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We use Lagrangian torus fibrations on the mirror X of a toric
Calabi-Yau threefold X̌ to construct Lagrangian sections and var-
ious Lagrangian spheres on X. We then propose an explicit cor-
respondence between the sections and line bundles on X̌ and be-
tween spheres and sheaves supported on the toric divisors of X̌. We
conjecture that these correspondences induce an embedding of the
relevant derived Fukaya category of X inside the derived category
of coherent sheaves on X̌.
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1. Introduction

An example of mirror symmetry which has been studied a great deal in
recent years is so-called local mirror symmetry of (open) toric Calabi-Yau
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manifolds. If X̌ is a smooth toric Calabi-Yau manifold, then a construction
of its mirror X appeared first in the physics literature in various articles,
see for instance [29] or [16]. Later, in [21] and [22], the first author proved
that X̌ and X admit dual torus fibrations f̌ : X̌ → Rn and f : X → Rn. This
suggests that they are mirror to each other in the sense of the SYZ conjecture
[35]. The construction in [21] implies that f̌ is special Lagrangian; moreover,
using the results in [7], we can assume that f is Lagrangian (see also [3] for
another construction of a Lagrangian fibration on X). More recently, mirror
symmetry of X and X̌ has been proved at deeper levels and in various other
aspects, see for instance [3], [12], [11], [27].

In this article we consider a toric Calabi-Yau threefold X̌ and we give
rather explicit constructions of Lagrangian sections of f : X → R3 and La-
grangian 3-spheres in X. The Lagrangian spheres we construct represent a
homology class which we show can be described via a difference of sections
which coincide outside a compact set. Sections of Lagrangian fibrations have
long been expected to correspond to line bundles on X̌, and our construction
of the sections naturally suggests a precise such correspondence. Moreover
the relationship between the Lagrangian spheres and different sections then
suggests an explicit correspondence between the spheres and line bundles
supported on the compact toric divisors of X̌. We conjecture that this cor-
respondence induces an embedding of a suitable derived Fukaya category
generated by the spheres and the sections into the derived category of co-
herent sheaves of X̌. The two-dimensional version of this conjecture has been
partially proved by Chan and Chan-Ueda respectively in [10] and [15]. We
then prove some results which support our conjecture. For instance, we show
that by studying the differential topology of the intersection points between
a sphere and a section one finds numbers of intersection points agreeing with
the dimension of the morphism space between the corresponding line bundle
and sheaf. In some special cases (when there are no Floer differentials for
degree reasons), we can show that the intersection between a sphere and a
section is transverse and that the Floer homology group between the section
and the sphere coincides with the group of morphisms between the line bun-
dle and the sheaf. We have not attempted to carry out a detailed analysis
of Floer cohomology in this paper.

We apply our results to study the mirror symmetry of A2d−1-singularities
in dimension 3. In particular we describe the vanishing cycles in a smoothing
of an A2d−1-singularity using our construction of Lagrangian spheres. Then
we prove that in the mirror, our correspondence gives an A2d−1-configuration
of spherical objects, in the sense of Seidel and Thomas [33]. This refines and
makes more explicit a conjecture of Seidel and Thomas in [33].
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On HMS of toric Calabi-Yau threefolds 1251

1.1. Local mirror symmetry

Let N ∼= Zn−1 be a lattice and M its dual. Let NR = N ⊗Z R and MR =
M ⊗Z R. If P ⊂ NR is a convex lattice polytope, let C(P ) ⊂ R×NR be the
cone over {1} × P . A subdivision of P in smaller lattice polytopes gives a
subdivision of C(P ), i.e., a fan denoted Σ, and hence a toric variety VΣ

of dimension n. If P is subdivided in elementary simplices, then VΣ is a
smooth Calabi-Yau variety of dimension n, in the sense that it has trivial
canonical bundle. These toric Calabi-Yau varieties are called semi-projective
in [17], p.332 and are those whose fan has convex support. The variety X̌ is
obtained by removing from VΣ a principal divisor which does not intersect
the compact toric divisors of VΣ. The mirror X is an affine variety defined
in (2.2). We consider the 3-dimensional case (n = 3). The discriminant locus
of the Lagrangian fibration f : X → R3 can be thought as (a thickening of)
the tropical curve Γ defined by P and its subdivision (see Figures 5 and 6
showing some examples). The critical locus of f is a submanifold S ⊂ X of
real dimension 2 which maps to Γ. We have that X has a Hamiltonian S1-
action, preserving the fibres of f , with moment map µ such that S ⊂ µ−1(0)
and S is the fixed point set of this action. It turns out that we can (partially)
identify the reduced space µ−1(0)/S1 with NR × (MR/M), with its standard
symplectic form.

1.2. Lagrangian sections and spheres

We now describe the construction of the sections and of the spheres. From
toric geometry it follows that a line bundle on X̌ is described by a piecewise
integral affine function φ : P → R, called a support function, whose domains
of affineness are unions of the polytopes in the subdivision. Using such a
function we construct a Lagrangian section of f as follows. First we extend
φ in a piecewise affine way to all of NR, then we smooth φ by convoluting it
with a “mollifier” (see (3.11) and (3.12) for the definition of a mollifier and of
the convolution product). This gives a smooth function φ̃ε, which essentially
is φ with its “corners” smoothed out. The graph of the differential of φ̃ε gives
a Lagrangian section of the reduced space NR × (MR/M). We then argue
that this section can be lifted and extended to give a section of f . This is
essentially the content of Theorem 3.15.

The construction of spheres is similar. The complement of the tropical
curve Γ in NR has a finite number of bounded connected components and
there is a one-to-one correspondence between these connected components
and the interior vertices in the subdivision of P . We denote by C a connected
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component and by vC the corresponding vertex. Moreover, interior vertices
are in one-to-one correspondence with compact toric divisors of X̌, which we
denote by DC . The tangent wedges to the polytopes containing the vertex vC
of the subdivision form a fan ΣC which is the fan of the toric divisor DC . We
define the notion of a semi-integral support function (see Definition 4.1), i.e.,
a continuous function ϑ : |ΣC | → R which is linear on the cones of ΣC and
satisfies a certain compatibility condition (4.3). Then let ϑ̃ε be a smoothing
of ϑ (obtained by convolution with a mollifier). We interpret ϑ̃ε as a real
function on C. It then turns out that the graph of the differential of ϑ̃ε
defines a map λ : C → NR × (MR/M) which maps the boundary of C to the
critical surface S. Then α−1(λ(C)) gives the Lagrangian sphere, where α is
the quotient map α : X → X/S1, and the reduced space is identified with
µ−1(0)/S1 ⊂ X/S1. In other words, the sphere is an S1-fibration over C,
with the circles degenerating to points over the boundary of C. This is the
content of Theorem 4.5.

It is worth pointing out that our construction of Lagrangian spheres is
rather general and also works in the case of compact Calabi-Yau threefolds
with the Lagrangian fibrations constructed in [7]. In Example 4.10 we show
how to construct Lagrangian spheres inside the quintic threefold in P4.

In [2], M. Abouzaid studied homological mirror symmetry of a compact
toric variety Y . The mirror of Y is a Landau-Ginzburg model ((C∗)n,W ),
where W : (C∗)n → C is a Laurent polynomial. Abouzaid proves that the
bounded derived category of coherent sheaves on Y embeds as a full subcat-
egory inside the derived Fukaya category of ((C∗)n,W ). He defines such
a Fukaya category by considering certain Lagrangian submanifolds with
boundary on W−1(0). Abouzaid’s construction is similar to ours and it is
likely that his correspondence is strongly related to the one we propose.

1.3. The correspondence

The correspondence between Lagrangian sections of f : X → R3 and line
bundles of X̌ is stated in Conjecture 3.16. Essentially, given the piecewise
affine function φ : P → R, the section constructed from φ as described above
should correspond to the line bundle given by the function −φ. In order
to decide which sheaves should correspond to the Lagrangian spheres we
proceed as follows. Suppose we have a pair of sections σ and σ′ which coincide
outside a compact set K homeomorphic to a 3-ball, then we say that σ is
compactly supported with respect to σ′. We can view a (topological) sphere
as two copies of K glued along their boundaries. A map from this sphere to
X is constructed by defining it to be σ on one copy of K and σ′ on the other
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copy. This map defines a homology class in H3(X,Z) which we denote by
[σσ′]. If this homology class is represented by a Lagrangian sphere L, then
we expect the sheaf EL corresponding to L to fit in a short exact sequence
of the type

0 −→ Lσ′ −→ Lσ −→ EL −→ 0.

The motivation for this is that it seems reasonable to expect that σ can be
obtained as the Lagrangian connected sum σ′#L. Then a general argument
in mirror symmetry (see [4], Section 3.3.2) suggests that Lσ should be an
extension of Lσ′ by EL.

In Section 5 we investigate which pairs of sections σ and σ′ can be
assumed (up to isotopy) to coincide outside some compact set K and we
determine the Lagrangian sphere whose homology class coincides with [σσ′].
This is the content of Proposition 5.5 and Theorem 5.6.

Using the above arguments, the outcome of our proposed correspondence
is as follows (see the beginning of Section 7). Given a semi-integral support
function ϑ on ΣC , let ψKC : |ΣC | → R be the support function corresponding
to the canonical bundle of DC . Define ψ as

ψ =
1

2
ψKC − ϑ.

Then the sheaf corresponding to the sphere defined by ϑ is the line bundle
supported on DC defined by ψ. This is the correspondence stated in Con-
jecture 7.1. We point out that in dimension two, in [10], Chan constructs
the same correspondence as ours between spheres and sheaves supported on
compact toric divisors. Then he proves that this correspondence defines an
embedding of the derived Fukaya category generated by the spheres inside
the derived category of coherent sheaves of the mirror. Similarly, in [15],
Chan and Ueda construct, in the two-dimensional case, a correspondence
between Lagrangian sections of f and line bundles on X̌ and prove that
it gives an embedding of derived categories. Chan, Ueda and Pomerleano
obtained similar results in [14] in the three-dimensional example of the coni-
fold. Moreover in [13] the same authors propose a similar construction of
Lagrangian sections and mirror correspondence with line bundles and they
prove that the wrapped Floer homology ring of the zero section is isomor-
phic to the algebra of functions on X̌ (we thank the authors for sending us a
preliminary version of their work). We also point out the result of P. Seidel
[32] where, in the case X̌ is the total space of the canonical bundle of a
smooth toric del Pezzo surface Y , he finds a full embedding of triangulated
categories between the bounded derived category of sheaves supported on Y
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and the derived Fukaya category of the mirror X. Seidel’s method is based
on the “suspension” of Lefschetz fibrations. We do not know what is the
relation between our proposed correspondence and Seidel’s result.

1.4. Other results

We obtain some results which support our conjectures. For instance, in the
case that a semi-integral support function ϑ (or its opposite −ϑ) is strictly
convex, we prove that the sphere corresponding to ϑ intersects the zero
section transversely (see Corollary 6.4).

This implies that the Floer homology group between the zero section
and the sphere is isomorphic to the group of morphisms between the cor-
responding sheaves (see Remark 6.8). In fact in this case we argue that
for topological reasons the Floer differential must be zero. Thus the dimen-
sion of the Floer homology group coincides with the number of intersection
points. Then we show that these are in one-to-one correspondence with the
integral points in the interior of a convex polytope with vertices on the half
lattice 1

2M (see Figure 18 for some examples). It is not hard to show that
the number of such points is precisely the dimension of H2(DC ,Lψ) (or re-
spectively H0(DC ,Lψ)), where Lψ is the line bundle on DC corresponding
to the support function ψ defined above.

More generally, in Theorem 7.4 we prove that given any ϑ, the differ-
ential topology of the intersection points between the zero section and the
sphere corresponding to ϑ allows us to recover the morphism groups be-
tween the corresponding sheaves. More precisely, the half-integral support
function ϑ defines a piecewise linear closed curve in MR. We prove that the
dimension of Heven(DC ,Lψ) is the number of integral points which have
positive winding number with respect to this curve. Moreover, the dimen-
sion of Hodd(DC ,Lψ) is obtained as minus the sum of the winding numbers
(with respect to this curve) of all integral points whose winding number is
negative.

1.5. A2d−1-singularities

In Section 8 we study the mirror symmetry of A2d−1 singularities in di-
mension 3. In fact, the mirror of a smoothing of an A2d−1 singularity in
dimension 3 is a toric Calabi-Yau. We can view the 2d− 1 vanishing cycles
using our construction above. For instance, in the case d = 3, the smoothing
X has a Lagrangian fibration with discriminant locus the tropical curve Γ
as in Figure 6. Then, the complement of Γ has two bounded regions. We
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obtain one vanishing cycle for each of these bounded regions. There are an-
other three vanishing cycles constructed over some one dimensional edges of
Γ (see §4.4). Our correspondence gives us the conjectural mirror objects.

In Proposition 8.8 we prove that the mirror objects form an A2d−1-
sequence in the sense of Seidel and Thomas [33].
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2. Local mirror symmetry and torus fibrations

2.1. Local mirror symmetry of toric singularities

Let N ∼= Zn−1 be a lattice and M = Hom(N,Z) its dual lattice. Let NR =
N ⊗Z R and MR = M ⊗Z R. Identify (Z⊕N)⊗ R with R×NR. We also
denote by TM the complex algebraic torus M ⊗ C∗. Given a convex lattice
polytope P ⊆ NR, let C(P ) ⊆ R×NR be the cone over {1} × P and let
VP be the n-dimensional toric variety defined by C(P ). In general VP is
singular with an isolated Gorenstein singularity. Given a subdivision of P
in convex lattice polytopes P1, . . . , Pk, we obtain a fan Σ by considering the
cones over the faces of the Pj ’s . Let VΣ be the toric variety associated to
this fan. When the subdivision of P is smooth, i.e., all Pj ’s are elementary
simplices, then VΣ is a smooth Calabi-Yau, providing a crepant resolution
of VP . We will always assume that the subdivision is smooth. The lattice
point (1, 0) ∈ Z×M defines a regular monomial z(1,0) : VΣ → C. Define

(2.1) X̌ = VΣ − {z(1,0) = 1}.

A mirror of X̌ was first predicted by phycists, e.g. in [29] or [16]. In
general it will be a family of varieties roughly parameterized by the Kähler
moduli space of X̌. Because we will only be concerned about the symplec-
tic geometry of the mirror, we define a convenient one-real parameter sub-
family, as follows. Consider a function ν : P → R which is piecewise affine
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and strictly convex with respect to the given subdivision of P (i.e., the do-
mains of linearity coincide precisely with the polytopes Pj). Assume also
that ν, restricted to P ∩N , has integer values. Elements j ∈ N correspond
to monomials, or characters, on the torus TM which we denote by zj . For
t ∈ R>0, consider the family of Laurent polynomials

ht =
∑

j∈P∩N
tν(j)ajz

j ,

where the coefficients aj ∈ C∗. We will construct the mirror of X̌ by fixing
t and taking the n-dimensional variety

(2.2) X = {(x, y, z) ∈ C2 × TM |xy = ht(z)}

We will typically be interested in the case that t is very close to 0. It can be
shown that X is Calabi-Yau, i.e. it has trivial canononical bundle (see [21]
for an explicit global holomorphic n-form).

2.2. The tropical hypersurface Γ

Let ν : P → R be the function defined above. Then it extends to a piecewise
linear strictly convex function ν̃ : |Σ| → R, by defining ν̃(1, v) = ν(v) for all
v ∈ P and extending linearly. The function ν̃ also corresponds to a choice of
ample line bundle on VΣ, whose Newton polyhedron σ is given by
(2.3)

σ = {(t,m) ∈ R×MR | 〈(1, v), (t,m)〉+ ν(v) ≥ 0, for all v ∈ P ∩N}.

Now, over MR, define the following piecewise affine function

(2.4) ν̌(m) = min{〈v,m〉+ ν(v), v ∈ P ∩N}.

This function is the discrete Legendre transform of ν. Clearly

σ = {(t,m) ∈ R×MR | t ≥ −ν̌(m)}.

The subset of MR where ν̌ fails to be smooth is a polyhedral complex Γ
whose maximal cells have dimension n− 2 and lie on affine subspaces of
rational slope. The complex Γ is also called the non-archimedean amoeba
of the polynomial ht or the tropical hypersurface defined by ht. In the case
n = 2, Γ is just a finite set of points. In the case n = 3, Γ is a tropical curve,
topologically a graph with trivalent vertices.
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We have that Γ defines a polyhedral subdivision of MR, whose max-
imal cells are the closures of the connected components of MR − Γ. This
subdivision is dual to the subdivision of P , in the sense that there is a one-
to-one, inclusion reversing correspondence between k-dimensional cells in
the subdivision of P and codimension k cells in the subdivision of MR. In
particular, there is a one-to-one correspondence between connected compo-
nents of MR − Γ and vertices of the subdivision of P . If C is a connected
component of MR − Γ, we denote by vC the corresponding vertex. Vertices
on the boundary (resp. in the interior) of P correspond to unbounded (resp.
bounded) components.

In this paper we will mostly consider the case dimMR = 2, i.e., n = 3,
so let us fix some notation for this case. An edge ě in the subdivision of P
corresponds to an edge e of Γ. If vC and vC′ are the vertices of ě, then e is
the common edge of C and C ′. Clearly e is an infinite ray if and only if vC
and vC′ both lie on the boundary of P . If ne ∈MR is a primitive integral
tangent vector to e and ně is a primitive integral tangent vector to ě then

(2.5) 〈ne, ně〉 = 0.

For every edge ě in the subdivision of P , we fix the following choices:

a) we fix ně and ne, primitive integral tangent vectors to ě and e respec-
tively;

b) if ě is an interior edge, we label the two 2-dimensional simplices con-
taining ě by P+

e and P−e , so that for every q+ ∈ P+
e and q− ∈ P−e we

have 〈
ne, q

+ − q−
〉
≥ 0;

c) if ě is a boundary edge, we label by Pe the unique simplex containing
ě.

Observe that if p+
e is the vertex of Γ corresponding to P+

e and p−e is the
vertex corresponding to P−e then ne points outward from p+

e in the direction
of p−e . This can be deduced from the definition of Γ.

Given a vertex p of Γ, the following balancing condition holds

(2.6)
∑
p∈e

εene = 0,

where εe = 1 if ne points outward from p, otherwise εe = −1. The fact that
this holds for such a choice of εe follows from the fact that all edges of P
are affine length 1, as the subdivision of P is smooth. Moreover, for any pair
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of edges e1 and e2 emanating from p, ne1
and ne2

form a basis of M , again
because the subdivision of P is smooth.

2.3. Torus fibrations

In the following we restrict to dimension n = 2 or 3. The claim that X and
X̌ are mirror to each other has been proved to various degrees of precision
in the literature. See for instance [12], [11], [3], [27]. In [21], the first author
shows that X and X̌ admit torus fibrations which are dual to each other in
the sense of the SYZ-conjecture, as refined in [22]. For our purposes we will
only need the fibration on X, so we give a description of this fibration only.
In fact we will give three constructions.

Choosing an isomorphismM∼=Zn−1 identifies the torus TM with (C∗)n−1.
We denote by (z1, . . . , zn−1) the standard coordinates on (C∗)n−1. On C2 ×
(C∗)n−1 consider the symplectic form

(2.7) ω =
i

2

dx ∧ dx̄+ dy ∧ dȳ +

n−1∑
j=1

dzj ∧ dz̄j
|zj |2


and restrict it to X. We have a Hamiltonian S1-action on X given by

eiθ · (x, y, z) = (eiθx, e−iθy, z)

with moment map

(x, y, z) 7→ |x|
2 − |y|2

2
.

Consider the (n− 1)-torus fibration Log : (C∗)n−1 → Rn−1 defined by

Log z = (log |z1|, . . . , log |zn−1|).

Then the fibration f : X → R× Rn−1 is defined by

(2.8) f(x, y, z) = (|x|2 − |y|2,Log z).

When n ≥ 3 this fibration is not Lagrangian, but later we will describe a
different construction in dimension n = 3 of an equivalent fibration which is
Lagrangian (after [7]). In this article we will not use this model of fibration
but its simple and explicit form motivates the other constructions.

Let Y = X/S1. Notice that Y ∼= R× (C∗)n−1 and f is the composition of
the projection α : X → Y with the map R× (C∗)n−1 → R× Rn−1 given by
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(s, z) 7→ (s,Log z). The fixed point locus of the S1-action is the set of points
where x = y = 0. So, let St ⊂ (C∗)n−1 be the zero set of the polynomial ht
and let Y ′ = Y − ({0} × St). Then α : α−1(Y ′)→ Y ′ forms a principal S1-
bundle. The Chern class of this bundle is described as follows. The relative
cohomology exact sequence yields

0→ H2(Y,Z)→ H2(Y ′,Z)→ H3(Y, Y \ St,Z) ∼= Z→ 0

which is split by choosing a fibre Tn−1 ⊂ Y of R× (C∗)n−1 → R× Rn−1

disjoint from St and using the composition H2(Y ′,Z)→ H2(Tn−1,Z) ∼=
H2(Y,Z). Then the Chern class of α is (0,±1) ∈ H2(Y ′,Z) ∼= H2(Y,Z)⊕ Z.
Let

A = Log(St).

Then the singular fibres of f lie over the set {0} ×A. The set A is called
the amoeba of St (in dimension n = 2 it is just a finite set of points).

2.4. The complex tropical model

We now describe a topological model of a fibration similar to the one given
above. Since the total space of this fibration is homeomorphic to X, we will
continue to denote it by X, although it is constructed in a different way. Here
we consider only the cases n = 2 or 3. Let Γ ⊂MR be the tropical hypersur-
face defined in (2.2). One can identify (C∗)n−1 with MR × (MR/M), where
Log becomes the projection onto MR. Suppose that S ⊂MR × (MR/M) is
a 2n− 4-dimensional real submanifold such that Log(S) = Γ. The first au-
thor, in [22], makes the following construction. Let Y = R×MR × (MR/M)
and Y ′ = Y − ({0} × S). If α′ : X ′ → Y ′ is a principal S1-bundle over Y ′

with Chern class (0,±1) ∈ H2(Y ′,Z) ∼= H2(Y,Z)⊕ Z as before, then there
is a topological manifold X containing X ′ and a commutative diagram

X ′ −−−−→ X

α′
y yα
Y ′ −−−−→ Y

such that α is proper and the S1-action on X ′ extends to an S1-action on X
with α−1({0} × S) ∼= S, i.e., such that S coincides with the fixed point locus
of the S1-action. Now a fibration f : X → R×MR is defined by composing
α : X → Y with the Tn−1-fibration R×MR × (MR/M)→ R×MR.
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In the two-dimensional case S is just a finite set of points. If Log maps
S bijectively to Γ, then the singular fibres of f are just once pinched 2-tori.

Let us treat the case n = 3 and construct a suitable surface S as follows.
We use the notation of §2.2. For an edge e of Γ, consider the circle in MR/M
given by

(2.9) δe =

{
[m] ∈MR/M | 〈ně,m〉 =

1

2
mod Z

}
.

Observe that from (2.5) it follows that the slope of δe is ne. Then consider
the following cylinder inside MR × (MR/M):

(2.10) Se := e× δe.

Clearly Log(Se) = e. Now we want to glue together all these cylinders to
form a topological surface S. We do this by filling in what is left out at the
vertices. More precisely, identifying H1(MR/M,Z) with M , for every vertex
p ∈ Γ and edge e containing p, orient the circle Se ∩ Log−1(p) in the direction
of εene, where εe = 1 if ne points outward from p and εe = −1 otherwise.
Then the circle Se ∩ Log−1(p) represents the class εene. It then follows from
(2.6) that there is a suitable 2-chain Tp in Log−1(p) such that

∂Tp =
⋃
p∈e

Se ∩ Log−1(p).

