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Integrability of central extensions of the

Poisson Lie algebra via prequantization

Bas Janssens† and Cornelia Vizman‡

We present a geometric construction of central S1-extensions of the
quantomorphism group of a prequantizable, compact, symplectic
manifold, and explicitly describe the corresponding lattice of in-
tegrable cocycles on the Poisson Lie algebra. We use this to find
nontrivial central S1-extensions of the universal cover of the group
of Hamiltonian diffeomorphisms. In the process, we obtain cen-
tral S1-extensions of Lie groups that act by exact strict contact
transformations.

1. Introduction

Central Lie group extensions can be obtained by pullback of the prequanti-
zation central extension. The ingredients are a connected Lie group G with
Lie algebra g, a connected prequantizable symplectic manifold (M,Ω), and
a Hamiltonian action of G on M.

As M is prequantizable, it has a prequantum S1-bundle P →M with
connection 1-form Θ, giving rise to the quantomorphism group Diff(P,Θ)
of connection-preserving automorphisms of this bundle. Since its identity
component Diff(P,Θ)0 is a central S1-extension of the Hamiltonian dif-
feomorphism group Ham(M,Ω), its pullback by the Hamiltonian action
G→ Ham(M,Ω) yields a central S1-extension Ĝ of G,

(1.1)

Ĝ Diff(P,Θ)0

G Ham(M,Ω).
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1352 B. Janssens and C. Vizman

If the manifold M and the Lie group G are infinite dimensional, then this
construction remains valid; the pullback Ĝ is still a Lie group, even though
this may not be the case for Ham(M,Ω) and Diff(P,Θ) (cf. [19]).

We apply this construction in the following setting. Suppose that π :
P →M is a prequantum S1-bundle over a compact, symplectic manifold
(M,ω) of dimension 2n, and that θ is a connection 1-form with curvature
ω. The identity component G = Diff(P, θ)0 of the quantomorphism group
is then a Fréchet Lie group, with Lie algebra g isomorphic to the Poisson
Lie algebra C∞(M). The infinite dimensional symplectic manifold M on
which G acts will be a connected component of the nonlinear Grassmannian
Gr2n−1(P ) of codimension two closed, oriented, embedded submanifolds of
P . This Fréchet manifold is prequantizable by [6, 7], and the natural action
of G on M is Hamiltonian. In this way, we obtain central S1-extensions
Ĝ→ G of the identity component G = Diff(P, θ)0 of the quantomorphism
group.

For any (Fréchet) Lie group G, the central extensions of G by S1 play
a pivotal role in the theory of projective unitary G-representations. Every
such representation gives rise to a central S1-extension Ĝ, together with a
linear unitary Ĝ-representation [8, 22, 28]. Passing to the infinitesimal level,
one obtains information on the projective G-representations from the (often
more accessible) linear representation theory of the corresponding central
Lie algebra extensions ĝ.

In the passage to the infinitesimal level, however, one important piece
of information is lost: not every Lie algebra extension ĝ→ g integrates to a
group extension Ĝ→ G. The ones that do determine a lattice Λ ⊆ H2(g,R)
in the continuous second Lie algebra cohomology of g, called the lattice of
integrable classes.

In the context of quantomorphism groups, the continuous second Lie
algebra cohomology of the Poisson Lie algebra C∞(M) has been explicitly
determined; in [9], we proved that

H2(C∞(M),R) ' H1(M,R).

To the best of our knowledge, it remains an open problem to determine the
full lattice Λ ⊆ H1(M,R) of integrable classes; it appears that the period
homomorphism governing integrability (cf. [18, Thm. 7.9]) is not easy to
calculate in the setting of quantomorphism groups.

In the present paper, we contribute towards a solution by explicitly deter-
mining the sublattice Λ0 ⊆ Λ corresponding to the group extensions Ĝ→ G
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Integrability for extensions of the Poisson algebra 1353

described above. We find that

Λ0 =
n+ 1

2πvol(M)
π!(H

2(P,R)Z),

where H2(P,R)Z is the lattice of integral classes in de Rham cohomology,
and π! denotes fiber integration. This formula is easily evaluated in concrete
situations. If M is a compact surface, then Λ0 ⊆ H1(M,R) is of full rank. On
the other extreme, we find that Λ0 = {0} if M is a compact Kähler manifold
of dimension 2n ≥ 4. Intermediate behavior is displayed by nilmanifolds.
Thurston’s nilmanifold M4, for example, affords a lattice Λ0 that is of rank
2 in the 3-dimensional vector space H1(M4,R).

