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LetM be a symplectic toric manifold acted on by a torus T. In this
work we exhibit an explicit basis for the equivariant K-theory ring
KT(M) which is canonically associated to a generic component
of the moment map. We provide a combinatorial algorithm for
computing the restrictions of the elements of this basis to the fixed
point set; these, in turn, determine the ring structure of KT(M).
The construction is based on the notion of local index at a fixed
point, similar to that introduced by Guillemin and Kogan in [GK].

We apply the same techniques to exhibit an explicit basis for
the equivariant cohomology ring HT(M ;Z) which is canonically
associated to a generic component of the moment map. Moreover
we prove that the elements of this basis coincide with some well-
known sets of classes: the equivariant Poincaré duals to certain
smooth flow up submanifolds, and also the canonical classes intro-
duced by Goldin and Tolman in [GT], which exist whenever the
moment map is index increasing.
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1. Introduction

Let (M2n, ω) be a compact symplectic toric manifold of dimension 2n, i.e. a
compact symplectic manifold equipped with an effective Hamiltonian action
of an n-dimensional torus T with Lie algebra t, and let ψ : M → t∗ be a
moment map for the action. Moreover assume that the fixed point setMT is
discrete. Let HT(M) denote either the equivariant cohomology ring with Z

coefficients or the equivariant K-theory ring ofM . The inclusion i : MT →֒M
is T-equivariant, hence it induces a map

i∗ : HT(M) → HT(M
T) .

Since MT is discrete the map i∗ is always injective (cf. [Ki] for a proof in
the equivariant cohomology setting and [GK] for the equivariant K-theory
ring). Therefore HT(M) can be viewed as a subring of HT(M

T).
The main goal of this paper is to construct an explicit basis of HT(M)

canonically associated to a generic component µ of the moment map ψ
(see page 1124). The restrictions of the basis elements to the fixed points,
i.e. their images in HT(M

T), determine the equivariant structure constants
associated to this basis, hence the ring structure of HT(M).

A result of Kirwan guarantees that there always exists a basis for HT(M)
associated to a generic component of the moment map, the elements of this
basis being called Kirwan classes (see [Ki] for the equivariant cohomology
setting, and Proposition 2.2 for a generalization of this idea to equivariant
K-theory). This basis is, however, not unique. Several authors have added
different conditions that would ensure this basis to be unique, i.e. to be
canonically associated to a generic component of the moment map. For ex-
ample, Guillemin and Zara [GZ02, GZ03] study this problem for the equiv-
ariant cohomology ring of GKM spaces (see Section 2.2). The elements of
the basis they introduce are called equivariant Thom classes, and should be
thought of as the “equivariant Poincaré duals” to the closures of the unstable
manifolds W u(p) of a generic component µ of the moment map with respect
to an invariant metric. When such closures are smooth, these equivariant
Poincaré duals can be computed explicitly in terms of the T-representations
on the normal bundle of W u(p). However in general these closures are not
smooth, and in this case the restrictions of the equivariant Thom classes to
the fixed point set are analyzed by means of the combinatorics of the GKM
graph. In [GT] Goldin and Tolman study a similar problem on Hamilto-
nian T-spaces, and introduce basis elements for the equivariant cohomology
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ring which are canonically associated to a generic component µ of the mo-
ment map. However in both cases, the existence and uniqueness of such
classes is proved only under the assumption that µ is index increasing (see
Definition 4.2). This is satisfied for example when the stable and unstable
manifolds of µ with respect to an invariant metric meet transversally. Later
work of Zara [Z] provides a basis of HT(M ;Q) also in the non-index increas-
ing case, however the same procedure would not in general produce a basis
of HT(M ;Z).

In [GK] Guillemin and Kogan introduce equivariant K-theory classes
which are a basis of the equivariant K-theory ring KT(M) of a Hamiltonian
T-space (as a module over the equivariant K-theory of a point), not nec-
essarily endowed with an index-increasing component of the moment map.
However no explicit connection is given between such basis and the “natural”
basis given by the K-theoretical equivariant Poincaré duals to the closures of
the unstable manifolds (in the case in which there exists an invariant metric
for which these are all smooth). To express the extra conditions imposed on
Kirwan classes, Guillemin and Kogan introduce the local index map, that
associates to each class in KT(M) and each fixed point q ∈MT an element
of KT(pt). Note that KT(pt) can be identified with R(T), the representation
ring of T.

Inspired by this idea, we present a slightly different definition of local
index of an equivariant K-theory class τ at a fixed point q

Indq : KT(M) → R(T),

and give an explicit combinatorial recipe for computing it (see Definition 3.2
in Section 3). Using this notion we introduce a basis for the equivariant K-
theory ring of a symplectic toric manifoldM which is canonically associated
to a generic component of the moment map, both in the index increasing
and non-index increasing case. The main result of the paper is the follow-
ing. Let Fp be the flow-up manifold at p ∈MT (see page 1131, Section 3),
corresponding to the closure of the unstable manifold at p.

Theorem 1.1. Let (M,ω,T, ψ) be a symplectic toric manifold of dimen-
sion 2n, together with a choice of a generic component of the moment map
µ : M → R. Let KT(M) be the equivariant K-theory ring of M . Then for
each p ∈MT there exists a unique Kirwan class τp ∈ KT(M), called the i-
canonical class at the fixed point p (see Definition 3.5), satisfying

1) Indq(τp) = 1 for all points q ∈ Fp ∩M
T;
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2) Indq(τp) = 0 for all points q /∈ Fp ∩M
T.

Moreover, the set {τp}p∈MT is a basis for KT(M) as a module over R(T).

Being a Kirwan class means that τp(p) = e
−
T
(p), the equivariant (K-

theoretical) Euler class of the negative normal bundle N−
p of µ at p, and

that τp(q) = 0 for all q ∈MT with µ(q) < µ(p) (see Proposition 2.2).
We prove the claims of the above theorem in two separate Propositions:

uniqueness is proved in Proposition 3.7, existence in Proposition 4.1.
Moreover, we show that in the index increasing case these classes are

indeed the equivariant Poincaré duals to the flow-up manifolds Fp (see
Lemma 4.3 and Prop. 4.5).

Note that we require our classes τp to have local index 1 on Fp, not only
at p as in [GK]. As a consequence, the trivial bundle 1 ∈ KT(M), endowed
with the trivial action on the fiber, is an element of our basis of i-canonical
classes, while it is a non-trivial R(T)-linear combination of the elements
of the basis exhibited in [GK]. Moreover, when M is a complex projective
space endowed with the standard toric action, the basis of i-canonical classes
consists of powers of the (equivariant) prequantization line bundle (see Ex-
ample 4.6). Another important advantage of our approach is that the local
index, and thus also the i-canonical classes, is easy to calculate directly from
the combinatorics underlying the symplectic toric manifold, as we demon-
strate by various examples. We give explicit formulas for the elements of
this basis when the component of the moment map is index increasing, and
inductive formulas otherwise.

The definition of local index can also be translated to the equivariant
cohomology setting (Section 5), thus allowing us to define a canonical basis
for the equivariant cohomology ring of M .

Theorem 1.2. Let (M,ω,T, ψ) be a symplectic toric manifold of dimen-
sion 2n, together with a choice of a generic component of the moment map
µ : M → R. Let H∗

T
(M ;Z) be the equivariant cohomology ring of M with in-

teger coefficients. Then for each p ∈MT there exists a unique Kirwan class
τp ∈ H∗

T
(M ;Z), called the i-canonical class at the fixed point p (see

Definition 5.5), satisfying

1) Indp(τp) = 1;

2) Indq(τp) = 0 for all points q ∈MT \ {p}.

The set {τp}p∈MT is a basis for H∗
T
(M ;Z) as a module over H∗

T
(pt;Z).
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Indeed, in Proposition 5.17 we prove that the i-canonical classes in equiv-
ariant cohomology coincide with the equivariant Poincaré duals to the flow-
up manifolds Fp. Moreover, when the chosen component of the moment map
is index increasing, they also coincide with the canonical classes introduced
by Goldin and Tolman in [GT] (see Proposition 5.10).

Note that the definition of i-canonical classes in equivariant cohomology
is not a direct translation of the definition in K-theory. Here we want the
local index of τp to vanish at all fixed points other than p. The reason for this
difference is that we want the class 1 ∈ H∗

T
(M ;Z) to be one of the elements

of the basis of H∗
T
(M ;Z).

Organization. Section 2 contains the background material and some pre-
liminary results. The definition and properties of the local index are in Sec-
tion 3. In Section 4 we construct i-canonical classes in equivariant K-theory,
thus proving their existence. Section 5 proves similar results in the equiv-
ariant cohomology setting. We finish the paper with an appendix about an
explicit description of the Kirwan map.

Acknowledgements. The authors are grateful to the anonymous referee
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87791/2012 and projects EXCL/MAT-GEO/0222/2012, PTDC/MAT/
117762/2010. The second author was supported by the Fundação para a
Ciência e a Tecnologia, Portugal, from 09/2013 until 08/2014: postdoctoral
fellowship SFRH/BPD/86851/2012 and projects EXCL/MAT-GEO/0222/
2012, PTDC/MATH/117762/2010. This research is part of an ongoing
project supported by SFB-TRR 191 “Symplectic Structures in Geometry,
Algebra and Dynamics”, funded by the Deutsche Forschungsgemeinschaft.

2. Background

2.1. Hamiltonian spaces

Let (M,ω) be a compact symplectic manifold of dimension 2n, and T a
compact real torus of dimension d with Lie algebra t. Suppose that T acts on
(M,ω) in a Hamiltonian fashion, i.e. there exists a T-invariant map ψ : M →
t∗, called moment map, satisfying

(2.1) ιξ#ω = −d〈ψ, ξ〉 ,

where ξ# denotes the vector field on M associated with the flow of sym-
plectomorphisms generated by ξ ∈ t, and 〈·, ·〉 the dual pairing between t∗
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and t. Unless otherwise stated, we assume the action to be effective, and the
fixed point set MT of the action to be discrete. We refer to (M,ω,T, ψ) as

a Hamiltonian T-space. Recall that when dim(T) = dim(M)
2 , the Hamil-

tonian T-space (M,ω,T, ψ) is called a symplectic toric manifold. Before
specializing to the case of symplectic toric manifolds, we first introduce some
notions that are be used throughout this note and do not depend on the ac-
tion being toric.

Let KT(M) denote the equivariant K-theory ring of M , i.e. the abelian
group associated to the semigroup of isomorphism classes of complex T-
vector bundles over M , endowed with the direct sum operation ⊕ and the
tensor product ⊗. Thus, ifM is a point, KT(pt) is the representation ring of
the torus T, henceforth denoted by R(T). Observe that, if ℓ∗ ⊂ t∗ denotes the
weight lattice of t∗ and ℓ∗ = Z〈x1, . . . , xd〉, then R(T) can be identified with
the ring of finite sums

{∑
j∈J nje

2πiwj s.t. |J | <∞, nj ∈ Z and wj ∈ ℓ∗
}
,

or equivalently

(2.2) R(T) = Z[e2πix1 , . . . , e2πixd , e2πi(−x1−x2−···−xd)]

i.e. R(T) is identified with the character ring of T. The unique map π : M →
{pt} induces a map π∗ : R(T) → KT(M) which gives KT(M) the structure
of an R(T)-module.

Observe that the inclusion i : MT →֒M , which is clearly T-equivariant,
gives rise to a map in equivariant K-theory:

i∗ : KT(M) → KT(M
T) .

Since we assumeMT to be discrete we have KT(M
T) =

⊕
p∈MT R(T), which

can be regarded as the ring of maps that assign to each fixed point p ∈MT

a representation in R(T). In [GK, Corollary 2.2], the authors prove that for
(compact) Hamiltonian T-spaces with discrete fixed point setMT, the above
restriction map i∗ is injective (this result is quoted here in Theorem 2.3; see
also [HL, Theorem 2.5] for the case in which M is not necessarily compact).
Thus KT(M) can be regarded as a subring of KT(M

T), which is a much
easier object to deal with. Henceforth we identify KT(M) with i∗(KT(M)):

KT(M) ∼= i∗(KT(M)) ⊂ KT(M
T) ∼=

⊕

p∈MT

R(T).

Let p ∈MT and i∗p : KT(M) → KT({p}) the map induced by the inclusion
ip : {p} →֒M . For every τ ∈ KT(M) we denote by τ(p) ∈ R(T) the value
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i∗p(τ), and define the support of τ to be

supp(τ) = {q ∈MT | τ(q) 6= 0} ⊂MT.

Observe that injectivity of i∗ implies that τ = 0 ∈ KT(M) if and only if
τ(p) = 0 for all p ∈MT, or equivalently if and only if supp(τ) = ∅.

Let J : TM → TM be a T-invariant almost complex structure compat-
ible with ω, i.e. ω(J ·, ·) defines an (invariant) inner product on M . If p is
a fixed point of the action, the T-action on M induces a representation on
TpM ≃ Cn, called the isotropy representation of T at p , which is given
by

(2.3) exp(ξ) · (z1, . . . , zn) = (e2πiw1(ξ)z1, . . . , e
2πiwn(ξ)zn) for every ξ ∈ t .

Here the wi’s are well-defined nonzero elements of ℓ∗ and are called the
weights (of the isotropy representation of T) at p. The weights are
nonzero because we are assuming MT to be discrete, and the isotropy ac-
tion commutes with the T-action on M around p. We denote the set of
these weights, counted with multiplicities, by Wp, and the set of all isotropy
weights, counted with multiplicities, by W =

∐
p∈MT Wp.