The topological surface S is then defined as

S =
⋃

edges

Se ∪
⋃

vertices

Tp.

Clearly Log(S) = Γ.
We have that X is homeomorphic to the space defined in (2.2) and the

fibration f constructed here is isotopic to the map defined in (2.8). In the
two-dimensional case this is straight forward. In dimension 3, this can be
proved using Mikhalkin’s results in [30]. The argument is as follows. Let
Logt : (C∗)2 → R2 be the map Logt(z) = (logt |z1|, logt |z2|) and define

At = Logt(St).

Then, using Viro’s patchworking technique [38], Mikhalkin proves the fol-
lowing
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Theorem 2.1. The sets At converge in the Hausdorff topology to Γ as
t→ 0.

In fact, it is true that for small t, there is a C0 isotopy of (C∗)2 which
takes St to S. It does not appear that there is a good reference for this in
the literature; however, it can be shown using techniques of [37]. See [5] for
a complete proof of this fact.

Remark 2.2. Let us identify MR × (MR/M) with (C∗)2 ∼= R2 × T 2. Let v
and v′ be the vertices of the edge ě. We then have that δe, as defined in
(2.9), is the projection onto T 2 of the subset of (C∗)2 given by the equation

zv + zv
′

= 0.

Similarly, every vertex p ∈ Γ corresponds to a simplex Pj of the subdivision
of P . Suppose that v0, v1 and v2 are the vertices of Pj , then it can be verified
that a 2-chain Tp is given by the closure of the projection onto T 2 of the set
defined by the equation

zv0 + zv1 + zv2 = 0.

Figure 1 depicts the set Tp when v0 = (0, 0), v1 = (1, 0) and v2 = (0, 1). The

Figure 1: A 2-chain Tp = S ∩ Log−1(p) for a vertex p ∈ Γ.

surface S resulting from this construction is also called the complex tropical
curve associated to the polynomial ht, when all coefficients aj = 1 (see [31]).

2.5. Affine manifolds with singularities

Gross and Siebert have developed a program where mirror symmetry can be
understood in terms of a duality of so-called affine manifolds with singular-
ities (see [25], [26] or [23] for a survey). We show here how these manifolds
can be used to construct mirror symmetric torus fibrations. In fact these
fibrations can be made into Lagrangian torus fibrations, as shown in [7]. An
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integral affine structure A on a topological manifold is an atlas of charts
whose change of coordinate maps are affine maps with integral linear part,
i.e., elements of Rn o SLn(Z). Observe that an affine manifold comes with
a natural flat connection ∇. If (x1, . . . , xn) are affine coordinates, then the
tangent vectors ∂x1

, . . . , ∂xn form a basis of parallel sections of the tangent
bundle, while the parallel one-forms dx1, . . . , dxn yield the dual basis. The
Z-span of the vectors ∂xj forms a well-defined maximal lattice Λ ⊆ TM (this
is due to integrality of the affine structure). The dual lattice Λ∗ ⊆ T ∗M is
the Z-span of the forms dxj . The basic idea of the construction is to start
with an integral affine manifold with singularities, (B,∆,A ), where B is a
topological n-manifold and ∆ is a closed set such that B0 = B −∆ is dense
and has an integral affine structure A . The set ∆ is called the discriminant
locus and we require that it has codimension 2. Then we have a symplectic
manifold X0(B) defined by the exact sequence

0→ Λ∗ → T ∗B0 → X0(B)→ 0.

The symplectic form on X0(B) is induced from the standard symplectic
form on T ∗B0. This gives us a Lagrangian Tn bundle f0 : X0(B)→ B0. Un-
der certain hypotheses on ∆ and on the affine structure one can (partially)
compactify X0(B), in the sense that one can find a smooth 2n-manifold
X(B) and a proper surjective map f : X(B)→ B such that there is com-
mutative diagram

(2.11)
X0(B) ↪→ X(B)
↓ ↓
B0 ↪→ B

where the upper arrow is an open embedding and the lower arrow is the
inclusion. Gross and Siebert define the notion of positive and simple inte-
gral affine manifold with singularities. These conditions are equivalent (in
dimension 2 and 3) to certain restrictions on ∆ and on the monodromy of Λ
around ∆. With this assumption, a topological compactification was found
by the first author in [22]. In [7], the second author and R. Castaño-Bernard
found a symplectic compactification of X0(B), i.e., a symplectic structure
on X(B) which extends the standard one on X0(B) and such that f is a
Lagrangian fibration. In fact, in dimension n = 3 the precise statement of
the result is slightly more complicated. In dimension n = 2, ∆ consists of a
finite collection of points and the symplectic compactification of X0(B) is
achieved by gluing a standard model of a Lagrangian fibration over a disc
with a nodal central fibre; this model is known in symplectic geometry as a
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simple focus-focus fibration. This construction gives compact symplectic 4-
manifolds with Lagrangian 2-torus fibrations (e.g., a K3 surface). In dimen-
sion n = 3, the positive and simple assumptions imply that ∆ is a graph with
trivalent vertices, labeled either positive or negative. In this case the affine
structure around edges, positive, and negative vertices is isomorphic to the
one induced on the base of three different models of local Lagrangian fibra-
tions: respectively the so-called generic, positive and negative fibrations. The
models for generic and positive fibrations can be regarded as 3-dimensional
analogues of focus-focus fibrations; in particular, they have a T 2-symmetry,
they have codimension 2 discriminant and are given by smooth fibration
maps. On the other hand, the model for a negative fibration is S1-invariant,
the fibration is piecewise smooth and its discriminant locus has mixed codi-
mension 1 and 2. This model can be regarded as a perturbation Gross’s
topological version of the negative fibration used in [22]. These difficulties
require us to redefine ∆ by locally fattening the graph near negative vertices
(see Figure 2) so that it has codimension 1. As a consequence, the result in
[7] must be formulated as follows:

Theorem 2.3. Let (B,∆,A ) be a three-dimensional integral affine mani-
fold with singularities which is positive and simple. For every negative vertex
v− ∈ ∆ there is a small embedded 2-disc Dv− ⊂ B, containing a neighbor-
hood of v− in ∆, such that if we let ∆� = (

⋃
v− Dv−) ∪∆, B� = B −∆� and

X�(B) = T ∗B�/Λ
∗, then we can find a symplectic X(B) and a proper sur-

jective Lagrangian fibration f : X(B)→ B such that diagram (2.11) holds
if we replace B0 with B� and X0(B) with X�(B). Moreover f is smooth
over X(B)− f−1(

⋃
v− Dv−).

Notice that outside the discs Dv− the discriminant locus is codimension
2. We refer to [7] for a more detailed description of these discs Dv− and the
construction of the local models.

An important invariant of integral affine manifolds with singularities is
the monodromy representation of the fundamental group of B0. In fact the
existence of the flat connection and integrality gives a representation of

ρ : π1(B0, p)→ GL(Λp) ∼= GL(Z, n).

Similarly we have the dual representation ρ∗ : π1(B0, p)→ GL(Λ∗p).
In [25] and [26], Gross and Siebert describe how, in certain cases, from

an affine manifold with singularities (B,∆,A ) one can construct a mirror
one, denoted (B̌, ∆̌, Ǎ ). The associated spacesX(B) andX(B̌) are mirror to
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Dv−

Figure 2: The discs Dv− containing the codimension 1 part of ∆ at negative
vertices. Outside these discs the fibration is smooth.

each other. We do not wish to go into the details of the general construction,
but only give ad hoc constructions for the examples we need.

2.6. The Lagrangian model

Here we define a mirror pair of affine manifolds with singularities whose
spaces X(B) and X(B̌) from Theorem 2.3 are homeomorphic, respectively,
to X and X̌ and whose Lagrangian fibrations are equivalent to the ones
already described.

Example 2.4. (X(B̌) ∼= X̌) We describe (B̌, ∆̌, Ǎ). Let B̌ = R×MR. Con-
sider the function ν̌ defined in (2.4) and the associated tropical hypersurface
Γ. Then ∆̌ = {0} × Γ. Define open subsets of B̌:

U+ = B̌ − (R≥0 × Γ) and U− = B̌ − (R≤0 × Γ)

Let φ− : U− → R×MR be the inclusion and define φ+ : U+ → R×MR by

φ+(t,m) = (t+ ν̌(m),m),

where t ∈ R and m ∈MR. The charts (U+, φ+) and (U−, φ−) define an in-
tegral affine structure on B̌ − ∆̌. Notice that at every point p ∈ B̌0, we can
identify T ∗p B̌0 with R×NR and we write a 1-form as adt+ v, where a ∈ R
and v ∈ NR. The space of monodromy invariant one-forms with respect to
the monodromy representation ρ∗ can be identified with {0} ×NR. All ver-
tices of ∆̌ are of positive type (see Example 2.7 below). It follows from [22],
§3, that X(B̌) is homeomorphic to X̌.
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Example 2.5. (X(B) ∼= X). Let us now describe (B,∆,A ). Here B =
R×NR. The discriminant locus ∆ ⊂ {0} ×NR is constructed as follows.
When n = 2, ∆ is just the set of barycenters of the segments Pj forming the
subdivision of P . When n = 3, then ∆ is the union of the following segments
and straight rays. For every interior edge ě in the subdivision of P , take the
two segments from the barycenter of ě to the barycenters of P+

e and P−e
respectively (see end of §2.2 for notation). The union of these two segments
forms an edge of ∆ which we denote by e. For every boundary edge ě in the
subdivision of P , take the straight ray emanating from the barycenter of Pe
and passing through the barycenter of ě (see Figure 3). Also in this case we
denote this ray by e.

Figure 3: The polytope P , its subdivision and the set ∆.

Observe that ∆ is homeomorphic to the tropical curve Γ, and moreover
it shares with Γ the same combinatorial relationship with the subdivision of
P . Every connected component C of NR −∆ contains precisely one vertex of
the subdivision of P which we denote by vC . For every C, form the following
open set of B:

VC = C ∪ {(t, v) ∈ R×NR | t 6= 0},

and on VC define the map

ΦC(t, v) =

{
(t, v) t < 0

(t, v + tvC) t ≥ 0.

The charts (VC ,ΦC) define an integral affine structure on B −∆. We now
compute monodromy. Given the point p = (0, vC) ∈ B0, we can identify
T ∗pB0 with R×MR and denote 1-forms by adt+m, with a ∈ R and m ∈MR.
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Now let

V + = {t > 0} and V − = {t < 0}.
Consider an edge e of ∆. It passes through the barycenter of the edge ě. If
v and v′ are the vertices of ě such that ně = v′ − v, consider a path γe going
from v′ to v passing inside V + and then going back to v′ passing inside V −.
It can then be calculated that

(2.12) ρ∗(γe) : adt+m 7→ (a− 〈m,ně〉)dt+m.

Then we have that the ρ∗(γe)-invariant one-forms are of type adt+m, where
m ∈ ker(ně). All trivalent vertices of ∆ are of negative type.

Example 2.6. Let P = [0, 1] ⊆ R and ν : P → R the zero map. Then

ν̌(x) = min{0, x}

and Γ = {0}. Applying the constructions of Examples 2.4 and 2.5 to this
case we obtain isomorphic affine manifolds with singularities with only one
singular point. These are called focus-focus models and all points of ∆̌ or ∆
in the 2-dimensional versions of Examples 2.4 and 2.5 are locally isomorphic
to this example. Notice that at every point p ∈ B0, the space of monodromy
invariant tangent vectors is one-dimensional and the distribution of mon-
odromy invariant tangent vectors is integrable. We call the integral lines
of this distribution eigenlines. Notice that there is one eigenline passing
through the singular point. When ∆ has more than one point, each point
has its own eigenlines given by local monodromy around it.

Example 2.7. Suppose that P is the standard simplex in R2 with vertices
(0, 0), (1, 0) and (0, 1), and let ν : P → R the zero map. Then we have

ν̌(x, y) = min{0, x, y}

and Γ is the set

Γ = {(−t,−t), t ≥ 0} ∪ {(t, 0), t ≥ 0} ∪ {(0, t), t ≥ 0}.

Applying the construction of Example 2.4 to this case, we obtain ∆̌ with
a vertex of positive type. The corresponding Lagrangian torus fibration f̌ :
X(B̌)→ R3 has a positive singular fibre over the vertex of ∆̌; see for example
[20], Example 1.2 for a full analysis of this fibration. The fibres over the
edges of ∆̌ are of generic type. Applying the construction of Example 2.5,
we obtain a vertex of negative type.
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When the subdivision of P is maximal, then all vertices of ∆̌ (resp. ∆)
arising from Example 2.4 (resp. Example 2.5) are of positive type (resp.
negative type).

The fibration f : X(B)→ B constructed from Example 2.5 via Theo-
rem 2.3 has the following properties:

a) There is a Hamiltonian S1-action on X(B) whose fixed point set co-
incides with Crit f . Let µ : X(B)→ R be the moment map of this
action. Then, for all t ∈ R, f restricted to µ−1(t) is the composition of
the quotient map α : µ−1(t)→ µ−1(t)/S1 with a regular T 2 fibration
f̄ : µ−1(t)/S1 → {t} ×NR ⊂ B. Moreover Crit f ⊆ µ−1(0).

b) Also X0(B) has an S1-action given by translations in the dt direction,
i.e., e2πis · (b, [η]) = (b, [η + sdt]), for all b ∈ B0 and η ∈ T ∗b B0. The re-
striction of this action to X�(B) coincides with the restriction of the
S1-action on X(B) in point (a).

c) There exists a smooth Lagrangian section σ0 : B → X(B) which ex-
tends the zero section on X�(B).

Notice that from (b) it follows that µ restricted to X�(B) is just the
coordinate t. Let us denote

X(B)red = µ−1(0)/S1 and X0(B)red = (µ−1(0) ∩X0(B))/S1.

It follows from (b) that

(2.13) X0(B)red = (NR −∆)×MR/M

and the fibration f̄ : X0(B)red → {0} ×NR is just the projection. Inside
X(B)red define the surface

S := α(Crit f).

Via symplectic reduction X(B)red comes with a reduced symplectic form
which blows up along S. The section σ0 induces a reduced section σ̄0 : NR →
X(B)red given by σ̄0(b) = α(σ0(0, b)). Since σ0 is a section, it must avoid
Crit f , therefore σ̄0(NR) ∩ S = ∅.

Remark 2.8. As mentioned, X(B) is homeomorphic to X as defined in
(2.2). We also believe that it is symplectomorphic to it with the standard
symplectic form (2.7), but this has not been proved yet. Abouzaid, Auroux
and Katzarkov [3] use a different method to construct a piecewise smooth
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Lagrangian fibration on X with the standard symplectic form and in all di-
mensions. Their fibration is a perturbation of the one in (2.8). It is possible
that one can generalize our results to all dimensions using their Lagrangian
fibration, but this requires some additional work since it does not yet give a
detailed enough description to obtain our strongest results. One important
advantage of our method is that it can be more easily generalized to con-
struct Lagrangian spheres and sections in compact Calabi-Yau 3-folds, see
Example 4.10.

2.7. Examples

Let us discuss some simple 2-dimensional examples.

Example 2.9. Let P = [0, 1] and choose ν = 0. Then

X̌ = C2 − {z1z2 − 1 = 0}

and there is a Lagrangian torus fibration on X̌ given by

f̌(z1, z2) =

(
log |z1z2 − 1|, |z1|2 − |z2|2

2

)
.

This fibration is just a standard example of focus-focus fibration, with a
singular fibre over (0, 0) having the topology of a pinched torus (see [20],
[21], and [7]). The mirror is

X = {xy = z + 1}.

The fibration on X is

f(x, y, z) =
(
|x|2 − |y|2, log |z|

)
.

Example 2.10. Now let P = [0,m] for some positive integer m, with the
maximal subdivision where Pj = [j, j + 1], for all j = 0, . . . ,m− 1. Consider

the unique piecewise affine strictly convex function defined by ν(k) =
∑k

j=0 j
for all k ∈ P ∩ Z. Then the affine toric variety associated to the cone over
P is

VP = {xy = zm},

which is a singular variety with a 2-dimensional Am-singularity. The toric
variety VΣ associated to the subdivision of P is a crepant resolution of this
singularity. We have that X̌ is obtained by removing a principal divisor from



i
i

“3-Matessi” — 2019/2/12 — 17:47 — page 1269 — #21 i
i

i
i

i
i

On HMS of toric Calabi-Yau threefolds 1269

VΣ (as in formula (2.1)). For instance, when m = 2, then X̌ is an open set
of OP1(−2). Notice that

ν̌(t) = min

kt+

k∑
j=0

j, k = 0, . . . ,m

 .

On the mirror side, we have

X =

xy =

m∑
j=0

tν(j)zj

 .

Notice that X is a smoothing of the singularity X̌P . If α1(t), . . . , αm(t)
are the complex roots of the polynomial, let rj(t) = log |αj(t)|. Then the
discriminant locus of f is the set of points ∆ = {(0, rj(t)) | j = 1, . . . ,m}
(see Figure 4).

Figure 4: The base of the Lagrangian fibration on X.

Let us now do some 3-dimensional examples.

Example 2.11. Let P = Conv{(−1,−1), (1, 0), (0, 1)} with its unique max-
imal subdivision (see Figure 5). Then X̌ is an open set in the total space
of the canonical bundle of P2. Let ν be the unique piecewise affine strictly
convex function such that ν(−1,−1) = ν(1, 0) = ν(0, 1) = 1 and ν(0, 0) = 0.
Then we have

ν̌(s, t) = min{0,−s− t+ 1, s+ 1, t+ 1}

and the corresponding tropical curve Γ is as in Figure 5. The mirror is

X = {xy = tz−1
1 z−1

2 + tz1 + tz2 + 1}
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(−1,−1)

(1, 0)

(0, 1)

Figure 5: The polytope P (left), the tropical curve Γ and the amoeba (right).

and the discriminant locus of f : XΣ → R3 is a thickening of Γ.

(6, 0)(0, 0)

(0, 2)

Figure 6: The polytope P and the corresponding tropical curve.

Example 2.12. For some positive integer d, let

(2.14) P = Conv{(0, 0), (0, 2), (2d, 0)}

together with some maximal subdivision and a piecewise affine strictly con-
vex function ν (see Figure 6 for an example when d = 3). We then have X̌
as an open set in the corresponding toric variety. Its mirror X has equation

(2.15) X =

xy =
∑

j∈P∩Z2

tν(j)zj

 .
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Notice that X is a smoothing of the A2d−1-singularity whose equation is
given by xy = z2 + w2d.

3. Lagrangian sections and line bundles

In this section we give a precise and explicit classification of the space of
sections, up to isotopy, of the torus fibration f : X → Rn and we construct
a Lagrangian representative for each class. We then give a conjectural ho-
mological mirror symmetry correspondence between sections of f and line
bundles on X̌Σ. In dimension 2, Chan and Ueda [15] construct a wrapped
Fukaya category generated by these sections and prove that the correspon-
dence gives an embedding of the category into the derived category of co-
herent sheaves of X̌.

3.1. Line bundles on X̌

Line bundles on toric varieties correspond to support functions modulo lin-
ear functions. Recall that a support function is an integral piecewise linear
function φ : |Σ| → R defined on the support |Σ| of the fan. Denote by Σ(1)
the set of 1-dimensional cones of Σ and for every ρ ∈ Σ(1), let uρ be the
primitive integral generator of ρ and let Dρ be the toric divisor correspond-
ing to ρ. Then φ gives the Cartier divisor

(3.1) Dφ =
∑

ρ∈Σ(1)

φ(uρ)Dρ.

Here we use a sign convention which is opposite to the one in [18] and [17].
We denote the line bundle corresponding to Dφ by Lφ.

Two support functions define the same line bundle if and only if their
difference is a linear function. In our case, where the fan Σ in R×NR is
defined from a convex lattice polytope P ⊂ NR and a smooth subdivision of
P , support functions on Σ are in a one-to-one correspondence with integral
piecewise affine maps on P , whose domains of affineness are unions of the
simplices Pj of the subdivision. In fact, given a piecewise affine map φ : P →
R, the corresponding support function is defined as φ̃(t, tp) = tφ(p) for all
p ∈ P . Vice versa, given φ̃, we have that φ = φ̃|{1}×P is piecewise affine. By
slight abuse of notation we will continue to call a piecewise affine function
φ on P a support function.

Definition 3.1. In the two-dimensional case, P = [0,m] with Pj = [j, j +
1] for j = 0, . . . ,m− 1. Given a support function φ on P , let kj ∈ Z be the



i
i

“3-Matessi” — 2019/2/12 — 17:47 — page 1272 — #24 i
i

i
i

i
i

1272 M. Gross and D. Matessi

difference between the slopes of φ|Pj and φ|Pj−1
for j = 1, . . . ,m− 1. Then

the m− 1-tuple K = (k1, . . . , km−1) uniquely determines the function φ up
to addition of an affine function. In dimension 3, let φ be a support function
on P and let ě be an interior edge in the subdivision of P . Let m+

e ,m
−
e ∈M

be the linear parts of φ|P+
e

and φ|P−e respectively (see §2.2 for notation).
Then 〈

m+
e −m−e , ně

〉
= 0,

i.e., we must have that

(3.2) m+
e −m−e = kene

for some ke ∈ Z. Notice also that ke does not depend on the sign of ne. We
call ke the kink of φ along ě. If we let E be the collection of all bounded
edges of Γ, we then have a collection of integer numbers K = (ke)e∈E . We
call a collection K of integer numbers associated to a support function on
P the kinks of φ.

In dimension 2, every interior point j = 1, . . . ,m− 1 of P corresponds to
toric divisors Dj

∼= P1 of X̌. Let LK be the line bundle on X̌ corresponding
to K = (k1, . . . , km−1). Then we have

(3.3) LK |Dj = OP1(kj).

Similarly, in dimension 3, every vertex in the subdivision of P corresponds
to a toric divisor of X̌ and every interior edge ě corresponds to a compact
1-dimensional toric stratum, which we denote by P1

ě. If D and D′ are the
two toric divisors corresponding to the vertices of ě, then P1

ě = D ∩D′. If
K = (ke)e∈E is the set of kinks of a support function φ and LK is the cor-
responding line bundle, then

LK |P1
ě

= OP1(ke).

So the kinks ke are the intersection numbers of the line bundle LK with
one-dimensional strata.

Let C be the set of bounded components of MR − Γ. Clearly C ∈ C if
and only if vC is an interior vertex of the subdivision of P . Notice also that
e is an edge of ∂C̄ if and only if vC is a vertex of ě. Fix an orientation of C.
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If (ke)e∈E is a set of kinks of a support function φ, then we must have

(3.4)
∑
e⊆∂C̄

εe ke ne = 0,

where εe = 1 if ne agrees with the orientation of ∂C̄, otherwise εe = −1. For
every C ∈ C define the map φC : ZE →M by

φC((ke)e∈E ) =
∑
e⊆∂C̄

εe ke ne.

Now define Φ : ZE →MC by

(3.5) Φ = (φC)C∈C .

Lemma 3.2. The group Pic(X̌) is isomorphic to ker Φ.

Proof. Given a support function φ, from (3.4) it follows that its kinks (ke)e∈E

belong to ker Φ. Moreover if we add to φ an affine function, these numbers
do not change. On the other hand, given a collection (ke)e∈E in ker Φ, fix a
simplex P0 in the subdivision and set φ|P0

= 0. Then equations (3.2) uniquely
determine a support function φ. �

3.2. The space of sections on X

We have given three slightly different constructions of the space X and the
fibration f : through the formulas (2.2) and (2.8), the complex tropical model
of §2.4 or the Lagrangian model X(B) in Example 2.5. We will freely switch
from one construction to the other.

