Γ′p = Γp
henceforth. We have the following result.

Theorem 3.1. If one can arrange that the inclusions ı and ı′, given by
(3.1) and (3.2), respectively, are such that ı = ı′ for every singular point
p ∈ S, then there is a diffeomorphism X̃c

∼= X̃s, which is the identity outside
a small neighbourhood of the exceptional loci. In particular, X̃c admits both
complex and symplectic structures.

Proof. The key point is obviously that if ı = ı′, then Y ′ = Y , so we can take
Ỹ ′ = Ỹ and π′ = π in the constructions above.

We fix a point p ∈ S, and construct the required isomorphism in a neigh-
bourhood of the exceptional locus over that point. Consider the map (re-
ducing ε > 0 if necessary)

f = (ϕ′p)
−1 ◦ ϕp : Bε(0) = Ũp → Bε′(0) = Ũ ′p;

f is Γp-equivariant and an open embedding (it might fail to be surjective)
with f(0) = 0. We shall construct a map F : Bε(0)→ Bε′(0) such that

• F = id in a small ball B0.2ε(0),

• F = f outside a slightly bigger ball B0.9ε(0),

• F is a Γp-equivariant diffeomorphism onto its image.

This gives a diffeomorphism F : X̃c → X̃s, defined by F on Bε(0)/Γp − {p},
extended by the identity on π−1(B0.2ε(0)/Γp), and also by the identity on
X − π−1(B0.9ε(0)/Γp).

Write f(x) = L(x) +R(x), where L is the linear part and |R(x)| ≤ C|x|2,
for some constant C > 0. Both these maps are Γp-equivariant. Take a smooth,
non-decreasing function ρ1 : [0, ε]→ [0, 1] such that ρ1(t) = 0 for t ∈ [0, 0.8ε]
and ρ1(t) = 1 for t ∈ [0.9ε, 1]. Consider g(x) = L(x) + ρ1(|x|)R(x). Then,
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g(x) = L(x) for |x| ≤ 0.8ε, g(x) = f(x) for |x| ≥ 0.9ε, and g(x) is Γp-
equivariant because Γp ⊂ SO(2n). Also

dg(x)− L = ρ′1(|x|)R(x)d|x|+ ρ1(|x|)dR(x).

Using that |ρ′1(t)| ≤ C/ε and |dR(x)| ≤ C|x| (we denote by C > 0 uniform
constants, that can vary from line to line) we have that |dg(x)− L| ≤ C|x|.
For ε > 0 small enough, we have that g is a diffeomorphism onto its image.

Next, take the linear map L : R2n → R2n. We can choose orthonormal
(oriented) basis in both origin and target so that L = diag(λ1, . . . , λ2n),
where λi > 0 are real numbers (the first vector of the basis is a unitary
vector e1 such that |L(e1)| is maximized; then L maps 〈e1〉⊥ to 〈L(e1)〉⊥,
and we proceed inductively). Consider the map

h(x) =


x, |x| ≤ 0.4ε,

x+ ρ2

((
|x|−0.4ε

0.3ε

)α)
(L(x)− x), 0.4ε ≤ |x| ≤ 0.7ε,

g(x), |x| ≥ 0.7ε,

where ρ2 : [0, 1]→ [0, 1] is smooth non-decreasing with ρ2(t) = 0 for t ∈
[0, 1

3 ], and ρ2(t) = 1 for t ∈ [2
3 , 1]. Here α > 0 is a constant to be fixed soon.

Clearly h is Γp-equivariant, h(x) = f(x) off B0.9ε(0), and h(x) = x in
B0.4ε(0) (but beware, we have chosen different coordinates on the origin R2n

and the target R2n, so h is not the identity in the ball). The map h is C∞
because for 0.4ε ≤ |x| ≤ 0.5ε we have also h(x) = x. Let us see that h is a
diffeomorphism onto its image. It only remains to see this for 0.5ε ≤ |x| ≤
0.7ε. Write y = h(x), so in our coordinates yi = xi + ρ2(u)(λi − 1)xi, with

u =
(
|x|−0.4ε

0.3ε

)α
. Then,

dyi = (1 + (λi − 1)ρ2(u)) dxi + (λi − 1)ρ′2(u)
α

0.3ε

(
|x| − 0.4ε

0.3ε

)α−1

xiγ

with γ = d|x| = 1
|x|
∑
xjdxj . Write δi = (1 + (λi − 1)ρ2(u)), so δi takes val-

ues between 1 and λi. We compute

dy1 ∧ . . . ∧ dyn
= δ1 . . . δn dx1 ∧ . . . ∧ dxn

+
∑

δ1 . . . δ̂i . . . δn
(λi − 1)ρ′2(u)αxi

0.3ε

×
(
|x| − 0.4ε

0.3ε

)α−1

dx1 ∧ . . .∧
(i)
γ ∧ . . . ∧ dxn
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= δ1 . . . δn