We expect that in the representation theory of the Poisson Lie algebra
C∞(M), the lattice Λ of integrable classes will play the same role as the
integral level condition in the representation theory of loop algebras and
affine Kac-Moody algebras [10, §12]. From a differential geometric point of
view, integrality of the level for a loop algebra g (possibly twisted, over
a simple Lie algebra) is precisely the condition that the induced class in
H2(g,R) ' H1(S1,R) corresponds to a Lie group extension, cf. [22, §4].

2. Prequantization central extension

Let G be a connected Lie group with Lie algebra g, and let (M,Ω) be
a connected, prequantizable, symplectic manifold with a Hamiltonian G-
action. Both G and M are allowed to be infinite dimensional manifolds,
modeled on locally convex spaces. Let π : P →M be a prequantum bundle,
i.e. a principal S1-bundle with principal connection 1-form Θ and curvature
Ω. In particular, the identity π∗Ω = dΘ holds.

2.1. The Kostant-Souriau extension

The prequantum bundle P →M gives rise to the prequantization central
extension [12, 25]

(2.1) S1 → Diff(P,Θ)0 → Ham(M,Ω),

with Ham(M,Ω) the group of Hamiltonian diffeomorphisms, and Diff(P,Θ)0
the identity component of the quantomorphism group

Diff(P,Θ) = {ϕ ∈ Diff(P) : ϕ∗Θ = Θ}.
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1354 B. Janssens and C. Vizman

Note that ϕ∗Θ = Θ implies ϕ∗E = E, where E ∈ X(P ) is the infinitesimal
generator of the S1-action. In particular, every quantomorphism is a bundle
automorphism.

The infinitesimal counterpart of (2.1) is the central extension

(2.2) R→ X(P,Θ)→ Xham(M,Ω)

of the Lie algebra of Hamiltonian vector fields

Xham(M,Ω) := {Xf ∈ X(M) : iXfΩ = −df},

namely the quantomorphism Lie algebra

X(P,Θ) := {X ∈ X(P) : LXΘ = 0}.

It is isomorphic to the Poisson Lie algebra C∞(M) via the Lie algebra
isomorphism

(2.3) ζ : C∞(M)→ X(P,Θ), ζf := Xhor
f + (π∗f)E,

where Y hor denotes the horizontal lift of the vector field Y ∈ X(M). The
central extension (2.2) can thus be identified with the Kostant-Souriau ex-
tension

(2.4) R→ C∞(M)→ Xham(M,Ω),

induced by the map f 7→ Xf .
The central extensions of a locally convex Lie algebra g are classified

by its continuous second Lie algebra cohomology H2(g,R), cf. e.g. [9, §2.3].
This is the cohomology of the cochain complex Cn(g,R) of continuous, al-
ternating, n-linear maps gn → R, with differential δ : Cn(g,R)→ Cn+1(g,R)
defined by

(2.5) δψ(x0, . . . , xn) :=
∑

0≤i<j≤n
(−1)i+jψ([xi, xj ], x0, . . . , x̂i, . . . , x̂j , . . . , xn).

A continuous linear splitting s : g→ ĝ of the central extension R→ ĝ→ g
gives rise to the 2-cocycle ψ(X,Y ) := [s(X), s(Y )]− s([X,Y ]). Given a point
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x0 ∈M, we split (2.4) by mapping Xf ∈ Xham(M,Ω) to the unique Hamil-
tonian function fx0 vanishing on x0. The splitting

(2.6) sx0
: Xf 7→ fx0

yields the Kostant-Souriau cocycle ψKS on Xham(M) that is given by

(2.7) ψKS(Xf , Xg) = {f, g}(x0) = Ω(Xf , Xg)(x0).

2.2. Group extensions from Hamiltonian actions

If M is a compact (hence finite dimensional) manifold, then Ham(M,Ω)
and Diff(P,Θ) are both infinite dimensional Lie groups, with Lie alge-
bras Xham(M,Ω) and X(P,Θ), respectively, see [23, §3], [21, §VIII.4]. Even
though this need no longer be the case if M is infinite dimensional, it is
still true that the pullback Ĝ of (2.1) under the Hamiltonian action of a Lie
group G on M has a smooth Lie group structure.