Let us consider the Lagrangian model f : X(B)→ B from Example 2.5.
Denote by ι : B0 → B the inclusion. It can be shown that the space of sec-
tions of f , up to isotopy, is classified by H1(B, ι∗Λ

∗). This can be seen as
follows. Let {Ui} be a good cover of B. If σ is a section, we can locally
lift σ|Ui to a section σi of T ∗B. Then, on overlaps, sij = σi − σj defines a
cocycle [σ] ∈ H1(B, ι∗Λ

∗) (see [20], §3). Moreover [σ] = 0 if and only if σ
is isotopic to the zero section. Indeed, let σt be an isotopy such that σ0 is
the zero section. Locally we can lift to an isotopy σi,t of sections of T ∗B
so that σi,0 = 0. Since ι∗Λ is discrete, σi,t − σj,t is constant in t and thus
equal to zero for all t. Hence [σ1] = 0. On the other hand if [σ] = 0, then
σi − σj = λi − λj for local sections λi and λj of ι∗Λ. Then σ has a global lift
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σ̃ : B → T ∗B defined by σ̃|Ui = σi − λi. An isotopy with the zero section is
then defined by σ̃t = tσ̃ projected to T ∗B/Λ.

We now explicitly compute H1(B, ι∗Λ
∗) in the cases dimMR = 1 and 2.

Observe that ι∗Λ
∗ has a globally defined section, namely dt, corresponding

to the fact that X(B) has an S1-action. Let us take the quotient by the
constant subsheaf spanned by this section (∼= Z), i.e., we have a short exact
sequence

0→ Z→ ι∗Λ
∗ → G→ 0

for some sheaf G. Now notice that at a vertex p of ∆, Gp = 0, since ι∗Λ
∗

has stalk Z at p. Therefore H0(B,G) = 0. The long exact sequence in the
cohomology of sheaves gives

H1(B, ι∗Λ
∗) ∼= H1(B,G).

We now show how to compute H1(B,G). Let us construct a constructible
sheaf G′ on B, supported over Γ, as follows. Assume first dimMR = 2. On a
small neighborhood U of a vertex of Γ, G′(U) = M . When U is a neighbor-
hood of a point in the interior of an edge e, then G′(U) = M/Zne. Restriction
functions are just projections to the quotients. We set G′ to be zero outside
of Γ. When dimMR = 1 and ∆ has k points, then we let G′ be M ∼= Z at
the points of ∆ and 0 away from them. We have the following:

Lemma 3.3. In both cases, dimMR = 1 or 2, there is a short exact se-
quence

(3.6) 0→M → H0(G′, B)→ H1(G, B)→ 0.

Proof. It can be easily seen, from the expression of monodromy (2.12), that
G|B0

can be identified with the constant sheaf M . If dimMR = 2, recall
that ∆ is homeomorphic the tropical curve Γ ⊂MR. It is convenient here
to identify ∆ with Γ. It follows from the monodromy formula (2.12), that
over a small neighborhood U of a point in the interior of e, G(U) = Zne.
Therefore we have a short exact sequence

0→ G→M → G′ → 0.

The corresponding long exact sequence gives (3.6). When dimMR = 1 and
G′ is defined as above, then the same sequence also holds. �

It is clear that when M ∼= Z and ∆ has k points, then H0(G′, B) ∼= Zk.
So we conclude that H1(B, ι∗Λ

∗) ∼= Zk−1.
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Example 3.4. It is easy to compute H1(B, ι∗Λ
∗) in the case B is con-

structed from Example 2.11. Observe that in this case R2 − Γ has only one
bounded component, which we denote C. Let e1 = (1, 0), e2 = (−1, 1) and
e3 = (0,−1) be integral primitive tangent vectors to the edges of Γ which
bound C. Let p1 = (−1,−1), p2 = (2,−1) and p3 = (−1, 2) be the vertices
of Γ. Elements of H0(B,G′) can be found as follows. For every vertex pj of
Γ choose an element mj ∈ Z2: pj 7→ mj . Then, these choices give an element
of H0(B,G′) if and only if there exist nj ∈ Z such that

mj+1 −mj = njej , j = 1, 2, 3

and the indices are assumed cyclic. It is clear that such a system has solutions
if and only if

3∑
j=1

njej = 0,

which holds if and only if n1 = n2 = n3 = k for some k ∈ Z. Once this con-
dition is satisfied, then we have a unique solution for each choice of k and
initial choice m1 ∈ Z2. So H0(B,G′) ∼= Z3, corresponding to a choice of k
and of m1. We conclude, from Lemma 3.3, that for this example

H1(B, ι∗Λ
∗) = Z.

The argument of the previous example can be generalized as follows. Let
Φ : ZE →MC be the map defined in (3.5). Then we have

Lemma 3.5. When (B,∆,A) is as in Example 2.5, then

H1(B, ι∗Λ
∗) ∼= ker Φ.

This establishes a one-to-one correspondence between isomorphism classes
of line bundles on X̌ and isotopy classes of sections of X.

The proof uses the same argument as in Example 3.4.

3.3. Topological construction of sections

We give an explicit construction of the sections, which will also explain the
result of the last lemma. For this purpose we use the complex tropical model.
Recall that the fibration f : X → R×MR was defined as the composition
of α : X → Y and the Tn−1 fibration Y → R×MR, where Y = R×MR ×
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(MR/M). The map α is the projection on the quotient with respect to an
S1-action. The fixed point set of the action is a set S, which is a finite set of
points in dimension n = 2 or a surface in dimension n = 3. The strategy for
the construction of a section of f is as follows. First construct a section σ̄
of Log : MR × (MR/M)→MR such that σ̄(MR) ∩ S = ∅, then extend it to
a section σY of Y → R×MR which coincides with σ̄ on {0} ×MR. Finally
lift σY to a section σX of f . Notice that the last two steps are easy. In
fact, to extend σ̄ to σY one can define σY (t, q) = (t, σ̄(q)). Moreover any
two extensions are isotopic (outside of {0} ×MR there is no constraint on
σY ). Notice that α restricted to the image of σY is a trivial S1-bundle, since
the image of σY avoids {0} × S. Then a lift σX exists and any two lifts are
isotopic. In the following we will denote by σ̄ the section of Log and by σ
the final section of f , i.e., σ = σX . We call σ̄ the reduced section. So let us
construct sections σ̄ : MR →MR × (MR/M) such that σ̄(MR) ∩ S = ∅.

3.4. Sections in dimension 2

In dimension 2, assume M = Z. Then we have Y = R× R× S1. Let Γ =
{0, 1, . . . ,m} ⊂ R and S = {(0, i), . . . , (m, i)} ⊂ R× S1 (we think of S1 ⊂
C). We construct reduced sections σ̄ : R→ R× S1 avoiding S. For every
m-tuple of integers K = (k1, . . . , km) define

σ̄K(s) =

{
(s, e2krπis) r − 1 ≤ s ≤ r, r = 1, . . . ,m

(s, 1) otherwise.

Then σ̄K is a well-defined section such that σ̄K(R) ∩ S = ∅ (see Figure 7
for a picture of a section). In the case K = (0, . . . , 0), we will consider the
corresponding section as the zero section and denote it by σ̄0. We will call
the numbers K the twisting numbers of the section. Two sections σK and
σK′ are isotopic if and only if K = K ′ (see discussion below).

π

Figure 7: The section σ̄ (red line) and the set S (blue crosses).
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3.5. Sections in dimension 3

We consider the surface S ⊆MR × (MR/M) as constructed in §2.4. The zero
section σ̄0 : MR →MR × (MR/M) does not intersect S. In fact neither the
circles δe nor the 2-chains Tp contain 0 ∈MR/M . To construct a general sec-
tion proceed as follows. For every bounded edge e ⊂ Γ, choose an integer ke.
If p+, p− are the two vertices of e corresponding to P+

e and P−e respectively,
then define

(3.7) σ̄((1− t)p+ + tp−) = ((1− t)p+ + tp−,−[kenet]),

so that σ̄|e wraps −ke times around the cycle ne in the fibre MR/M . Clearly
σ̄(e) ∩ S = ∅. It is also clear that ne is the only cycle around which σ̄|e can
wrap non-trivially if we want σ̄(e) ∩ S = ∅. When e is an unbounded edge,
simply let σ̄|e be the zero section. Clearly this gives a well-defined section σ̄ :
Γ→MR ×MR/M , which we want to extend to all of MR. If C is a bounded
component of MR − Γ, then an extension of σ̄ to σ̄ : C →MR × (MR/M)
exists if and only if

(3.8)
∑
e⊆∂C̄

εe ke ne = 0.

where εe = 1 if ne agrees with a fixed orientation of ∂C̄, otherwise εe = −1.
It is now clear that an extension of σ̄ to all of MR exists if and only if
the set of choices (ke)e∈E ∈ ker Φ as in Lemma 3.5. We call the collection
K = (ke)e∈E ∈ ker Φ the twisting numbers of the section.

Lemma 3.6. Let σ̄ and σ̄′ be two sections of the Log map constructed as
above from the twisting numbers (ke)e∈E and (k′e)e∈E respectively. Then the
two corresponding sections σ and σ′ of f are isotopic if and only if

(3.9) (ke)e∈E = (k′e)e∈E .

Proof. It is easy to show that an isotopy of sections between σ and σ′ exists if
and only if there exists an isotopy σ̄t, t ∈ [0, 1] between the reduced sections
σ̄ and σ̄′ such that

(3.10) σ̄t(MR) ∩ S = ∅, for all t ∈ [0, 1].

If (3.9) holds, then an isotopy σ̄t can be constructed as follows. Given σ̄, let
τσ : MR →MR/M be such that σ̄(p) = (p, τσ(p)) and denote by τ̃σ : MR →
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MR a lift of τσ to the universal cover. Condition (3.9) implies that τσ|Γ =
τσ′ |Γ, in particular we can assume that also τ̃σ|Γ = τ̃σ′ |Γ. Now define the
isotopy σ̄t(p) = (p, [tτ̃σ′(p) + (1− t)τ̃σ(p)]). We have that (3.10) holds since
σ̄t|Γ = σ̄|Γ = σ̄′|Γ for all t ∈ [0, 1].

On the other hand suppose σt exists, satisfying (3.10). Fix a bounded
edge e ⊂ Γ and let δe be the 1-cycle defined in (2.9). Condition (3.10) implies
that τσt(e) ⊆ T 2 − δe for all t ∈ [0, 1] and all edges e ⊂ Γ. Now assume that
lifts τ̃σt , τ̃σ and τ̃σ′ have been chosen so that τ̃σt is an isotopy between τ̃σ
and τ̃σ′ . Consider a bounded component C of MR − Γ. Then τ̃σ(∂C̄) (resp.

Figure 8: The lift τ̃σ(∂C̄) (continuous line) and the lifts of δe (dashed).

τ̃σ′(∂C̄)) is a closed polygonal curve in MR with vertices in M and with an
edge parallel to ne and of length |ke| (resp. |k′e|), for every edge e ⊂ ∂C̄.
Suppose that (3.9) doesn’t hold. Then there must be at least one bounded
edge e of Γ such that τ̃σ(e) and τ̃σ′(e) lie on parallel but distinct lines in MR
with slope ne and containing integral points. Notice that lifts of δe are also
parallel lines with slope ne, but never intersecting M . Figure 8 depicts this
situation when C is a standard simplex. It can now be seen that if τ̃σ(e) and
τ̃σ′(e) lie on parallel but distinct lines, then τ̃σt(e) must intersect a lift of δe
at some point, for some value of t. This is a contradiction and thus we have
proved the lemma. �

Thus the isotopy class of a section is uniquely determined by the twisting
numbers K = (ke)e∈E ∈ ker Φ. We denote by σ̄K the reduced section and by
σK the corresponding section of f .

3.6. Lagrangian sections

Let f : X(B)→ B be the Lagrangian model of the fibration given in Exam-
ple 2.5. Here we will construct an explicit Lagrangian representative for any
class [σ] of a section in the space H1(B, ι∗Λ

∗). We point out that X(B), as
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constructed in [7], does not contain the full X0(B), but the slightly smaller
subset X�(B). Nevertheless our sections will be constructed so that they
coincide with the fixed zero section on a neighborhood of the disks Dv−

containing the vertices of ∆, so that we will never have to worry about the
technicalities of the fibration near a vertex of ∆. For this reason, in what
follows, we will continue to work on X0(B) instead of the smaller set X�(B).
We will also work with the S1-actions and the reduced spaces X(B)red and
X0(B)red described at the end of §2.6.

Let K = (ke)e∈E ∈ ker Φ be a set of twisting numbers determining the
isotopy class of a section in H1(B, ι∗Λ

∗). These numbers also determine the
support function φK : P → R of a line bundle on X̌. Since we now fix the
support function, in the following we set φ := φK .

Lemma 3.7. The function φ can be extended, as a continuous piecewise
affine map, to the whole of NR.

Proof. First we define a subdivision of NR. Fix some euclidean metric on
NR and orientation of P . For every edge E of P , let n′E ∈ NR be a non-zero
vector which is orthogonal to E and points outside of P . If F is another
edge of P and v ∈ E ∩ F is a vertex of P , let Qv be the infinite polyhedron
bounded by the two rays emanating from v in the direction of n′E and n′F .
If ě is an edge in the subdivision of P contained in an edge E of P , define
the infinite polyhedron

Qe = {p+ tn′E , p ∈ ě, t ≥ 0}.

Clearly the polyhedra Qv and Qe, together with the polyhedra of the sub-
division of P , define a subdivision of NR. Notice that Qv and Qe are not
necessarily integral polyhedra, but this will not matter. Let us extend φ as
follows. On the polyhedron Qv define φ to be the constant function equal to
φ(v). On Qe define it to be

φ(p+ tn′E) = φ(p).

This defines an extension of φ. �

Remark 3.8. Given the above subdivision of NR and the extension of φ, we
can extend the definitions of P±e (see the end of §2.2), and the definitions of
m±e and ke (see Definition 3.1) also to the boundary edges in the subdivision
of P . The only difference is that in the case P±e is one of the unbounded
polyhedra, then m±e and ke are not necessarily integral. In fact, if ě is an edge
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in the subdivision of P contained in the boundary edge E and P+
e = Qe,

then the construction above implies that m+
e maps ně to some integer and

n′E to zero. Since ně and n′E do not necessarily form a basis of N , m+
e is not

necessarily integral (e.g. we could have ně = (1, 1) and n′E = (1,−1), if ně is
mapped to 1 then m+

e is not integral). This, however, will not be a problem
in the following construction.

We now want to define suitable smooth approximations φ̃ε of φ depend-
ing on ε > 0 and then define the reduced section as the graph of dφ̃ε. The
main idea is to modify φ only near the 1-skeleton of the subdivision of NR,
i.e. we only smooth out the corners of φ, so that sufficiently away from the
1-skeleton it remains affine. This implies that the reduced section will coin-
cide with the zero section on a neighborhood of the negative vertices of the
discriminant locus ∆. This is convenient since it automatically implies that
it extends to all singular fibres in this neighborhood, without further work.
The most technical part will be to show that the section extends to singular
fibres over the edges of ∆, this is proved in Lemma 3.14.

A standard way to smooth a function is to use the convolution product
with a so-called “mollifier”. Choose on NR an auxiliary inner product, giving
a norm ‖ · ‖. Define the following smooth, compactly supported function on
NR:

(3.11) µε(x) =

{
A−1
ε exp

(
1

‖x‖2−ε2

)
, if ‖x‖ < ε;

0, otherwise.

where Aε is some constant chosen so that
∫
NR
µε = 1. This is an example of

a mollifier.
Now recall that the convolution product of µε with a continuous function

h : NR → R is defined by

(3.12) h ∗ µε(x) :=

∫
NR

h(y)µε(x− y)dy =

∫
NR

h(x− y)µε(y)dy.

It is well known that h ∗ µε is smooth and converges to h in the C0-topology
on every compact subset of NR as ε→ 0. We also have the following easy
fact whose proof we leave to the reader:

Lemma 3.9. If h is affine, then h ∗ µε = h.
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We now define

φ̃ε = φ ∗ µε.

These functions define smooth approximations to φ.

Definition 3.10. We will denote by Skel1 the 1-skeleton of the subdivision
of NR described Lemma 3.7 and by

Vε = ε-neighborhood of Skel1 .

Then we have

Lemma 3.11. The function φ̃ε coincides with φ outside Vε.

Proof. It is clear from the definition of µε and of the convolution product
that φ̃ε(x) only depends on the values of φ in an ε-ball centered in x. If the
distance between x and Skel1 is greater than ε then φ is affine on an ε-ball
centered at x. Therefore φ̃ε(x) = φ(x) by Lemma 3.9. �

For x ∈ NR and ε > 0 denote by Bε(x) the open ball of radius ε centered
at x. Given an edge ě of the subdivision of P , let

(3.13) Ue = {x ∈ NR |Bε(x) is contained in the interior of P+
e ∪ P−e },

where P+
e and P−e are as in §2.2 (see also Remark 3.8).

Lemma 3.12. If ε is such that Ue is not empty, then

(3.14) dφ̃ε|Ue(ně) =
〈
m+
e , ně

〉
=
〈
m−e , ně

〉
,

where m±e are as in Definition 3.1 (see also Remark 3.8). In particular, for
every x ∈ Ue, (dφ̃ε)x is a point in the affine line

{m ∈MR |
〈
m−m+

e , ně
〉

= 0}.

Proof. Since 〈m+
e −m−e , ně〉 = 0, we have that φ−m+

e is constant along the
edge ě. Moreover, the directional derivative of φ in the direction ně is well-
defined on the subset P+

e ∪ P−e and it is equal to 〈m+
e , ně〉. In particular it

is well-defined and equal to 〈m+
e , ně〉 on Bε(x) for every x ∈ Ue. Therefore
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for every x ∈ Ue:

(dφ̃ε)x(ně) =
d

dt
|t=0

∫
NR

φ(x− y + tně)µε(y)dy

=

∫
NR

〈
m+
e , ně

〉
µε(y)dy =

〈
m+
e , ně

〉
,

where the second equality follows since we can assume x− y ∈ Bε(x). �

At the end of Example 2.5 we observed that the one-forms in a fibre
T ∗xB/Λ

∗
x which are monodromy invariant with respect to monodromy around

e are of the form [adt+m], where m ∈ kerně. As explained in point (b) at
the end of §2.6, translations in the dt direction generate the S1-action, so we
can view kerně as the quotient by the S1-action of the space of monodromy
invariant one forms around e. Notice also that [d(φ̃ε −m+

e )x] naturally lives
in the quotient by the S1-action (i.e. mod dt). So we have:

Corollary 3.13. Let Ue be the open set defined in (3.13). Then for every
x ∈ Ue, [d(φ̃ε −m+

e )x] is contained in kerně , i.e. in the quotient by the
S1-action of the space of monodromy invariant one-forms around e.

We now fix ε so that:

i) for every edge e of ∆, e ⊂ Ue;

ii) the closure V̄2ε of V2ε does not contain any vertex of ∆. For every vertex
p ∈ ∆, we let Wp be the connected component of NR − V̄ε containing p.

We can also assume the following

iii) the disksDv− of Theorem 2.3, where f fails to be smooth, are contained
in NR − V2ε, which is a closed set inside the union of the Wp’s (see also
[7]).

From (2.13) it follows that the map

σ̄φ : NR −∆→ X0(B)red

x 7→ (x, [(dφ̃ε)x])

defines a Lagrangian section, which we call the graph of dφ̃ε. Notice also
that the same section is defined by the graph of d(φ̃ε −m+

e ).
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Lemma 3.14. With the assumptions (i)-(iii) above, the Lagrangian section
σ̄φ : NR −∆→ X0(B)red extends to a smooth Lagrangian section σ̄φ : NR →
X(B)red such that

σ̄φ(NR) ∩ S = ∅.

Proof. On every connected component of NR − Vε, we have that the map
x 7→ (dφ̃ε)x is constant and it maps x to the slope of φ. This follows from
Lemma 3.11, since φ is affine on every connected component of NR − Vε.
Moreover, if x is in a bounded component of NR − Vε, then (dφ̃ε)x ∈M .
This implies that on bounded components of NR − Vε, σ̄ coincides with the
reduced zero section σ̄0. Therefore, on bounded components of NR − Vε, i.e.,
those which contain the vertices of ∆, σ̄φ extends as required. We need to
show that σ̄φ extends also over ∆ ∩ Vε and on unbounded components of
NR − Vε.

Consider an edge e of ∆. It follows from (i)-(iii) above that, inside
R×NR, there is an open neighborhood U of the closure of e ∩ Vε, over
which the Lagrangian fibration f is smooth and such that U ∩ ({0} ×NR) is
contained in Ue. Let us restrict our attention to the fibration fU := f |f−1(U).
The singular fibres of fU are of the type which are called generic-singular in
[7]. This means we can describe fU as is done in Section 3 of [6]. Namely,
let D ⊆ C be the unit disc. Then, by taking a smaller U if necessary, we
can assume U ∼= D × (0, 1) and ∆ ∩ U ∼= {0} × (0, 1). Let b = b1 + ib2 be a
coordinate on D and r ∈ (0, 1), then (b, r) are coordinates on U . The periods
of the fibration fU are given by the multivalued one-forms

(3.15)

λ1 = − log |b|db1 + Arg(b)db2 + dH,

λ2 = 2πdb2,

λ3 = dr,

where H is a smooth function on U . Now let Λ∗ = spanZ(λ1, λ2, λ3). Notice
that λ1 blows up over ∆. Therefore, Λ∗ has rank 2 over ∆. There is a fi-
bre preserving symplectomorphism between T ∗U/Λ∗ and f−1(U)− Crit fU .
The S1-action corresponds to translation along λ2. Therefore, in these coor-
dinates the moment map is given by b2. The space of monodromy invariant
one-forms is spanned by λ2 and λ3. Now let us consider the function φ̃ε in
these coordinates. First of all it is defined only on the slice {b2 = 0}, so it
depends on b1 and r. Then Corollary 3.13 implies that

d(φ̃ε −m+
e ) = h(r)dr
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for some function h(r). This section clearly extends over ∆ to a section
which avoids Crit fU . Since unbounded components of NR − Vε only contain
parts of unbounded edges of ∆ over which the fibration is smooth, the same
argument shows that σ̄φ extends also here. �

Finally we can prove the following

Theorem 3.15. Let K = (ke)e∈E be a collection of integers representing a
class [σK ] in the space of smooth sections H1(B, ι∗Λ

∗). Then this class has
a smooth Lagrangian representative.

Proof. Using a smooth approximation φ̃ε of the support function φ associ-
ated to K, we have constructed in Lemma 3.14 a section σ̄φ : NR → X(B)red

of the reduced fibration f̄ . Any lift σφ : NR → µ−1(0) of σ̄φ to the S1-fibres
of the S1-action defines a 2-dimensional isotropic submanifold of X(B). Us-
ing the isotropic neighborhood theorem it is easy to show that this lift can
be extended to a genuine section σφ : R×NR → X(B).

We need to show that σφ is in the class represented by K. Let C be some
bounded component of NR −∆ and let e be an edge in the boundary of C,
whose vertices are p+ ∈ P+

e and p− ∈ P−e . By construction m+
e , m−e , ke and

ne satisfy (3.2). Lemmas 3.11 and 3.12 imply that as x moves along a curve
in Ue from a point in Wp− to a point in Wp+ , (dφ̃ε)x moves on a straight
line with slope ne from the point m−e to the point m+

e . In other words, along
this curve, the section σ̄φ winds ke times around the cycle ne. �

3.7. The mirror correspondence

We have seen that line bundles on X̌ and Lagrangian sections on X are both
characterized by an (m− 1)-tuple of numbers K = (k1, . . . , km−1) in the 2-
dimensional case or by a collection K = (ke)e∈E in ker Φ in the 3-dimensional
case. We conjecture the following:

Conjecture 3.16. The Lagrangian sections generate a suitable derived
Fukaya category such that the correspondence which maps the sections σK
to the line bundle L−K induces an embedding of this category in DbCoh(X̌).