(
1 + α

∑ (λi − 1)ρ′2(u)(|x| − 0.4ε)α−1x2
i

|x|δi(0.3ε)α

)
dx1 ∧ . . . ∧ dxn.

In the sum, the numerator is bounded above by C(0.3ε)α+1 and the denom-
inator is bounded below by C−1(0.3ε)α+1, for some uniform (independent
of α) constant C > 0. Hence choosing α > 0 small enough, we get that the
above quantity does not vanish, hence h is a diffeomorphism onto its image.

After this step is done, recall that we have taken coordinates given by
an orthonormal basis {ei} on the origin R2n, and by the orthonormal basis
{L(ei)/λi} on the target R2n. Written with respect to the same coordinates,
we have an orthogonal transformation M : R2n → R2n so that h(x) = M
on B0.4ε(0). The final step is to change the isometry M ∈ SO(2n) by the
identity. Take a smooth path Mt of matrices joining M0 = id with M1 =
M . Take a smooth non-decreasing ρ3 : [0, ε]→ [0, 1] with ρ3(t) = 0 for t ∈
[0, 0.2ε], and ρ3(t) = 1 for t ∈ [0.3ε, ε]. The map F (x) = Mρ3(|x|)(x), |x| ≤
0.4ε, and F (x) = h(x) for |x| ≥ 0.4ε, is the required map. �

Remark 3.2. Let F : (X̃c, J̃)→ (X̃s, ω̃) be the diffeomorphism provided
by Theorem 3.1. Then if we denote ω̃′ = F ∗ω̃, we have that X̃c admits a
symplectic structure ω̃′ and a complex structure J̃ . These are not compatible
in general, but they are compatible on a neighbourhood of the exceptional
locus, and give a Kähler structure there.

Remark 3.3. The condition ı = ı′ in Theorem 3.1 is not vacuous. Con-
sider for instance the unit ball B = B(0, 1) ⊂ C2 with the standard complex
structure and the symplectic form ω = −i (dz1 ∧ dz̄1 − dz2 ∧ dz̄2). Let ı :
Γp = Zm ↪→ U(2), m > 2, ζ = e2πi/m, with the action given by ζ · (z1, z2) =
(ζz1, ζz2). Then (B,ω) ∼= (B′, ω0), with the symplectomorphism given by
w1 = z1, w2 = z̄2, and ω0 = −i (dw1 ∧ dw̄1 + dw2 ∧ dw̄2) the standard sym-
plectic form. The inclusion ı′ : Zm ↪→ U(2) is now given by the action ζ ·
(w1, w2) = (ζw1, ζ

m−1w2). Therefore ı 6= ı′, for m > 2.

4. A complex and symplectic 6-orbifold

Consider the complex Heisenberg group G, that is, the complex nilpotent
Lie group of (complex) dimension 3 consisting of matrices of the form1 u2 u3

0 1 u1

0 0 1

 .



i
i

“4-Munoz” — 2019/1/16 — 15:51 — page 1010 — #10 i
i

i
i

i
i

1010 G. Bazzoni, M. Fernández, and V. Muñoz

In terms of the natural (complex) coordinate functions (u1, u2, u3) on G, we
have that the complex 1-forms µ = du1, ν = du2 and θ = du3 − u2 du1 are
left invariant, and

dµ = dν = 0, dθ = µ ∧ ν.

Let Λ ⊂ C be the lattice generated by 1 and ζ = e2πi/6, and consider the
discrete subgroup Γ ⊂ G formed by the matrices in which u1, u2, u3 ∈ Λ. We
define the compact (parallelizable) nilmanifold

M = Γ\G.