Theorem 2.1. [19, Thm 3.4] Let (M,Ω) be a prequantizable, symplec-
tic manifold with a Hamiltonian action of a connected Lie group G. Then
the pullback of the prequantization central extension (2.1) by the action
G→ Ham(M,Ω) provides a central Lie group extension

(2.8) S1 → Ĝ→ G.

The derived Lie algebra extension R→ ĝ→ g is given by the pullback
of the Kostant-Souriau extension (2.4) along the infinitesimal action g→
Xham(M,Ω). The linear splitting (2.6) therefore induces a linear splitting
of ĝ→ g, and the corresponding 2-cocycle σ on g is the pullback by g→
Xham(M,Ω) of the Kostant-Souriau cocycle. It is given explicitly by

(2.9) σ(ξ, η) = Ω(ξM, ηM)(x0),

where ξM denotes the fundamental vector field on M for ξ ∈ g.

3. Exact volume preserving diffeomorphisms

In order to obtain central extensions of the Lie group G = Diffex(M,ν) of
exact volume preserving diffeomorphisms of a compact manifold M endowed
with volume form ν, we consider its Hamiltonian action on the non-linear
Grassmannian of codimension 2 embedded submanifolds of M .
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3.1. Non-linear Grassmannians

Let M be a closed, connected manifold of dimension m. The non-linear
Grassmannian Grk(M) consists of k-dimensional, closed, oriented, embed-
ded submanifolds N ⊆M . It is a Fréchet manifold in a natural way, cf.
[5, 13]. The tangent space of Grk(M) at N can naturally be identified with
the space of smooth sections of the normal bundle TN⊥ := (TM |N )/TN .

For every r ≥ 0, the transgression map τ : Ωk+r(M)→ Ωr(Grk(M)) is
defined by

(τα)N ([Y1], . . . , [Yr]) :=

∫
N
iYr · · · iY1

(α|N ).

Here all [Yj ] are tangent vectors at N ∈ Grk(M), i.e. sections of TN⊥. The
expression above is independent of the vector fields Yj on M along N chosen
to represent [Yj ].

The natural group action of Diff(M) on Grk(M), defined by (ϕ,N) 7→
ϕ(N), is smooth, since it descends from the action of Diff(M) on the manifold
of embeddings into M defined by composition (ϕ, f) 7→ ϕ ◦ f . It differenti-
ates to the Lie algebra action X(M)→ X(Grk(M)) given by X 7→ τX with
τX(N) = [X|N ]. The transgression enjoys the following functorial properties:

d ◦ τ = τ ◦ d, ϕ∗ ◦ τ = τ ◦ ϕ∗,(3.1)

iτX ◦ τ = τ ◦ iX , LτX ◦ τ = τ ◦ LX .

Theorem 3.1. [7, §25.3] [6, Thm. 1] Let α ∈ Ωk+2(M) be a closed differen-
tial form with integral cohomology class. Then the non-linear Grassmannian
Grk(M) endowed with the closed 2-form Ω = τα is prequantizable, i.e. there
exist an S1-bundle P → Grk(M) with connection form Θ ∈ Ω1(P) and cur-
vature Ω.

3.2. Lichnerowicz central extensions

Let ν ∈ Ωm(M) be a volume form on M , normalized so that volν(M) = 1.
It induces a symplectic form Ω = τν on the codimension two non-linear
Grassmannian Grm−2(M) [7]. This is the higher dimensional version of the
natural symplectic form on the space of knots in R3 [17]. The natural action
of the group Diff(M,ν) of volume preserving diffeomorphisms on Grm−2(M)
is symplectic, as ϕ∗τν = τϕ∗ν = τν for all ϕ ∈ Diff(M,ν) by (3.1). To get
a Hamiltonian action, we have to restrict to the subgroup Diffex(M,ν) of
exact volume preserving diffeomorphisms.
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Its Lie algebra Xex(M,ν) of exact divergence free vector fields is the
kernel of the infinitesimal flux homomorphism, defined on the Lie algebra
X(M,ν) of divergence free vector fields by

(3.2) X(M,ν)→ Hm−1(M,R), X 7→ [iXν].

We denote by Xα the exact divergence free vector field with potential α ∈
Ωm−2(M), i.e. iXαν = dα.

The Lie algebra homomorphism (3.2) is integrated by Thurston’s flux
homomorphism. On the universal cover of the identity component of the
group of volume preserving diffeomorphisms, we define

(3.3) F̃lux : D̃iff(M,ν)0 → Hm−1(M,R) by F̃lux([ϕt]) =

∫ 1

0
[iXtν]dt,

where ϕt is a volume preserving isotopy from the identity to ϕ, and Xt is
the time dependent vector field such that d

dtϕt = Xt ◦ ϕt. By [1, Thm. 3.1.1],
this is a well defined group homomorphism.