In the two-dimensional case, this conjecture has been proved by Chan
and Ueda [15], where the morphisms in the Fukaya category are defined
using a wrapped Floer homology.

Here are some examples.
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Example 3.17. In the two dimensional case (Examples 2.10 and §3.4), let
m = 2, then X̌ is the total space of OP1(−2) with only one compact divisorD.
Then the Picard group of X̌ is Z. The zero section corresponds to structure
sheaf OX̌ . Line bundles of the type OX̌(lD) correspond to sections σ2l .

Example 3.18. Consider P as in Example 2.11, where X̌ is an open set in
the total space of OP2(−3). Then Pic(X̌) is Z as well as the group of sections
(cfr. Example 3.4). Let e1, e2 and e3 be the integral tangent vectors to the
bounded edges of Γ chosen as in Example 3.4. A support function φ on P ,
up to the sum of a linear function, is uniquely determined by an integer k.
Let Lk be the corresponding line bundle on X̌. The corresponding section of
X is determined by twisting numbers ke1

= ke2
= ke3

= −k. Letting D ∼= P2

be the only compact toric divisor of X̌, the line bundles on X̌ of the type
OX̌(lD) correspond to k = −3l.

Example 3.19. Let us consider the case of the smoothing of A2d-singu-
larities of Example 2.12. Here the polytope P is given by (2.14) and the
smoothing X is given by equation (2.15). In this case a simplicial subdivi-
sion of P has d− 1 interior points, which we denote cj . Hence X̌ has d− 1
compact toric divisors D1, . . . , Dd−1. Notice that the subdivision can be
chosen so that Dj is isomorphic to the one point blowup of the Hirzebruch
surface Σj , e.g., as in Figure 6 for the case d = 3. Using Lemmas 3.2 and 3.5
one can show that the group of sections on X and Pic(X̌) are isomorphic
to Z3d. Let C1, . . . , Cd−1 be the bounded components of MR − Γ. Label the
edges of Cj by ej1, . . . , ej5 as in Figure 9 and orient them in anticlockwise
order. Clearly we have ej1 = e(j−1)4 for j = 2, . . . d− 1. Bundles on X̌ of the

Cj
ej4

ej5

ej1

ej2
ej3

Figure 9.

type OX̌(lDj) correspond to the support function φ on P such that φ(cj) = l
and φ is zero on all other vertices of the subdivision. A calculation shows
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that these line bundles have the following intersection numbers:

kj1 = (j − 2)l, kj2 = kj3 = −l, kj4 = −(j + 1)l, kj5 = −2l

k(j−1)3 = k(j−1)5 = l, k(j+1)2 = k(j+1)5 = l.

All other intersection numbers are zero.

3.8. Translation by a section

Notice that the sections constructed in Theorem 3.15 have the property that
they all coincide with the zero section in a neighborhood of every negative
vertex. In Theorem 1.2 of [9] it was proved that a Lagrangian section σ
with this property induces a unique fibre-preserving symplectomorphism Tσ :
X → X which maps the zero section to σ. We call this symplectomorphism
“translation by a section”, since it behaves as a translation on smooth fibres,
in particular we have that

TσKσK′ = σK+K′

for all pairs of twisting numbers K and K ′.
It has been conjectured that translation by a section should be mirror

to tensoring by the corresponding line bundle. Theorem 1.6 of [9] gives some
evidence of this by showing that there is only one autoequivalence of the
bounded derived category of coherent sheaves which preserves skyscraper
sheaves (mirror to fibres) and which sends the structure sheaf to a line
bundle.

4. Lagrangian spheres

In this section we will construct families of Lagrangian spheres in X. As
in the case of sections, we first give a topological construction. In this case
it is convenient to use the complex tropical model (§2.4) of the fibration
f : X → R×MR. Let C be a bounded connected component of MR − Γ and
let λ : C̄ →MR × (MR/M) be a section of Log such that λ(∂C̄) ⊆ S. Then
we define

(4.1) Lλ = α−1(λ(C̄))

where α : X → Y is the projection over the S1 quotient and we think of
MR × (MR/M) as {0} ×MR × (MR/M) ⊂ R×MR × (MR/M) = Y . Since
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C̄ is homeomorphic to an (n− 1)-ball and the fibres of α|λ(C̄) are circles

collapsing to points at the boundary of C̄, we have that Lλ is homeomor-
phic to Sn. This construction was also suggested by Chan in [10].

4.1. Spheres in dimension 2

We look at the case where X̌ is an open set in the total space of OP1(−2)
and we use the notation of §3.4. Let C̄ = [0, 1] and for some k ∈ Z define

λk(s) =
(
s, e(2ks+ 1

2)πi
)

Then we have that λ(∂C̄) ⊆ S and Lλk
∼= S2. We simplify notation by re-

naming Lλk by Lk and we call k the twisting number of the sphere. If we
view X as in equation (2.2) and deform the polynomial ht so that it acquires
a double root, then X becomes singular with an ordinary double point. As a
consequence, the singular points of the S1-action come to coincide and the
sphere L0 vanishes, i.e., it represents a vanishing cycle. The other spheres
Lk are twists of the vanishing cycle. It is not difficult to show that if Tσ`
denotes translation by the a section σ` (see §3.8), then we have

(4.2) Tσ`(Lk) = Lk+`.

We also point out that this construction automatically gives Lagrangian
spheres.

4.2. Spheres in dimension 3

We use the same notation as in §2.4. We fix a bounded component C of MR −
Γ. Let vC be the unique vertex in the decomposition of P corresponding to
C. The tangent wedges to the simplices in the decomposition of P which
contain vC form a complete fan ΣC in NR. An edge e ⊂ ∂C̄ corresponds to
an edge ě which emanates from vC .

Definition 4.1. For every edge ě emanating from vC , let εě ∈ {1,−1} be
such that εě ně points outward from vC . A continuous function ϑ : |ΣC | →
R is said to be a semi-integral support function if its restriction to every
maximal cone of ΣC is linear and for every edge ě emanating from vC we
have

(4.3) ϑ(εě ně) =
1

2
mod Z.
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Recall that every bounded edge e of Γ bounding a connected component
C of MR − Γ represents a 1-dimensional toric stratum P1

e of X̌ which is also
a subvariety of the divisor DC corresponding to C.

Definition 4.2. A set of twisting numbers for the bounded component C
is a collection ` := (`e)e⊂∂C̄ given by assigning to every edge e bounding C
an integer `e such that

a) `e has the same parity as the self-intersection number of P1
e inside DC ;

b) the numbers `e satisfy the following balancing condition

(4.4)
∑
e⊂∂C̄

εe `e ne = 0,

where εe = 1 if ne coincides with a fixed orientation of ∂C̄, otherwise
εe = −1.

To any semi-integral support function ϑ, we can associate its set of kinks
as follows. For every edge ě emanating from vC , denote by θ̃+

e and θ̃−e the
restriction of ϑ to the tangent wedges of P+

e and P−e respectively. Then there
exists an integer `e, the kink of ϑ at ě, such that

(4.5) θ̃+
e − θ̃−e =

`e
2
ne.

We have the following:

Proposition 4.3. The kinks (`e)e⊂∂C̄ of a semi-integral support function
on ΣC define a set of twisting numbers for C. Moreover any set of twisting
numbers (`e)e⊂∂C̄ determines a semi-integral support function on ΣC which
is unique up to adding an integral linear function.

Proof. Assume for simplicity that for all edges ě emanating from vC , ně
points outward from vC . Fix an edge ě emanating from vC . Let ě+ and ě−

be the edges of P+
e and P−e respectively, different from ě, which emanate

from vC . Denote by be the self-intersection number of P1
e inside DC . Then,

from toric geometry, it follows that

(4.6) ně− = −ně+ − beně.

Moreover, since {ně, ně+} form a basis of N and ne is primitive, we have

(4.7) 〈ne, ně+〉 = ±1.
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Now let θ̃+
e and θ̃−e be linear functions such that (4.5) holds for some integer

`e. Assume also that θ̃+
e satisfies

(4.8)
〈
θ̃+
e , ně+

〉
=

1

2
mod Z and

〈
θ̃+
e , ně

〉
=

1

2
mod Z.

Then we claim that `e and be have the same parity if and only if θ̃−e satisfies

(4.9)
〈
θ̃−e , ně−

〉
=

1

2
mod Z and

〈
θ̃−e , ně

〉
=

1

2
mod Z.

The second equality of (4.9) follows directly from the second equality of (4.8)
and from (4.5). From (4.5), (4.6) and (4.7) it follows that〈

θ̃−e , ně−
〉

=

〈
θ̃+
e −

`e
2
ne,−ně+ − beně

〉
(4.10)

= −
〈
θ̃+
e , ně+

〉
− be

〈
θ̃+
e , ně

〉
± `e

2
.

If be and `e have the same parity, then this equality and equation (4.8) imply
(4.9). On the other hand, if (4.9) holds, then this equality and equation (4.8)
imply that `e and be have the same parity.

In particular we have proved that the kinks of a semi-integral support
function must satisfy (a) of Definition 4.2. Point (b) follows from (4.5).

pj

pj+1

ěj

vC

νj

νj+1

ěj−1

Figure 10: The cyclic indexing of vertices and edges of ∂C̄.

Given a set of twisting numbers (`e)e⊂C , we construct a semi-integral
support function as follows. Let us fix a cyclic, anti-clockwise ordering of
the maximal cones of ΣC . Let us label the j-th maximal cone by νj , with
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j ∈ 1, . . . , r and by ěj the edge in the common intersection of νj and νj+1

(see Figure 10). Let θ̃1 ∈MR be a linear function such that

(4.11)
〈
θ̃1, něr

〉
=

1

2
mod Z and

〈
θ̃1, ně1

〉
=

1

2
mod Z.

Now define inductively

(4.12) θ̃j+1 =
1

2
εej`ejnej + θ̃j ,

where εej = 1 if νj+1 is the tangent wedge to P+
ej and νj is the tangent

wedge to P−ej , otherwise εej = −1. By the balancing condition (4.4), θ̃r+1 =

θ̃1. Define ϑ : |ΣC | → R by

ϑ|νj = θ̃j .

By the argument above, ϑ is a semi-integral support function and it is unique
up to adding a linear function. �

Finally, given a set of twisting numbers (`e)e⊂∂C̄ for C, we explain how to
construct a sphere. Here we use the complex tropical model of the fibration
(§2.4). First let us define λ : ∂C̄ →MR × (MR/M) so that λ(∂C̄) ⊂ S. Let
ě, ě+ and ě− be edges emanating from vC defined as in the proof of the
previous proposition and let e, e+ and e− be the dual edges in ∂C̄. Let p+

and p− be the vertices of ∂C̄ which are dual to P+
e and P−e respectively.

Clearly p+ = e ∩ e+ and p− = e ∩ e−. See Figure 11.

P+
e

P−e

ě ě+

ě−

p−

p+

e

e−

e+

Figure 11.
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Recall equation (2.9) defining the cycles δe used to construct S. Consider
the unique points in MR/M given by

(4.13) θp+ = δe ∩ δe+ and θp− = δe ∩ δe− .

Now define λ|e as follows

(4.14) λ|e((1− t)p+ + tp−) =

(
(1− t)p+ + tp−,−

[
1

2
`enet

]
+ θp+

)
.

Notice that λ|e(e) ⊆ Se (cfr. (2.10)). Moreover, it follows from (4.6) and the
fact that `e and be have the same parity that

λ|e(p−) = (p−, θp−).

In particular, we have that λ(∂C̄) ⊂ S.
The balancing condition (4.4) ensures that λ can be extended to a

section λ : C̄ →MR × (MR/M). Hence for every set of twisting numbers
` = (`e)e⊂∂C̄ we have an embedded 3-sphere constructed over C, which we
denote L`. It is not difficult to see that L` and L`′ are isotopic if and only
if ` = `′.

It is clear from the construction that the spheres L` constructed over
the same component C are related via a translation by a section (see §3.8).
In fact suppose σκ is a section with twisting numbers κ = (ke)e∈E , then we
have the following formula

(4.15) Tσκ(L`) = L`+2κ,

where L`+2κ is a sphere with twisting numbers `e + 2ke for all e ⊆ ∂C̄.

Example 4.4. Let us look at the case when P is as in Example 2.11. In this
case there is just one bounded connected component C whose corresponding
divisor in X̌ is P2. Thus for every edge e bounding C the self-intersection
number of P1

e is 1. We thus have a family of Lagrangian spheres L`, with `
an odd integer. Figure 12 shows the 2-chains Tp at all vertices of Γ. From
their shape it is clear why λ|e has to wind an odd multiple of ne/2 around
Se. In fact suppose λ|∂C̄ starts at point 1 (black dot), then continues to wind
along the cylinder over the horizontal edge. When it reaches the next vertex,
it has to go to point 2, so that it can start winding along the diagonal edge.
In order to move from point 1 to point 2 it has to wind an odd multiple
of ne/2.
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1 2

3

Figure 12: The 2-chains Tp at the vertices of Γ and the construction of L`.

4.3. Lagrangian spheres

For every semi-integral support function ϑ of ΣC , with kinks ` = (`e)e⊂∂C̄ , we
construct a Lagrangian sphere in X(B), representing the isotopy class of the
sphere L`. In this case we need to use the Lagrangian model of the fibration
in §2.6. In particular here the discriminant locus ∆ is locally codimension
1 near negative vertices (see Figure 2). In the following we use the same
notations as in §2.6 and §3.6. Notice that in this case C will be a bounded
component of NR −∆ and e will be an edge of ∆. The main idea is to
construct a Lagrangian section λ : C̄ → X(B)red such that λ(∂C̄) ⊂ S. Then
Lλ = α−1(λ(C̄)) is a Lagrangian 3-sphere.

We define smooth approximations to ϑ using convolution, as in §3.6. For
ε > 0, let

ϑ̃ε = ϑ ∗ µε,
where µε and ∗ are defined in (3.11) and (3.12). Since C ⊂ |ΣC |, we regard
ϑ̃ε as defined on C. We can now define a Lagrangian section as

λε : C → X0(B)red

b 7→ (b, [(dϑ̃ε)b]).
(4.16)

The goal of this section is to prove:

Theorem 4.5. For ε > 0 sufficiently small, the section λε : C → X0(B)red

constructed above extends by continuity to a map λε : C̄ → X(B)red such
that
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a) λε(∂C̄) ⊆ S;

b) the smooth Lagrangian sphere Lλε = α−1(λε(C̄)) is in the same isotopy
class of the sphere L` constructed in §4.2.

The difficulty here is to analyze the behavior of λε near the discriminant
locus. Near the (negative) vertices, the main observation is that the image of
λε coincides with some canonical subset, i.e., the fixed point set of the anti-
symplectic involution constructed in [9]. So, even though the discriminant is
fattened around these points, we do not have to worry about the behavior
of λε, since it is controlled by this canonical set. Near edges of ∆ one needs
to work with the local model and check that λε behaves as desired.

Recall that Skel1 is the 1-skeleton of the subdivision of NR constructed
in Lemma 3.7 and that Vε is its ε-neighborhood (see Definition 3.10). We
choose ε so that conditions (i)-(iii) listed after Corollary 3.13 hold. We also
let

W̃p = (−δ, δ)×Wp

be a thickening of Wp inside B, for some δ > 0.
It is convenient here to use the fact, proved in [9], that on X(B) there ex-

ists a unique antisymplectic involution ι : X(B)→ X(B) such that f ◦ ι = f
and which leaves the zero section fixed, i.e., ι ◦ σ0 = σ0. Here, antisymplectic
means that ι∗ω = −ω. On X0(B), ι is simply the map

(b, [η]) 7→ (b,−[η])

for all b ∈ B0 and η ∈ T ∗b B0. In particular this implies that every smooth
fibre f−1(b) contains eight fixed points, one of which is the intersection
between the fibre and the zero section. Let J be the fixed point locus of ι,
i.e.,

J = {q ∈ X(B) | ι(q) = q}.

We have that J is a Lagrangian submanifold of X(B) such that f |J : J → B
is a degree 8 branched covering of B which branches over ∆. The branching
locus is J ∩ Crit f . It also follows from the construction in [9] that ι is
compatible with the S1-action, in the sense that

ι(eis · q) = e−is · ι(q)

for all eis ∈ S1 and q ∈ X(B).
We have the following
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Lemma 4.6. For every vertex p ∈ ∆, the set f−1(W̃p) ∩ J has five con-
nected components. Two of these are mapped one-to-one onto W̃p by f and
three of them are mapped two-to-one. For every edge e of ∆ emanating from
p, there is a unique connected component of f−1(W̃p) ∩ J , which we denote
by Je, such that

a) for every small simple loop γe ⊂ W̃p around e, f−1(γe) ∩ Je consists of
two disjoint loops;

b) if e′ is another edge of ∆ emanating from p and γe′ ⊂ W̃p is a small
simple loop around e′, then f−1(γe′) ∩ Je is a circle which is mapped
two-to-one to γe′ by f .

Proof. The fibration f around the vertex p is of negative type. The first two
assertions are proved in [9] (in particular in Example 3.10 the five connected
components are computed explicitly). Let e, e′ and e′′ be the three edges
of ∆ emanating from p. The monodromy formula (2.12) implies that, given
b ∈ W̃p, there exists a basis of Λ∗b with respect to which the monodromy
transformations associated to simple loops γe, γe′ and γe′′ around the three
edges are given respectively by 1 1 0

0 1 0
0 0 1

 ,

 1 0 1
0 1 0
0 0 1

 ,

 1 −1 −1
0 1 0
0 0 1

 .

The eight points of f−1(b) = T ∗b B/Λ
∗ which are fixed by ι are given, with

respect to this basis, by

(0, 0, 0),

(
1

2
, 0, 0

)
,

(
0, 0,

1

2

)
,

(
1

2
, 0,

1

2

)
,(

0,
1

2
, 0

)
,

(
1

2
,
1

2
, 0

)
,

(
0,

1

2
,
1

2

)
,

(
1

2
,
1

2
,
1

2

)
.

The first two points are invariant with respect to all three matrices, and
therefore they belong to the two connected components of f−1(W̃p) ∩ J
which are mapped one-to-one onto W̃p. The two points in the second pair
are fixed by the first matrix and are exchanged by the second and third
one. This implies that they belong to the same connected component of
f−1(W̃p) ∩ J , which we denote by Je. Notice that f−1(γe) ∩ Je must be a
pair of disjoint circles. On the other hand, f−1(γe′) ∩ Je is a single circle
which covers γe′ twice, since the pair of points is exchanged by monodromy
as we move around γe′ . The same happens for f−1(γe′′) ∩ Je. Therefore Je
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satisfies (a) and (b) and clearly it is the unique connected component satis-
fying them. �

Given a cyclic, anti-clockwise ordering of the maximal cones of ΣC , let pj
be the vertex of ∂C̄ which is contained in the j-th cone (see also Figure 10).
Let e′j denote the edge of ∆ emanating from pj which is not contained in
∂C̄. Then

Lemma 4.7. The set λε(Wpj ∩ C) ⊂ X0(B)red is contained α(µ−1(0) ∩ Je′j ),
where Je′j is the connected component of f−1(W̃p) ∩ J described in
Lemma 4.6.

Proof. Lemma 3.11, applied to ϑ̃ε instead of φ̃ε, implies that ϑ̃ε coincides
with ϑ on Wpj ∩ C, i.e., with θ̃j , the restriction of ϑ to the j-th cone. There-
fore, for all b ∈Wpj ∩ C

λε(b) = (b, [(dϑ̃ε)b]) = (b, [θ̃j ]) = (b, θpj ),

where θpj is defined as in equation (4.13). A point (b, [m]) ∈ X0(B)red is in

α(µ−1(0) ∩ J) if and only if m ∈ 1
2M . It follows from (4.3) that θ̃j ∈ 1

2M ,
so that (b, θpj ) ∈ α(µ−1(0) ∩ J). Moreover, (2.12) and (4.3) imply that θpj ,
seen as an element in T ∗b B/Λ

∗
b , is not invariant with respect to monodromy

around ej−1 and ej . From the characterization of Je′j given in Lemma 4.6

this implies that (b, θpj ) ∈ α(µ−1(0) ∩ Je′j ) and therefore the lemma. �

Corollary 4.8. We have that λε|Wpj
∩C : Wpj ∩ C → X0(B)red can be ex-

tended by continuity to Wpj ∩ C̄ so that λε(Wpj ∩ ∂C̄) ⊆ S.

Proof. The branching locus of Je′j is Je′j ∩ Crit f and is mapped by f home-
omorphically onto Wpj ∩ ∂C̄. This can be checked explicitly in the local
models (e.g., in Example 3.10 of [9]). Therefore, since λε(Wpj ∩ C) is con-
tained in α(µ−1(0) ∩ Je′j ), as b ∈Wpj ∩ C approaches a point in Wpj ∩ ∂C̄,
λε(b) approaches the image by α of a branching point of Je′j , i.e., a point on
S. This proves the corollary. �

Proof of Theorem 4.5. To extend λε it remains to show that λε extends also
to points of ∂C̄ ∩ V̄ε. Given an edge ej of ∂C̄, let us consider an open neigh-
borhood U of ej ∩ V̄ε. We can assume that U ∩ ({0} ×NR) ⊆ Ue and that
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fU := f |f−1(U) is smooth. Just as in Lemma 3.12 we have that

(4.17) dϑ̃ε|Uej (něj ) =
〈
θ̃j , něj

〉
.

We proceed as in Lemma 3.14. We let U ∼= D × (0, 1) and ∆ ∩ U ∼= {0} ×
(0, 1) and define Λ∗ ⊆ T ∗U as the Z-linear span of the periods (3.15). Then
T ∗U/Λ∗ and f−1(U)− Crit fU are fibrewise symplectomorphic. Assume also
that the coordinates have been chosen so that

C ∩ U = {b2 = 0, b1 > 0}.

In Sections 3.1 and 3.2 of [9] we gave an explicit description of an anti-
symplectic involution over a neighborhood of an edge. We review it here.
Without loss of generality we can assume that in these coordinates the zero
section σ0 is given by σ0(u) = (u, 1

2 [dH]), where H is the smooth function
appearing in equation (3.15) for the periods. Then the antisymplectic invo-
lution that fixes σ0 is

ι : (u, [η]) 7→ (u, [dH − η])

for all u ∈ U and η ∈ T ∗uU . The fixed points of ι which are not monodromy
invariant around ∆ are given by the graphs of the following 1-forms:

1

2
(dH + λ1) ,

1

2
(dH + λ1 + λ2)

1

2
(dH + λ1 + λ3) ,

1

2
(dH + λ1 + λ2 + λ3)

The first two forms are interchanged by monodromy around ∆, similarly the
last two. Therefore the first and second pair define two connected compo-
nents which map 2 to 1 over U . Since the S1-action corresponds to trans-
lations by multiples of λ2, the first two forms (resp. the last two) have the
same image in the quotient by the S1-action. Therefore, in these coordinates,
we have that θ̃j is either equal to the first form or to the third one, modulo
λ2. Let us assume, without loss of generality, that

θ̃j =
1

2
(dH + λ1) mod λ2.