Take a vector ξ ∈ t such that w(ξ) 6= 0 for all w ∈W , and consider
the circle subgroup generated by ξ, S1 = {exp(t ξ) | t ∈ R} ⊂ T. It is well-

known (cf. [F]) that the ξ-component of the moment map µ = ψξ : M → R,
defined as µ(q) = 〈ψ(q), ξ〉, is a T-invariant Morse function whose critical
set coincides with the fixed point set MT. It is easy to check that equation
(2.1) implies that the isotropy weights in the representation on the nega-
tive (resp. positive) normal bundle of µ at p, denoted by N−

p (resp. N+
p ),

coincide with the positive (resp. negative) weights, i.e. with those w’s
in Wp such that w(ξ) > 0 (resp. w(ξ) < 0). We denote this (multi)set by
W+
p (resp. W−

p ). Observe that, with this convention, all the weights at the
minimum p0 of µ are negative, so that Wp0 =W−

p0 .
Let λp denote the number of positive weights at p for every p ∈MT;

then the Morse index of µ at p is precisely 2λp.

Definition 2.1. Given p ∈MT, the equivariant (K-theoretical) Euler
class of the negative normal bundle N−

p of µ at p, denoted by e
−
T
(p), is an

element of KT({p}) defined as

e
−
T
(p) =

∏

wj∈W
+
p

(1− e2πiwj )
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This class plays a key role in the construction of i-canonical classes.
We say that µ separates fixed points if µ(p) 6= µ(q) for every p, q ∈

MT with p 6= q. Observe that, since we only deal with symplectic toric mani-
folds, the moment map for the T-action is always injective when restricted to
the fixed point set. Thus, for an open dense subset of ξ ∈ t, the corresponding
µ separates fixed points. We call ξ ∈ t generic 1 if w(ξ) 6= 0 for all w ∈W
and the corresponding µ separates fixed points. Such µ is called a generic
component of the moment map. Henceforth, we order the fixed points
of the action p0, . . . , pN in such a way that µ(p0) < µ(p1) < · · · < µ(pN ) and
denote this ordering by

(2.4) p0 ≺ p1 ≺ · · · ≺ pN .

The following proposition is not new, but since it plays a key role in our
work, we include the proof for the readers’ convenience.

Proposition 2.2. Let (M,ω,T, ψ) be a Hamiltonian T-space, and let µ :
M → R be a generic component of the moment map. Then for every p ∈MT

there exists a class νp ∈ KT(M), called a Kirwan class at p, such that

(i) νp(p) = e
−
T
(p);

(ii) νp(q) = 0 for every q ∈MT such that q ≺ p, i.e. µ(q) < µ(p).

Moreover the set {νp}p∈MT is a basis for KT(M) as an R(T)-module.

Before giving the proof of this Proposition, we recall here a few important
facts about the equivariant K-theory ring of Hamiltonian T-spaces. For every
p ∈MT and a small ε > 0, let

M±
p = {q ∈M | µ(q) ≤ µ(p)± ε}.

We don’t include ε in the notation as for all sufficiently small ε’s homotopy
type of the above set is the same. LetDλp be a 2λp-dimensional disc centered
at 0 in the subspace Cλp ⊂ Cλp ⊕ Cn−λp ≃ TpM corresponding to the λp
complex coordinates on which the isotropy action (2.3) has positive weights.
Note that Dλp is T-invariant with respect to the isotropy action. By a stan-
dard Morse-theoretic argument, for ε > 0 sufficiently small, there exists an
equivariant homotopy equivalence between (M+

p ,M
−
p ) and (D2λp , ∂D2λp),

1Note that in literature it is common to call ξ generic if w(ξ) 6= 0 for all w ∈W .
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thus implying that KT(M
+
p ,M

−
p ) ≃ KT(D

2λp , ∂D2λp). Consider the follow-
ing diagram:

(2.5) KT(M
+
p ,M

−
p )

αp // KT(M
+
p )

ι∗p
��

KT({p})

Tp

OO

// KT({p})

where Tp is the Thom isomorphism, αp the map in the long exact sequence of
the pair (M+

p ,M
−
p ) and ι∗p the restriction map. We have that ι∗p ◦ αp ◦ Tp is

just the multiplication by e
−
T
(p), which is not a zero divisor in KT({p}), thus

implying that αp is injective for every p ∈MT. This is the main ingredient
of the following Theorem (whose proof is omitted here, but the reader can
refer to [GK, Lemma 2.1 and Corollary 2.2]):

Theorem 2.3. For every p ∈MT and ε > 0 (used to define M±
p ) suffi-

ciently small, the K-theory long exact sequence of the pair (M+
p ,M

−
p ) splits

into short exact sequences

(2.6) 0 // KT(M
+
p ,M

−
p )

αp // KT(M
+
p )

βp // KT(M
−
p ) // 0

Moreover, the following map

(2.7) KT(M
±
p ) → KT(M

±
p ∩MT)

is injective for every p ∈MT, hence so is

(2.8) i∗ : KT(M) → KT(M
T).

Finally, the map

(2.9) KT(M) → KT(M
±
p )

is surjective for every p ∈MT.

Proof of Proposition 2.2. Consider any K-theory class ν in KT(M
+
p ). Recall

that we denote ι∗p(ν) by ν(p). By the exactness of (2.6) and the analysis of
the diagram (2.5) done before, we obtain that ν is in ker(βp) if and only if
it satisfies ν(p) = f e−

T
(p) for some f ∈ R(T) = KT({p}) and ν(q) = 0 for all

q ∈M−
p ∩MT. By Theorem 2.3 the restriction map KT(M

+
p ) → KT(M

+
p ∩

MT) is injective, so specifying f uniquely determines the class ν. By taking
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f = 1 and extending the class ν to M , which can be achieved by using the
surjectivity of (2.9), we obtain a class νp ∈ KT(M) satisfying properties (i)
and (ii) in Proposition 2.2, henceforth called a Kirwan class.

Consider a collection of Kirwan classes {νp}p∈MT . We first need to prove
that they generate KT(M) as an R(T)-module. Let γ ∈ KT(M), and let q0
be the first fixed point (in the ≺ order) where γ(q0) 6= 0. Since the restriction
of γ to M−

q0 is zero, from what we observed before, and by property (i) of

νq0 , we have γ(q0) = f0 e
−
T
(q0) = f0 νq0(q0), for some f0 ∈ R(T). Thus the

class γ − f0νq0 is zero at q0, and by property (ii) of νq0 , the first fixed point
q1 where it doesn’t vanish satisfies q0 ≺ q1. By repeating this argument we
can construct a class γ −

∑m
i=1 fiνqi , with fi ∈ R(T) for all i = 1, . . . ,m,

whose restriction to the fixed point set vanishes identically. By the injectivity
of (2.8) it follows that γ −

∑m
i=1 fiνqi = 0, and hence {νp}p∈MT is a set of

generators of KT(M) as an R(T)-module.
Now suppose that δ =

∑s
j=0 cjνpij = 0, where cj ∈ R(T) and cj 6= 0 for

every j = 0, . . . , s, and assume that i1 < i2 < · · · < is. Observe that νpi1 is
the only class that does not vanish at pi1 , and hence δ(pi1) = c1νpi1 (pi1) =
c1e

−
T
(pi1) 6= 0, which gives a contradiction. We conclude that the set {νp}p∈MT

is a basis for KT(M) as an R(T)-module. �

Finally we recall the following Lemma, whose proof follows, mutatis mutan-
dis, from that of [GS, Lemma 2.4].

Lemma 2.4. With the same hypotheses of Proposition 2.2, let {νp}p∈MT

be a basis of KT(M) consisting of Kirwan classes. Consider the equivariant
structure constants {asp,q}p,q,s∈MT ⊂ R(T) associated to the basis {νp}p∈MT,
namely

νpνq =
∑

s∈MT

asp,qνs.

Then there exists an explicit algorithm that computes these equivariant struc-
ture constants from the restrictions, {i∗(νp)}p∈MT , of the basis elements to
the fixed point set.

Observe that Kirwan classes are never unique, unless M is a point. In-
deed, if νp is a Kirwan class at p, then the class

νp +
∑

{q∈MT|µ(q)>µ(p)}

aqνq

also is, for any set of aq ∈ R(T).
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In the next sections we introduce “special” Kirwan classes, i.e. Kirwan
classes satisfying some extra assumptions that ensure their uniqueness, and
compute their restrictions to the fixed point set.

2.2. The equivariant K-theory ring of GKM spaces

Let (M,ω,T, ψ) be a Hamiltonian T-space (so MT is discrete) and assume
that dim(T) ≥ 2. Then the T-action is called GKM (Goresky-Kottwitz-
MacPherson [GKM]), or equivalently (M,ω,T, ψ) is called a GKM
space, if for every codimension one subtorus K ⊂ T, the submanifold fixed
by K has dimension at most 2. It can be checked that this condition is
equivalent to requiring that for every fixed point p ∈MT, the weights of the
isotropy action at p, w1, . . . , wn ∈ ℓ∗ ⊂ t∗, are pairwise linearly independent.
Let ki ⊂ t be ker(wi), and Ki = exp(ki) ⊂ T. From the definition of GKM
space it follows that for each i = 1, . . . , n, the connected component of MKi

containing p is a 2-sphere, called isotropy sphere. The circle group T/Ki

acts effectively on such sphere, and this action has two fixed points, one of
them being p. The combinatorics of the arrangement of isotropy spheres,
together with the information on their stabilizers, is encoded in a labeled
graph, called GKM graph Γ = (V,E):

• The vertex set V coincides with the fixed point set MT.

• Given distinct p, q ∈ V , there exists a directed edge e = −→p q from p to
q if and only if there exists a 2-sphere S2 fixed by some codimension
one subgroup K ⊂ T such that the fixed points of the action of the
quotient circle T/K on S2 are precisely p and q; we refer to this sphere
as the sphere associated to (the edge) e.

• Every edge e = −→p q ∈ E is labeled by a weight w(e) ∈ ℓ∗, defined as
the weight of the isotropy T-action on TqS

2, where S2 is the sphere
associated to e = −→p q.

Every time p is connected to q by an edge e = −→p q (with weight w(e)), then by
definition also q is connected to p by an edge −e = −→q p (with weight w(−e) =
−w(e)). In order to avoid having two edges representing geometrically the
same sphere, we choose one of these edges by picking an orientation on the
edge set E in the following way. Pick a generic ξ and let µ : M → R be the
ξ-component of the moment map ψ, as defined before. Each isotropy sphere
is a symplectic submanifold with an effective Hamiltonian action of a circle
with two fixed points p and q. Since ξ is generic we have w(ξ) 6= 0, for all
w ∈W . This implies that µ(p) 6= µ(q), and so for each isotropy sphere we
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choose the directed edge e = −→p q such that µ(p) < µ(q). We refer to this graph
as the oriented GKM graph (associated to (M,ω,T, ψ, ξ)) and denote it
by Γo = (V,Eo). We also define an increasing path γ from p to q in the
oriented GKM graph Γo, where p, q ∈ V , to be an ordered sequence of edges
in Eo of the form (−−→p p1,

−−→p1 p2, . . . ,
−→pj q). Observe that if µ(p) ≥ µ(q), (i.e.

p � q), then the set of increasing paths from p to q is empty.
For a GKM space (M,ω,T, ψ, ξ) with oriented GKM graph Γo = (V,Eo),

the weights in the negative normal bundle at p, namely those inW+
p , coincide

with the weights associated to the edges ej ∈ Eo of the form −→qj p. Thus the
equivariant (K-theoretical) Euler class of the negative bundle at p ∈MT in
Definition 2.1 can be expressed as

e
−
T
(p) =

∏

ej

(1− e2πiw(ej))

where the product is over all the λp edges ej ∈ Eo ending at p, i.e. ej =
−→qj p ∈ Eo, for some qj ∈ V .

In analogy with the equivariant cohomology ring, the GKM graph de-
termines which elements in KT(M

T) come from classes in KT(M). This is
proved by Knutson and Rosu in the Appendix of [R].

Theorem 2.5 (Knutson, Rosu ’03). Let (M,ω,T, ψ) be a GKM space,
and Γ=(V,E) the associated GKM graph. Then τ ∈KT(M

T)≃
⊕

p∈MT R(T)
is an element of KT(M) if and only if for every e = −→p q ∈ E

(2.10) τ(p)− τ(q) = α (1− e2πiw(e)) for some α ∈ R(T) .

Observe that the elements τ ∈ KT(M
T) satisfying (2.10) indeed form a

ring. Moreover condition (2.10) is equivalent to requiring

τ(p)− τ(q) = α̃ (1− e−2πiw(e)) for some α̃ ∈ R(T),

thus it is sufficient to check condition (2.10) on the edges of the oriented
GKM graph.

2.3. Symplectic toric manifolds as GKM spaces

In the following sections we focus on symplectic toric manifolds, i.e. Hamil-

tonian T-spaces (M,ω,T, ψ) with dim(T) =
dim(M)

2
. In this case, for every

p ∈MT the isotropy weights at p form a Z-basis of ℓ∗, the weight lattice
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of t∗, hence they are pairwise linearly independent. Thus symplectic toric
manifolds are a special class of GKM spaces. Moreover, their oriented GKM
graph can be recovered from the one-skeleton of the image of the moment
map ψ(M):

• The vertices of the GKM graph are the vertices of the polytope.