For any codimension one submanifold N ⊂M , the integral
∫
N F̃lux([ϕt])

is the volume swept out by N under ϕt. Therefore, the monodromy subgroup

Γ := F̃lux(π1(Diff(M,ν)0)) of Hm−1(M,R) is discrete. It follows that equa-
tion (3.3) factors through a Lie group homomorphism
(3.4)

Flux : Diff(M,ν)0 → Hm−1(M,R)/Γ, Flux(ϕ) =

∫ 1

0
[iXtν]dt mod Γ.

The group of exact volume preserving diffeomorphisms Diffex(M,ν) is now
defined as the kernel of the Flux homomorphism; it is a Lie group with Lie
algebra Xex(M,ν) [1, 13].

Since volν(M) is normalized to 1, the cohomology class [kν] ∈ Hm(M,R)
is integral for every k ∈ Z. By Theorem 3.1, this implies that the manifold
Grm−2(M) with symplectic form Ω = kτν is prequantizable. The natural
action of Diffex(M,ν) on Grm−2(M) is Hamiltonian, as iτXα τν = τiXαν =
τdα = dτα for all Xα ∈ Xex(M,ν) by (3.1). Now we can apply Theorem 2.1
to this Hamiltonian action on a connected component M of Grm−2(M).
This yields the central Lie group extension

(3.5) S1 → D̂iffex(M,ν)→ Diffex(M,ν)

of the group of exact volume preserving diffeomorphisms.
To obtain the corresponding Lie algebra 2-cocycle, we fix a point Q ∈M,

that is, a codimension two submanifold Q ⊂M in the connected component
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M of the nonlinear Grassmannian. By (2.9), the Lie algebra extension of
Xex(M,ν) corresponding to (3.5) for k = 1, is described by the Lie algebra
2-cocycle

(3.6) λνQ(X,Y ) = (τν)Q(τX , τY ) =

∫
Q
iY iXν

on Xex(M,ν), which we call the singular Lichnerowicz cocycle. If the class
[kν] is used to construct the extension, then the corresponding 2-cocycle
is kλνQ.

Theorem 3.2. [7, §25.5][6, Thm. 2] Let ν be a volume form on M with
volν(M) = 1 and Q a codimension two embedded submanifold of M . Then
the Lie algebra extensions defined by integral multiples of the cocycle λνQ of
equation (3.6) integrate to central Lie group extensions of the group of exact
volume preserving diffeomorphisms Diffex(M,ν).

Recall that two classes [Q] ∈ Hm−k(M,R) and [η] ∈ Hk(M,R) are called
Poincaré dual if

∫
Q γ =

∫
M η ∧ γ for all closed γ ∈ Ωm−k(M). If the class

[η] ∈ H2(M,R) is Poincaré dual to [Q] ∈ Hm−2(M,R), then by [29, Prop. 2]
the cocycle λνQ is cohomologous to the Lichnerowicz cocycle [15]

(3.7) λνη(X,Y ) =

∫
M
η(X,Y )ν =

∫
M
η ∧ iY iXν.

If dimM ≥ 3, the map [η] 7→ [λνη ] is believed to be an isomorphism between
H2(M,R) and the second Lie algebra cohomology group H2(Xex(M,ν),R),
see [24, §10] for the outline of a proof.

Remark 3.3. If [η] is Poincaré dual to [Q] with Q ∈ Grm−2(M), then in
particular, it is an integral cohomology class. Conversely, every integral co-
homology class [η] ∈ H2(M,R) is the Poincaré dual of a closed submanifold
of codimension two in M ; it can be obtained (cf. [4, Prop. 12.8]) as the zero
set of a section transversal to the zero section in a rank two vector bundle
with Euler class [η].

We infer that the Lichnerowicz cocycle (3.7) gives rise to an integrable
Lie algebra extension if [η] ∈ H2(M,R) is an integral class in de Rham co-
homology (in the sense that on integral singular 2-cycles, it evaluates to an
integer). We denote by H2(M,R)Z the space of integral de Rham classes. It
follows that the image of H2(M,R)Z by the map [η] 7→ [λνη ], which coincides
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with the image of Hm−2(M,Z) by the map [Q] 7→ [λνQ], lies in the lattice of

integrable classes in H2(Xex(M,ν),R).