We can describe M as a principal torus bundle

T 2 = C/Λ ↪→M → T 4 = (C/Λ)2

by the projection (u1, u2, u3) 7→ (u1, u2).
Consider the action of the finite group Z6 on G given by the generator

ρ : G → G

(u1, u2, u3) 7→ (ζ4 u1, ζ u2, ζ
5 u3).

This action satisfies that ρ(p · q) = ρ(p) · ρ(q), for p, q ∈ G, where · denotes
the natural group structure of G. Moreover, ρ(Γ) = Γ. Thus, ρ induces an
action on the quotient M = Γ\G. Denote by ρ : M →M the Z6-action. The
action on 1-forms is given by

ρ∗µ = ζ4 µ, ρ∗ν = ζ ν, ρ∗θ = ζ5 θ.

Proposition 4.1. M̂ = M/Z6 is a 6-orbifold admitting complex and sym-
plectic structures.

Proof. The nilmanifold M is a complex manifold whose complex structure
J is the multiplication by i at each tangent space TpM , p ∈M . Then one
can check that J commutes with the Z6-action ρ on M , that is, (ρ∗)p ◦ Jp =
Jρ(p) ◦ (ρ∗)p, for any point p ∈M . Hence, J induces a complex structure on

the quotient M̂ = M/Z6.
Now we define the complex 2-form ω on M given by

(4.1) ω = −i µ ∧ µ̄+ ν ∧ θ + ν̄ ∧ θ̄.

Clearly, ω is a real closed 2-form on M which satisfies ω3 > 0, that is, ω is
a symplectic form on M . Moreover, ω is Z6-invariant. Indeed, ρ∗ω = −i µ ∧
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µ̄+ ζ6ν ∧ θ + ζ−6ν̄ ∧ θ̄ = ω. Therefore M̂ is a symplectic 6-orbifold, with
the symplectic form ω̂ induced by ω. �

We denote by

π̂ : M → M̂

the natural projection. The orbifold points of M̂ are the following:

1) The points (1
3a(1 + ζ), 1

3b(1 + ζ), 1
3c(1 + ζ) + 2

9ab(1 + ζ)2) ∈M , with
a, b, c ∈ {0, 1, 2} and (b, c) 6= (0, 0), are points of order 3; their isotropy
group is K = {id, ρ2, ρ4}. These points are mapped in pairs by Z6, so

they define 12 orbifold points in M̂ = M/Z6, with models C3/K.

2) The surfaces S(p,q) = {(u1, p, p u1 + q) | u1 ∈ C/Λ} ⊂M , where p, q ∈
{0, 1

2 ,
ζ
2 ,

1+ζ
2 }, (p, q) 6= (0, 0). These are 15 tori, which consist of points

of order 2, with isotropy H = {id, ρ3}. These surfaces are permuted by
the group Z6, so they come in 5 groups of three tori each. Thus they
define 5 tori in the orbifold M̂ , formed by orbifold points of order 2.

3) The surface S0 = {(u1, 0, 0) | u1 ∈ C/Λ} ⊂M is a torus consisting
generically of points of order 2, with isotropy H. Here ρ : S0 → S0

and it is a map of order 3, with three fixed points (1
3a(1 + ζ), 0, 0),

a = 0, 1, 2. These points have isotropy Z6. The quotient S0/〈ρ〉 ⊂ M̂
is homeomorphic to a sphere (with three orbifold points of order 3).

5. Resolution of the 6-orbifold

Now we want to desingularize the orbifold M̂ . We shall treat each of the con-
nected components of the singular locus determined before independently.
Recall that K = {id, ρ2, ρ4} ∼= Z3 and H = {id, ρ3} ∼= Z2. There is a natural
isomorphism 〈ρ〉 = Z6

∼= K ×H.

5.1. Resolution of the isolated orbifold points

We know that there are 12 isolated orbifold points in M̂ . Let p̂ ∈ M̂ be one
of them. The preimage of p̂ under π̂ consists of two points, π̂−1(p̂) = {p1, p2}.
The isotropy group of p1 is K. Consider a K-invariant neighbourhood U of
p1 in M . Then,

Û = π̂(U) ∼= U/K

is an orbifold neighbourhood of p̂ in M̂ . This has complex and symplectic
resolutions as in Section 3. In order to apply Theorem 3.1 we check that ı =
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ı′ : K → U(3). For the complex resolution, we have ı(ζ2) = diag(ζ2, ζ2, ζ4).
For the symplectic resolution, the symplectic form (4.1) is, in our coordinates
(u1, u2, u3),

(5.1) ω = −i du1 ∧ dū1 + du2 ∧ du3 + dū2 ∧ dū3 .