• The oriented edges of the GKM graph are precisely the edges of the
polytope, oriented by using µ.

• The weight labeling the edge e = −→p q is precisely the primitive element
w ∈ ℓ∗ such that ψ(q)− ψ(p) = mw, for some m ∈ R>0.

3. The local index

Let (M,ω,T, ψ) be a symplectic toric manifold. In this section, for every
q ∈MT, we construct a map

Indq : KT(M) → R(T)

called the local index map at q. The procedure to construct Indq(τ), for
τ ∈ KT(M), is summarised as follows:

1) Construct a smooth, toric CPλq via symplectic cutting;

2) Define an equivariant K-theory class τ̃q on CPλq that only depends
on τ(q) and on the positive weights at q (with respect to the circle
generated by ξ);

3) Compute its index on CPλq .

We now describe the procedure in details.
First of all, recall that the equivariant K-theory push-forward map

Ind:KT(M)→R(T), also called the (equivariant) index homomorphism,
can be computed by using the Atiyah-Segal formula [AS] in the following
way:

(3.1) Ind(τ) =
∑

p∈MT

τ(p)∏

wj∈Wp

(1− e2πiwj )
.

Note that this is not in general a homomorphism of rings, but only a homo-
morphism of R(T)-modules. As we will see later (Proposition 3.4), the local
index map is not a homomorphism of R(T)-modules.
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For the trivial bundle 1 ∈ KT(M) one has:

Ind(1) =
∑

p∈MT

1∏

wj∈Wp

(1− e2πiwj )
.

For any generic ξ ∈ t, consider the restriction map rξ̄ : KT(pt) → KS1(pt),

where S1 = exp(t ξ), and let µ : M → R be the associated ξ-component of
the moment map. Using Corollary 2.7 in [H] for almost complex manifolds
(equation (2.8)’), we have that rξ̄(Ind(1)) is the number of fixed points with
no negative weights w.r.t. µ, which is always 1 as M is connected and the
action Hamiltonian. Since ξ was generic, we obtain

(3.2) Ind(1) = 1.

(1) Constructing CPλq .
Let w1, . . . , wλq

be the weights in the negative normal bundle of µ at q ∈
MT. Note that wj(ξ) > 0 for j = 1, . . . , λq. Define Hq to be λq-dimensional
affine subspace of Rn given by ψ(q) + R〈w1, . . . , wλq

〉. It is easy to see that
Hq ∩ ψ(M) is a λq-dimensional face of the polytope ψ(M). Define

Hq := ψ−1(Hq ∩ ψ(M)).

As we explain below, Hq is a smooth, symplectic toric submanifold of M .
The action of T on Hq is clearly not effective. In fact the subtorus

T0
q = exp({ξ ∈ t | wi(ξ) = 0, i = 1, . . . , λq}) ⊂ T

acts trivially on an open neighborhood of q in Hq, and hence it acts trivially
on Hq. Thus Hq is acted on by the quotient torus Tq = T/T0

q , whose dual
Lie algebra Lie(Tq)

∗ can be identified with R〈w1, . . . , wλq
〉. Let ℓ∗q denote

the weight lattice of Lie(Tq)
∗, which is given by R〈w1, . . . , wλq

〉 ∩ ℓ∗. The
action of Tq on Hq is effective, as we now show. Every point s ∈ Hq fixed
by Tq is also a T-fixed point in M , and the weights w′

1, . . . , w
′
λq

of the

isotropy Tq action on TsHq correspond to those weights w′
1, . . . , w

′
n of the

isotropy action of T on TsM which belong to R〈w1, . . . , wλq
〉. Moreover, since

the T-action on M is toric, we have that Z〈w′
1, . . . , w

′
n〉 = ℓ∗, which implies

that Z〈w′
1, . . . , w

′
λq
〉 = ℓ∗q . Thus the Tq action is effective, and the polytope

Hq ∩ ψ(M) ⊂ R〈w1, . . . , wλq
〉 is Delzant with respect to the lattice ℓ∗q . We

conclude that Hq ⊂M , endowed with the restriction of the symplectic form
ω and the action of Tq, is a symplectic toric manifold itself.
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Moreover, observe that Hq is the “flow down” submanifold of q, i.e.
the closure of the stable manifold of the gradient flow µt of µ (taken with
respect to a T-invariant Kähler metric on M). Indeed, the R-action associ-
ated with the gradient flow µt commutes with the action of the complexified
torus TC = T⊗ C (see for example [A, page 8]), and therefore the stable
manifold at q, i.e. W s(q) = {x ∈M ; limt→+∞ µt(x) = q}, is invariant under
the TC-action. From the local model of the T-action around q we deduce
that Hq and W

s(q) agree around q. This (together with TC-invariance) also
implies that the action of T0

q on W s(q) is trivial, and thus W s(q) must be
contained in a connected component of the fixed point set of T0

q containing

q, which is exactly Hq. As Hq is closed in M , we deduce that W s(q) ⊂ Hq.
Moreover, the invariance implies that W s(q) must be a union of TC-orbits.
The set ψ−1(Int (Hq ∩ ψ(M))) is a TC-orbit whose intersection with W s(q)
is non-trivial. Thus the whole orbit ψ−1(Int (Hq ∩ ψ(M))) must be con-
tained in W s(q) implying that the closure of this orbit, which is exactly
Hq, is contained in the closure of W s(q). Combining this with the inclusion
W s(q) ⊂ Hq proved above, we deduce that W s(q) = Hq.

Similarly, define Fq to be the (n− λq)-dimensional affine space given by
ψ(q) + R〈wλq+1, . . . , wλn

〉 and Fq to be

Fq = ψ−1(Fq ∩ ψ(M)).

Note that Fq is also a closed T-invariant symplectic submanifold ofM , which
can be thought as the “flow-up” submanifold at q, namely the closure of
the unstable manifold at q with respect to µt. Therefore, mutatis mutandis,
what is claimed above for Hq also holds for Fq.

Let S2 be the 2-sphere endowed with the standard symplectic form and
a symplectic toric S1 action rotating the sphere S2, with speed 1, keeping
the north and the south poles fixed. Consider a moment map, h : S2 →
R, such that 0 = h(S) < h(N) = 1, where N and S denote the north and
the south poles respectively. Let Hq × S2 be the symplectic manifold with
symplectic form given by the sum of the pull-backs of the symplectic forms
onHq and S

2. This manifold is endowed with the (non effective) Hamiltonian
action of T× S1, i.e. (t, t′) ∗ (s, s′) = (t ∗ s, t′ ∗ s′) for every (t, t′) ∈ T× S1

and (s, s′) ∈ Hq × S2. Denote by s0 = q, s1, . . . , sj the T-fixed points in Hq.
The T× S1 fixed points in Hq × S2 are given by

HT

q × {S} = {q0 = (s0, S) = (q, S), . . . , qj = (sj , S)}
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and

HT

q × {N} = {q′0 = (s0, N), . . . , q′j = (sj , N)},

for all i = 0, . . . , j.
Note that the splitting T× S1 allows us to regard t∗ as a subspace of

Lie(T× S1)∗. With abuse of notation we consider the weights of the T-action
as elements in Lie(T× S1)∗. Let −w0 ∈ Lie(T× S1)∗ be the weight of the
isotropy T× S1 action at Tq({q0} × S2) ⊂ Tq0 (Hq × S2) (see Figure 3.1).

q0

q1

q2

q′0

q′1

q′2

w0

w1

w1

w1

w2

w2

w2 w2 + w0
w1 + w0

w1 − w2

p0

p1

p2

s0

s1

s2

Figure 3.1: Local pictures for Hq, Hq × S2 and H̃ǫ
q .

Around q0 = (q, S), the moment map ψ′ of the Hamiltonian T× S1 ac-
tion on Hq × S2 can be written as

ψ′(z1, . . . , zλq
, z) = −w0

1

2
|z|2 + w1

1

2
|z1|

2 + · · ·+ wλq

1

2
|zλq

|2 + ψ(q) ,

where (z1, . . . , zλq
, z) are complex coordinates on Hq × S2 around q0. Since

the T-action onM is toric, the weights of the isotropy T-action at q, given by
w1, . . . , wn, form a Z-basis of ℓ∗, the weight lattice of t∗; hence w0, w1, . . . , wn
is a Z-basis of the dual lattice of T× S1. Let ξq be the element of Lie(T×
S1) such that w0(ξq) = −1, wi(ξq) = 1 for all i = 1, . . . , λq, and wi(ξq) = 0
for all i = λq + 1, . . . , n. Then Cq = exp(R〈ξq〉) ⊂ T× S1 is a circle acting
effectively on Hq × S2 with moment map ϕ which around q0 is given by

ϕ(z1, . . . , zλq
, z) =

1

2
|z|2 +

1

2
|z1|

2 + · · ·+
1

2
|zλq

|2 + ψ(q)(ξq) .
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Let H̃ǫ
q be the symplectic reduction of Hq × S2 at ǫ+ ψ(q)(ξq) with

respect to the action of Cq, for ǫ > 0 sufficiently small, i.e.

H̃ǫ
q = ϕ−1(ǫ+ ψ(q)(ξq))/Cq.

Observe that H̃ǫ
q is symplectomorphic to the complex projective space CPλq ,

endowed with the (Hamiltonian) residual action of T̃q = (T× S1)/Cq. De-
note its fixed points by p0, p1, . . . , pλq

with

p0 =
(
ϕ−1(ǫ+ ψ(q)(ξq)) ∩ ({q} × S2)

)
/Cq,

pj =
(
ϕ−1(ǫ+ ψ(q)(ξq)) ∩ (ψ′)−1(−−→qj q0)

)
/Cq

(see Figure 3.1). Moreover, the tuples of isotropy weights of the T̃q-action

at the fixed points of H̃ǫ
q are given by:

Wp0 = {w0 + w1, . . . , w0 + wλq
}

and

Wpi = {−(wi + w0), w1 − wi, . . . , wi−1 − wi, wi+1 − wi, . . . , wλq
− wi}

for all i = 1, . . . , λq. Note that all the elements in Wpi vanish on ξq, hence

they belong to the lattice of Lie(T̃q)
∗.

(2) Defining the class τ̃q on CPλq .
The definition of such class is divided into two steps, (i) and (ii).
(i) Mapping τ ∈ KT(M) to KT×S1(Hq × S2) :

Consider the following commuting diagram

KT(M)

��

r1 //

ĩ∗◦r̃

++❲❲❲❲
❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

KT(Hq)

��

r2 // KT×S1(Hq × S2)

ĩ∗

��

KT(M
T) // KT(H

T
q ) // KT×S1((Hq × S2)T×S

1

)

where the maps involved are defined as follows. The map r1 is the restric-
tion induced by the T-equivariant inclusion Hq →֒M . To define the map
r2 : KT(Hq) → KT×S1(Hq × S2) note that, as S1 acts trivially on Hq and T
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acts trivially on S2, we have a canonical identification

KT×S1(Hq × S2) ∼= KT(Hq)⊗KS1(S2).

Define r2 as tensoring with 1 ∈ KS1(S2), i.e. r2(r1(τ)) is the class r1(τ)⊗ 1
regarded as an element of KT×S1(Hq × S2) under the above identification.
The vertical arrows are the restrictions of the equivariant K-theory rings to
those of the fixed point sets; in particular ĩ : (Hq × S2)T×S

1

→֒ Hq × S2. Let

r̃ := r2 ◦ r1.

In Step (i) we map τ ∈ KT(M) to r̃(τ) ∈ KT×S1(Hq × S2). In practice,
we work with ĩ∗ ◦ r̃(τ) ∈ KT×S1

(
(Hq × S2)T×S

1)
. An explicit procedure is

given as follows:

• determine the restrictions of τ ∈ KT(M) to HT
q = {s0 = q, . . . , sj};

• then ĩ∗ ◦ r̃(τ) is τ(sl) at ql and q
′
l, for all l = 0, . . . , j.

Note that these restrictions live in R(T), which we regard as a subring of
R(T× S1) using the identifications

R(T) = Z[e2πiw1 , . . . , e2πiwn , e2πi(−w1−···−wn)] and

R(T× S1) = Z[e2πiw0 , e2πiw1 , . . . , e2πiwn , e2πi(−w1−···−wn−w0)] (see (2.2)).

(ii) Defining τ̃q as the image of r̃(τ) ∈ KT×S1(Hq × S2) under a map

(3.3) κ : KT×S1(Hq × S2) → K
T̃q
(H̃ǫ

q)

described below.
In practice, given r̃(τ)∈KT×S1(Hq×S

2) we define the class τ̃q := κ(r̃(τ))
by specifying its restrictions to each of the λq + 1 fixed points p0, p1, . . . , pλq

of H̃ǫ
q ≃ CPλq using the recipe below. The value r̃(τ)(q0) (equal to the value

τ(s0)) is an element of R(T), which we regard as a subring of R(T× S1).
Since the weights w1, . . . , wn form a Z-basis of ℓ∗, we can express τ(q0) as
f(e2πiw1 , . . . , e2πiwn , e2πi(−w1−···−wn)), where f(X1, . . . , Xn+1) is a polynomial
with integer coefficients. Let

f0=f(e
2πi(w0+w1), . . . , e2πi(w0+wλq ), e2πiwλq+1 , . . . , e2πiwn , e2πi(−w1−···−wn−λqw0))

and

fj=f(e
2πi(w1−wj), . . . , e2πi(wλq−wj), e2πiwλq+1 , . . . , e2πiwn , e2πi(−w1−···−wn+λqwj)) ,



✐

✐

“8-Sabatini” — 2019/2/11 — 19:26 — page 1135 — #19
✐

✐

✐

✐

✐

✐

Canonical bases 1135

for all j = 1, . . . , λq (i.e. the j-th argument of fj is e
0 = 1). Define the restric-

tion of τ̃q to the fixed point set to be fj at the point pj , for all j = 0, . . . , λq.