4. Strict contactomorphisms

Let P be a compact manifold of dimension 2n+ 1, equipped with a contact
1-form θ. The group Diff(P, θ) of strict contactomorphisms is a subgroup
of the volume preserving diffeomorphism group Diff(P, µ), where the vol-
ume form µ is a constant multiple of θ ∧ (dθ)n. The group of exact strict
contactomorphisms is defined as

(4.1) Diffex(P, θ) := Diff(P, θ)0 ∩Diffex(P, µ).

We use Theorem 3.2 to investigate central extensions of locally convex Lie
groups G that act on P by exact strict contactomorphisms.

The motivating example is the case where P →M is a prequantum
bundle over a compact symplectic manifold (M,ω); in this case Diff(P, θ)
is the quantomorphism group, while Diffex(P, θ) coincides with the identity
component Diff(P, θ)0 of the quantomorphism group. Since the latter is a
locally convex Lie group (it is even an ILH-Lie group by [21, VIII.4]), we
thus obtain central Lie group extensions of G = Diff(P, θ)0 by S1.

4.1. Strict contactomorphisms

The contact form θ gives rise to the volume form θ ∧ (dθ)n. We will use the
following two normalizations of this form:

(4.2) µ :=
1

(n+ 1)!
θ ∧ (dθ)n, and ν :=

1

volµ(P )
µ.

The Reeb vector field E ∈ X(P ) is uniquely determined by iEθ = 1 and
iEdθ = 0. We define the strict contactomorphism group

Diff(P, θ) := {ϕ ∈ Diff(P ); ϕ∗θ = θ} ⊂ Diff(P, µ)

and the Lie algebra of strict contact vector fields

X(P, θ) = {X ∈ X(P ); LXθ = 0} ⊂ X(P, µ).

For every isotopy ϕt ∈ Diff(P ), starting at the identity and corresponding
to the time dependent vector field Xt ∈ X(P ), we have ϕt ∈ Diff(P, θ) for all
t if and only if the vector field Xt lies in X(P, θ) for all t.
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A Hamiltonian function f ∈ C∞(P )E = {f ∈ C∞(P ) : LEf = 0} defines
a unique strict contact vector field ζf ∈ X(P, θ) by

iζf θ = f, iζfdθ = −df.

The corresponding map

(4.3) ζ : C∞(P )E → X(P, θ)

is an isomorphism of Fréchet Lie algebras, if C∞(P )E is equipped with the
Lie bracket

(4.4) {f, g} = dθ(ζf , ζg) = Lζf g.

Proposition 4.1. Let Q be a codimension two submanifold of the contact
manifold (P, θ). Then the pullback to C∞(P )E of the singular Lichnerowicz
cocycle λµQ on X(P, µ) by the map ζ in (4.3) is given by

(ζ∗λµQ)(f, g) = σQ(f, g) +
1

n+ 1
δρQ(f, g),

where the 2-cocycle σQ and the 1-cochain ρQ on C∞(P )E are given by

σQ(f, g) :=

∫
Q
gdf ∧ (dθ)n−1/(n− 1)!,(4.5)

ρQ(h) := −
∫
Q
hθ ∧ (dθ)n−1/(n− 1)!.(4.6)

Proof. We calculate ζ∗λµQ(f, g) = λµQ(ζf , ζg) =
∫
Q iζg iζf (θ ∧ (dθ)n)/(n+ 1)!.

First, note that

iζg iζf (θ ∧ (dθ)n/n!) = iζg(f(dθ)n/n! + θ ∧ df ∧ (dθ)n−1/(n− 1)!)(4.7)

= −(fdg − gdf) ∧ (dθ)n−1/(n− 1)!

+ {f, g}θ ∧ (dθ)n−1/(n− 1)!

− θ ∧ df ∧ dg ∧ (dθ)n−2/(n− 2)!.

Expanding d
(
θ ∧ (fdg − gdf) ∧ (dθ)n−2

)
, we obtain

θ ∧ df ∧ dg ∧ (dθ)n−2/(n− 2)! = 1
2(n− 1)(fdg − gdf) ∧ (dθ)n−1/(n− 1)!

− 1
2d
(
θ ∧ (fdg − gdf) ∧ (dθ)n−2/(n− 2)!

)
.



i
i

“4-Vizman” — 2019/1/31 — 23:24 — page 1361 — #11 i
i

i
i

i
i

Integrability for extensions of the Poisson algebra 1361

Inserting this into (4.7) yields

iζg iζf (θ ∧ (dθ)n/n!) = −(n+ 1)12(fdg − gdf) ∧ (dθ)n−1/(n− 1)!