We have to do a change of variables to transform K ⊂ Sp(6,R) into a sub-
group of U(3). This is obtained with

v1 = u1

v2 =
1√
2

(u2 − iū3)

v3 =
1√
2

(ū2 − iu3).

This transforms (5.1) into

ω = −i dv1 ∧ dv̄1 − i dv2 ∧ dv̄2 − i dv3 ∧ dv̄3,

the standard Kähler form. In the new coordinates the K-action is given by
(v1, v2, v3) 7→ (ζ2v1, ζ

2v2, ζ
4v3), so ı′(ζ2) = diag(ζ2, ζ2, ζ4), and ı = ı′.

5.2. Resolution of the singular sets π̂(S(p,q))

Now we consider a connected component of the singular set which is home-
omorphic to a 2-torus. There are 5 such components in M̂ , all of them
are images by π̂ of the sets S(p,q) = {(u1, p, p u1 + q) | u1 ∈ C/Λ}, where

(p, q) ∈ I =
(
{0, 1

2 ,
ζ
2 ,

1+ζ
s }
)2
− {(0, 0)}.

Let us focus on one such component T̂ = π̂(T ), T ∼= C/Λ. Then H fixes
S(p,q), and its orbit under K is given by S(pi,qi), for three elements (p1, q1) =
(p, q), (p2, q2), (p3, q3) ∈ I. Consider a neighbourhood U of T ⊂M via

T ×Bε(0) → U

(u1, u2, u3) 7→ (u1, u2 + p, u3 + p u1 + q),

where Bε(0) ⊂ C2. The image is

(5.2) Û = π̂(U) ∼= U/H ∼= T × (Bε(0)/H),

where H ∼= Z2 acts as (u2, u3) 7→ (−u2,−u3).
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We see that the complex structure on (5.2) is the product complex struc-
ture. Also, the symplectic structure ω = i du1 ∧ dū1 + du2 ∧ du3 + dū2 ∧ dū3

is the product of the natural symplectic structure of C/Λ with an orbifold
symplectic structure on Bε(0)/H. Using the construction of Section 3, we
have a desingularization

Ỹ → Bε(0)/H

which is a smooth manifold endowed with both a complex structure and a
symplectic structure coinciding with the given ones outside a small neigh-
bourhood of the exceptional locus E. The condition ı = ı′ of Theorem 3.1
is trivially satisfied, since ı(ρ3) = ı′(ρ3) = −id. Multiplying by T = C/Λ, we
have that

Ũ = T × Ỹ

is a smooth manifold endowed with a complex structure J̃ , and a symplectic
structure ω̃, which coincide with those of Û outside a small neighbourhood
of the exceptional locus T × E ⊂ Ũ .

The complex and the symplectic resolutions of M̂ in a neighbourhood
of T̂ are obtained by replacing Û ⊂ M̂ with Ũ . The two resolutions are
diffeomorphic by the considerations above.

5.3. Resolution of the singular set π̂(S0)

Finally we consider the connected component of the singular set which is
homeomorphic to a 2-sphere. This is Ŝ0 = π̂(S0), where S0 = {(u1, 0, 0) | u1 ∈
C/Λ}. As before, a neighbourhood of S0 in M is of the form

U0 = (C/Λ)×Bε(0),

where Bε(0) ⊂ C2. The action of H = Z2 is trivial on C/Λ and as ±1 on C2.
The action of K = Z3 is of the form ρ2(u1, u2, u3) = (ζ2u1, ζ

2u2, ζ
4u3).

Let us focus on Bε(0)/H. By the construction of Section 3, we have a
complex desingularization (Ỹc, J̃)→ Bε(0)/H. The holomorphic action of K
on Bε(0) induces an action on (Ỹc, J̃). Also, there is a symplectic desingular-
ization (Ỹs, ω̃)→ Bε(0)/H. The action of K on Bε(0) induces an action on
(Ỹs, ω̃). This follows by taking an orbifold chart of the singular point that is
(H ×K)-equivariant, using the equivariant Darboux theorem.