Observe that this element of K
T̃q
((H̃ǫ

q)
T̃q) does indeed represent a class in

K
T̃q
(H̃ǫ

q). By Theorem 2.5 it is sufficient to check that f0 − fj ≡ 0 mod

(1− e2πi(w0+wj)) and fi − fj ≡ 0 mod (1− e2πi(wi−wj)), i.e. one needs to
check that f0 is equal to fj when setting w0 + wj = 0 and fi is equal to fj
when setting wi − wj = 0. These follow easily from the definition of the fi’s.

Remark 3.1. It is worth observing (though we are not going to use it)
that the above map κ is the Kirwan map relating the K-theory rings of
a manifold and of its symplectic reduction. We devote the Appendix to a
careful description of the Kirwan map.

(3) Computing the index of τ̃q.

Let αq : R(T̃q) = K
T̃q
(pt) → KT(pt) = R(T) be the homomorphism send-

ing w0 to 0 and wj to itself, for all j 6= 0.

Definition 3.2. The local index of τ at q, denoted by Indq(τ), is the
element of R(T) defined as

Indq(τ) := αq ◦ Ind(τ̃q) ,

where Ind : K
T̃q
(H̃ǫ

q) → R(T̃q) is the index homomorphism. The local index

map at q ∈MT is the map

(3.4) Indq : KT(M) → R(T)

that assigns Indq(τ) to τ .

Note that the only information needed for computing Indq(τ) are the
weights of T-action on TqHq and the value of τ at q. Moreover the computa-
tion is relatively easy thanks to the combinatorial recipe for computing the
restriction of (κ ◦ r̃)(τ) ∈ K

T̃q
(H̃ǫ

q) to the T̃q fixed point set given in (ii),

and thanks to the Atiyah-Segal formula (3.1).

Example 3.3. As an example, we calculate the local index of an equiv-
araint K-theory class of the Hirzebruch surface. Let τ denote the class pre-
sented at the second picture in Figure 4.2 on page 1148 and q denote the
fixed point where its value is (1− e2πi(x−y))e2πiy. Observe that the weights
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at q are y and x− y. Following the notation from the definition of the local
index, we have

τ(q) = f(e2πiy, e2πi(x−y), e2πi(−x)) = (1− e2πi(x−y))e2πiy,

κ(τ)(p0)=f0=f(e
2πi(y+w0), e2πi(x−y), e2πi(−x−w0))=(1−e2πi(x−y))e2πi(y+w0),

κ(τ)(p1) = f1 = f(1, e2πi(x−y), e2πi(−x+y)) = 1− e2πi(x−y).

The values of the class r̃(τ) at the fixed points of Hq × S2 close to (q, S)
are presented on the left side of Figure 3.2, while the picture on the right
represents the values of the class κ(τ) (c.f. the Appendix).

(1− e2πi(x−y))e2πiy
y

w0

y + w0

y

y + w0

1− e2πi(x+y)

(1− e2πi(x−y))e2πi(y+w0)

(1− e2πi(x−y))e2πiy

1− e2πi(x+y)
1− e2πi(x−y)

Figure 3.2: The values of the class r̃(τ) at the fixed points of Hq × S2 close

to (q, S) and the values of the class κ(τ) at the fixed points of H̃ǫ
q .

The local index of τ at q is equal to

αq(Ind(τ̃q)) = αq

(
(1− e2πi(x−y))e2πi(y+w0)

1− e2πi(y+w0)
+

1− e2πi(x−y)

1− e−2πi(y+w0)

)

= αq

(
−

1− e2πi(x−y)

1− e−2πi(y+w0)
+

1− e2πi(x−y)

1− e−2πi(y+w0)

)
= αq(0) = 0.

In the next proposition we prove some properties of the local index. For
the construction of our canonical classes, only properties (i), (ii) and (iii)
are needed, whereas properties (iv) and (v) are used in Subsection 3.1 to
compare our results with those of Guillemin and Kogan [GK].

Proposition 3.4. The local index satisfies the following properties:
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(i) (Additivity) for any τ, τ ′ ∈ KT(M), and any q ∈MT have

Indq(τ + τ ′) = Indq(τ) + Indq(τ
′).

(ii) If τ(q) = α e
−
T
(q) for some α ∈ R(T) then

Indq(τ) = α = τ(q)/e−
T
(q).

In particular Indq(τ) = 0 if τ(q) = 0.

(iii) If τ ′(q) = 0 then Indq(τ + α τ ′) = Indq(τ), for every α ∈ R(T).

(iv) The local index map Indq : KT(M) → R(T) is not a morphism of R(T)-
modules.

(v) The local index map Indq : KT(M) → R(T) is a morphism of R(T/C0
q )-

modules, where C0
q is the image of the circle Cq ⊂ T× S1 used in the

reduction under the map T× S1 → T.

Note that the condition in (ii) is satisfied for instance whenever τ(q′) = 0
for all q′ ≺ q, see the proof of Proposition 2.2.

Proof. Property (i) follows from additivity of the index homomorphism.
To prove (ii), present α as f(e2πiw1 , . . . , e2πiwn , e2πi(−w1−···−wn)), where
f(X1, . . . , Xn+1) is a polynomial with integer coefficients; here w1, . . . , wn
are the weights of T-action on TqM , and w1, . . . , wλq

are the weights of T-
action on TqHq, i.e. the weights in W+

q (cf. page 1134). Let f0 be the poly-
nomial obtained from f by substituting wj with wj + w0 for j = 1, . . . , λq.

Then the values of κ(r̃(fτ)) at the fixed points p0, . . . , pλq
of H̃ǫ

q are (respec-
tively)

f0

λq∏

j=1

(1− e2πi(wj+w0)), 0, . . . , 0.

Therefore, from (3.1) it follows that the index of κ(r̃(fτ)) is f0, and the
local index Indq(fτ) is the image of f0 under the homomorphism K

T̃q
(pt) →

KT(pt) sending w0 to 0, so it is f . Property (iii) follows from the first two.
In order to prove (iv) it is sufficient to find α ∈ R(T) and τ ∈ KT(M)

such that α · Indq(τ) 6= Indq(α · τ). Take τ to be 1, the trivial line bun-
dle over M with trivial action on the fibers, and α to be e2πi(−w1−···−wn).
Then, following the procedure on page 1134, the value of κ(r̃(1)) at the
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fixed points p0, p1 . . . , pλq
is always one, and equation (3.2) implies that

e2πi(−w1−···−wn)Indq(1) = e2πi(−w1−···−wn). However we prove that

Indq(e
2πi(−w1−···−wn)) = 0.

The value of κ(r̃(e2πi(−w1−···−wn))) at the fixed point pj is e2πiaj , where
a0 = −w1 − · · · − wn − λqw0 and aj = −w1 − · · · − wn + λqwj for all j =
1, . . . , λq. We prove that there exists an equivariant cohomology class a ∈
H2

T
(CPλq ;Z) such that its restriction to the fixed point pj is exactly aj , for

all j = 0, . . . , λq. Let η ∈ H2
T
(CPλq ;Z) be the equivariant Poincaré dual to

the CPλq−1 ⊂ CPλq corresponding to the (λq − 1)-dimensional sub-simplex
spanned by p1, . . . , pλq

. Hence the value of η at p0 is zero, and at pj is
−(w0 + wj), for all j = 1, . . . , λq. It is easy to check that c̃1 = (λq + 1)η + β
for some β ∈ H2

T
(pt;Z), where c̃1 is the first equivariant Chern class of CPλq .

Then the class a = (−λq)η + a0 is in H2
T
(CPλq ;Z), and its value at pj is ex-

actly aj , for all j = 0, . . . , λq. Consider a generic ξ ∈ t (see 1124) generating
a circle subgroup S1 ⊂ T and let rξ : R(T) → R(S1) be the restriction map.
Theorem 1.1 and Corollary 1.2 in [HY] imply that there exists an equivariant
line bundle, denoted by e2πia, whose equivariant first Chern class is exactly a.
From [S, Prop. 3.9] it follows that rξ(Ind(e

2πia)) = 0 for all such ξ’s. (Observe

that the first Chern class of this line bundle is − c1(TCPλq )
λq+1 .) Since ξ is generic,

this implies that Ind(e2πia) = 0, and hence Indq(e
2πi(−w1−···−wn)) = 0.

Property (v) can be proved as follows. Observe that C0
q is the circle

subgroup of T generated by ξ0q ∈ Lie(T) such that ξ0q is 1 when evalu-
ated at the λq positive weights at q and is 0 when evaluated at the n−
λq negative weights at q. Every element of R(T/C0

q ) is the evaluation at

e2πiw1 , . . . , e2πiwn , e2πi(−w1−···−wn) of a polynomial g in n+ 1 variables with
integer coefficients (cf. 1134) satisfying

g(X1, . . . , Xn+1) = g(aX1, . . . , aXλq
, Xλq+1, . . . , Xn+1) for all a ∈ C.

In order to pass from a computation of the local index of a class τ at q to
the computation of the local index of gτ at q, one needs to multiply the
polynomials f0 and fj from page 1134 respectively by

g0 = g(e2πi(w0+w1), . . . , e2πi(w0+wλq ), e2πiwλq+1 , . . . , e2πiwn , e2πi(−w1−···−wn))

and

gj = g(e2πi(w1−wj), . . . , e2πi(wλq−wj), e2πiwλq+1 , . . . , e2πiwn , e2πi(−w1−···−wn))
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for all j = 1, . . . , λq. The invariance of g gives that

g0 = g1 = · · · = gλq
= g(e2πiw1 , . . . , e2πiwn , e2πi(−w1−···−wn)) .

Thus the local index gets multiplied by the above polynomial. �

Recall that by Fp we denote the flow-up manifold at p ∈MT, as defined
on page 1131. We can now define i-canonical classes.

Definition 3.5. Let (M,ω,T, ψ) be a symplectic toric manifold of dimen-
sion 2n, together with a choice of a generic component of the moment map
µ = ψξ : M → R. Then for each p ∈MT, a Kirwan class τp ∈ KT(M) satis-
fying the following properties:

1) Indq(τp) = 1 for all points q ∈ Fp ∩M
T;

2) Indq(τp) = 0 for all points q /∈ Fp ∩M
T;

is called an i-canonical class at (the fixed point) p.

Remark 3.6. Note that the equivariant K-theory class of the trivial bundle
1 is an i-canonical class. Indeed, if pmin ∈MT is the fixed point at which
µ attains its minimum, then Fpmin

is the whole manifold M and for any
q ∈MT we have that Indq(1) = Ind(1CP

λq ) = 1 (see (3.2)).

Observe that as the i-canonical classes are a special set of Kirwan classes,
we have that:

• if for each p ∈MT there exists an i-canonical class τp, then the set
{τp}p∈MT is a basis for KT(M) as a module over R(T);

• τp(p) = e
−
T
(p);

• τp(q) = 0 for all q ∈MT \ {p} with q ≺ p.

We will see later that a stronger condition is true: τp(q) = 0 for all q ∈
MT \ V +

p , where V +
p is given in Definition 4.7.

As we remarked in Section 2.1, Kirwan classes are never unique, unless
M is a point. Conditions 1) and 2) in Definition 3.5 guarantee that if i-
canonical classes exist then they are unique, hence their name: they are
canonically associated to (M,ω,T, ψ, ξ), and the “i” refers to “index”, as
they are defined using the notion of local index.

Proposition 3.7 (Uniqueness of i-canonical classes). If an i-canonical
class τp exists then it is unique.



✐

✐

“8-Sabatini” — 2019/2/11 — 19:26 — page 1140 — #24
✐

✐

✐

✐

✐

✐

1140 M. Pabiniak and S. Sabatini

Proof. Suppose that there exist two K-theory classes τp and τ
′
p satisfying all

conditions of Definition 3.5, for some p ∈MT. Then the class η = τp − τ ′p is
supported on points living above p with respect to the order ≺ defined in
(2.4), and its local index is zero at all fixed points. If η were nonzero then,
by injectivity of (2.8), there would exist a fixed point q ≻ p with η(q) 6= 0.
Take minimal such q (minimal with respect to ≺). Then, if q1, . . . , qλq

are
the fixed points in Hq connected to q through an edge of the (oriented)
GKM graph Γ, we have that qj ≺ q, implying η(qj) = 0 for j = 1, . . . , λq.
So Theorem 2.5 implies that η(q) must be a (nonzero) multiple of e−

T
(q) =∏

wj∈W
+
q
(1− e2πiwj ). But condition (ii) of Proposition 3.4 would then imply

that Indq(η) 6= 0. This contradiction proves that η must be the zero class
and hence τp = τ ′p. �

Section 4 is devoted to proving that, indeed, for symplectic toric manifolds
i-canonical classes always exist.