Then equation (4.17) and Corollary 3.13 imply that over C ∩ U we have

dϑ̃ε =
1

2
(dH + λ1) + h(r)dr
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for some smooth function h. The above expression is defined for points u =
(b1, r) ∈ U , with b1 > 0 (since it is defined on C ∩ U). When b1 = 0, λ1 blows
up. This suggests that as b1 → 0 the points (u, [(dϑ̃ε)u]) might converge to
points in Crit fU . This is precisely what happens:

Lemma 4.9. Viewing the points (u, [(dϑ̃ε)u]), for u = (b1, r) ∈ C ∩ U , as
points in f−1(U)− Crit fU we have that

lim
b1→0

(u, [(dϑ̃ε)u]) ∈ Crit fU

Proof. To prove this we need to describe how T ∗U/Λ∗ is compactified by
gluing in Crit fU . This was done in [6]. We follow the exposition given in
Sections 3.1 and 3.2 of [9]. Let

Y = {(z1, z2, w) ∈ C2 × C∗ | |z1z2| < 1 and log |w| ∈ (0, 1)}

with symplectic form induced from the standard one on C2 × C∗. Then the
map

q : Y → U

q : (z1, z2, w) 7→ (z1z̄2, log |w|)

is a Lagrangian fibration whose general fibres are isomorphic to T 2 × R. We
have that

Crit q = {z1 = z2 = 0} ∼= S1 × (0, 1)

and q(Crit q) = ∆ = {0} × (0, 1). Define the following two sections of q:

Σ1(b, r) = (1, b̄, er)

Σ2(b, r) = (b, 1, er)

where b = b1 + ib2 ∈ D and r ∈ (0, 1). We also have a C∗ × S1-action on Y
given by

(τ, eis) · (z1, z2, w) = (τz1, τ̄
−1z2, e

isw).

We use the sections and the action to define the following maps

ξj : (C∗ × S1)× U → Y

((τ, eis), u) 7→ (τ, eis) · Σj(u)
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Now consider the following open subsets of (C∗ × S1)× U

V1 = {((τ, eis), (b, r)) ∈ (C∗ × S1)× U | |b| < |τ | < 1}
V2 = {((τ, eis), (b, r)) ∈ (C∗ × S1)× U | 1 < |τ | < |b|−1}

and define

Zj = ξj(Vj).

These are open subsets of Y and

Z = Z1 ∪ Z2 ∪ Crit q

is a neighborhood of Crit q.
We define a similar structure on T ∗U/Λ∗. Let L1 and L2 be the La-

grangian sections which are defined as the graphs respectively of the one-
form dH and of the zero 1-form. Define the following C∗ × S1-action on
T ∗U/Λ∗:

(τ, eis) · (u, [η]) = (u, [η − log |τ |db1 + Arg τ db2 + sdr]).

Then the sections and the action are used to define maps

ζj : (C∗ × S1)× U → T ∗U/Λ∗

((τ, eis), u) 7→ (τ, eis) · Lj(u).

We then define the open subsets

Z ′j = ζj(Vj).

It is not difficult to show that the map g : Z ′1 ∪ Z ′2 → Z1 ∪ Z2 given by

g|Z′j = ξj ◦ ζ−1
j

defines a fibre-preserving symplectomorphism. It is proved in [6] that f−1(U)
is symplectomorphic to the symplectic manifold obtained by gluing T ∗U/Λ∗

to Z via g. Under this identification we have that Crit fU = Crit q.
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We now want to compute the points g(u, [(dϑ̃ε)u]) for all u = (b1, r) ∈
C ∩ U . Notice that

(u, [(dϑ̃ε)u]) =

(
u,

[
1

2
(λ1 + dH) + h(r)dr

])
=

(
u,

[
−1

2
log |b1|db1 + dH + h(r)dr

])
= ζ1((

√
b1, e

ih(r)), (b1, r)).

Therefore

g(u, [(dϑ̃ε)u]) = ξ1((
√
b1, e

ih(r)), (b1, r))

= (
√
b1, e

ih(r)) · Σ1(b1, r)

= (
√
b1,
√
b1, e

r+ih(r))

It is now clear that

lim
b1→0

g(u, [(dϑ̃ε)u]) ∈ Crit q

and this proves the lemma. �

This lemma completes the proof of point (a) of Theorem 4.5.
To prove part (b), we observe that equation (4.17) implies that for all

u ∈ Uej ∩ C, (dϑ̃ε)u is a point on the affine line

{m ∈MR |
〈
m− θ̃j , něj

〉
= 0}.

Moreover, if u ∈Wpj ∩ C then (dϑ̃ε)u = θ̃j and if u ∈Wpj+1
∩ C then

(dϑ̃ε)u = θ̃j+1. It follows that, as u moves from Wpj ∩ C to Wpj+1
∩ C in-

side Uej , (dϑ̃ε)u moves along a line of slope nej from θ̃j to θ̃j+1. Then (4.12)
implies that it winds 1

2`ej times around the cycle nej . This proves point (b)
of the theorem. �

Example 4.10. The method for constructing Lagrangian spheres described
in this section is quite general and also applies to examples of compact
Calabi-Yau’s with Lagrangian fibrations. Consider for example the quintic
hypersurface in P4. In Section 19.3 of [24], the first author described an
integral affine manifold with singularities B whose associated manifold X(B)
is homeomorphic to the quintic. Applying [7], we also have a symplectic
form on X(B) and a Lagrangian fibration f : X(B)→ B. Here B is the
boundary of a (suitably rescaled) standard 4-simplex. The discriminant locus
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intersected with a 2-face of B is represented by the honeycomb pattern in
Figure 13. The (blue) triangles come from a polyhedral subdivision giving

Figure 13: Lagrangian spheres in the quintic are constructed over the shaded
hexagon.

B the structure of a simple affine manifold with singularities. The fibration
restricted to a neighborhood of the interior of a 2-face has the properties
(a)-(c) listed at the end of §2.6. Here NR is the affine space spanned by
the 2-face. The S1 action is given by translations in the direction of the
1-dimensional subspace of T ∗B0 which is monodromy invariant around the
discriminant locus inside the two face. We can construct Lagrangian spheres
in X(B) which map over the shaded hexagon in Figure 13 as follows. The
polyhedral subdivision (restricted to the 2-face) defines a 2-dimensional fan
at the vertex contained in the hexagon. We may thus consider a semi-integral
support function ϑ with respect to this fan. The results of this section then
show that the graph of the differential of a smoothing of ϑ extends and lifts
to a Lagrangian sphere in X(B).

4.4. Spheres over edges

There is another type of construction of vanishing cycles. Let

P = Conv{(0, 0), (1, 0), (0, 1), (1, 1)}

and subdivide it by adding the diagonal from (1, 0) to (0, 1). If we let ν
be the unique piecewise affine function such that ν(1, 1) = 1 and zero at all
other vertices, then Γ looks like the tropical curves shown in Figure 14.

Here X̌ is a small resolution of an ordinary double point (with equation
xy − wz = 0), while X is a smoothing of this singularity (hence given by
equation xy − wz = t). The transformation from X̌ to X is also known as
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θ
ψ

ψ
θ

p

p′

Figure 14: Γ and the curves γ1 and γ3 inside Log−1(p) and Log−1(p′).

a conifold transition and it is of independent interest (see [34] and [8] for
more information on this vanishing cycle). For every integer k, we construct
a curve λk : S1 → S which can be extended to an embedding λk : D2 →
MR ×MR/M , where D2 is the unit disc, such that λk(D

2) ∩ S = λk(S
1).

Then, as before, we define

Lk = α−1(λk(D
2)).

The curve λk is defined as follows. Let e be the edge joining the two vertices
p and p′ of Γ. Let θ and ψ be two distinct (but close) points on T 2 lying on
the 1-cycle δe. Let γ1 be an oriented curve inside Log−1(p) going from (p, ψ)
to (p, θ) drawn and oriented as in Figure 14. In particular γ1 is contained in
Tp. Let γ2 : [0, 1]→ Se be defined as

γ2(s) = ((1− s)p+ sp′, [knes] + θ).

Clearly Log(γ2([0, 1])) = e. Define γ3 to be an oriented curve inside Log−1(p′)
going from (p′, θ) to (p′, ψ) drawn and oriented as in Figure 14. Finally let
γ4 : [0, 1]→ Se be defined by

γ4(s) = ((1− s)p′ + sp, [−knes] + ψ).

We define λk : S1 → S as the concatenation of the curves γ1, γ2, γ3 and γ4.
Clearly λk can be extended to a map λk : D2 →MR ×MR/M , this follows
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Figure 15.

from the fact that the concatenation of γ1, . . . , γ4 is trivial in homology. Fig-
ure 15 depicts λ2 : S1 → S projected to the torus and lifted to its universal
cover. It also suggests a way to extend λk to an embedding of D2: the dashed
lines are the fibres of Log ◦λk. A Lagrangian version of a sphere of this type
will be given elsewhere. We will use this sphere in Section 8.3.

5. Compactly supported sections

In this section we will determine the isotopy classes of pairs of sections σ
and σ′ of f : X → Rn which coincide outside some compact set. In this case
we say that σ is compactly supported with respect to σ′. When σ′ is the
zero section we just say that σ is compactly supported. The closure of the
set where the two sections differ is called the support of σ (relative to σ′).

Definition 5.1. Suppose that σ coincides with σ′ outside of a compact set
K ⊆ Rn homeomorphic to an n-ball. Denote by K+ a copy of K with an
orientation induced from a fixed orientation of Rn and by K− a copy of K
with the opposite orientation. Then we can glue K+ and K− along their
boundary to form an oriented n-sphere. Define a map from this sphere to X
by defining it to be equal to σ on K+ and equal to σ′ on K−. Denote the
image of this map by σσ′. It defines a class in Hn(X,Z) which we denote by
[σσ′].
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We will determine when [σσ′] coincides with the class of one of the
spheres L` constructed in the previous section.

5.1. The two-dimensional case

Assume we are as in §3.4, with only two singular fibres corresponding to
S = {(0, i), (1, i)}. Figure 16 depicts two reduced sections (the continuous
(blue) line and the dotted (red) line) which can be extended and then lifted
to a pair of sections of f : X → R2 which coincide outside a compact set.
We prove this in the following.

Figure 16.

Proposition 5.2. In dimension 2, let f : X → R2 be as in §2.4 with only
two singular fibres. Then, for every integer k, the sections σk+2 and σk
defined in §3.4 are isotopic to a pair of sections which coincide outside some
compact set.

Proof. We consider the case k = −1, the other cases are obtained after trans-
lation by a section. It can be easily seen that the reduced sections σ̄−1 and
σ̄1 defined in §3.4 are isotopic (in (R× S1)− S) to a pair of sections which
can be depicted as in Figure 16, the continuous (blue) line representing σ̄−1

and the dotted (red) line representing σ̄1. The two sections coincide outside
a compact set containing Γ = {0, 1}. As in §2.4, let Y = R× R× S1, which
contains R× S1 as the slice {0} × R× S1. We must show that the sections
can be extended and then lifted to a pair of sections of f which coincide out-
side a compact set. The two sections can be extended to sections of Y → R2

in such a way that they coincide outside a compact set K homeomorphic
to a 2-disk. This can be done by unwinding both sections as we move away
from the slice {0} × R× S1 so that they both become flat (coinciding with
the zero section). Denote by σ−1 and σ1 the two sections after the exten-
sion. We now show that there are lifts of both sections to the circle fibration
α : X → Y which coincide outside of K. As explained at the beginning of
this section, we can construct a map ξσ−1σ1

: S2 → Y , where S2 is formed by
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gluing two copies of K along the boundary and ξσ−1σ1
= σ−1 on one copy of

K and ξσ−1σ1
= σ1 on the other copy. Pull back the S1-fibration α : X → Y

to S2 via ξσ−1σ1
. We claim that the pull back fibration is a trivial S1 bundle

over S2. Recall that α satisfies the following property. There exists an orien-
tation on Y such that the first Chern class of α, evaluated on the boundary
of a small ball centered at any one of the two points of S (and not contain-
ing the other one), is equal to 1. Notice that the complement of σ−1 ∪ σ1

inside Y consists of three connected components. One of them is unbounded
and the other two are two open balls, each one containing one of the points
of S. The intersections of these latter components with {0} × R× S1 are
the shaded regions in Figure 16. The union of the boundaries of these two
regions coincides with the image ξσ−1σ1

(S2). One region induces an orien-
tation agreeing with the orientation on S2, but the other one induces the
opposite orientation. This implies that the first Chern class of α evaluated
on ξσ−1σ1

(S2) is zero and therefore the pullback bundle on S2 is trivial. This
shows that we can lift σ−1|K and σ1|K to the fibration α in such a way that
the lifts coincide on the boundary of K. Then they can be extended outside
of K so that they coincide. �

Let Lk be the sphere constructed in §4.1 with twisting number k.

Theorem 5.3. In H2(X,Z), up to some choice of orientation of Lk+1, we
have

[σk+2σk] = [Lk+1]

Proof. We do the case k = −1, the other cases follow after translation by a
section. Let us consider σ−1 and σ1 as sections of Y → R2 (i.e., before they
have been lifted to sections of X). Then let Z be the closure of the union of
the two bounded components of Y − (σ−1 ∪ σ1). The intersection of Z with
{0} × R× S1 is the shaded area in Figure 16. We can write Z = Z1 ∪ Z2,
where Z1 and Z2 are the closures of the two bounded components. We can
assume that Z1 ∩ Z2 is homeomorphic to the interval [0, 1] ⊂ R and that
Z1 and Z2 are both homeomorphic to a 3-ball. Now let W = α−1(Z) and
Wj = α−1(Zj). We have that Wj is homeomorphic to a 4-ball. We can view
[σ1σ−1] as an element of H2(W,Z). Notice that also [L0] can be viewed as
an element of H2(W,Z). In fact let I be the segment joining the two points
of S depicted by the (green) dashed line in Figure 16. Notice that I ⊆ Z.
Then L0 = α−1(I) ⊂W .
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The Mayer-Vietoris sequence for the homology of W with decomposition
W = W1 ∪W2 gives the isomorphism

H2(W ;Z)→ H1(W1 ∩W2;Z).

Moreover W1 ∩W2
∼= [0, 1]× S1 so that H1(W1 ∩W2;Z) ∼= Z. To prove the

statement of the theorem it is enough to show that [σ1σ−1] and [L0] are
both mapped to a generator of H1(W1 ∩W2;Z). This is obvious for [L0],
since L0 ∩ (W1 ∩W2) is a fibre of α whose class generates H1(W1 ∩W2;Z).
We now show that this is true also for [σ1σ−1].

Let B4 and B3 be the balls of radius 1 centered at the origin respectively
in C2 and in R× C. Let B∗4 and B∗3 be the two balls minus their origin. Then
the map

α′ : B4 → B3

(x, y) 7→ (|x|2 − |y|2, 2xy)
(5.1)

is surjective and α′|B∗4
: B∗4 → B∗3 is a principal S1 bundle with first Chern

class 1 ∈ Z = H2(B∗3 ,Z). The fibration α′ : B4 → B3 is fibrewise isomorphic
to α|Wj

: Wj → Zj . We have S3 = ∂B4 and S2 = ∂B3. Given a point ∗ ∈ S2,
let S1 = α′−1(∗). Then we have isomorphisms

H2(S3, S1;Z)
∂−−−−→ H1(S1;Z) ∼= Z

α′∗

y
H2(S2, ∗;Z)

where ∂ is the boundary map. The map of pairs α′ : (S3, S1)→ (S2, ∗) is
clearly homotopy equivalent to the map α : (∂Wj ,W1 ∩W2)→ (∂Zj , Z1 ∩
Z2). So we also have the diagram of isomorphisms:

(5.2)

H2(∂Wj ,W1 ∩W2;Z)
∂−−−−→ H1(W1 ∩W2;Z) ∼= Z

α∗

y
H2(∂Zj , Z1 ∩ Z2;Z).

Notice that [σ1σ−1] can be viewed as an element in H2(∂W ;Z) and σ1σ−1 ∩
∂Wj gives an element of H2(∂Wj ,W1 ∩W2;Z). Since σ1 and σ−1 are sec-
tions, α∗[σ1σ−1 ∩ ∂Wj ] is a generator of H2(∂Zj , Z1 ∩ Z2;Z). This implies
that also ∂[σ1σ−1 ∩ ∂Wj ] = [σ1σ−1 ∩ (W1 ∩W2)] is a generator of H1(W1 ∩
W2;Z). This concludes the proof. �
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5.2. The three-dimensional case

Let n = 3. We consider the complex tropical fibration f : X → R×MR and
the construction of sections given in §3.3. Let C be a bounded connected
component of MR − Γ. Recall that C corresponds to a toric divisor DC in
X̌. Moreover, every edge e in ∂C̄ corresponds to a toric boundary divisor of
DC which we denote P1

e.

Definition 5.4. Denote by φKC : P → R a support function for the line
bundle OX̌(DC) on X̌. We fix a choice of φKC such that it satisfies φKC (vC) =
0 and φKC (v) = −1 for all other vertices v in the subdivision of P . The
corresponding kinks KC = (ke)e∈E of φKC satisfy the following. If e is an
edge of ∂C̄, then ke = −be − 2, where be is the self-intersection number of
P1
e inside DC ⊂ X̌. If e is an edge which emanates from a vertex of C, but

is not in ∂C̄, then ke = 1. In all other cases ke = 0.

The numbers KC also identify an isotopy class of sections of f .
Now let R ⊂MR be a convex compact set whose interior contains C and

which does not intersect other edges of Γ except the ones emanating from
the vertices of C. Let

R̃ := [−ε, ε]×R,
for some ε ∈ (0, 1). Let σ0 be the zero section.

Proposition 5.5. An isotopy class K ∈ ker Φ of sections of f has a rep-
resentative σ whose support is contained in R̃ if and only if K = aKC , for
some a ∈ Z.

Proof. Suppose that a section σ in the isotopy class K = (ke)e∈E has support
contained in R̃. Let σ̄ : MR →MR ×MR/M be the reduced section. Then σ̄
coincides with σ̄0 outside R. If e is an edge which does not emanate from a
vertex of C, then ke = 0, since R does not intersect e.

Now let e be an edge of ∂C̄. Let p+ and p− be the vertices of e cor-
responding respectively to the simplex P+

e and P−e . Let e+ and e− be the
edges ∂C̄, adjacent to e, which emanate respectively from p+ and p−. Let
d+ and d− be the remaining edges emanating respectively from p+ and p−

(see Figure 17). By choosing appropriate integral affine coordinates, we may
assume that

ne+ = (0,−1),

ne = (1, 0),

ne− = (−be, 1).

(5.3)
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The balancing condition implies

nd+ = ne+ − ne = (−1,−1), nd− = ne − ne− = (1 + be,−1).

Let C ′ be the other component of MR − Γ adjacent to e. In the case C ′ is a
bounded component then condition (3.8) holds and becomes

(5.4) kd+(ne − ne+) + kene + kd−(ne − ne−) = 0.

This imposes the following necessary conditions:

kd+ = kd−

ke = −kd+(be + 2).
(5.5)

If we prove that these conditions hold also when C ′ is not bounded, then the
first equation of (5.5) implies that all numbers attached to edges emanating
from a vertex of C but not contained in ∂C̄ coincide with a fixed number
a ∈ Z, which implies that K = aKC . Thus, assuming C ′ is not bounded, we
interpret kd+ and kd− as the number of times σ̄ winds along d+ and d−. If
we choose two points q+ and q−, respectively on d+ and d−, and sufficiently
far from C, then σ̄ is constant along the segment joining q+ and q−, since
it coincides with the zero section. Now consider the convex hull of p+, p−,
q+ and q− (i.e. the region labeled by Q−e in Figure 17), then the fact that
its boundary must be mapped by σ̄ to a homologically trivial loop implies
that (5.4) must hold and hence also (5.5).

On the other hand, let us show that there exists a section representing
the class aKC whose support is contained in R̃. For later use, we will con-
struct a piecewise linear section. First let us construct a map σ̃ : MR →MR
with support inside R such that the reduced section σ̄ : MR →MR ×MR/M
can be defined as

(5.6) σ̄(b) = (b, [σ̃(b)]).

Fix some point pC in the interior of C. Let e be an edge of ∂C̄ and let p+,
p−, e+, e−, d+ and d− be as above. Choose points q+ and q− on d+ and d−

respectively which are also in R. Denote by Q+
e the convex hull of pC , p+

and p− and by Q−e the convex hull of p+, p−, q+ and q− (see Figure 17).
Let Qe = Q+

e ∪Q−e . Since R is convex, Qe is contained in R.
Let φKC be the support function of Definition 5.4. Denote by m+

e (resp.
m−e ) the linear part of φKC restricted to P+

e (resp. to P−e ). Assuming that
ne+ , ne and ne− are as in (5.3), one computes that m+

e = ne+ − ne and m−e =
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ne − ne− . Given a point b ∈ Q+
e , there are unique positive real numbers t1, t2

and t3, satisfying
∑
tj = 1, such that we can write b = t1pC + t2p

+ + t3p
−.

Define

σ̃(b) = a(t2m
+
e + t3m

−
e ).

In particular σ̃(pC) = 0, σ̃(p+) = am+
e and σ̃(p−) = am−e . Let us now define

σ̃ on Q−e . On the segment from p+ to q+ define σ̃ by

(5.7) σ̃((1− s)p+ + sq+) = a(1− s)m+
e .

Similarly, on the segment from p− to q−

σ̃((1− s)p− + sq−) = a(1− s)m−e .

Define σ̃ on the segment from q+ to q− to be zero. By construction σ̃ extends
to the interior of Q−e (see Figure 17 for a picture of the image of Qe under
σ̃). We do this for every edge e ⊂ ∂C̄ and we define σ̃ to be zero on the
rest of MR. Define the reduced section σ̄ by (5.6). By construction we have
σ̄(MR) ∩ S = ∅.

We now show that we can extend σ̄ to a section σ : R×MR → X with
support inside R̃. First extend it to a section σY : R×MR → Y , where
Y = R×MR ×MR/M by defining σY (t, p) = ((t, p), [ρ(t)σ̃(p)]), where ρ is
a suitable bump function with values in the interval [0,1] and vanishing out-
side [−ε, ε]. In fact we can also choose ρ with values in the smaller interval
[0, 1− ε] for small ε; this choice will be more convenient later. Clearly σY
coincides with the zero section outside R̃. We have to show that we can lift
σY to the S1 fibration α : X → Y , so that it coincides with the lift of the
zero section outside R̃. Notice that R̃ is homeomorphic to a 3-ball. If we
consider a 3-sphere as two copies of R̃ glued along its boundary, then σY on
one copy of R̃ and the zero section on the other copy give a continuous map
from S3 to Y . The pull-back of α via this map is trivial, since all S1-bundles
are trivial on S3. Therefore the map can be lifted to the S1-bundle. This
gives lifts of σY and of the zero section which coincide on the boundary of
R̃. This ends the construction of sections with compact support. �

Observe that the line bundle on X̌ corresponding to a Lagrangian section
of the type σaKC via the correspondence of Conjecture 3.16 is OX̌(−aDC).

A compactly supported section σ and the zero section, as explained in
the beginning of this section, define a homology class in H3(X,Z) denoted
by [σσ0]. Now, given a bounded connected component C of MR − Γ, consider
the sphere L` defined by the numbers `e = be + 2 for every edge e bounding
C and denote it by L−KC . We then have
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−m+
e = (1, 1)−m−

e = (0, 1)

(0, 0)

e+
pC

e

e−

d−d+

Q+
e

Q−e

p−p+

Figure 17: The picture on the right shows the image ofQe under σ̃ in the case
be = −1 and a = −1 (shaded region). The dark line is σ̃(∂C̄). The dashed
(red) line is λ̃(∂C̄).

Theorem 5.6. Up to some choice of orientation on L−KC we have

[σ−KCσ0] = [L−KC ].