By Theorem 3.1, there is a diffeomorphism F : (Ỹc, J̃)→ (Ỹs, ω̃). Let us
see that F can be taken to be K-equivariant. This follows by the arguments
in the proof of Theorem 3.1 by using that ı : H ×K → U(2) and ı′ : H ×
K → U(2) are equal. For the complex case, ı is given by the representation
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(u2, u3) 7→ (ζu2, ζ
5u3), so ı(ζ) = diag(ζ, ζ5). For the symplectic case, we have

to do a change of variables to transform H ×K ⊂ Sp(4,R) into a subgroup
of U(2). This is given by

v2 =
1√
2

(u2 − iū3), v3 =
1√
2

(ū2 − iu3),

which transforms ω = du2 ∧ du3 + dū2 ∧ dū3 into the standard Kähler form
−i dv2 ∧ dv̄2 − i dv3 ∧ dv̄3. As (v2, v3) 7→ (ζv2, ζ

5v3), we have that ı′(ζ) =
diag(ζ, ζ5). Hence ı = ı′.

This produces a desingularization Ỹ → Bε(0)/H with a symplectic and
a complex structure, which match the given ones outside a small neighbour-
hood of the exceptional set E ⊂ Ỹ , which are compatible (they give a Kähler
structure) in a smaller neighbourhood of E, by Remark 3.2, and which have
an action of K preserving both the complex and symplectic structures. A
desingularization of

U0/H = (C/Λ)× (Bε(0)/H)

is given by substituting a neighbourhood of Ŝ0 = (C/Λ)× {0} by (C/Λ)×
Ỹ . The fixed points of action of K in U0/H lie on Ŝ0, hence the fixed points
of the action of K on the desingularization of U0/H lie in the exceptional
divisor. In this part of the manifold, we have a Kähler structure, so the
symplectic and complex desingularization are the same.

This means that (U0/H)/K ∼= U0/(H ×K) admits a desingularization

Ṽ with a complex and a symplectic structure. The resolution of M̂ in a
neighbourhood of Ŝ0 is obtained by substituting π̂(U0) = U0/(H ×K) ⊂ M̂
with Ṽ .

All together, we get a smooth 6-manifold M̃ with a complex structure
and a symplectic structure, and with a map

π : M̃ −→ M̂,

which is simultaneously a complex and a symplectic resolution.

6. Topological properties of M̃

In this section, we are going to complete the proof of Theorem 1.1 by proving
that M̃ is simply-connected and that it does not admit a Kähler structure.

Proposition 6.1. M̃ is simply connected.
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Proof. By [17, Theorem 7.8.1], it is sufficient to prove that M̂ is simply
connected.

We fix base points p0 = (0, 0, 0) ∈M and p̂0 = π̂(p0) ∈ M̂ . There is an
epimorphism of fundamental groups

Γ = π1(M,p0) � π1(M̂, p̂0),

since the Z6-action has a fixed point [4, Chapter II, Corollary 6.3]. Now the
nilmanifold M is a principal 2-torus bundle over the 4-torus T 4, so we have
an exact sequence

Z2 ↪→ Γ→ Z4.

The group Γ = π1(M,p0) is thus generated by the images of the funda-
mental groups of the surfaces Σ1 = {(u1, 0, 0)}, Σ2 = {(0, u2, 0)} and Σ3 =
{(0, 0, u3)} in M . The image π̂(Σ1) is a 2-sphere, since π̂ : Σ1 → π̂(Σ1) is
a degree 3 map with three ramification points of order 3 (namely (1

2a(1 +
ζ), 0, 0), with a = 0, 1, 2). The image of Σ2 is also a 2-sphere, since π̂ : Σ2 →
π̂(Σ2) is a degree 6 map with one point of order 6, (0, 0, 0), two of or-
der 3, (0, 1

2b(1 + ζ), 0), b = 1, 2, and three of order 2 (namely (0, p, 0), p =
1
2 ,

ζ
2 ,

1+ζ
2 ). Analogously, π̂(Σ3) is a 2-sphere. This proves that π1(M̂, p̂0) =

{1}.
Now we look at the resolution process. As mentioned before, the desin-

gularisation process does not change the fundamental group [17, Theo-
rem 7.8.1]. However, for simplicity, we give a direct proof of this result in the

case at hand. Let S ⊂ M̂ be the singular locus and suppose p ∈ S is an iso-
lated orbifold point. The resolution replaces a neighbourhood B = Bε(0)/Γp
of p with a smooth manifold B̃, such that π : B̃ → B is a complex resolution
of singularities. The manifold B̃ is simply connected by [24, Theorem 4.1].