3.1. Comparison with Guillemin-Kogan results [GK]

The definition of local index (Definition 3.2) is inspired by, though different
from, the one in [GK]. In our definition of local index, we make an explicit
choice of the circle Cq used for obtaining H̃ǫ

q through symplectic reduction.
The choice is different for each q ∈MT. With this choice the reduced space
is always smooth and one can explicitly calculate the local index using the
algorithm we provide. In the work of Guillemin and Kogan, the reduction
at each fixed point is done with respect to the same fixed circle. Therefore
the reduced space is often an orbifold, making explicit computations much
harder. It is important to notice that the local indices I iq at q ∈MT defined in
[GK], associated to reductions with respect to two different circles Ci, i =
1, 2, are not the same. Indeed Iiq : R(T) → R(T) is only an R(T/Ci), and
not an R(T), -module homomorphism; thus different choices of Ci’s cannot
result in the same local index map (see Remark 5.1 and bottom of page 371
in [GK]). Our local index is also only an R(T/C0

q ), and not an R(T), -module
homomorphism (see Proposition 3.4 (iv) and (v)). Moreover, in [GK, Section
7] the authors define a new variant of the local index, which they call Ĩq,
where the circle used in the reduction can vary at each fixed point. If at each
fixed point the choice of their circle agrees with ours, then the local indices
Indq and Ĩq from [GK, Section 7] are the same. In this case it is easy to
see that our i-canonical classes {τp}p∈MT and their classes {τGKp }p∈MT are
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related by the following formula:

(3.5) τp =
∑

q∈Fp∩MT

τGKq .

4. Construction

The main goal of this section is to prove the following

Proposition 4.1 (Existence of i-canonical classes). Let (M,ω,T, ψ)
be a symplectic toric manifold of dimension 2n, together with a choice of
a generic component of the moment map µ = ψξ : M → R. Then for each
p ∈MT, there exists an i-canonical class τp.

We prove this by explicitly exhibiting a set of K-theory classes satisfying
properties 1) and 2) in Definition 3.5. The proof of Proposition 4.1 is divided
into two parts: the index increasing case (Proposition 4.5) and non-index
increasing case (Subsection 4.2).

Definition 4.2. Let (M,ω,T, ψ, ξ) be a GKM space with oriented GKM
graph Γo = (V,Eo). Then the space is called index increasing if for every
edge e = −→p q ∈ Eo we have λp < λq, and non-index increasing otherwise.

The Hirzebruch surface in Figure 4.2 is an example of non-index increas-
ing GKM space.

For toric manifolds there is a natural algorithm for constructing a basis
of the equivariant K-theory ring consisting of special Kirwan classes which
are equivariant Poincaré duals to the flow up submanifolds. As we will prove
in Section 4.1, in the index increasing case these equivariant K-theory classes
are indeed i-canonical classes (see Proposition 4.5). In the non-index increas-
ing case we will need to modify them to make them “canonical”, as explained
in Section 4.2. Below we recall this algorithm.

Let (M2n, ω,T, ψ) be a symplectic toric manifold, and let µ = ψξ : M →
R be a generic component of the moment map. Let Γ = (V,E) (resp. Γo =
(V,Eo)) be the associated GKM graph (resp. oriented GKM graph). This
GKM space is not necessarily index increasing. We recall that for every
p ∈MT the flow-up at p, denoted by Fp, is a T-invariant submanifold of
M (see the discussion on page 1131, Section 3). Thus the normal bundle
to Fp, which we denote by N(Fp), is T-invariant, and for each q ∈MT ∩ Fp
the set of weights of the T-representation on N(Fp)|q is given by {w(−→r q)},
where r ∈MT \ Fp and

−→r q ∈ E; note that such an edge does not necessarily
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belong to Eo. We have that the (K-theoretical) equivariant Euler class of
the normal bundle N(Fp)|q is

(4.1) eT

(
N(Fp)|q

)
=

∏

r ∈MT \ Fp
−→r q ∈ E

(1− e2πiw(
−→r q))).

In particular we have that eT
(
N(Fp)|p

)
= e

−
T
(p).

Lemma 4.3. Let (M2n, ω,T, ψ) be a symplectic toric manifold, and let µ =

ψξ : M → R be a generic component of the moment map. For each p ∈MT

define ηp ∈ KT(M
T) to be

ηp(q) =

{
0 for q ∈MT \ Fp

eT

(
N(Fp)|q

)
for q ∈ Fp ∩M

T.

Then ηp is an element of KT(M), and it is a Kirwan class in the sense of
Proposition 2.2.

The element ηp ∈ KT(M) defined in the above lemma is called the equiv-
ariant (K-theoretical) Poincaré dual to the flow-up manifold Fp.

Proof. The proof of this Lemma is quite standard, but we include it here
for completeness. In order to prove that ηp is indeed an element of KT(M),
we need to verify condition (2.10) in Theorem 2.5, for every edge e of the
GKM graph Γ.

Let −→r s ∈ E. If neither r nor s belong to Fp, then by definition of ηp
we have ηp(r) = ηp(s) = 0, so (2.10) holds. If r ∈ Fp but s /∈ Fp, then by
definition of ηp(r) and (4.1), ηp(r) = Q (1− e2πiw(

−→s r))), for some Q ∈ R(T),
and (2.10) holds. Similarly if s ∈ Fp but r /∈ Fp. Finally, suppose that both r
and s belong to Fp. Consider the subtorus T

′ = exp{ξ ∈ Lie(T) | w(−→r s)(ξ) =
0} ⊂ T fixing the sphere S2 associated to the edge −→r s. Since T′ acts trivially
on S2 the representations of T′ on N(S2)|r and N(S2)|s agree. This implies
that there exists an isomorphism ϕ : Wr →Ws such that for every w ∈Wr

(4.2) ϕ(w)− w = nw w(
−→r s)

for some nw ∈ Z. Note that S2 is also an invariant submanifold in Fp. Denote

byW
Fp

r (resp.W
Fp

s ) the set of weights of the T-representation on the tangent
space of Fp at r (resp. at s), and observe that the isomorphism ϕ restricts to
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an isomorphism from W
Fp

r to W
Fp

s satisfying (4.2), and hence to an isomor-

phism from Wr \W
Fp

r to Ws \W
Fp

s satisfying (4.2). Observe that e2πiw −
e2πiϕ(w) = e2πiw(1− e2πinw w(

−→r s)) = Q′ (1− e2πiw(
−→r s))), for some Q′ ∈ R(T),

and that the weights of the T-representation on N(Fp)|r (resp. N(Fp)|s) are

precisely those in Wr \W
Fp

r (resp. Ws \W
Fp

s ). It follows that

eT

(
N(Fp)|r

)
− eT

(
N(Fp)|s

)
= Q′′(1− e2πiw(

−→r s)))

for some Q′′ ∈ R(T). By Theorem 2.5 we can conclude that ηp is an element
of KT(M).

In order to finish the proof we need to show that ηp satisfies properties
(i) and (ii) of Proposition 2.2. The first property follows from observing that,
by definition of Fp, the negative normal bundle of µ at p coincides with the
normal bundle N(Fp) at p. The second one follows from observing that p is
a minimum of µ on Fp and that Fp is connected. Therefore every fixed point
q in Fp \ {p} satisfies µ(q) > µ(p). Hence any q′ with µ(q′) < µ(p) must be
in MT \ Fp, and thus ηp(q

′) = 0. This concludes the proof. �

Remark 4.4. In the above proof we show that the normal bundle of Fp at p
coincides with the negative normal bundle of µ at p, so eT(N(Fp)|p) = e

−
T
(p).

Therefore Propostion 3.4 (ii) implies that

Indp(ηp) = 1 .

4.1. Toric manifolds: the index increasing case

In this Subsection we analyze symplectic toric manifolds which are also
index increasing GKM spaces. In this case Proposition 4.1 follows from the
following

Proposition 4.5. Let (M2n, ω,T, ψ) be a symplectic toric manifold, and

let µ = ψξ : M → R be a generic component of the moment map. Let Γo =
(V,Eo) be the associated oriented GKM graph, and assume it is index in-
creasing. Then for each p ∈MT, the Kirwan classes ηp defined in Lemma 4.3
are the i-canonical classes τp.

In the proof of this proposition we use some standard facts about index
increasing GKM spaces which, for the sake of completeness, are proved in
Subsection 5.2.
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Proof of Proposition 4.5. We need to show that

Indq(ηp) =

{
0 for q ∈MT \ Fp

1 for q ∈ Fp ∩M
T.

Consider any two fixed points p, q. Suppose first that q /∈ Fp. Then ηp(q) = 0,
and therefore the local index at q is 0 (see Propostion 3.4 (ii)). Now suppose
that q ∈ Fp. By Lemma 5.9 we have λq > λp. In the GKM graph of M the
vertex q is connected to λq vertices q1, . . . , qλq

by edges terminating at q, and
to n− λq vertices, qλq+1, . . . , qn by edges starting at q. As the moment map is
index increasing, from Corollary 5.16 it follows that the vertices qλq+1, . . . , qn
are also in Fp, as q is. Therefore λp of the points q1, . . . , qλq

are not in Fp
(see also Corollary 5.16). To simplify the notation assume that q1, . . . , qλp

are not in Fp. The value of ηp at these points is 0. Let w1, . . . , wλq
be the

weights of T-action on the tangent spaces at q of the spheres corresponding
to the edges −→q1 q, . . . ,

−−→qλq
q. Then, by (4.1), the value of ηp at q is given by

ηp(q) =

λp∏

j=1

(1− e2πiwj ).

To calculate the local index of ηp at q we look at the class κ(r̃(ηp)) in

K
T̃q
(H̃ǫ

q). Using the algorithm and notation from Section 3 we find the values

of this class at the fixed points of H̃ǫ
q :

κ(r̃(ηp))(pl) =

λp∏

j=1

(1− e2πi(wj−wl)) = 0, l = 1, . . . , λp,

κ(r̃(ηp))(pl) =

λp∏

j=1

(1− e2πi(wj−wl)) 6= 0, l = λp + 1, . . . , λq,

κ(r̃(ηp))(p0) =

λp∏

j=1

(1− e2πi(wj+w0)) 6= 0.

Note that at a point pl where κ(r̃(ηp))(pl) is nonzero, this value is ex-
actly equal to the product of terms (1− e2πiw) taken over the weights w on
the edges connecting pl to fixed points in (H̃ǫ

q)
∼= CPλq where the value of

κ(r̃(ηp)) is 0. This observation, and Atiyah-Segal formula (3.1), imply that
the index of κ(r̃(ηp)) is equal to the index of a class 1 on CPλq−λp ⊂ CPλq

containing the fixed points of CPλq where κ(r̃(ηp)) is nonzero. By (3.2) we
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have that Ind(1CP
λq−λp ) = 1. In other words, Ind(κ(ηp)) is equal to

λp∏

j=1

(1− e2πi(wj+w0))

λq∏

j=1

(1− e2πi(wj+w0))

+ 0 +

λq∑

l=λp+1

λp∏

j=1

(1− e2πi(wj−wl))

(1− e2πi(−wl−w0))

λq∏

j=1,j 6=l

(1− e2πi(wj−wl))

=

1
λq∏

j=λp+1

(1− e2πi(wj+w0))

+

λq∑

l=λp+1

1

(1− e2πi(−wl−w0))

λq∏

j=λp+1,j 6=l

(1− e2πi(wj−wl))

= Ind(1CP
λq−λp ) = 1.

This shows that the classes defined naturally as the equivariant Poincaré
duals to the flow-up manifolds Fp are i-canonical classes. �

Example 4.6 (The complex projective space CPn). Consider the com-
plex projective space (CPn, ω) where ω denotes the Fubini-Study symplectic
form rescaled so that [ω] is integral and primitive, i.e. [ω] is a generator of
H2(CPn;Z) = Z, regarded as a lattice in H2(CPn;R). Endow (CPn, ω) with
the standard toric action of an n-dimensional torus T and moment map ψ;
as before, let t be the Lie algebra of T and ℓ ⊂ t the integral lattice. Since the
action is Hamiltonian, the symplectic form extends to an equivariant form
in the Cartan complex, called equivariant symplectic form, given by ω + ψ.
We can choose the moment map so that ψ(q) ∈ ℓ∗ for every q ∈ (CPn)T.
Then the above equivariant form represents a well-defined element [ω + ψ]
in H2

T
(CPn;Z) (regarded as a lattice in H2

T
(CPn;R)). At the level of the

GKM graph (V,E) associated to (CPn, ω,T, ψ), the condition of [ω] being
integral and primitive translates into saying that

(4.3) ψ(q)− ψ(p) = w(−→p q) for every −→p q ∈ E.

Indeed, this is equivalent to saying that the symplectic volume of the sphere
ψ−1(−→p q) is 1, for every −→p q ∈ E. Note that for every pair of fixed points
p, q ∈ (CPn)T there exists an edge −→p q ∈ E.

Consider the equivariant K-theory class represented by the equivariant
line bundle LS

1

satisfying cS
1

1 (LS
1

) = −[ω + ψ], where cS
1

1 (LS
1

) denotes the
equivariant first Chern class of LS

1

. Such bundle exists by Theorem 1.1 and
Corollary 1.2 proved by Hattori and Yoshida in [HY]. Note that LS

1

(s) =
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e−2πiψ(s) for every s ∈ (CPn)T. Let ξ ∈ t be a generic vector, and consider the

ordering induced by µ = ψξ on the fixed points. Note that for every choice
of generic vector ξ, the oriented GKM graph associated to (CPn, ω,T, ψ, ξ)
is index increasing.

For every p ∈MT consider the class

τp =
∏

q∈MT

q≺p

(
1− e2πiψ(q)LS

1)
.