Proof. We use the map σ̃ : MR →MR constructed in the proof of Proposi-
tion 5.5 with a = −1. Define λ̃ : C̄ →MR by

(5.8) λ̃ =
1

2
σ̃|C̄

and λ(b) = (b, [λ̃(b)]) for all b ∈ C̄ (see also Figure 17 for a picture of λ̃(∂C̄)).
It can then be checked that λ(∂C̄) ⊂ S and

L−KC = α−1(λ(C̄)).

Step 1: definition of a set Z containing λ(C̄). We construct a subset Z
containing λ(C̄) which generalizes the set Z constructed in the proof of The-
orem 5.3. Intuitively Z looks like the shaded area depicted in Figure 16 after
it is spun around its center and then thickened in the extra dimension. The
center corresponds to the point pC chosen in the proof of Proposition 5.5.
The singular points (i.e., the crosses in Figure 16) span λ(∂C̄).

In the following we assume that the function ρ used in the construction
of σY in Proposition 5.5 has values in the interval [0, 1− ε] and that ρ(0) =
1− ε. Given an edge e of ∂C̄, let Qe be the neighborhood of e defined in the
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proof of Proposition 5.5 and let

Q =
⋃
e⊂∂C̄

Qe

Q̃ = [−ε, ε]×Q ⊂ R×MR.

Now define the set

Z = {(t, b, [r ρ(t)σ̃(b)]) | (t, b) ∈ Q̃ and r ∈ [0, 1]} ⊂ Y,

where, as usual, Y = R×MR ×MR/M . Essentially, Z fills the space between
the zero section and the section σY . In particular the two sections, restricted
to Q̃, form the boundary of Z. Notice also that λ(C̄) ⊆ Z.

For any p ∈ ∂C̄, consider the ray ρp in MR which starts at pC and passes
through p and let ρ̃p = ρp × [−ε, ε]. Now let

Zp = Z ∩ Log−1(ρ̃p).

We have that Zp is homeomorphic to a closed 3-ball. Moreover

Z =
⋃
p∈∂C̄

Zp.

Step 2: properties of Zp. We now prove that

(5.9) Z ∩ S = λ(∂C̄),

and in particular that, for all p ∈ ∂C̄,

(5.10) Zp ∩ S = λ(p).

Since Log(Z) = Q̃, we only have to study Z ∩ S ∩ Log−1(Q̃). Suppose first
that p is a point in the interior of an edge e of ∂C̄. Recall that the part of
the surface S that is mapped to the interior of e is the cylinder Se defined
in equation (2.10), where δe is the cycle defined in (2.9). We can write p
as p = (1− s)p+ + sp−, with s ∈ (0, 1). Then the intersection of Z with the
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fibre Log−1(p) ∼= MR/M is

Z ∩ Log−1(p) = {[−r(1− ε)((1− s)m+
e + sm−e )] | r ∈ [0, 1]}

The points in Z ∩ Log−1(p) which lie on Se correspond to the values of
r ∈ [0, 1] such that

〈
−r(1− ε)((1− s)m+

e + sm−e ), ně
〉

=
1

2
mod Z.

By definition we have that 〈m+
e , ně〉 = 〈m−e , ně〉 = −1. So the above equation

becomes

r(1− ε) =
1

2
,

since r(1− ε) ∈ [0, 1]. We conclude that for any p in the interior of e,

Z ∩ Se ∩ Log−1(p) =

[
−1

2
((1− s)m+

e + sm−e )

]
= λ(p).

Suppose now that p is a vertex of e, e.g. p = p+. Then, in appropriate affine
coordinates, we can assume that equations (5.3) hold. In these coordinates
m+
e = (−1,−1), therefore

Z ∩ Log−1(p) = {[−r(1− ε)(−1,−1)] | r ∈ [0, 1]}.

Moreover, S ∩ Log−1(p) is the set Tp described in Remark 2.2. In these
coordinates it has the shape depicted in Figure 1. Then we see that

Z ∩ S ∩ Log−1(p) = (Z ∩ Log−1(p)) ∩ Tp = [(1/2, 1/2)] = λ(p).

Finally we have to check that Z does not intersect S over the interior of
the edges d+ and d−. Let q+ ∈ d+ be the point defined in the proof of
Proposition 5.5. We just need to check what happens over a point p = (1−
s)p+ + sq+ with s ∈ (0, 1]. Using formula (5.7) we see that in this case

Z ∩ Log−1(p) = {[−r(1− ε)(1− s)m+
e ] | r ∈ [0, 1]}.

On the other hand, points of this type are also on Sd+ if they satisfy

〈
−r(1− ε)(1− s)m+

e , nď+

〉
=

1

2
mod Z.
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Using the fact that nď+ = ±(ně − ně+) and 〈m+
e , ně〉 = 〈m+

e , ně+〉 = −1, we
can see that the above equation is never satisfied. Thus we have

Z ∩ Sd+ ∩ Log−1(p) = ∅.

This proves (5.9) and (5.10).

Step 3: conclusion. For every p ∈ ∂C̄ define

Wp = α−1(Zp)

and let

W = α−1(Z).

Notice that since Zp is homeomorphic to a 3-ball and is transversal to S at
λ(p), it can be viewed as a 3-ball in the normal bundle to S at λ(p). This
implies that the fibration α|Wp

: Wp → Zp is always fibrewise isomorphic to
the map α′ given in (5.1). In particular Wp is homeomorphic to a 4-ball.

The classes [σ−KCσ0] and [L−KC ] can be viewed as classes in H3(W,Z).
We must show that they define the same class. Consider the set

I =
⋂
p⊂∂C̄

Zp = [−ε, ε]× {pC} × {0} ⊂ Y.

Now define

Ŵ = {(p, q) ∈ ∂C̄ ×X | q ∈Wp}, Ẑ = {(p, q) ∈ ∂C̄ × Y | q ∈ Zp}.

These spaces are sort of (real) blow ups along the set I of W and Z respec-

tively. Clearly there is an S1-action on Ŵ and a quotient map α̂ : Ŵ → Ẑ
inducing the commutative diagram

Ŵ
α̂−−−−→ Ẑy y

W
α−−−−→ Z

where the vertical arrows are the projections. We also have the other pro-
jection maps Ŵ → ∂C̄ and Ẑ → ∂C̄. These are respectively a 4-ball and a
3-ball bundle over ∂C̄. We claim that they are trivial bundles. In fact, the
latter can be viewed as the unit 3-ball bundle inside the normal bundle of S
in Y , restricted to the curve λ(∂C̄). Since S and Y are oriented, the normal
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bundle to S is orientable, therefore it becomes trivial when restricted to
λ(∂C̄). Similarly Ŵ can be viewed as the unit 4-ball bundle of the normal

bundle of S inside X, so it is also trivial. We denote by ∂Ŵ and ∂Ẑ the
corresponding 3-sphere and 2-sphere bundles respectively. In particular we
have

(5.11) H3(Ŵ ,Z) = H2(Ŵ ,Z) = 0, H3(∂Ŵ ,Z) ∼= Z, H2(∂Ẑ,Z) ∼= Z.

In the last two groups, a generator is given by the fibre.
Now let Î ⊂ Ẑ be the preimage of I ⊂ Z. We have Î ∼= ∂C̄ × [−ε, ε]. No-

tice that the projections Ẑ − Î −→ Z − I and Ŵ − α̂−1(Î) −→W − α−1(I)
are homeomorphisms. Thus, excision implies that

H3(W,α−1(I);Z) ∼= H3(Ŵ , α̂−1(Î);Z).

Notice that α−1(I) ∼= S1 × [−ε, ε], so that its second and third homology
vanish. This gives

H3(W ;Z) ∼= H3(W,α−1(I);Z).

Therefore we can view the classes [σ−KCσ0] and [L−KC ] insideH3(Ŵ , α̂−1(Î)).
Notice that α̂−1(Î) ∼= ∂C̄ × S1 × [−ε, ε]. The long exact sequence in relative
homology and (5.11) gives an isomorphism

H3(Ŵ , α̂−1(Î);Z)
∂−→ H2(α̂−1(Î);Z) ∼= Z.

The goal is to show that both classes [σ−KCσ0] and [L−KC ] are mapped
to a generator by the above isomorphism. We proceed in a similar way to
Theorem 5.3. First of all notice that by construction [L−KC ] is mapped
to a generator by ∂. Moreover [σ−KCσ0] can be viewed as a class inside

H3(∂Ŵ , α̂−1(Î);Z). We have the diagram

0 −−−−→ H3(∂Ŵ ,Z) −−−−→ H3(∂Ŵ , α̂−1(Î);Z)
∂−−−−→ H2(α̂−1(Î);Z) −−−−→ 0yα̂∗

H3(∂Ẑ, Î;Z)

which is analogous to diagram (5.2). Notice thatH3(∂Ẑ, Î;Z) ∼= H3(∂Ẑ;Z) ∼=
Z. Since [σ−KCσ0] is constructed by lifting sections, we have that α̂∗[σ−KCσ0]

is a generator of H3(∂Ẑ;Z). Moreover, since the generator of H3(∂Ŵ ,Z) is
the fibre of the sphere bundle and α̂ on the fibres is just the Hopf map, we
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have that α̂∗ restricted to H3(∂Ŵ ,Z) is zero. Thus α̂∗ must descend to an
isomorphism of the quotient:

α̂∗ : H3(∂Ŵ , α̂−1(Î);Z)/H3(∂Ŵ ,Z)→ H3(∂Ẑ, Î;Z).

Then [σ−KCσ0] must descend to a generator of

H3(∂Ŵ , α̂−1(Î);Z)/H3(∂Ŵ ,Z),

i.e. of H2(α̂−1(Î);Z). This concludes the proof. �

Clearly by translating with respect to an arbitrary section σκ we can
describe other spheres as difference of sections. Applying formula (4.15) we
have

Corollary 5.7. We have

[σ−KC+κσκ] = [L−KC+2κ],

where L−KC+2κ denotes the sphere whose twisting numbers are given by
be + 2 + 2ke for all edges e ⊂ ∂C.

6. Intersections

Recall, from formula (4.1), that a sphere L` is constructed as the union of
the S1-fibers over all points of a section λ of the Log map, defined over
C̄. Clearly, if σ is a section, the intersection points between L` and σ are in
one-to-one correspondence with the intersection points between λ(C̄) and σ̄,
where σ̄ : NR → X(B)red is the reduced section. Therefore σ ∩ L` is in one-
to-one correspondence with the set {b ∈ C̄ |λ(b) = σ̄(b)}. Since λ(∂C̄) ⊂ S,
this set is all contained in C, i.e., there are no intersection points on the
boundary of C̄. Up to translation by a section, we can assume that σ is the
zero section σ0.

We now consider λ constructed as in §4.3, i.e., as the graph of the dif-
ferential of the smooth function ϑ̃ε (see formula (4.16)). Recall that ϑ̃ε is a
smoothing of a semi-integral support function ϑ : |ΣC | → R whose kinks are
the twisting numbers `.
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For convenience let us define the following map

Dϑ : C̄ −→MR

b 7−→ (dϑ̃ε)b.
(6.1)

We then have the one-to-one correspondence

σ0 ∩ L` ←→
⋃
m∈M

(Dϑ)−1(m).

We will call a point b in the right-hand set an intersection point. We wish
to study transversality of intersections and to count intersection points. It
is easy to see that an intersection point b ∈ C corresponds to a transversal
intersection point if and only if the Hessian (Hess ϑ̃ε)b is non-degenerate.
Now define the curve γ` : ∂C̄ →MR by setting

(6.2) γ` = Dϑ|∂C̄ .

It follows from the results of §3.6 and §4.3 that γ` is a closed polygonal line
joining the points θ̃j defined in (4.12). Fix an orientation on NR, and the
induced orientation on MR. Then we have an anticlockwise cyclic indexing of
two-dimensional cones of ΣC (see Figure 10 and the proof of Proposition 4.3
for our conventions).

Definition 6.1. Recall that the winding number of the curve γ` around a
point m ∈MR, with m /∈ γ`(∂C̄), is the degree of the map ∂C̄ → S1 given

by b 7→ γ`(b)−m
|γ`(b)−m| . Since for all m ∈M , m /∈ γ`(∂C̄), the winding number of

γ` around m is well defined for every m ∈M . Denote it by w`(m).

If m ∈MR is a regular value of Dϑ and m /∈ γ`(∂C̄), then the degree of
Dϑ at m equals the winding number of γ` around m. In particular, if the
winding number is not zero, m is in the image of Dϑ.

We have the following:

Theorem 6.2. If the semi-integral support function ϑ : |ΣC | → R, (resp.
its opposite−ϑ), is strictly convex and ε > 0 is sufficiently small, then for any
b ∈ C, either (dϑ̃ε)b ∈ γ` or (Hess ϑ̃ε)b is positive (resp. negative) definite. In
particular the image of Dϑ is the closed convex polygon whose boundary
is γ`.

Before proving the theorem let us study a one-dimensional version of the
problem. Let h : R→ R be a continuous function which is piecewise affine,
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i.e., it is locally affine except at a finite number of points in R. We call a
point t ∈ R a non-smooth point if h is not locally affine at t. At a non-smooth
point t, let m+

t and m−t be the slopes of h respectively on the right and on
the left of t. The function h is convex if at every non-smooth point t we have

m+
t −m

−
t > 0.

Now let η : R→ R be an even C∞ function, whose support is [−δ, δ] and
such that η(t) > 0 for all t ∈ (−δ, δ). Define

h̃ = h ∗ η.

Lemma 6.3. In the above situation, we have h̃′′(t) ≥ 0 and equality holds
if and only if the interval (t− δ, t+ δ) does not contain non-smooth points.

Proof. By the definition of the convolution product we have

h̃′′(t) =

∫
R
h(s)η′′(t− s)ds.

Assume, without loss of generality, that t = 0. Then

h̃′′(0) =

∫
R
h(s)η′′(−s)ds =

∫ δ

−δ
h(s)η′′(−s)ds.

Now suppose that (−δ, δ) contains r non-smooth points {t1, . . . , tr}. Define
t0 = −δ and tr+1 = δ. Suppose, moreover, that on the interval [tj−1, tj ], h
coincides with the affine function mj(t) = qjt+ cj . By convexity

(6.3) qj+1 − qj > 0.

We have

(6.4) h̃′′(0) =

r+1∑
j=1

∫ tj

tj−1

mj(s)η
′′(−s)ds.

Integration by parts gives∫ tj

tj−1

mj(s)η
′′(−s)ds = mj(tj−1)η′(−tj−1)−mj(tj)η

′(−tj)

− qj(η(−tj)− η(−tj−1)).
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Using the fact that η is even we obtain

∫ tj

tj−1

mj(s)η
′′(−s)ds = mj(tj)η

′(tj)−mj(tj−1)η′(tj−1)

− qj(η(tj)− η(tj−1)).

Continuity of h implies that

mj(tj)η
′(tj) = mj+1(tj)η

′(tj).

Moreover we have

η(t0) = η′(t0) = η(tr+1) = η′(tr+1) = 0.

Using these facts, equation (6.4) becomes

h̃′′(0) =

r∑
j=1

(qj+1 − qj)η(tj) > 0.

The last inequality follows from (6.3) and the fact that tj ∈ (−δ, δ), where
η is strictly positive. Clearly, if (−δ, δ) does not contain non-smooth points,
integration by parts shows that h̃′′(0) = 0 �

Proof of Theorem 6.2. Let ε satisfy conditions (i)-(iii) listed after Corol-
lary 3.13. Let ej be the edge of ∂C̄ whose vertices are pj and pj+1. As
we have already discussed (see the end of the proof of Theorem 4.5), as b
moves inside Uej from a point in Wpj to a point in Wpj+1

, then (dϑ̃ε)b moves

inside the line passing from θ̃j and θ̃j+1. Using convexity of ϑ and Lemma 6.3
one can refine the argument to show that for all b ∈ Ūej , (dϑ̃ε)b belongs to

the segment from θ̃j to θ̃j+1. Now let

UC =
⋃
e⊂∂C̄

Ue.

The above argument shows that for any b ∈ ŪC , (dϑ̃ε)b ∈ γ`. We now prove
that if b ∈ C − ŪC then (Hess ϑ̃ε)b is positive definite. Thus we need to show
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that for any v ∈ NR,

(6.5)
〈

(Hess ϑ̃ε)bv, v
〉
> 0.

We can choose linear coordinates (x1, x2) on NR so that v = ∂
∂x1

. In this
case〈

(Hess ϑ̃ε)bv, v
〉

=

∫
R

(∫
R
ϑ(x1, x2)

∂2µε
∂x2

1

(b1 − x1, b2 − x2)dx1

)
dx2

We claim that

(6.6)

∫
R
ϑ(x1, x2)

∂2µε
∂x2

1

(b1 − x1, b2 − x2) dx1 ≥ 0

and that if b = (b1, b2) ∈ C − ŪC , then the inequality is strict for some values
of x2. This would imply (6.5). For fixed x2, define the functions

h(s) = ϑ(s, x2), η(s) = µε(s, b2 − x2).

Notice that h is a continuous, convex, piecewise affine function on R. On
the other hand, η is identically zero if |x2 − b2| ≥ ε, but when |x2 − b2| < ε
it is smooth, even and its support is an interval (−δx2

, δx2
) with δx2

> 0.
Moreover η(s) > 0 for all s ∈ (−δx2

, δx2
).

The integral on the left hand side of (6.6) coincides with (h ∗ η)′′(b1) and
therefore the inequality follows from Lemma 6.3. This lemma also implies
that the integral in (6.6) is strictly positive for x2 ∈ (b2 − ε, b2 + ε), if in the
interval (b1 − δx2

, b1 + δx2
) there exists a non-smooth point of h. We prove

that this is true for some x2 ∈ (b2 − ε, b2 + ε). The condition b ∈ C − ŪC
implies that the ε-ball around b intersects at least two non parallel edges
of Skel1 emanating from the vertex vC of the subdivision. In particular,
we can find a point (x̄1, x̄2) in the ε-ball around b which lies on an edge
of Skel1 not parallel to the x1-axis. This implies that the line in NR given
by {(s, x̄2) | s ∈ R} intersects this edge transversally in the point (x̄1, x̄2).
Thus x̄1 is a non-smooth point for h defined by setting x2 = x̄2; moreover
x̄2 ∈ (b2 − ε, b2 + ε) and x̄1 ∈ (b1 − δx̄2

, b1 + δx̄2
) since (x̄1, x̄2) lies in the ε-

ball around b.
The last statement follows easily. In fact, by the previous argument, if

m /∈ γ`(∂C̄) and m = Dϑ(b) for some b ∈ C, then m is a regular value of
Dϑ and its degree must be positive. Moreover, strict convexity of ϑ implies
that γ`(∂C̄) is an embedded simple curve which encloses a convex bounded
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polygon. So w`(m) is 1 if m is inside this polygon and zero if m is outside.
This implies the last claim of the theorem. �

We have the following

Corollary 6.4. If ϑ : |ΣC | → R, or its opposite −ϑ, is strictly convex and
ε > 0 is sufficiently small, the corresponding Lagrangian sphere L` intersects
the zero section transversally and

#(σ0 ∩ L`) = #(Dϑ(C) ∩M)

Proof. The previous theorem implies that all points of m ∈ Dϑ(C) ∩M are
regular values of Dϑ and that every point in the preimage of m contributes
+1 to the degree. Since m has degree 1, it has only one preimage. �

More generally, suppose that we have an arbitrary section σκ. Then the
number of intersection points between σκ and L` is the same as between the
zero section and the translate of L` by σ−κ, i.e., using formula (4.15):

#(σκ ∩ L`) = #(σ0 ∩ L`−2κ)

Example 6.5. In the case of Example 2.11, the spheres Ln are labeled
by odd numbers n. In Figure 18 we picture some of the spheres and their
intersection points with the zero section. Clearly in this case we have the
formula

(6.7) #(σ0 ∩ L2k+1) =

∣∣∣∣k(k + 1)

2

∣∣∣∣
Notice that L1 and L−1 are the only spheres which do not intersect the zero
section.

Example 6.6. Let us look at the case of Example 2.12. Assume that a
subdivision of P has been chosen so that every compact toric divisor in X̌
is a one point blow up of a Hirzebruch surface (e.g., as in Figure 6 for the
case d = 3). Then we can orient and number the bounding edges of each
component Cj as in Example 3.19. Let us then construct the spheres of
type L` over each component. Notice that when j is odd, then ` must be
of type (odd, odd, odd, even, even) and when j is even then it must be of
type (even, odd, odd, odd, even). Let us assume j is odd, as the even case
is similar. There are two spheres with minimal twisting numbers, these are
given by numbers (−1, 1,−1, 0, 0) or (1,−1, 1, 0, 0). Let us denote them re-
spectively by L+ and L−. These spheres are vanishing cycles with respect
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L1 and L−1

L3

L5

L7

Figure 18.

to the degeneration to the A2d−1 singularity. Notice that L+ and L− do
not intersect the zero section. Another interesting sphere over Cj is given
by numbers (−j + 2, 1, 1, j + 1, 2). In fact these correspond to the spheres
L−KCj described in Theorem 5.6 as a difference of sections.

Let us now discuss the general case where neither ϑ nor −ϑ are convex.
In this case the polyhedral curve γ` can have a more complicated behavior.
Let us define the following numbers

hodd(L`) = −
∑

m∈M,w`(m)<0

w`(m),

heven(L`) =
∑

m∈M,w`(m)>0

w`(m).
(6.8)

Conjecture 6.7. We conjecture that for ε > 0 sufficiently small, m ∈
Dϑ(C) ∩M if and only if w`(m) 6= 0. Moreover, given b ∈ (Dϑ)−1(m), then
(Hess ϑ̃ε)b is non-degenerate and the following holds

i) w`(m) < 0 implies that (Hess ϑ̃ε)b has signature (1, 1);

ii) w`(m) > 0, implies that (Hess ϑ̃ε)b has signature (2, 0) or (0, 2).

In particular we have that L` intersects σ0 transversally and

#(σ0 ∩ L`) = hodd(L`) + heven(L`).
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Remark 6.8. If the above conjecture is true, then it should not be difficult
to prove the following isomorphism of C-vector spaces

HF1(σ0, L`) ∼= Chodd(L`),

HFeven(σ0, L`) ∼= Cheven(L`).
(6.9)

Let us sketch how one could prove this. Every intersection point b ∈ σ0 ∩ L`
corresponds to an intersection point b̄ between the section λ (i.e. the graph
of dϑ̃ε) and the zero section σ̄0 in the reduced space. Moreover we have

Lemma 6.9. If X admits an ω-compatible almost complex structure J and
an S1 invariant (3, 0)-form Ω with Ω ∧ Ω̄ > 0, then there are gradings θ̄, θ,
ψ̄ and ψ of σ̄0, σ0, λ and L` respectively such that for every b ∈ σ0 ∩ L` the
Maslov degree computed with respect to these gradings satisfy

degσ0,L`(b) = degσ̄0,λ(b̄).

Proof. Here we compute the Maslov degree of a point with the method sug-
gested in [36]. Let η be the vector field generating the S1 action, normalized
so that |η| = 1 with respect to the metric given by ω and J . We can define
a reduced (2, 0) form Ωred on Xred = µ−1(0)/S1 as follows. If v̄1 and v̄2 are
two tangent vectors on Xred and v1, v2 are a choice of lifts to µ−1(0) let

Ωred(v̄1, v̄2) = Ω(η, v1, v2).

We have that Ωred induces an almost complex structure which is compatible
with the reduced symplectic form on Xred (see [19] or [21]). We also have
that if H denotes the complex vector subspace generated by η and Jη, then
its orthogonal complement H⊥ is contained in the tangent space of µ−1(0)
and is mapped to the tangent space of Xred via a complex isometry.