+ {f, g}θ ∧ (dθ)n−1/(n− 1)!

+ 1
2d
(
θ ∧ (fdg − gdf) ∧ (dθ)n−2/(n− 2)!

)
.

Since the value of λµQ(ζf , ζg) is obtained by integrating the above expression
over Q and dividing by n+ 1, the last term vanishes (Q is closed), the middle
term yields a multiple of the coboundary δρQ(f, g) = ρQ(−{f, g}), and the
first term yields the cocycle σQ(f, g). �

In particular the classes ζ∗[λµQ] and [σQ] in H2(C∞(P )E ,R) coincide.

Remark 4.2 (Regular contact manifolds). For us, the motivating ex-
ample is the total space (P, θ) of a prequantum S1-bundle π : P →M over a
compact, symplectic manifold (M,ω). These are called regular or Boothby-
Wang contact manifolds [2]. The top form

µ =
1

(n+ 1)!
θ ∧ (dθ)n =

1

(n+ 1)!
θ ∧ π∗ωn

is a volume form, and the Reeb vector field E ∈ X(P ) coincides with the
infinitesimal generator of the principal S1-action. The group of strict con-
tactomorphisms coincides with the quantomorphism group, hence it is a
Fréchet Lie group [21, 23].

The pullback by π is an isomorphism between the Poisson Lie algebra
C∞(M) and the Lie algebra C∞(P )E with Lie bracket (4.4). Under the
identification C∞(M) ' C∞(P )E , the isomorphisms (2.3) and (4.3), both
denoted by ζ, coincide. Moreover, the cocycle σQ in (4.5) can be identified
with the cocycle ψπ∗Q on the Poisson Lie algebra, determined by the singular
2n− 1 cycle C = π∗Q in M by the formula [9]:

ψC(f, g) =

∫
C
gdf ∧ ωn−1/(n− 1)!, f, g ∈ C∞(M).

More details will be given in Section 5.

4.2. Exact strict contactomorphisms

Suppose that G is a locally convex Lie group that acts smoothly and ef-
fectively on P by exact strict contact transformations. Its Lie algebra g is
then a subalgebra of X(P, θ) ' C∞(P )E . We investigate the integrability of



i
i

“4-Vizman” — 2019/1/31 — 23:24 — page 1362 — #12 i
i

i
i

i
i

1362 B. Janssens and C. Vizman

the pullback ι∗[σQ] ∈ H2(g,R) along the inclusion ι : g ↪→ C∞(P )E , where
σQ is the cocycle σQ(f, g) =

∫
Q gdf ∧ (dθ)n−1/(n− 1)! of (4.5). For general

contact manifolds, we have to impose the condition of exactness so that
we can make use of Theorem 3.2. However, in the important special case
of regular contact manifolds, we will show that the exactness condition is
automatically satisfied.

Analogous to the group Diffex(P, θ) := Diff(P, θ)0 ∩Diffex(P, µ) of exact
strict contact transformations, we define the Lie algebra of exact strict con-
tact vector fields by

Xex(P, θ) := X(P, θ) ∩ Xex(P, µ).

For every isotopy ϕt ∈ Diff(P ), starting at the identity and determined
by the time dependent vector field Xt ∈ X(P ), we have ϕt ∈ Diffex(P, θ) for
all t if and only if Xt ∈ Xex(P, θ) for all t.

Lemma 4.3. The function space

C∞0 (P )E := {f ∈ C∞(P )E ; f(dθ)n ∈ dΩ2n−1(P )}

is a Lie subalgebra of C∞(P )E of finite codimension ≤ dimH2n(P,R), iso-
morphic under f 7→ ζf to the Lie algebra Xex(P, θ) of exact strict contact
vector fields.

Proof. As f(dθ)n is closed for all f ∈ C∞(P )E , we can define the linear map

(4.8) C∞(P )E → H2n(P,R), f 7→ 1

n!
[f(dθ)n]

with kernel C∞0 (P )E . This is a Lie algebra homomorphism, as {f, g}(dθ)n =
ndf ∧ dg ∧ (dθ)n−1 is exact. It coincides, under the identification (4.3), with
the flux homomorphism (3.2) for the volume form µ restricted to X(P, θ) '
C∞(P )E , as

(n+ 1)![iζfµ] = [iζf (θ ∧ (dθ)n)]

= [f(dθ)n − n(df) ∧ θ ∧ (dθ)n−1]

= [f(dθ)n − nd(fθ ∧ (dθ)n−1) + nf(dθ)n]

= (n+ 1)[f(dθ)n].