Observe that q ≺ p if and only if q /∈ Fp (see also Proposition 5.15). There-
fore, for each s ∈ (CPn)T, we have that

τp(s) =





0 if s /∈ Fp∏

q∈MT

q≺p

(
1− e2πi(ψ(q)−ψ(s))

)
=

∏

q∈MT

q /∈Fp

(
1− e2πiw(

−→qs)
)

if s ∈ Fp.

Thus τp coincides with the equivariant (K-theoretical) Poincaré dual to Fp
which, by Proposition 4.5, is the i-canonical class at p.

The i-canonical classes for CP2 are shown in Figure 4.1.

00011

1

τ0 τ1 τ2

1− e2πix

1− e2πiy (1− e2πi(y−x))(1− e2πiy)

xxx

yyy y − xy − xy − x

Figure 4.1: The basis of i-canonical classes {τp} for CP2.

4.2. Toric manifolds: the non-index increasing case

If the moment map is not index increasing, to each fixed point p ∈MT we
can still associate a K-theory class ηp, as in Lemma 4.3. The value of ηp on
points q ∈MT \ Fp is zero and therefore the local index Indq(ηp) is also zero
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(see Propostion 3.4). However it may no longer be true that Indq(ηp) = 1 for
q ∈ Fp ∩M

T =: FT
p . Below we present an algorithm to construct i-canonical

classes τp out of the equivariant Poincaré duals ηp as in Lemma 4.3. To
simplify notation, we use p to denote both p ∈MT and ψ(p), as ψ is injective
on the fixed point set.

Definition 4.7. For any p ∈MT we define V +
p to be the set of fixed points

which can be joined to p through an increasing path in Eo, i.e. q ∈ V +
p if

and only if there exists a sequence of edges γ = (r0 = p, r1, . . . , rm = q) such
that −−−→riri+1 ∈ Eo for every i = 0, . . . ,m− 1.

This definition implies that µ(q) > µ(p), i.e. p ≺ q, for all q ∈ V +
p \ {p}.

Also observe that (by Lemma 5.8) FT
p ⊂ V +

p and thus for all q ∈ FT
p we have

that FT
q ⊆ V +

q ⊂ V +
p . (In the index increasing case a stronger statement is

true: Fq ⊆ Fp for all q ∈ FT
p , see Corollary 5.16).

Proof of Proposition 4.1 - the non-index increasing case. Fix p ∈MT and
let V +

p = {q0 = p, q1, . . . , qk} be ordered so that qj ≺ ql for 0 ≤ j < l ≤ k.
As the restriction of µ to Fql attains its minimum at ql, we have that

j < l ⇒ qj /∈ Fql , and therefore ηql(qj) = 0.

We inductively construct auxiliary classes a1, . . . , ak satisfying

• Indqj (al) = 1 if j ≤ l and qj ∈ FT
p ;

• Indqj (al) = 0 if j ≤ l and qj ∈ V +
p \ FT

p ;

• Indq(al) = 0 if q /∈ V +
p .

Then we will show that ak is the i-canonical class τp. In the following we
make use of the fact that FT

p ⊂ V +
p (see Lemma 5.8).

Define

a1 :=

{
ηp + (1− Indq1(ηp)) ηq1 if q1 ∈ FT

p ,

ηp − Indq1(ηp) ηq1 if q1 ∈ V +
p \ FT

p .

As ηq1(p) = 0, we have a1(p) = ηp(p) = e
−
T
(p), and hence Indp(a1) = Indp(ηp)

= 1 (see Propostion 3.4 and Remark 4.4). Also, observe that if ηq1(s) 6= 0
for some s ∈MT then s ∈ FT

q1 ⊂ V +
q1 ⊂ V +

p , where the first inclusion follows
from Lemma 5.8, and the second is obvious. Thus the class a1 restricts to
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zero on MT \ V +
p and Inds(a1) = 0 if s /∈ V +

p . Moreover, by Proposition 3.4
and Remark 4.4 we can conclude that

Indq1(a1) :=

{
Indq1(ηp) + (1− Indq1(ηp)) · 1 = 1 if q1 ∈ FT

p ,

Indq1(ηp)− Indq1(ηp) · 1 = 0 if q1 ∈ V +
p \ FT

p .

Then we proceed inductively and define

aj =

{
aj−1 + (1− Indqj (aj−1))ηqj if qj ∈ FT

p ,

aj−1 − Indqj (aj−1)ηqj if qj ∈ V +
p \ FT

p .

As the fixed points are ordered with ≺, the restrictions of ηqj to fixed points
q0, q1, . . . , qj−1 are zero. Thus the local index of aj at ql is the same as of aj−1,
for all l = 0, . . . , j − 1. Similarly as before, Remark 4.4 and Proposition 3.4
prove that Indqj (aj) = 1 if qj ∈ FT

p and is zero on V +
p \ FT

p . Moreover aj
restricts to zero on MT \ V +

p and Inds(aj) = 0 if s /∈ V +
p .

The algorithm ends when we exhaust all the points in V +
p ={q0, q1, . . . , qk}

and we define the class τp to be ak. Thus Indq(τp)=1 if q∈FT
p and Indq(τp) =

0 if q /∈ FT
p as needed. What is left to prove is that the classes τp are Kir-

wan classes in the sense of Proposition 2.2. This follows immediately from
observing that τp = ηp +

∑

ql∈V
+
p \{p}

αl ηql , where αl ∈ R(T) for every l, and

from the ηql ’s also being Kirwan classes. �

Figure 4.2 presents the basis of i-canonical classes for the Hirzebruch
surface.

0

0

00

0

00

1

1

1

1

1− e2πi(x+y)

(1− e2πi(x−y))e2πiy

1− e2πiy

1− e2πiy

(1− e2πiy)(1− e2πi(y−x))

y y

y

y

yy

y

y

y − x y − xy − x y − x

x + yx + y

Figure 4.2: The basis of i-canonical classes {τp} for the Hirzebruch surface.
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Remark 4.8. Note that the collection of i-canonical classes {τp}p∈MT is
obtained from the basis of Kirwan classes {ηp}p∈MT by applying a lower
triangular matrix with 1’s on diagonal. This gives an alternative proof that
they form a basis of KT(M).

5. Applications to equivariant cohomology

As it was already observed by Guillemin and Kogan, it is possible to use
the local index map to define “canonical classes” forming a basis of the
equivariant cohomology ring for every Hamiltonian T-space, in particular
for symplectic toric manifolds (see [GK, Remark 1.4]). This idea was al-
ready used by Zara [Z] to construct a basis for the equivariant cohomology
ring with rational coefficients. We follow the idea of Guillemin and Kogan,
but use a different definition of local index to ensure integrality of the basis
elements produced with this method. Moreover we relate our basis to the
bases already commonly used in equivariant cohomology (with integer co-
efficients). Namely, the basis thus obtained coincides with the basis of the
equivariant Poincaré duals {ηp} defined below. In addition, when the generic
component of the moment map is the index increasing, Goldin and Tolman
[GT] introuduced another basis for the equivariant cohomology (see Defini-
tion 5.3). In this case we show that the three sets of bases - the i-canonical
classes, the equivariant Poincaré duals {ηp}, and the Goldin-Tolman [GT]
canonical classes - are the same.

Our definition of i-canonical classes for equivariant cohomology is slightly
different from the definition given in K-theory. Namely, here we require the
local index of a class associated to a fixed point p to vanish on all MT \ {p}.
The reason for this change is that we would like the class 1M to be an
element of our i-canonical basis.

Recall that in the Borel description, the equivariant cohomology ring
H∗

T
(M ;Z) is defined to be the ordinary cohomology ring of the space M ×T

ET, where ET is a contractible space on which T acts freely. If T is a d-
dimensional torus, and x1, . . . , xd a Z-basis of the dual lattice of T, then
H∗

T
(pt;Z) = H∗((CP∞)d;Z) = Z[x1, . . . , xd]. The unique map M → pt gives

H∗
T
(M ;Z) the structure of an H∗

T
(pt;Z)-module.

Let (M,ω,T, ψ) be a GKM space (see Section 2.2) with GKM graph
(V,E). For an edge −→p q ∈ E, let T′ = T′

−→p q
= exp{ξ ∈ t | w(−→p q)(ξ) = 0} be the

subtorus fixing the sphere S2
−→p q

= ψ−1(−→p q) corresponding to the edge −→p q.

Let S(t∗) be the symmetric algebra of t∗ and π−→p q : S(t
∗) → S((t′)∗) be the

homomorphism induced by the inclusion of t′ = Lie(T′) into t. Then for any
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class τ ∈ H∗
T
(M ;Z) we must have

(5.1) π−→p q(τ(q)) = π−→p q(τ(p)) for every −→p q ∈ E.

This condition is necessary, but not sufficient to guarantee that a class τ ∈
H∗

T
(MT;Z) is in H∗

T
(M ;Z). However, if working with rational coefficients, a

theorem of Goresky-Kottwitz-MacPherson ([GKM]) implies that each τ in
H∗

T
(MT;Q) satisfying (5.1) is in H∗

T
(M ;Q). (Compare with Theorem 2.5.)

5.1. Choosing a basis

We start by recalling the choices of bases already used in the literature: the
basis consisting of equivariant Poincaré duals to flow up manifolds and the
Goldin-Tolman canonical classes in the index increasing case.

Let (M,ω,T, ψ) be a Hamiltonian T-space, and let µ : M → R be a
generic component of the moment map. For a fixed point p, the equiv-
ariant (cohomological) Euler class of the negative normal bundle N−

p

of µ at p is the element Λ−
p ∈ H2λp({p};Z) given by

(5.2) Λ−
p =

∏

wj∈W
+
p

wj .

The following Proposition is due to Kirwan.

Proposition 5.1 (Kirwan). Let (M,ω,T, ψ) be a Hamiltonian T-space,
and let µ : M → R be a generic component of the moment map. Then for
every p ∈MT there exists a class νp ∈ H

2λp

T
(M ;Z) such that

(i) νp(p) = Λ−
p ;

(ii) νp(q) = 0 for every q ∈MT such that q ≺ p (i.e. µ(q) < µ(p)).

Moreover the set {νp}p∈MT is a basis for H∗
T
(M ;Z) as a module over

H∗
T
(pt;Z).

An equivariant cohomology class satisfying properties (i) and (ii) above
is called a Kirwan class (at the fixed point p).

Note that Proposition 2.2 is a generalization of the above original result
of Kirwan from the equivariant cohomology setting to the K-theory setting.
Due to this similarity we omit the proof of Proposition 5.1, which is based
on the fact that Λ−

p is not a zero divisor in HT(pt;Z).
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Henceforth (M,ω,T, ψ, ξ) denotes a symplectic toric manifold endowed
with a choice of generic ξ ∈ t. In analogy with Section 4 for equivariant
K-theory, we define the equivariant (cohomological) Poincaré duals to the
flow-up manifolds Fp. Let Fp be the (smooth) flow-up manifold at the fixed
point p (see page 1131), and N(Fp) the normal bundle of Fp in M . Then
the equivariant (cohomological) Euler class of the normal bundle N(Fp) of
Fp in M at a fixed point q is an element in H2λp({q};Z) given by

(5.3) χT

(
N(Fp)|q

)
=

∏

r ∈MT \ Fp
−→r q ∈ E

w(−→r q).

In particular, since N(Fp)|p = N−
p , we have that χT

(
N(Fp)|p

)
= Λ−

p .

Definition 5.2. Let (M,ω,T, ψ) be a symplectic toric manifold, and let

µ = ψξ : M → R be a generic component of the moment map. For each p ∈
MT define the equivariant Poincaré dual to the flow-up manifold Fp to

be the class ηp ∈ H
2λp

T
(M ;Z) whose restriction to the fixed points is given

by

ηp(q) =

{
0 for q ∈MT \ Fp

χT

(
N(Fp)|q

)
for q ∈ Fp ∩M

T.

It is easy to check that ηp is a Kirwan class in the sense of Proposition 5.1
for every p ∈MT, and thus {ηp}p∈MT forms a basis of H∗

T
(M ;Z) as a module

over H∗
T
(pt;Z).

Goldin and Tolman [GT] define another basis for the equivariant coho-
mology ring of a symplectic manifold endowed with a Hamiltonian torus
action.

Definition 5.3. Let (M,ω,T, ψ) be a Hamiltonian T-space, and let µ : M →
R be a generic component of the moment map. A cohomology class ζp ∈

H
2λp

T
(M ;Z) is a canonical class in the sense of Goldin and Tolman (hence-

forth referred to as GT-canonical class) at p ∈MT if

(i) ζp(p) = Λ−
p ;

(ii) ζp(q) = 0 for all q ∈MT \ {p} such that λq ≤ λp.

GT-canonical classes do not always exist; however, if they exist, they
are uniquely associated to the chosen component of the moment map µ (see
[GT, Lemma 2.7]). Moreover GT-canonical classes are Kirwan classes in the
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sense of Proposition 5.1 (cf. [GT, Lemma 2.8]), hence if they exist for every
fixed point p, they form a basis of H∗

T
(M ;Z) as a module over H∗

T
(pt;Z).

If the T action above is GKM, and if the chosen component of the
moment map µ is index increasing, then for each fixed point p the GT-
canonical class ζp exists. Conversely, if for all p ∈MT the GT-canonical class
exist, then µ must be index increasing (see Theorem 4.1 and Remark 4.2 in
[GT]).