Now let θ̄ and ψ̄ be gradings of σ̄0 and λ defined using Ωred, i.e. real
functions such that

Ωred|σ̄0
= reiπθ̄ Volσ̄0

and Ωred|λ = qeiπψ̄ Volλ

for positive real functions r and q on σ̄0 and λ respectively. Now we can
choose an orthonormal basis {ē1, ē2} of Tb̄σ̄0 and {f̄1, f̄2} of Tb̄λ such that

f̄j = eiπαj ēj

for numbers αj ∈ (0, 1). Then we have

degσ̄0,λ(b) = α1 + α2 + θ̄(b)− ψ̄(b).
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Let us define the grading on L`. Let {f1, f2} be a lift of {f̄1, f̄2} to Tbµ
−1(0)

which is orthogonal to η. Then {η, f1, f2} is an orthonormal basis of TbL`.
We have

Ω(η, f1, f2) = Ωred(f̄1, f̄2) = qeiπψ̄.

Thus we can define a grading of L` to be ψ = ψ̄.
Let us now define the grading on σ0. Define S to be the tangent bundle

to σ0 ∩ µ−1(0). It can be shown that since σ0 is Lagrangian and transversal
to η we have

TX = H ⊕ S ⊕ JS.

Now let e0 be a unitary vector field along σ0 ∩ µ−1(0), which is tangent to
σ0 and orthogonal to σ0 ∩ µ−1(0). We can decompose e0 = e′0 + e′′0 where
e′0 ∈ H and e′′0 ∈ S ⊕ JS. In particular, since e0 is transversal to µ−1(0),
there is a function α0 : µ−1(0) ∩ σ0 → (0, 1) such that e′0 = `e−iπα0η for some
positive real function `. For any frame {e1, e2} tangent to σ0 ∩ µ−1(0) and
lifting {ē1, ē2} we have

Ω(e0, e1, e2) = Ω(e′0, e1, e2) = `e−iπα0Ω(η, e1, e2)

= `e−iπα0Ωred(ē1, ē2) = `reiπ(θ̄−α0).

Thus we can define a grading of σ0 to be θ = θ̄ − α0.
Let us now compute the Maslov degree at an intersection point b. We

claim that up to a hamiltonian deformation of σ0, we can assume that at
each intersection point b, the tangent space to σ0 ∩ µ−1(0) is orthogonal to
η, i.e. Sb ⊂ H⊥. Indeed, given any smooth function h on X, the hamiltonian
vector field of h · µ restricted to µ−1(0) is hη. Thus we can locally choose h
near an intersection so that the hamiltonian flow of hµ will twist the tangent
of space of σ0 ∩ µ−1(0) so that it becomes orthogonal to η.

In particular, if e1, e2 ∈ Sb are the lifts of ē1, ē2 and f1, f2 are lifts of f̄1, f̄2

so that {η, f1, f2} is an orthonormal basis of TbL`, we have that fj = eiπαjej ,
since all these vectors are in H⊥. Moreover we must have e0(b) ∈ H, i.e.
e0(b) = e−iπα0η. Therefore

degσ0,L`(b) = α0 + α1 + α2 + θ(b)− ψ(b)

= α1 + α2 + θ̄(b)− ψ̄(b) = degσ̄0,λ(b).

�

In order to use this lemma in our situation one should prove the existence of
the S1-invariant form Ω. Now, recall that in the case of the cotangent bundle
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of a smooth n-dimensional manifold, the Maslov degree at a transversal
intersection point b between the zero section and the graph of an exact one
form dφ is n− Ind(φ, b), where Ind(φ, b) denotes the Morse index of φ at b.
Since the reduced space is a cotangent bundle (modulo a lattice), the above
formula holds in the reduced space. Hence, the above lemma would give

degσ0,L`(b) = 2− Ind(ϑ̃ε, b̄).

Now, observe that J-holomorphic strips connecting two intersection
points b and b′ with boundary on σ0 and L` may exist only if Dϑ(b) =
Dϑ(b′). This is true for topological reasons. Indeed, a strip is a topologi-
cal disc with half of the boundary on σ0 and the other half on L`. Assume
Dϑ(b) = m ∈M . Then the first half of the boundary gives a path (β(t),m),
with β(0) = b and β(1) = b′ and the second half gives a path from (b,Dϑ(b))
to (b′, Dϑ(b′)) in NR ×MR along the graph of Dϑ. If the disc exists with
this boundary in the quotient NR ×MR/M , then the latter path must close
up, i.e., we must have Dϑ(b) = Dϑ(b′).

We then have that in computing the Floer differential, cancellations
may happen only between points in (Dϑ)−1(m). Point (i) of the conjecture
implies that if w`(m) < 0, then all preimages of m have Maslov degree 1,
therefore there can be no cancellations, i.e., every point in the preimage of
m contributes 1 to the dimension of HF1(σ0, L`). In the case w`(m) > 0,
then point (ii) implies that every point in the preimage of m contributes
1 to the degree of m, i.e., to w`(m). We will see in the next section that
if w`(m) > 0, then necessarily w`(m) = 1. In particular every point m with
w`(m) > 0 contributes one either to the dimension of HF0(σ0, L`) or to
the dimension of HF2(σ0, L`). In particular, Theorem 6.2 and Corollary 6.4
imply that the conjecture is true in the case ϑ is strictly convex, so we have
that

(6.10) ϑ strictly convex =⇒

{
HF1(σ0, L`) = HF0(σ0, L`) = 0

HF2(σ0, L`) ∼= C#(Dϑ(C)∩M)

and similarily

(6.11) − ϑ strictly convex =⇒

{
HF1(σ0, L`) = HF2(σ0, L`) = 0

HF0(σ0, L`) ∼= C#(Dϑ(C)∩M),

where the above isomorphisms are as vector spaces over C. Even if the above
conjecture is not true, we still believe that equalities (6.9) are true, but it
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may be harder to prove them. We believe that these can be proved with
methods similar to those of Abouzaid [1], [2].

7. Homological mirror symmetry correspondence

If σ is a compactly supported section and L is one of the spheres constructed
above such that

[σσ0] = [L],

then we can guess the sheaf EL on X̌ associated to L as follows. Letting Lσ

be the line bundle on X̌ associated to σ, then we should have a short exact
sequence

0→ OX̌ → Lσ → EL → 0.

In particular, Conjecture 3.16 and Proposition 5.5 (respectively 5.2) imply
that σ−KC (resp. σ2) is a compactly supported section and its mirror line
bundle is OX̌(DC) where DC is the divisor corresponding to C (respectively
DC = P1 ⊂ X̌). We have a short exact sequence

0→ OX̌ → OX̌(DC)→ OX̌(DC)|DC → 0,

where the second arrow is given by tensoring with a section vanishing on
DC . Using Theorem 5.6 (resp. Theorem 5.3) we conclude that we should
have

(7.1) EL−KC = OX̌(DC)|DC , (resp. EL1
= OX̌(P1)|P1).

More generally, from formula (4.15) (resp. (4.2)) and the fact that transla-
tion by a section should be mirror to tensoring with the corresponding line
bundle, we should have

(7.2) EL−KC+2κ
= L−κ ⊗ OX̌(DC)|DC (resp. EL1+k

= L−k ⊗ OX̌(P1)|P1).

See also Corollary 5.7.

In the three-dimensional case, let us formulate this as a conjecture

Conjecture 7.1. The Lagrangian sections of f : X → Rn and the Lagran-
gian spheres of type L` defined on each bounded connected component C
of NR −∆ generate the derived partially wrapped Fukaya category of X
and the correspondence which maps a section to a line bundle over X̌ as in
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Conjecture 3.16 and a sphere L` to the sheaf EL` supported on the divisor
DC ⊂ X̌ given by

(7.3) EL` = LKC−`
2

|DC

induces an embedding of the derived partially wrapped Fukaya category in
DbCoh(X̌).

In dimension 2, in [10] Chan proves this conjecture for the part con-
cerning the spheres and in [15] Chan and Ueda prove this conjecture for
the sections. They do not seem to discuss whether the two correspondences,
i.e., the one concerning the spheres and the one concerning the sections, are
compatible with each other. We now look at examples in more detail and
discuss some first simple evidence supporting the above conjecture.

Example 7.2. When X̌ is the total space of OP1(−2), formulas (7.1) and
(7.2) give

EL1
= OP1(−2) and ELk = L1−k ⊗ OP1(−2) = OP1(−k − 1).

Notice that σ0 intersects L1 at only one point, so we must have:

HF ∗(σ0, L1)⊗R C ∼= C.

This corresponds well with the fact that

Homj

DbCoh(X̌)
(OX̌ ,OP1(−2)) ∼= Hj(P1,OP1(−2)) =

{
C for j = 1,

0 otherwise.

More generally, #(σ0 ∩ Lk) = |k| and all intersections have the same
Maslov degree, hence

HF ∗(σ0, Lk)⊗R C ∼= C|k|.

This corresponds to the fact that

Hom∗
DbCoh(X̌)

(OX̌ ,OP1(−k − 1)) ∼= H∗(X̌,OP1(−k − 1)) ∼= C|k|

Notice that as line bundles on P1, EL−k = E ∨Lk ⊗ ωP1 , so EL−k and ELk are
related by Serre duality on P1. This matches the fact that #(σ0 ∩ L−k) =
#(σ0 ∩ Lk)
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Example 7.3. In dimension 3, when X̌ is an open set in the total space of
OP2(−3) as in Examples 2.11 and 4.4, we have

[σ3σ0] = L3.

Then, since KC = −3, formula (7.3) becomes

EL2k+1
= L−k−2|P2 = OP2(−k − 2).

Formula (6.7) and the observations (6.10) and (6.11) imply

HF ∗(σ0, L2k+1)⊗R C ∼= C|
k(k+1)

2
|.

This matches the fact that

Hom∗
DbCoh(X̌)

(OX̌ ,OP2(−k − 2)) ∼= H∗(P2,OP2(−k − 2)) ∼= C|
k(k+1)

2 |.

Notice also in this case, that EL−(2k+1)
= OP2(k − 1) and EL2k+1

= OP2(−k −
2) are related by Serre duality on P2. This matches the fact that #(σ0 ∩
L−(2k+1)) = #(σ0 ∩ L2k+1).

7.1. Lagrangian spheres and cohomology of line bundles

In this section we gather some more evidence supporting Conjecture 7.1. In
particular we will prove the following:

Theorem 7.4. For all Lagrangian spheres L` in X over C, we have the
following

Hom1
DbCoh(X̌)

(OX̌ ,LKC−`
2

|DC ) ∼= Chodd(L`)

Homeven
DbCoh(X̌)

(OX̌ ,LKC−`
2

|DC ) ∼= Cheven(L`)
(7.4)

where hodd(L`) and heven(L`) are defined in (6.8).

Remark 7.5. In the case the semi-integral support function ϑ with kinks
` (or its opposite −ϑ) is strictly convex, the above theorem, together with
observations (6.10) and (6.11), implies

Hom1
DbCoh(X̌)

(OX̌ ,LKC−`
2

|DC ) ∼= HF 1(σ0, L`) = 0,

Homeven
DbCoh(X̌)

(OX̌ ,LKC−`
2

|DC ) ∼= HF even(σ0, L`).
(7.5)

�
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We have

Hom∗
DbCoh(X̌)

(OX̌ ,LKC−`
2

|DC ) = H∗(DC ,LKC−`
2

|DC ).

Recall that DC is a toric surface given by the fan ΣC whose cones are
the tangent wedges to the simplices containing vC ∈ C. Let us denote by
ΣC(1) the one-dimensional cones of ΣC . If ě is an edge emanating from vC ,
its tangent wedge is a one-dimensional cone of ΣC , so by slight abuse of
notation we write ě ∈ ΣC(1). We also assume that for every ě ∈ ΣC(1) the
tangent vector ně points outward from vC , so that ně is a primitive integral
generator of the one-dimensional cone ě.

We now describe a support function on |ΣC | corresponding to the line
bundle LKC−`

2

|DC . Let ψKC be a support function for the canonical bundle

on DC . In particular we require that

(7.6) ψKC (ně) = −1

for all ě ∈ ΣC(1). It can be easily verified that a support function for the
line bundle LKC−`

2

|DC on DC is given by

(7.7) ψ =
1

2
ψKC − ϑ,

where ϑ is the semi-integral support function whose kinks are `/2.
Cohomology of line bundles on a toric variety can be computed in terms

of support functions as explained in Section 3.5 of Fulton’s book [18] (or
in Chapter 9 of the book by Cox, Little and Schenk [17]). Recall that our
convention for support functions is opposite to the one used by Fulton (op.
cit.) or by Cox, Little and Schenk (op. cit.). In our case |ΣC | = NR ∼= R2, so
we proceed as follows. For every m ∈M let

Z(m) = {n ∈ NR | 〈m,n〉+ ψ(n) ≥ 0}.

For every i, consider the relative cohomology groups:

H i(ψ,m) := H i(NR, NR − Z(m);C).

Then the cohomology of the line bundle Lψ over DC , given by the support
function ψ, is computed by

H i(DC ,Lψ) =
⊕
m∈M

H i(ψ,m).
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Now let

Q0 = {m ∈M |Z(m) = NR},
Q1 = {m ∈M | {0} ( Z(m) ( NR},
Q2 = {m ∈M |Z(m) = {0}}.

Furthermore, for every m ∈ Q1, let

hψ(m) = b0(NR − Z(m))− 1,

where b0 denotes the 0-th Betti number. Then one can show that

H0(DC ,Lψ) ∼= C#Q0 ,

H1(DC ,Lψ) ∼=
⊕
m∈Q1

Chψ(m),

H2(DC ,Lψ) ∼= C#Q2 .

(7.8)

Letting ψ be given by (7.7), we have the following:

Lemma 7.6. For every ě ∈ ΣC(1) and every m ∈M , we have

〈m,ně〉+ ψ(ně) ≥ 0 ⇐⇒ 〈m,ně〉 − ϑ(ně) > 0,

〈m,ně〉+ ψ(ně) < 0 ⇐⇒ 〈m,ně〉 − ϑ(ně) < 0.

Proof. Both equivalences follow from (7.6) and (7.7). In fact,

〈m,ně〉+ ψ(ně) ≥ 0 ⇔ 〈m,ně〉 − ϑ(ně) ≥
1

2
.

On the other hand recall that ϑ(ně) = 1
2 mod Z for every ě ∈ ΣC(1). There-

fore

〈m,ně〉 − ϑ(ně) > 0 ⇒ 〈m,ně〉 − ϑ(ně) ≥
1

2
.

Hence applying (7.6) and (7.7) gives the first equivalence. The second equiv-
alence follows immediately since we cannot have 〈m,ně〉 − ϑ(ně) = 0. �

Let

W (m) = {n ∈ NR | 〈m,n〉 − ϑ(n) ≥ 0}.
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Lemma 7.7. For every m ∈M we have

Z(m) = NR ⇐⇒ W (m) = NR,

Z(m) = {0} ⇐⇒ W (m) = {0}.

Moreover, for all m ∈ Q1,

b0(NR − Z(m)) = b0(NR −W (m)).

Proof. We have that Z(m) = NR if and only if 〈m,ně〉+ ψ(ně) ≥ 0 for all
ě ∈ ΣC(1). Similarly Z(m) = {0} if and only if 〈m,ně〉+ ψ(ně) < 0 for all
ě ∈ ΣC(1). Therefore the first two equivalences follow from Lemma 7.6.

Label a cone of ΣC , of any dimension, with a “+” if it is entirely con-
tained in Z(m) and denote by Z+(m) the union of the cones of ΣC which
are labeled with a “+”. Observe that a two-dimensional cone is labeled with
a “+” if and only if both its boundary edges are labeled with a “+”. It can
be easily proved that NR − Z(m) is a deformation retract of NR − Z+(m).
Therefore

b0(NR − Z(m)) = b0(NR − Z+(m)).

We can also consider a different labeling. Label a cone with a “+” if it is
entirely contained in W (m) and denote by W+(m) the union of the cones
of ΣC which are labeled with a “+”. Again, one can show that NR −W (m)
is a deformation retract of NR −W+(m), so that

b0(NR −W (m)) = b0(NR −W+(m)).

On the other hand Lemma 7.6 implies that Z+(m) = W+(m). This com-
pletes the proof of the Lemma. �

This lemma implies that we can compute the cohomology of Lψ by replacing
the subsets Z(m) with the subsets W (m).

Given an oriented curve γ and a point m /∈ γ, the winding number of
γ around m (see Definition 6.1) coincides with the intersection number be-
tween γ and a generic straight ray ρ emanating from m, oriented outward
from m. We write this as

(7.9) wγ(m) = ρ · γ.

If γ is smooth (or piecewise smooth) the generic ray ρ intersects γ trans-
versely, so ρ · γ is defined by counting each intersection point with a sign
depending on orientations.
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Let us now study the case γ = γ`, where γ` is defined in (6.2). With some
abuse of notation we will denote by γ` its image in MR. We will say that an
index j ∈ 1, . . . , r corresponds to a non-degenerate edge of γ` if θ̃j+1 − θ̃j 6= 0.
Choose some m̄ ∈MR, m̄ 6= 0 and consider the ray

ρm̄(t) = m+ tm̄, t > 0.

If m̄ is generic we can assume that every intersection point between ρm̄ and
γ` is in the relative interior of some non-degenerate edge of γ` . Moreover,
we can also assume that〈

m̄, něj
〉
6= 0, ∀j ∈ {1, . . . , r}.

Definition 7.8. For every p ∈ ρm̄ ∩ γ` and j ∈ {1, . . . , r}, let δ(p, j) be
defined as follows. If p does not belong to the segment from θ̃j to θ̃j+1, then
δ(p, j) = 0. If p belongs to the segment from θ̃j to θ̃j+1 then δ(p, j) = 1 (resp.
δ(p, j) = −1) if {m̄, θ̃j+1 − θ̃j} is a positively (resp. negatively) oriented basis
of MR. Define

δ(p) =

r∑
j=1

δ(p, j).

Then formula (7.9) for wγ becomes

wγ(m) =
∑

p∈ρm̄∩γ`

δ(p).

Lemma 7.9. If p ∈ ρm̄ ∩ γ` belongs to the edge from θ̃j to θ̃j+1, then, for
any n in the interior of the cone νj ,

δ(p, j) = − sign(
〈
θ̃j+1 − θ̃j , n

〉 〈
m̄, něj

〉
).

Proof. Recall that ěj is the common intersection between the cones νj and
νj+1. For any n in the interior of νj , we have that {n, něj} is a positively

oriented basis of NR, therefore {m̄, θ̃j+1 − θ̃j} is a positively oriented basis
of MR if 〈

θ̃j+1 − θ̃j , něj
〉
〈m̄, n〉 −

〈
θ̃j+1 − θ̃j , n

〉 〈
m̄, něj

〉
> 0,

otherwise it is negatively oriented. On the other hand, by definition of the
support function, we have 〈

θ̃j+1 − θ̃j , něj
〉

= 0.
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Therefore the claim follows. �

Now let S ⊂ NR be a circle centered at the origin and define semicircles

S+ = S ∩ {n ∈ NR | 〈m̄, n〉 > 0}, S− = S ∩ {n ∈ NR | 〈m̄, n〉 < 0}.

Consider the function T : S− ∪ S+ → R given by

T (q) =
ϑ(q)− 〈m, q〉
〈m̄, q〉

.

We now prove that the intersections between ρm̄ and γ` are in correspon-
dence with local maxima and minima of T (q).

We have the following:

Lemma 7.10. For a generic choice of m̄ we have that a point q ∈ S+ ∪ S−
is a local maximum or minimum of T if and only if q ∈ ěj for some j ∈
{1, . . . , r} corresponding to some non-degenerate edge of γ` and m+ T (q)m̄
is on the edge joining θ̃j and θ̃j+1.

Proof. Let us first show that if q is a local maximum or minimum of T , then
ϑ is not linear in a neighborhood of q. By definition T (q) satisfies

(7.10) 〈m+ T (q)m̄, q〉 − ϑ(q) = 0.

We assume that q ∈ S−, the case q ∈ S+ is analogous. In particular we have

〈m̄, q〉 < 0.

If q is a local minimum of T on S− then q is also a local minimum of
T restricted to the line which is tangent to S− at q. Write this line as
t 7→ q + tq⊥, where q⊥ is a tangent vector to S− at q and t ∈ R. If ϑ is linear
in a neighborhood of q then it is easy to see that for small values of |t| we
must have

T (q + tq⊥) =
a+ bt

c+ dt
.

for some real numbers a, b, c, d. From the genericity assumption of m̄ we can
also assume that this function is not constant. Then this function in t does
not have a local minimum in t = 0. So q cannot be a local minimum (or
maximum) of T on S−. Hence we must have q ∈ ěj for some j such that
θ̃j+1 − θ̃j 6= 0.
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We now prove that m+ T (q)m̄ is on the segment joining θ̃j and θ̃j+1.
We assume that q is a local minimum, the local maximum case being similar.
We have that for all q′ ∈ νj+1 ∩ S−

T (q) ≤ T (q′)

and for all q′′ ∈ νj ∩ S−

T (q) ≤ T (q′′)

hence

(7.11) T (q)
〈
m̄, q′

〉
≥ T (q′)

〈
m̄, q′

〉
, T (q)

〈
m̄, q′′

〉
≥ T (q′′)

〈
m̄, q′′

〉
.

If we add 〈m, q′〉 to both sides of the first inequality, we apply (7.10) to q′

and we observe that ϑ(q′) =
〈
θ̃j+1, q

′
〉

we get

(7.12)
〈
m+ T (q)m̄, q′

〉
≥
〈
θ̃j+1, q

′
〉
,

Similarly from the second inequality of (7.11) we get

(7.13)
〈
m+ T (q)m̄, q′′

〉
≥
〈
θ̃j , q

′′
〉
.

Equation (7.10) implies that〈
m+ T (q)m̄, něj

〉
=
〈
θ̃j+1, něj

〉
=
〈
θ̃j , něj

〉
.

This implies that m+ T (q)m̄ = s(θ̃j+1 − θ̃j) + θ̃j for some s ∈ R. Let us
show that s ∈ [0, 1]. Using m+ T (q)m̄ = s(θ̃j+1 − θ̃j) + θ̃j in inequalities
(7.12) and (7.13) we obtain

(7.14) (s− 1)
〈
θ̃j+1 − θ̃j , q′

〉
≥ 0 and s

〈
θ̃j+1 − θ̃j , q′′

〉
≥ 0.

Since
〈
θ̃j+1 − θ̃j , něj

〉
= 0 only the following two things can happen:

(7.15)
〈
θ̃j+1 − θ̃j , q′

〉
< 0 and

〈
θ̃j+1 − θ̃j , q′′

〉
> 0

or 〈
θ̃j+1 − θ̃j , q′

〉
> 0 and

〈
θ̃j+1 − θ̃j , q′′

〉
< 0.

The latter inequalities and (7.14) cannot hold together, while the former
inequalities and (7.14) imply that s ∈ [0, 1]. We conclude that if q is a local
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minimum of T (q), i.e. (7.14) holds, then the former inequalities must be
satisfied and s ∈ [0, 1]. The converse is also true and we leave it to the
reader. �

This lemma implies that if p ∈ ρm̄ ∩ γ`, then

p = m+ T (q)m̄

for some q ∈ S+ ∪ S−, with T (q) > 0 and q is a local maximum or minimum.
Notice that this may happen for more than one value of q. In this case p
belongs to more than one edge, i.e., it is a multiple intersection. We have
the following

Lemma 7.11. If p ∈ ρm̄ ∩ γ` and p = m+ T (q)m̄ for some q ∈ ěj , then

δ(p, j) =

{
1 if q is a local minimum of T ,

−1 if q is a local maximum of T .
.