It follows that the kernel C∞0 (P )E of (4.8) is identified under ζ with the Lie
algebra X(P, θ) ∩ Xex(P, µ) = Xex(P, θ). �
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Proposition 4.4. If the contact manifold (P, θ) is regular, i.e. the total
space of a prequantum bundle π : P →M , then the Lie algebras of strict
contact and exact strict contact vector fields coincide: X(P, θ) = Xex(P, θ).
Moreover, the group of exact strict contact diffeomorphisms is precisely the
connected component of the quantomorphism group:

Diffex(P, θ) = Diff(P, θ)0.

Proof. Any f ∈ C∞(P )E is of the form π∗f̄ for a smooth function f̄ on the
compact symplectic manifold M . If we write f̄ = f̄0 + c with

∫
M f̄0ω

n = 0,
then f̄0ω

n = dγ is exact, so that the form f(dθ)n = c(dθ)n + π∗(f̄0ω
n) =

cd(θ ∧ (dθ)n−1) + dπ∗γ is exact as well. We thus find C∞0 (P )E = C∞(P )E '
C∞(M) and the conclusion follows. �

The following example shows that for contact manifolds that are not
regular, the Lie algebra C∞0 (P )E can be strictly smaller than C∞(P )E .

Example 4.5. An example of a non-regular contact form on the 3-torus
P = T3 is θ = cos zdx+ sin zdy. The orbits of the Reeb vector field E =
cos z∂x + sin z∂y determine constant slope foliations on each 2-torus of con-
stant z. We show that the Lie algebra C∞0 (P )E ' Xex(P, θ) has codimension
two in C∞(P )E ' X(P, θ).

We use the inclusion X(P, θ) ⊂ X(P, µ). Any divergence free vector field
X ∈ X(P, µ) is the sum X = X0 +Xα of an exact divergence free vector field
Xα with potential 1-form α = Adx+Bdy + Cdz and a constant vector field
X0 = a∂x + b∂y + c∂z. With volume form µ = 1

2θ ∧ dθ = −1
2dx ∧ dy ∧ dz, we

have Xα = 2(Bz − Cy)∂x + 2(Cx −Az)∂y + 2(Ay −Bx)∂z. The vector field
X is strict contact if LXθ = 0, which amounts to

sin z(Cxx −Axz −Ay +Bx − c) + cos z(Bxz − Cxy) = 0

cos z(Byz − Cyy +Ay −Bx + c) + sin z(Cxy −Ayz) = 0

cos z(Bzz − Cyz) + sin z(Cxz −Azz) = 0.

Thus a, b ∈ R are arbitrary, c = 0 (as can be seen by integrating the above
equations over x and y), and Xα is a strict contact vector field. We find that
X(P, θ) is isomorphic to the semidirect product Span{∂x, ∂y}n Xex(P, θ),
and that the flux homomorphism (3.2) restricted to X(P, θ) has 2-dimensional
image generated by [dy ∧ dz], [dx ∧ dz] ∈ H2(P,R).

We apply Theorem 3.2 to the contact manifold P with integral volume
form kν = k

volµ(P )µ for k ∈ Z and we obtain the following central result.
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Theorem 4.6. Let G be a Lie group acting smoothly and effectively on
(P, θ) by exact strict contact transformations. Then the restriction to g of
the class k

volµ(P ) [σQ] is integrable to a central Lie group extension of G.

Proof. Since G ⊆ Diffex(P, θ) and Diffex(P, θ) ⊆ Diffex(P, kν), the action of
G on the connected component M of Gr2n−1(P ) is Hamiltonian. Theo-
rem 2.1 then yields a Lie group extension

S1 → Ĝ→ G.

By Theorem 3.2, the corresponding class in H2(g,R) is the pullback along
the inclusion ι : g ↪→ Xex(P, ν) of [λkνQ ] = k

volµ(P ) [λ
µ
Q]. By Proposition 4.1, this

is the restriction to g of the class

k

volµ(P )
[σQ] ∈ H2(C∞0 (P )E ,R),

where σQ is the cocycle σQ(f, g) =
∫
Q gdf ∧ (dθ)n−1/(n− 1)! of (4.5). �

5. The quantomorphism group

Let P →M be a prequantum bundle over a compact symplectic manifold
(M,ω), and let θ ∈ Ω1(P ) be a connection 1-form with curvature ω. We
apply Theorem 4.6 to the identity component G = Diff(P, θ)0 of the quanto-
morphism group. As its Lie algebra is isomorphic to the Poisson Lie algebra
g = C∞(M), an explicit description of the second Lie algebra cohomology is
available [9]. With the above construction, we obtain a lattice of integrable
classes in H2(C∞(M),R).