A Seifert-Van Kampen argument gives that π1(M̂) is the amalgamated sum

of π1(M̂ − {p}) and π1(B) along π1(∂B). Also π1(M̃) is the amalgamated

sum of π1(M̃ − E) and π1(B̃) along π1(∂B). As π1(B) = π1(B̃) = {1}, we

have that π1(M̂) = π1(M̃).
Suppose now that we have a connected component S′ of the singular

locus S of positive dimension. Let E′ = π−1(S′) be the corresponding ex-
ceptional locus. The invariance of the fundamental group under resolution
is proved along the same lines as before if we know that the map π : E′ → S′

induces an isomorphism π1(E′)→ π1(S′). In our case, we have two possibil-
ities: if S′ = π̂(S(p,q)) ∼= T 2, then E′ = T 2 × E, where E is the exceptional

divisor of the resolution Ỹ → Bε(0)/H, which is clearly simply connected,
and the result follows.
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The second possibility is S′ = π̂(S0). In this case, the exceptional divisor
over S′ is the exceptional divisor of the resolution of

((C/Λ)× (C2/H))/K.

The resolution of C2/H is done by blowing-up C2 at the origin,

C̃2 = {(a, b, [u : v]) ∈ C2 × CP1 | av = bu},

and then quotienting by H = {±id}. Clearly, the fundamental groups of
(C/Λ)× (C2/H) and (C/Λ)× (C̃2/H) coincide. The action of K is given
by (a, b, [u : v]) 7→ ((ζ2a, ζ4b), [u : ζ2v]), with fixed points (0, 0, [1 : 0]) and
(0, 0, [0 : 1]) The fixed points of K on ((C/Λ)× (C̃2/H) occur when K fixes
both factors. Therefore, all fixed points are isolated, and the second resolu-
tion does not alter the fundamental group. �

In order to prove that M̃ does not admit a Kähler structure, we are going
to check that it does not satisfy the Lefschetz condition for any symplectic
form. For this, it is necessary to understand the cohomology H∗(M̃).

We start by computing the cohomology of M̂ . By Nomizu theorem [19],
the cohomology of the nilmanifold M is:

H0(M,C) = 〈1〉,
H1(M,C) = 〈[µ], [µ̄], [ν], [ν̄]〉,
H2(M,C) = 〈[µ ∧ µ̄], [µ ∧ ν̄], [µ̄ ∧ ν], [ν ∧ ν̄], [µ ∧ θ], [µ̄ ∧ θ̄], [ν ∧ θ], [ν̄ ∧ θ̄]〉,
H3(M,C) = 〈[µ ∧ µ̄ ∧ θ], [µ ∧ µ̄ ∧ θ̄], [ν ∧ ν̄ ∧ θ], [ν ∧ ν̄ ∧ θ̄], [µ ∧ ν ∧ θ],

[µ̄ ∧ ν̄ ∧ θ̄], [µ ∧ ν̄ ∧ θ], [µ ∧ ν̄ ∧ θ̄], [µ̄ ∧ ν ∧ θ], [µ̄ ∧ ν ∧ θ̄]〉,
H4(M,C) = 〈[µ ∧ µ̄ ∧ ν ∧ θ], [µ ∧ µ̄ ∧ ν̄ ∧ θ̄], [µ̄ ∧ ν ∧ ν̄ ∧ θ̄], [µ ∧ ν ∧ ν̄ ∧ θ],

[µ ∧ µ̄ ∧ θ ∧ θ̄], [ν ∧ ν̄ ∧ θ ∧ θ̄], [µ ∧ ν̄ ∧ θ ∧ θ̄], [µ̄ ∧ ν ∧ θ ∧ θ̄]〉,
H5(M,C) = 〈[µ ∧ µ̄ ∧ ν ∧ θ ∧ θ̄], [µ ∧ µ̄ ∧ ν̄ ∧ θ ∧ θ̄], [µ ∧ ν ∧ ν̄ ∧ θ ∧ θ̄],

[µ̄ ∧ ν ∧ ν̄ ∧ θ ∧ θ̄]〉,
H6(M,C) = 〈[µ ∧ µ̄ ∧ ν ∧ ν̄ ∧ θ ∧ θ̄]〉.