Below we propose a different choice of basis for the equivariant coho-
mology ring, making use of our definition of local index translated to the
equivariant cohomology case.

Similarly to what we did in Section 3, for a fixed point q ∈MT we define
the map r̃ : H∗

T
(M ;Z) → H∗

T×S1(Hq × S2;Z) and denote by κ the Kirwan

map κ : H∗
T×S1(Hq × S2;Z) → H∗

T̃q

(H̃ǫ
q ;Z) which is surjective (for the sur-

jectivity of κ over the integers see [TW, Proposition 7.3]). The index ho-
momorphism in equivariant cohomology, corresponding to the equivariant
K-theory push-forward map, is simply given by integration. By the Atiyah-
Bott-Berline-Vergne Localization Formula [AB, BV] this integral

Ind: H∗
T̃q

(H̃ǫ
q ;Z) → H

∗−2λq

T̃q

(pt;Z)

is the following sum of rational functions:

Ind(α) =

∫

H̃ǫ
q

α =
∑

qj∈(H̃ǫ
q)

Tq

α(p)∏

wl∈W ǫ
qj

wl
,

where W ǫ
qj is the set of isotropy weights at qj in H̃

ǫ
q .

Observe that if α ∈ H2λ
T̃q

(H̃ǫ
q ;Z) and λ < λq then Ind(α) = 0.

For a class τ ∈ H∗
T
(M ;Z) let the local index of τ at q, denoted by

Indq(τ), be the image of the above Ind(κ ◦ r̃(τ)) ∈ H
∗−2λq

T̃q

(pt;Z) under the

natural homomorphismH∗
T̃q

(pt;Z)→H∗
T
(pt;Z) (compare with Definition 3.2).

Remark 5.4. An analogous of Proposition 3.4 holds for the local index
in equivariant cohomology (the only difference is that R(T) from the K-
theory setting needs to be replaced by H∗

T
(pt;Z)). Moreover, by comparing

the degrees, one sees that if τ ∈ H2λ
T
(M ;Z) then Indq(τ) = 0 for all q ∈MT

with λ < λq, and that for all q ∈MT with λ ≥ λq the degree of Indq(τ)ηq is
equal to the degree of τ (here ηq is the equivariant Poincaré dual to Fq).
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Definition 5.5. Let (M,ω,T, ψ) be a symplectic toric manifold of dimen-
sion 2n, together with a choice of a generic component of the moment map
µ = ψξ : M → R. Then for each p ∈MT, a Kirwan class τp ∈ H∗

T
(M ;Z) sat-

isfying

1) Indp(τp) = 1,

2) Indq(τp) = 0 for all points q ∈MT \ {p},

is called an i-canonical class at (the fixed point) p.

Remark 5.6. Note that as the above classes are Kirwan classes, they sat-
isfy τp(p) = Λ−

p , τp(q) = 0 for q ≺ p, and they form a basis of H∗
T
(M ;Z) as

an H∗
T
(pt;Z)-module. (We will see later that in fact τp is zero at all the

points q ∈MT \ V +
p .) By repeating the argument of Proposition 3.7 one can

show that if i-canonical classes exist they are unique.

In what follows we prove the existence of i-canonical classes, compare
them with the equivariant Poincaré duals to the flow-up manifolds, and with
the GT-canonical classes in the index increasing case. Before doing so we
prove some technical lemmas.

5.2. Technical Lemmas

We recall that, by the local normal form for the moment map µ, a fixed point
with all negative isotropy weights is a local minimum of µ. Moreover, by [A],
a local minimum is a global minimum, and the connectedness of the fibers of
µ implies that the subset where µ achieves its minimum is connected. Hence,
if the action has only isolated fixed points, there exists a unique fixed point
where µ achieves its minimum (see [GS, Lemma 5.1]), and it is the only
point with all negative weights.

Lemma 5.7. Let (X,ω,T, ψ) be a symplectic toric manifold together with
a choice of a generic component µ : M → R of the moment map inducing
an orientation on the associated GKM graph (V,E). Let p be the vertex
corresponding to the fixed point where µ attains its minimum. Then for
every vertex q ∈ V there exists an increasing path −−→p pk,

−−−−→pk pk−1 . . . ,
−−→p1 q from

p to q.

Proof. The unique point p where µ achieves its minimum is the unique fixed
point with only negative weights (i.e. it corresponds to the only vertex with
no incoming edges in the oriented GKM graph, that is W+

p = ∅). Take any
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vertex q ∈ V . If q = p we are done. Otherwise there exists a vertex p1 and
an edge −−→p1 q ∈ E with w(−−→p1 q) ∈W+

q , hence −−→p1 q ∈ Eo. If p1 = p we are done.
Otherwise we continue this process and construct a path −−−−→pl pl−1, . . . ,

−−→p1 q in
the oriented GKM graph. As the GKM graph is finite and connected this
procedure must end at p. �

We recall that given a symplectic toric manifold (M,ω,T, ψ, ξ) with oriented
GKM graph (V,Eo) (which is not necessarily index increasing) and given
p ∈MT, V +

p is defined to be the set of vertices which can be joined to p
through an increasing path in Eo (see Definition 4.7). The previous lemma,
applied to X = Fp, implies the following.

Lemma 5.8. Given a symplectic toric manifold (M,ω,T, ψ, ξ), for every
p ∈MT we have that

FT

p ⊂ V +
p

In Proposition 5.15 we prove that the opposite inclusion also holds pro-
vided that (M,ω,T, ψ, ξ) is index increasing.

Convention: In the rest of subsection 5.2, (M,ω,T, ψ, ξ) denotes a com-
pact symplectic toric manifold together a choice of generic ξ ∈ t such that the
corresponding moment map component µ = ψξ : M → R is index increasing.
The associated oriented GKM graph is denoted by Γo = (V,Eo). These hy-
potheses and notation apply to all of the following lemmas, propositions and
corollaries.

Lemma 5.9. Let p ∈MT and (Fp, ω|Fp
) the flow up at p (see definition in

Section 3). Then for any q ∈ FT
p \ {p} we have that λq > λp.

Proof. Take any q ∈ FT
p \ {p}. By Lemma 5.8, q ∈ V +

p and thus there exists
an oriented path from p to q such that µ increases on each edge. The index
increasing assumption gives that λq > λp. �

Proposition 5.10. Let ηp ∈ H
2λp

T
(M ;Z) be the equivariant Poincaré dual

to Fp (see Definition 5.2) and ζp ∈ H
2λp

T
(M ;Z) the GT-canonical class at

p ∈MT. Then ηp = ζp.

Proof. Notice that our index increasing assumption implies that GT-
canonical classes exist at each p ∈MT. As the conditions in Definition 5.3
define GT-canonical classes uniquely, it is sufficient to prove that ηp(p) = Λ−

p
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and that for all q ∈MT \ {p} with λq ≤ λp we have ηp(q) = 0. The first as-
sertion follows from observing that the normal bundle of Fp at p coincides
with the negative normal bundle of µ at p. To prove the second one we use
Lemma 5.9, which implies that for any q ∈MT \ {p} with λq ≤ λp we must
have q ∈MT \ Fp, and at these points ηp(q) = 0 by definition. �

Remark 5.11. There is an alternative way of proving that ηp = ζp in the
index increasing case. If the class ηp − ζp were nonzero, it would be nonzero
at some fixed point q. As both ηp and ζp vanish on points in MT \ {p} of
index smaller or equal to the index of p (see Lemma 5.9), the class ηp − ζp
can only be nonzero at fixed points q with λq > λp. Since GT-canonical
classes form a basis of H∗

T
(M,Z), from the previous observation it follows

that ηp − ζp =
∑

q;λq>λp
cqζq, where cq ∈ H∗

T
(pt;Z), with cs 6= 0 for some s.

By comparing the degrees of the classes on the right and on the left hand
side of the above equation we obtain a contradiction.

Lemma 5.12. Let q ∈MT and (Hq, ω|Hq
) be the flow down at q (see the

definition on page 1131). Let p be a fixed point connected to q by an oriented
edge −→p q and such that λp + 1 = λq. Denote by p1, . . . , pλp

the fixed points
connected to p by oriented edges −−→pj p. Then p1, . . . , pλp

∈ Hq.

Proof. Note that the GKM graph for Hq is a graph of valency λq. Therefore
exactly λq of the points connected to p must be in Hq. Take any r 6= q con-
nected to p by an edge −→p r. There are n− 1− λp = n− λq such points. Then
λr > λp = λq − 1, thus λr ≥ λq. Lemma 5.9 applied to −µ and Hq (instead
of µ and Fq) gives that r /∈ Hq. Therefore these n− λq points connected to p
are not in Hq. It follows that the remaining λq points, q and the λq − 1 = λp
points p1, . . . , pλp

directly below p, must be in Hq. �

To continue we need to recall some definitions from [GT]. Given a weight w ∈
ℓ∗ in the weight lattice of t∗, and a generic ξ ∈ t, the projection which sends
X ∈ t∗ to X − X(ξ)

w(ξ)w ∈ ξ⊥ ⊂ t∗ can be extended to be an endomorphism ρw
of S(t∗), the symmetric algebra of t∗. Given an edge −−→r1 r2 ∈ E of the GKM
graph of M , the (pairwise) independence of the set of weights at each fixed

point implies that ρw(−−→r1r2)(Λ
−
r1) 6= 0 and ρw(−−→r1,r2)

(
Λ−

r2

w(−−→r1r2)

)
6= 0. Therefore the

following nonzero elements of the field of fractions of S(t∗) are well defined
for all −−→r1r2 ∈ E

Θ(r1, r2) =
ρw(−−→r1r2)(Λ

−
r1)

ρw(−−→r1r2)

( Λ−
r2

w(−−→r1r2)

) .
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In [GT, Theorem 1.6] Goldin and Tolman prove that Θ(r1, r2) ∈ Z \ {0} for
all edges −−→r1r2 ∈ E with λr2 = λr1 + 1. (Note that the assumption that the
difference of the indices is 1, though not explicitly stated in their theorem, is
implied and required.) Moreover, they prove the following formula for com-
puting the restriction of a GT-canonical class to a fixed point. Let (V,Ecan)
be the subgraph of the GKM graph Γ = (V,E) where Ecan = {e = −−→r1 r2 ∈
E | λr2 = λr1 + 1}. Since the oriented GKM graph is index increasing, this
implies that µ(r1) < µ(r2) for every

−−→r1 r2 ∈ Ecan, i.e. Ecan is a subset of Eo.
Then for every p, q ∈MT we have that

(5.4) ζp(q) = Λ−
q

∑

γ∈
∑

q

p

|γ|∏

i=1

ψ(ri)− ψ(ri−1)

ψ(q)− ψ(ri−1)

Θ(ri−1, ri)

w(−−−−→ri−1 ri)
,

where
∑q

p is the set of paths from p to q in (V,Ecan) and γ ∈
∑q

p is given
by the sequence of vertices γ = (r0, . . . , r|γ|); here |γ| denotes the length of
γ, i.e. the number of edges composing it.

Lemma 5.13. For all e = −−→r1r2 ∈ Ecan we have that Θ(r1, r2) = 1.

Note that the above lemma may not hold for GKM manifolds which are
not toric (see [GT, Example 5.2])

Proof. Recall that W+
r denotes the set of weights of the edges ending at

r. Observe that ρw(−−→r1r2) sends w(−−→r1r2) to 0, so it is enough to prove that
there exists a bijection θ : W+

r1 →W+
r2 \ {w(

−−→r1r2)} such that θ(w)− w = m ·
w(−−→r1r2) for some m ∈ Z that depends on w. This is equivalent to proving
that the weights of T representation on Tr2Hr2 and Tr1Hr2 agree modulo
w(−−→r1r2). The last fact follows from observing that the subtorus

T′ = exp({η ∈ t |w(−−→r1r2)(η) = 0})

fixes the sphere S2
−−→r1r2

= ψ−1(−−→r1r2), an embedded T invariant submanifold of
Hr2 (which, in turn, is a smooth T-invariant submanifold of M). Thus the
representations of the torus T′ on the normal bundle of S2

−−→r1r2
in Hr2 need to

agree at r1 and r2. �

The next lemma proves that for each q ∈ V +
p there exists a path γ whose

edges belong to Ecan.

Lemma 5.14. Let p ∈MT and let Σqp be defined as before. Then q ∈ V +
p if

and only if
∑q

p 6= ∅.
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Proof. If
∑q

p 6= ∅ then clearly q ∈ V +
p . Vice versa, suppose that q ∈ V +

p .
Assume first that there exists a path from p to q composed by one edge −→p q ∈
Eo. Note that the GT-canonical class ζp does not vanish when restricted to
q. Indeed, ζp(q) = 0 and condition (5.1) would imply that w(−→p q) divides
ζp(p) = Λ−

p , which contradicts the assumption about linear independence of
weights at p. By (5.4) we conclude that

∑q
p 6= ∅. If the path from p to q is

composed by edges −→p r1 =
−−→r0 r1, . . . ,

−−−−−→rm−1 rm = −−−−→rm−1 q, each of them in Eo,
then the preceding argument implies that the sets of paths

∑r1
r0
, . . . ,

∑rm
rm−1

are all nonempty, and so
∑q

p is nonempty as well. �

Proposition 5.15. For any p ∈MT, let ζp be the GT-canonical class. Then
for any q ∈MT have

ζp(q) 6= 0 ⇔ q ∈ V +
p .