Proof. Let us assume first that q ∈ S− and that q is a local minimum. In
particular

(7.16)
〈
m̄, něj

〉
< 0

since něj is a positive multiple of q. Moreover, since q is a local minimum, we
saw in the proof of Lemma 7.10 that for any q′′ ∈ S− ∩ νj the second inequal-
ity in (7.15) holds. Hence Lemma 7.9, applied with n = q′′ gives δ(p, j) = 1.

Similarly we can reason in the cases where q ∈ S−, but it is a maximum;
q′′ ∈ S+ and it is a minimum; q′′ ∈ S+ and it is a maximum. �

Corollary 7.12. Let MaxT≥0 be the set of local maxima q of T such that
T (q) > 0 and let MinT≥0 be the set of local minima q of T such that T (q) > 0,
then

(7.17) wγ`(m) = # MinT≥0 − # MaxT≥0 .

Proof of Theorem 7.4. Let us first prove that

(7.18) m ∈ Q0 =⇒ wγ`(m) = 1.

It follows from Lemma 7.7 that m ∈ Q0 if and only if

〈m,n〉 − ϑ(n) > 0, ∀n ∈ NR − {0}.
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Therefore if m ∈ Q0, then T |S− > 0 and T |S+ < 0. We then have that all
points of MaxT≥0 and MinT≥0 must be in S−. Now let q−∞ and q+∞ be the
two boundary points of S− (and of S+). We have that

lim
q→q+∞

T (q) = lim
q→q−∞

T (q) = +∞

where the limits are taken for q ∈ S−. Then (see Figure 19), it can be easily
seen that

# MinT≥0 = # MaxT≥0 +1.

S−

T
S−

S+

Figure 19: The fan and the graph of T in the case m ∈ Q0.

Now (7.18) follows from Corollary 7.12. Similarly one can show

(7.19) m ∈ Q2 =⇒ wγ`(m) = 1.

In fact in this case m ∈ Q2 if and only if

〈m,n〉 − ϑ(n) < 0, ∀n ∈ NR − {0}.

Then the same proof holds replacing S− with S+.
We now prove that

(7.20) m ∈ Q1 =⇒ wγ`(m) = 1− b0(NR −W (m)).

If m ∈ Q1, the set W (m) is a union of a finite number of closed angular
sectors (which may also be non-convex). We only consider maximal sectors,
i.e., those which are not contained in strictly larger sectors which are also
contained in W (m). We call these sectors “white sectors”. The complement
NR −W (m) is also a union of open angular sectors, i.e., its connected com-
ponents. We call these sectors “black sectors”. Clearly b0(NR −W (m)) is
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either the number of white sectors or of black sectors. We call the intersec-
tion of a white sector (resp. black sector) with S+ or S− a white arc (resp.
black arc). It can be easily seen that T is non-negative on white arcs con-
tained in S− or on black arcs contained in S+. Vice versa T is negative on
black arcs contained in S− or on white arcs contained in S+. It is clear that
an arc in S−, either black or white, can be of three types: i) it coincides with
S−; ii) its boundary consists of a point in S− and one of the points q±∞; iii)
both its boundary points are in S−. Similarly we classify arcs in S+. The
number of local minima of T inside a white arc in S− of type (i) is one plus
the number of local maxima inside the same arc. Therefore, from formula
(7.17), a white arc in S− of type (i) contributes 1 to the computation of
wγ`(m). Similarly we can say the same of a black arc in S+ of type (i). On
the other hand, the number of local minima of T inside a white arc in S−

of type (ii) is the same as the number of local maxima inside the same arc
(see Figure 20). So that a white arc in S− of type (ii) does not contribute at
all to the computation of wγ`(m). Similarly we can say the same of a black
arc in S+ of type (ii). Finally, the number of local minima of T inside a
white arc in S− of type (iii) is one less than the number of local maxima
inside the same arc (see Figure 20). Similarly we can say of a black arc in
S+ of type (iii). Therefore a white arc in S−, or black arc in S+, of type
(iii) contributes −1 to the computation of wγ`(m).

S−

TS−

S+

Figure 20: The fan and the graph of T when m ∈ Q1. Black sectors are
shaded. In this case S− has one white arc of type (iii) and one of type (ii).

The final step of the proof is just a simple combinatorial problem. Let
w+ and w− be the number of white arcs of type (iii) respectively in S+

and in S−. Similarly let b+ and b− be the number of black arcs of type (iii)
respectively in S+ and S−. If S− consists of one white arc of type (i), then
all black arcs in S+ are of type (iii) and, from the previous considerations,
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we have

wγ`(m) = 1− b+.

It can be seen that b+ = w+ + 1 and that

b0(NR −W (m)) = 1 + w+ = b+,

which implies (7.20). Similarly one deals with the case when S+ consists of
one black arc.

Now suppose all white arcs of S− are of type (iii) and w+ ≥ 1. Then we
have

wγ`(m) = −w− − b+,
b0(NR −W (m)) = b− + b+ + 2.

Moreover w− = b− + 1. Therefore we obtain (7.20). The case where all black
arcs of S+ are of type (iii) and b− ≥ 1 is similar.

We do the case when S− has one white arc of type (ii) and one black
arc of type (ii). In this case the same is true for S+. So we have

wγ` = −w− − b+,
b0(NR −W (m)) = b− + b+ + 1.

Moreover b− = w−, which gives (7.20). The last cases to consider is when
S− does not contain white arcs or S+ does not contain black arcs. We leave
these to the reader.

In particular this shows that if m ∈ Q1, then either wγ`(m) is zero or it
is negative and equal to −hψ(m). Therefore wγ`(m) is positive if and only if
m ∈ Q0 or m ∈ Q2, in which case wγ`(m) = 1. The conclusion of the theorem
now follows from (7.8). �

Example 7.13. Let X̌ be the total space of the canonical bundle of the
one-point blowup of P2. It is obtained from the polytope

P = Conv{(0, 1), (−1, 1), (−1, 0), (1,−1)}

with the subdivision whose interior edges connect each vertex of P with
the unique interior integral point (0, 0). Then MR − Γ has just one bounded
component C corresponding to vC = (0, 0). Clearly DC is the one point
blowup of P2. The fan ΣC has one-dimensional cones generated respectively
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by ň1 = (0, 1), ň2 = (−1, 1), ň3 = (−1, 0), ň4 = (1,−1). Then consider the
twisting numbers

` = (−14, 5,−14,−9).

The curve γ` is pictured in Figure 21. There are 10 integral points with
winding number 1 and 3 points with winding number −1. We have

KC = (−2,−1,−2,−3),

and
KC − `

2
= (6,−3, 6, 3).

ň2

ň3

ň4

ň1

Figure 21.

According to Conjecture 7.1, these four numbers are the intersection
numbers of the sheaf EL` corresponding to L` with the curves on the toric
boundary of DC . If we denote by H the hyperplane section in DC and by
E the exceptional curve of the blowup, one can see that

EL` = ODC (3H + 3E).

We have

H0(DC ,EL`) = C10, H1(DC ,EL`) = C3, H2(DC ,EL`) = 0.

8. Spherical objects and Am-configurations

In this section we will use the results of the previous sections to find sheaves
which, according to our Conjecture 7.1, are mirror to theA2d−1-configuration



i
i

“3-Matessi” — 2019/2/12 — 17:47 — page 1338 — #90 i
i

i
i

i
i

1338 M. Gross and D. Matessi

of vanishing cycles in a smoothing of a A2d−1-singularity. This refines a
conjecture of Seidel and Thomas [33].

8.1. Definitions and examples

When L is an embedded Lagrangian sphere of dimension n ≥ 2, the Floer
homology HF ∗(L,L)⊗R C is isomorphic to the standard cohomology of the
sphere with C coefficients, i.e., it is C in degrees 0 and n and 0 elsewhere. So
morphisms of the mirror object EL should satisfy the same property. This
justifies the following definition of Seidel and Thomas [33]:

Definition 8.1. Given a Calabi-Yau manifold X, an object E ∈ DbCoh(X)
is spherical if Homr

DbCoh(X)(E,E) is C when r = 0 or n, and zero in all other
degrees.

Now suppose we have a chain of embedded Lagrangian spheres L1, . . . , Ln
such that Li intersects Lj transversely in one point if |i− j| = 1 and Li ∩
Lj = ∅ if |i− j| > 1. Then we have that HF ∗(Li, Lj)⊗R C is C when |i−
j| = 1 and zero when |i− j| > 1. Such a configuration of spheres is called
an Am-configuration. This justifies the following:

Definition 8.2. Given a Calabi-Yau manifold X and m ≥ 1, an Am con-
figuration in DbCoh(X) is a collection of spherical objects E1, . . . ,Em such
that

dimC Hom∗DbCoh(X)(Ei,Ej) =

{
1 |i− j| = 1,

0 |i− j| > 1.

Let X be an n-dimensional Calabi-Yau manifold. Assuming that X is
compact, a simple class of spherical objects in DbCoh(X) is given by line
bundles. More generally consider a submanifold Y ⊂ X and sheaves sup-
ported on Y . We denote by ι : Y ↪→ X the inclusion. If L is a sheaf on Y ,
by slight abuse of notation we will denote by L also the sheaf on X given
by ι∗L. We have the following (see Lemma 3.7 of [33] for a proof):

Lemma 8.3. Let X be an n-dimensional quasi-projective smooth vari-
ety and Y ⊆ X a connected compact submanifold of codimension r, whose
normal bundle ν satisfies H i(Y,

∧j ν) = 0 when 0 < i+ j < n. Then OY ∈
DbCoh(X) is spherical.

More generally we have
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Corollary 8.4. With the same hypothesis of Lemma 8.3, let L be a line
bundle on X and LY = L⊗ OY . Then LY ∈ DbCoh(X) is spherical.

Proof. If follows from the fact that ExtkX(LY ,LY ) = ExtkX(OY ,OY ) (see [28],
Proposition 6.7, pg. 235). �

Observe that when Y is a hypersurface in a Calabi-Yau manifold X,
then the condition on the cohomology of the normal bundle of Y becomes

(8.1) H i(Y,OY ) = 0, i = 1, . . . , n− 1.

Indeed, this is clearly the necessary condition for j = 0, and for j = 1, one
needs H i(Y, ωY ) = 0 for 0 < i+ 1 < n, or by Serre duality Hn−1−i(Y,OY ) =
0 for 0 < i+ 1 < n, which is equivalent to the above condition. In the case
X is a 3-fold, these conditions hold when Y ⊂ X is a rational surface.

In the case of a rational curve C in a 3-fold X, then we must have that

(8.2) ν = OC(−1)⊕ OC(−1).

These are called (−1,−1)-curves.
Let us now give some examples of Am-configurations.

Lemma 8.5. Let X be a quasi-projective Calabi-Yau 3-fold, Y a smooth,
compact, embedded surface in X satisfying (8.1) and C an embedded ratio-
nal curve satisfying (8.2). Assume that C and Y intersect transversely at a
point. Given a line bundle L on X, let E1 = LY and E2 = OC . Then E1 and
E2 form an A2-configuration of objects in DbCoh(X).

This is a simple calculation which we leave to the reader. Another pos-
sible configuration is the following:

Lemma 8.6. Let X be a quasi-projective Calabi-Yau 3-fold, Y a smooth,
compact, embedded surface in X satisfying (8.1) and C an embedded ra-
tional curve satisfying (8.2). Assume that C is contained in Y and that it
has self-intersection −1 in Y . Given a line bundle L on X, let E1 = LY and
E2 = OC . Then E1 and E2 form an A2-configuration of objects in DbCoh(X)
if and only if

L|C = OC or OC(1).
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Proof. Consider the standard locally free resolution of OY

(8.3) 0 −→ OX(−Y )
⊗s−→ OX −→ OY → 0,

where s is a section of OX(Y ) vanishing along Y . Now apply Hom(·,OC) to
the sequence and we obtain the complex calculating Ext∗(OY ,OC):

(8.4) 0→ Hom(OX ,OC) −→ Hom(OX(−Y ),OC).

Now

Hom(OX ,OC) = OC

and

Hom(OX(−Y ),OC) = OX(Y )|C = ωY |C
= ν−1

C|Y ⊗ ωC = OC(−1).

where νC|Y denotes the normal bundle of C inside Y . Since there is no non-
trivial map from OC to OC(−1), the second map in (8.4) is zero, hence the
only non-trivial Ext sheaves are

Ext0(OY ,OC) = OC , Ext1(OY ,OC) = OC(−1).

Hence the E2 page of the local-global spectral sequence computing Ext
groups (i.e., Ei,j2 = H i(X,Extj(OY ,OC)) is non-zero at E0,0

2 = C. Hence
E1 = OY and E2 = OC form an A2-configuration since Ext0(OY ,OC) = C
and Extr(OY ,OC) = 0 when r > 0. In the case E1 = LY , then a resolution
of LY is obtained by tensoring (8.3) by L. Then the same calculation leads
to the following non-trivial Ext sheaves

Ext0(L,OC) = L−1 ⊗ OC = OC(−k),

Ext1(L,OC) = L−1 ⊗ OC(−1) = OC(−1− k)

using L|C = OC(k). The spectral sequence then gives that

Hom∗DbCoh(X)(LY ,OY )

is only one-dimensional in the cases k = 0, 1. �

We will also need the following:
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Lemma 8.7. Let X be a quasi-projective Calabi-Yau 3-fold, Y1 and Y2 a
pair of smooth, connected, compact, embedded surfaces in X. Assume that
Y1 and Y2 intersect transversely along an embedded rational curve C and
let m be the self-intersection number of C inside Y2. Given a line bundle L

on X, suppose that

L|C = OC(k).

Then dim(Hom∗DbCoh(X)(OY1
,LY2

)) = 0 if and only if

k +m = −1.

Proof. Consider the sequence (8.3) applied to Y1 and take Hom(·,LY2
). We

have the complex

0→ Hom(OX ,LY2
) −→ Hom(OX(−Y1),LY2

)

which becomes

0→ LY2
−→ OX(Y1)⊗ LY2

where the first map is tensoring with a section s of OX(Y1) vanishing on Y1.
In particular the first map is injective. So the cohomology of the complex
gives

Ext0(OY1
,LY2

) = 0

and

Ext1(OY1
,LY2

) = νC|Y2
⊗ L|C = OC(k +m).

Then, dim(Hom∗DbCoh(X)(OY1
,LY2

)) = 0 if and only if OC(k +m) has no
cohomology, i.e., if and only if k +m = −1. �

In particular, let Y1, Y2 and C = Y1 ∩ Y2 be as in the above lemma, such
that Y1 and Y2 satisfy (8.1) and C satisfies (8.2). If C has self-intersection −1
inside Y2, then E1 = OY1

, E2 = OC and E3 = OY2
form an A3-configuration.

There are other possibilities, for instance suppose that Y1, Y2, L and
C are as in the Lemma above, with k +m = −1. Suppose C ′ is another
embedded rational curve contained as a −1 curve inside Y2 and intersecting
Y1 transversely in one point. If Y1 and Y2 satisfy (8.1) and C ′ satisfies (8.2),
then E1 = OY1

, E2 = L|C′ and E3 = LY2
also form an A3-configuration.
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8.2. A2d−1-singularities

Am-configurations of Lagrangian spheres appear naturally as vanishing cy-
cles of certain singularities. In fact consider the singularity defined by the
equation

(8.5) x2 + y2 + u2 + v2d = 0.

This singularity is said to be of type A2d−1. If X is the smoothing of this
singularity given by equation

(8.6) x2 + y2 + u2 + v2d = ε.

then X contains 2d− 1 Lagrangian spheres L1, . . . , L2d−1 representing van-
ishing cycles in H3(X) and forming an A2d−1-configuration of Lagrangian
spheres. Seidel and Thomas propose a possible mirror manifold X̌ and make
a guess at what the corresponding A2d−1 configuration of objects in X̌
might look like. They propose that X̌ is a Calabi-Yau manifold which should
contain embedded smooth surfaces S2, S4, . . . , S2d−2 and curves C1, C3, . . . ,
C2d−1 such that the following holds

1) each S2i is isomorphic to P2 with two points blown up;

2) S2i ∩ S2j = ∅ if |i− j| > 1;

3) S2i−2 and S2i are transverse and intersect in C2i−1, which is a rational
curve and has self-intersection −1 both in S2i−2 and in S2i.

Let E2j = OS2j
and E2i−1 = OC2i−1

. Then it follows from the discussion in the
previous section that E1, . . . ,E2d−1 do indeed form an A2d−1-configuration
of objects in DbCoh(X̌).

8.3. Mirror A2d−1 configurations

Here we use our results to make a different and more precise proposal than
the one by Seidel and Thomas described above. First we describe the vanish-
ing cycles using the constructions of Sections 4.2 and 4.4, then we use Con-
jecture 7.1 to find their mirror objects in DbCoh(X̌) and we prove that they
form an A2d−1 configuration. As in Example 2.12, let X be given by equation
(2.15). We observed that X is a smoothing of the singularity xy = z2 + w2d,
which is equivalent to the one in (8.5) by a simple change of coordinates.
Here we choose a subdivision of P such that every compact toric divisor of
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X̌ is a one point blow-up of a Hirzebruch surface (see Figure 6 for the case
d = 3). The fibration f : X → R3 has as discriminant locus a fattening of
the tropical curve in Figure 6 (for the case d = 3). The Lagrangian spheres
will be of two types. First we will have d− 1 spheres which are of the type
constructed over the d− 1 bounded regions C1, . . . , Cd−1 of the complement
of Γ (as in §4.2). Let us denote these by M1, . . . ,Md−1 (see next paragraph
for a precise definition). For j = 1, . . . , d, consider the edge, in the subdivi-
sion of P , which connects the point (j − 1, 1) to the point (j, 0). The dual
to this edge in Γ is an edge over which we can construct spheres as in §4.4.
Over every such edge we take the sphere constructed with k = 0. Let us
denote these spheres by N1, . . . , Nd. The divisor Dj in X̌ corresponding to
Cj is isomorphic to the one point blowup of a Hirzebruch surface of type
j. Let us label and order the edges of Cj as in Figure 9. According to this
ordering we have

KCj = (j − 2,−1,−1,−j − 1,−2).

Recall that a sphere over Cj is determined by numbers `j = (`j1, . . . , `j5)
whose entries have the same parity as the corresponding entries in KCj .

Let us consider spheres with minimal twisting numbers, i.e., such that
the entries of `j are either 0 or ±1. So we can define

`j =

{
(−1, 1,−1, 0, 0) when j is odd,

(0,−1, 1,−1, 0) when j is even,

see Example 6.6. It can be easily checked that the above choices satisfy
(4.4). We define Mj = L`j . It is not hard to see that Mj ∩Mk = ∅ when
j 6= k. This is clear if |k − j| ≥ 2. In the case k = j + 1, this is because the
only possible place where they could intersect is along the common edge
of Cj and Cj+1, but along this edge the twisting numbers are the same for
both spheres. This implies that along this edge the image of the maps λj and
λj+1, defining the spheres over Cj and Cj+1 respectively, can run parallel to
each other without intersecting.

We now use Conjecture 7.1 to construct the sheaves which are mirror to
the spheres Mj . If we let

κj =
KCj − `j

2
,

then formula (7.3) tells us that

EL`j = Lκj |Dj .
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We have that

(8.7) κj =

{
( j−1

2 ,−1, 0,− j+1
2 ,−1) when j is odd,

( j−2
2 , 0,−1,− j

2 ,−1) when j is even.

It is not hard to see that #(Nj ∩Mj) = #(Nj+1 ∩Mj) = 1. Figure 22
shows how these spheres intersect. It is clear that #(Nj ∩Mk) = 0 when
j − k 6= 0, 1 and that #(Nj ∩Nk) = 0 when j 6= k. The fact that #(Mj ∩
Mk) = 0 when j 6= k is explained above. Therefore the collection of spheres
(N1,M1, . . . ,Md−1, Nd) gives anA2d−1-configuration of objects of DbFuk(X).
One can also show that the Lagrangian spheres can be constructed so that
the intersections are transversal.

Mj

Mj+1

Nj

Figure 22: The picture shows the intersection of Nj with the surface S and
the spheres Mj and Mj+1 (shaded areas). The intersection points of Nj with
Mj and Mj+1 are the two black dots.

Now observe that the edge in the subdivision of P connecting (j − 1, 1)
to (j, 0) corresponds to a rational curve in X̌ satisfying (8.2). Denote this
curve by P1

j . As mirror to the spheres Nj , let us propose the sheaf

ENj = OP1
j
(−1).

We have the following

Proposition 8.8. The collection of sheaves (EN1
,EM1

, . . . ,EMd−1
,EEd) de-

fines an A2d−1-configuration of objects of DbCoh(X̌).

Proof. Since the divisors Dj are one-point blow-up of Hirzebruch surfaces,
they all satisfy (8.1). As we said, the curves P1

j all satisfy (8.2). There-
fore Lemma 8.3 and Corollary 8.4 imply that the sheaves EMj

and ENj
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are spherical objects. Observe that P1
j and Dj intersect transversely at one

point, therefore Lemma 8.5 implies that, for every j, ENj and EMj
form an

A2-configuration of objects. The curve P1
j+1 is contained in Dj and has self-

intersection −1 inside Dj . Observe that P1
j+1 corresponds to the edge ej3 of

Figure 9. This implies that EMj
|P1
j+1

is determined by the third entry of κj
in formula (8.7), i.e., we have

EMj
|P1
j+1

= Lκj |P1
j+1

=

{
OP1

j+1
when j is odd,

OP1
j+1

(−1) when j is even.

Now let L be any line bundle on X̌ such that L |P1
j+1

= OP1
j+1

(1). We have

Hom∗
DbCoh(X̌)

(EMj
,ENj+1

) = Hom∗
DbCoh(X̌)

(EMj
,OP1

j+1
(−1))

= Hom∗
DbCoh(X̌)

(EMj
⊗L ,OP1

j+1
(−1)⊗L )

= Hom∗
DbCoh(X̌)

(EMj
⊗L ,OP1

j+1
).

Now observe that

EMj
⊗L |P1

j+1
=

{
OP1

j+1
(1) when j is odd,

OP1
j+1

when j is even.

It follows from Lemma 8.6 that EMj
⊗L and OP1

j+1
form an A2-configuration

of objects, therefore also EMj
and ENj+1

.
It remains to show that

(8.8) dim
(

Hom∗
DbCoh(X̌)

(EMj
,EMj+1

)
)

= 0.

Notice that Dj and Dj+1 intersect in a rational curve Q corresponding to
the edge ej4 of Cj , which also coincides with the edge e(j+1)1 of Cj+1. We
have that

Hom∗
DbCoh(X̌)

(EMj
,EMj+1

) = Hom∗
DbCoh(X̌)

(ODj ,L−κj ⊗Lκj+1
|Dj+1

).

Observe that we always have −κj4 + κ(j+1)1 = j. This implies

L−κj ⊗Lκj+1
|Q = OQ(j).

Considering that the self-intersection of Q inside Dj+1 is −(j + 1), equality
(8.8) follows from Lemma 8.7. This completes the proof. �
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Recall that a Hirzebruch surface of type j is defined as Σj = P(OP1 ⊕
OP1(j)). The second cohomology H2(Σj ,C) is spanned by divisors B and F ,
where B = P(OP1(j)) ⊂ Σj and F is the fibre of the projection onto P1. The
one point blowup of Σj has second cohomology spanned by B, F and the
exceptional curve E. We have

B2 = −j, F 2 = 0, E2 = −1, B · F = 1, E · F = E ·B = 0.

In our picture for Dj (in Figure 9), the divisor B corresponds to the edge
ej1, F corresponds to ej5 and E to ej3. Using these facts, it is easy to show
that

EMj
= Lκj |Dj =

{
−B − j+1

2 F j odd,

−B − j+2
2 F + E j even.
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