The cohomology of M̂ is H∗(M̂,C) = H∗(M,C)Z6 :

H0(M̂,C) = 〈1〉,
H1(M̂,C) = 0,

H2(M̂,C) = 〈[µ ∧ µ̄], [ν ∧ ν̄], [ν ∧ θ], [ν̄ ∧ θ̄]〉,
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H3(M̂,C) = 0,

H4(M̂,C) = 〈[µ ∧ µ̄ ∧ ν ∧ θ], [µ ∧ µ̄ ∧ ν̄ ∧ θ̄], [µ ∧ µ̄ ∧ θ ∧ θ̄], [ν ∧ ν̄ ∧ θ ∧ θ̄]〉,
H5(M̂,C) = 0,

H6(M̂,C) = 〈[µ ∧ µ̄ ∧ ν ∧ ν̄ ∧ θ ∧ θ̄]〉.

Proposition 6.2. M̃ does not admit a Kähler structure since it does not
satisfy the Lefschetz property for any symplectic form on M̃ .

Proof. Let Ω be a symplectic form on M̃ . The Lefschetz map L[Ω] : H
2(M̃)→

H4(M̃) is given by the cup product with [Ω]. We show that there is a class

[β] ∈ H2(M̃) which is in the kernel of L[Ω]. We prove this by checking that

[Ω] ∧ [β] ∧ [α] = 0, for any 2-form [α] ∈ H2(M̃).

We need to determine the cohomology H2(M̃). For this, the first step is

to construct a map H2(M̂)→ H2(M̃). Let h : M →M be a map which:

• is the identity outside small neighbourhoods of each point with non-
trivial isotropy,

• contracts a neighbourhood of each of the 24 isolated points whose
isotropy is K onto the corresponding point,

• contracts a neighbourhood of each S(p,q) onto S(p,q) (fixing S(p,q) point-
wise),

• in a neighbourhood of S0, is the composition of a contraction onto S0

with a map that contracts neighbourhoods (in S0) of the 3 fixed points
to the points, and

• is Z6-equivariant.

h induces a map ĥ : M̂ → M̂ . Note that for any closed form α ∈ Ω∗(M̂),

ĥ∗(α) ∈ Ω∗(M̂) is cohomologous to α and can be lifted to a form π∗ĥ∗(α) ∈
Ω∗(M̃), where π : M̃ → M̂ is the resolution map. This induces a well-defined
map

Ψ = π∗ ◦ ĥ∗ : H∗(M̂)→ H∗(M̃).

Now consider U = M̂ − S, where S ⊂ M̂ is the singular locus and V ⊂ M̂
is a small neighbourhood of S. Let also Ũ = π−1(U) and Ṽ = π−1(V ) ⊂ M̃ .
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Using compactly supported de Rham cohomology, we have a diagram

H2
c (U)⊕H2

c (V ) → H2
c (M̂) → H3

c (U ∩ V ) → H3
c (U)⊕H3

c (V )
↓= Ψ ↓ ↓ Ψ ↓∼= ↓= Ψ ↓

H2
c (Ũ)⊕H2

c (Ṽ ) → H2
c (M̃) → H3

c (Ũ ∩ Ṽ ) → H3
c (Ũ)⊕H3

c (Ṽ )

Since V retracts onto a set of dimension 2, H3(V ) = 0. By Poincaré duality,

H3
c (V ) = 0 as well. Now a simple diagram chasing proves that H2(M̃) =

H2
c (M̃) is generated by H2(M̂) = H2

c (M̂) and H2
c (Ṽ ).

Consider the closed form ν ∧ ν̄ ∈ Ω2(M̂). Since ν ∧ ν̄|S(p,q)
= 0 for any

surface S(p,q) and ν ∧ ν̄|S0
= 0 as well, the 2-cohomology class

[β] = Ψ([ν ∧ ν̄])

vanishes on Ṽ . Clearly [β] ∧ [α1] ∧ [α2] = 0 if either [α1], [α2] ∈ H2
c (Ṽ ). More-

over, one can check that [β] ∧ [α1] ∧ [α2] = 0, for [α1], [α2] ∈ H2(M̂), which
completes the proof. �
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