Together with Proposition 5.10 this implies

FT

p = V +
p .

Proof. If ζp(q) 6= 0 then by (5.4) the set
∑q

p is nonempty, hence q ∈ V +
p .

Now consider q ∈ V +
p . By Lemma 5.14 we have that

∑q
p is not empty. We

use formula (5.4) quoted from [GT] to analyze ζp(q). Using Lemma 5.13
observe that each summand in (5.4) for ζp(q) is positive (in the sense that
it gives a positive number when evaluated on ξ), therefore ζp(q) 6= 0. �

Corollary 5.16. If q ∈ FT
p and −→q q0 ∈ Eo then q0 ∈ FT

p . As a consequence,
the normal bundle of Fp at q (denoted by N(Fp)|q) is a subbundle of the
negative normal bundle of µ at q (denoted by N−

q ).

Proof. By definition of V +
p it follows that if q ∈ V +

p then V +
q ⊆ V +

p . Together
with Proposition 5.15 this gives that FT

q ⊆ FT
p . From the definition of Fq it

is straightforward to see that if −→q q0 ∈ Eo then q0 ∈ FT
q , and the first claim

follows. As a consequence we have that N(Fp)|q splits as a direct sum of
line bundles Li, each of them being the tangent bundle at q of the sphere
associated to the edge −→qi q ∈ Eo, for some qi /∈ Fp. This implies the second
claim. �

5.3. The proof of Theorem 1.2

We are now ready to prove Theorem 1.2. It follows immediately from the
Proposition below.
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Proposition 5.17. Let (M,ω,T, ψ) be a symplectic toric manifold, together

with a choice of a generic component of the moment map µ = ψξ : M →
R, not necessarily index increasing. Then for each p ∈MT the i-canonical
class τp exists, and is equal to the equivariant Poincaré dual ηp to flow-up
submanifold Fp.

If the moment map µ = ψξ : M → R is index increasing (thus GT-
canonical classes exist) then the above proposition, together with Proposi-
tion 5.10, implies that for each p ∈MT the following equivariant cohomology
classes are the same:

• the Poincaré dual ηp to flow-up submanifold Fp;

• the GT-canonical class ζp;

• the i-canonical class τp.

Proof. Fix p ∈MT. We show that the equivariant Poincaré dual ηp to the
flow-up submanifold Fp satisfies: Indp(ηp) = 1 and Indq(ηp) = 0 for each q ∈
MT \ {p}. Since ηp is also a Kirwan class, this proves that ηp is the i-canonical
class at p. As ηp(p) = Λ−

p , Remark 5.4 implies that Indp(ηp) = 1. For q ∈
MT \ Fp we have ηp(q) = 0, thus Indq(ηp) = 0. Consider a point q ∈ Fp \ {p}.
Let q1, . . . , qλq

, . . . , qn ∈MT be the fixed points connected to q by an edge
in the GKM graph of M , and let w1, . . . , wλq

, . . . , wn denote the weights

on the corresponding oriented edges, with Λ−
q =

∏λq

j=1wj . By definition of
equivariant Poincaré dual we have that

ηp(q) =
∏

1≤j≤n

qj /∈Fp

wj =
∏

1≤j≤λq

qj /∈Fp

wj ·
∏

λq+1≤j≤n

qj /∈Fp

wj .

To calculate the index Indq(ηp) we use the algorithm and the notation of
Section 3. Observe that

f0 =
∏

1≤j≤λq

qj /∈Fp

(wj + w0) ·
∏

λq+1≤j≤n

qj /∈Fp

wj ,

fi =





0 if qi /∈ Fp∏

1≤j≤λq

qj /∈Fp

(wj − wi) ·
∏

λq+1≤j≤n

qj /∈Fp

wj if qi ∈ Fp
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Therefore the local index Indq(ηp) is equal to

Indq(ηp) =

∏

1≤j≤λq

qj /∈Fp

(wj + w0) ·
∏

λq+1≤j≤n,

qj /∈Fp

wj

∏

1≤j≤λq

(wj + w0)
+
∑

1≤i≤n

qi∈Fp

∏

1≤j≤λq

qj /∈Fp

(wj − wi) ·
∏

λq+1≤j≤n

qj /∈Fp

wj

(−wi − w0)
∏

1≤j≤λq

j 6=i

(wj − wi)

=




∏

λq+1≤j≤n

qj /∈Fp

wj







1∏

1≤j≤λq

qj∈Fp

(wj + w0)
+

∑

1≤i≤n

qi∈Fp

1

(−wi − w0)
∏

1≤j≤λq

j 6=i, qj∈Fp

(wj − wi)




=




∏

λq+1≤j≤n

qj /∈Fp

wj


 Ind(1CPs),

where s is the number of weights w1, . . . , wλq
appearing in the representation

of T on TqFp (in the index increasing case, s would be λq − λp). Note that
s 6= 0 because if s = 0 then q would be the minimum of µ on Fp (c.f. Lemma
5.7) which contradicts our assumption that q 6= p. As Ind(1CPs) = 0 for s > 0
it follows that Indq(ηp) = 0. �

Appendix A. An explicit description of the Kirwan map

The map κ used in the definition of local index is in fact the surjective Kirwan
map relating the equivariant K-theory or cohomology ring of a manifold X
with that of the reduced spaces. Indeed, below we describe a combinatorial
algorithm for calculating the Kirwan map, and the reader can compare it
with the combinatorial algorithm for calculating the local index in Section 3.
For simplicity we only deal with the equivariant cohomology setting.

Suppose thatX = X2d is a 2d-dimensional symplectic manifold equipped
with an effective Hamiltonian toric action of torus T = T d. Let ψ′ : X →
Lie(T d)∗ ∼= Rd be a choice of moment map. Choose a subtorus T k →֒ T, k <
d, and consider the induced action of T k on X. Let π : Lie(T d)∗ → Lie(T k)∗

be the map induced by the inclusion T k →֒ T d. Then ϕ = π ◦ ψ′ : X → Rk

is a moment map for this action. Take any regular value a of the function
ϕ. Then Xred := ϕ−1(a)/T k is a symplectic toric orbifold.
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If the T k action on ϕ−1(a) is free then ϕ−1(a)/T k is a manifold. Moreover
it is equipped with a Hamiltonian action of the residual torus K := T d/T k.
By a theorem of Kirwan the following map (called Kirwan map)

κ : H∗
T(X;Z) ։ H∗

T(ϕ
−1(a);Z) ≃ H∗

K(Xred;Z)

is surjective (see [TW, Prop. 7.3]). We describe κ explicitly in the situation
that appears in our algorithm for calculating the local index (where X =
Hq × S2 and Xred = H̃ǫ

q), namely when:

• k = 1 so T k ∼= S1, henceforth denoted S1 to avoid confusion,

• S1 acts freely on ϕ−1(a), hence Xred is a manifold and

• the level of the reduction a is close to the maximum of ϕ, i.e. the
hyperplane π−1(a) cuts the moment map image of X close to the fixed
point q0 of X where ϕ attains its maximum.

The moment map image of Xred is the intersection of ψ′(X) with the
affine hyperplane π−1(a) in Lie(T d)∗. The fixed points of Xred correspond
to the points of intersection of this affine hyperplane with the edges of the
1-skeleton of the moment polytope of X; the set of these edges is denoted
by E. An example is presented in Figure A1. The weights of the T d = T 2

action at p0 are w1 and w2. The affine hyperplane is perpendicular to the
vector v = w1 + w2.

Recall the description of the kernel of the Kirwan map from the work of
Goldin [G] and Tolman-Weitsman [TW], and observe that in our situation
any class in H∗

T
(X;Z) which has value 0 when restricted to q0 is in the

kernel. Therefore

κ(α) = κ(α(q0) · 1)

for any α in H∗
T
(X;Z). This reduces our problem to analyzing only the

classes of the form f · 1, with f ∈ H∗
T
(pt;Z).

We describe κ(f · 1) by calculating its restrictions to the fixed points
XK

red. Let pi ∈ XK

red be any fixed point. Denote by qi, q0 ∈ XT the fixed points
in X connected by an edge −−→qiq0 ∈ E such that pi is the intersection of the
edge −−→qiq0 with the affine hyperplane π−1(a). Denote by S2

i the sphere in X
corresponding to the edge −−→qiq0 and by Hi the subtorus of T fixing S2

i , i.e.
Hi = exp({ξ |w(−−→qiq0)(ξ) = 0}). Note that S2

i ∩ ϕ
−1(a) is a circle, denoted by

Ci, equipped with a free S1-action (the restriction of the free S1 action on
ϕ−1(a) to S2

i ∩ ϕ
−1(a)) and that

Ci/S
1 = {pi}.
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To find the weights of the K action on TpiXred we proceed as in [GH,
Example 3]. Observe thatHi is complementary to S1 in T, soHi

∼= T/S1 = K

(this follows from the assumption that the reduced space is a manifold).
Therefore the K action on TpiXred is isomorphic to the Hi action on this
space. The weights of the K action on TpiXred are obtained by projecting
the T weights at q0 to h∗i = Lie(Hi)

∗. (Using qi instead of q0 gives the same
result as the T weights at qi differ from those at q0 by a multiple of w(−−→qiq0),
so the difference vanishes after applying the projection to h∗i ). Note also
that the weights of the K action on TpiXred, together with w(

−−→qiq0), form a
Z-basis of the lattice ℓ∗.

We need to find the image of f · 1 ∈ H∗
T
(X;Z) under the composition

H∗
T(X;Z) → H∗

T(Ci;Z)
∼=
→ H∗

K({pi};Z) = H∗
Hi
(pt;Z),

where the first map is induced by the inclusion Ci →֒ X and sends f · 1 ∈
H∗

T
(X;Z) to f · 1 ∈ H∗

T
(Ci;Z). As for the second map, on classes of the form

f · 1, with f ∈ H∗
T
(pt;Z), it acts exactly as the map H∗

T
(pt;Z) → H∗

Hi
(pt;Z)

we used above to find the weights. Note that the value κ(f · 1)(pi) is in the
Z-span of the weights of the K action on TpiXred, as it should be.

In conclusion, the procedure for finding the value of the restriction of
κ(α) to pi is the following:

• Present the value α(q0) ∈ H∗
T
(pt;Z) in the basis consisting of the K

weights at TpiXred and of the weight w(−−→qiq0).

• Map such value to H∗
K
(pt;Z) ∼= H∗

Hi
(pt;Z) by sending the weight

w(−−→qiq0) to 0.

The result is κ(α) restricted to the point pi. Note that starting from α(qi) in-
stead of α(q0) gives exactly the same result because α(q0) and α(qi) differ by
a multiple of the weight w(−−→qiq0) (see (5.1)). By repeating the same argument
for each fixed point of Xred we obtain the image of κ(α) in H∗

K
(XK

red).
In the example in Figure A1, π−1(a) is generated by the vector (1,−1).

At p1 we get a Z-basis {w1 − w2 = (1,−1), w1 = (1, 0)}, while at p2 we get
a Z-basis {w2 − w1 = (−1, 1), w2 = (0, 1)}. We find the image of the class α
presented in black on the right of Figure A1 (with αj = α(qj)). The torus K
is 1 dimensional, so the dual of its Lie algebra can be identified with R[x],
where x = w1 − w2. At the point p1 our procedure applied to α0 gives

w1 + w2 = −(w1 − w2) + 2w1 → −(w1 − w2) + 0 = −x.
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(Observe that if we use α1 instead of α0 we indeed get the same result: 4w1 +
w2 = −(w1 − w2) + 5w1 → −(w1 − w2) + 0 = −x.) At the point p2 we get

w1 + w2 = (w1 − w2) + 2w2 → (w1 − w2) + 0 = x.

Therefore κ(α) (presented in blue) restricted to p1 gives −x, and restricted
to p2 gives x.

q0 q1

q3q2

p1

p2

w1

w2
π

Lie(T k)∗w1 − w2
x = w1 − w2

α0 = w1 + w2 α1 = 4w1 + w2

α3 = 4w1 + 7w2

α2 = w1 + 7w2

x

−x

a

Figure A1: An example of a computation of the Kirwan map.

w0

w1

w2

w1

w2

w1 − w2

w2 + w0

f(w1, w2)

f(w1, w2)

f(w1, w2) + c1w1

f(w1, w2) + c2w2

f(w1 + w0, w2 + w0)

f(w1 − w2, 0)

f(0, w2 − w1)

w1 + w0

Figure A2: A calculation of the Kirwan map in the situation encountered
in the definition of local index.

Our second example of computation of the Kirwan map goes back to
the situation presented in Figure 3.1, i.e. the situation we encountered while
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calculating the local index. Given a class τ ∈ H∗
T
(Hq;Z) we want to calculate

the class κ(r̃(τ)) in H∗
T̃q

((H̃ǫ
q)

T̃q ;Z). Figure A2 consists of three pictures: the

weights around the fixed point q0, the values of r̃(τ) at the fixed points of
Hq × S2 in the neighborhood of q0, and the values of κ(r̃(τ)) at the fixed

points of H̃ǫ
q . The values of κ(r̃(τ)) at p0, p1, p2, respectively, are calculated

in the following way:

f(w1, w2) = f((w1 + w0)− w0, (w2 + w0)− w0) → f(w1 + w0, w2 + w0),

f(w1, w2) = f(w1, (w2 − w1) + w1) → f(0, w2 − w1),

f(w1, w2) = f((w1 − w2) + w2, w2) → f(w1 − w2, 0).
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