5.1. Cohomology of the Poisson Lie algebra

We describe the second Lie algebra cohomology H2(C∞(M),R) in two dif-
ferent ways: using Roger cocycles related to H1(M,R), and using singular
cocycles related to H2n−1(M,R). The two pictures are linked by Poincaré
duality.

Definition 5.1. The Roger cocycle [24, §9] associated to a closed 1-form α
on the 2n-dimensional symplectic manifold (M,ω) is defined by

(5.1) ψα(f, g) :=

∫
M
fα(Xg)ω

n/n! = −
∫
M
α ∧ fdg ∧ ωn−1/(n− 1)!.
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They were first defined for surfaces in [11]. The Roger cocycles link the
first de Rham cohomology of M to the second Lie algebra cohomology of
the Poisson Lie algebra C∞(M).

Theorem 5.2. [24, §9][9, §4] The Roger cocycles ψα and ψα′ are cohomo-
logous if and only if α− α′ is exact, and the corresponding map [α] 7→ [ψα]
is an isomorphism

H1(M,R)
∼→ H2(C∞(M),R).

This shows (cf. [9, §2]) that every (locally convex) central extension
R→ ĝ→ C∞(M) corresponds to a Roger cocycle (5.1) with respect to
some linear splitting C∞(M)→ ĝ. However, the cocycles that come from
the Hamiltonian action of Diff(P, θ) on Gr2n−1(P ), using splittings of type
(2.6), are more closely related to singular homology.

Definition 5.3. The singular cocycle ψC on C∞(M), associated to a sin-
gular (2n− 1)-cycle C on M , is defined by

(5.2) ψC(f, g) :=

∫
C
gdf ∧ ωn−1/(n− 1)!.

The Lie algebra 2-cocycles ψC and ψC′ are cohomologous if and only if
C − C ′ is a boundary.

Proposition 5.4. The singular cocycle ψC is cohomologous to the Roger
cocycle ψα if and only if the class [C] ∈ H2n−1(M,R) is Poincaré dual to
[α] ∈ H1(M,R). In particular, the map [C] 7→ [ψC ] is an isomorphism

(5.3) H2n−1(M,R)
∼→ H2(C∞(M),R).

Proof. In view of the fact that C∞(M) ' R⊕ Xham(M,ω) for compact M ,
this follows from the discussion at the end of [9, §5]. �

5.2. An integrable lattice in H2(C∞(M),R)

By applying Theorem 4.6 to the regular contact manifold (P, θ), we obtain a
lattice of integrable classes in the Lie algebra cohomology H2(C∞(M),R).
In the following, we denote the lattice of integral classes by H∗(M,R)Z
(homology) or H∗(M,R)Z (cohomology).
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Corollary 5.5 (Singular version). Let [C] ∈ H2n−1(M,R)Z be in the im-
age under π∗ of H2n−1(P,R)Z. Then the Lie algebra extension corresponding
to the class

n+ 1

2πvol(M)
[ψC ]

integrates to a central extension of Diff(P, θ)0 by S1. In this expression,
vol(M) =

∫
M ωn/n! is the Liouville volume of M , and [ψC ] ∈ H2(C∞(M),R)

is the singular class (5.2).

Proof. We apply Theorem 4.6 to the unit component G = Diff(P, θ)0 of the
quantomorphism group. By [21, VIII.4], this is a Fréchet Lie group, with Lie
algebra g isomorphic to the Poisson Lie algebra C∞(M). By Proposition 4.4,
the group Diff(P, θ)0 coincides with the group Diffex(P, θ) of exact strict
contactomorphisms.

Recall that (P, θ) is a regular contact manifold, with dθ = π∗ω and
C∞(P )E = {π∗f ; f ∈ C∞(M)}. If Q ⊆ P is an embedded, closed, oriented
submanifold, then the Hamiltonian action of Diff(P, θ)0 on the connected
componentM⊆ Gr2n−1(P ) of Q gives rise to a central Lie group extension
with Lie algebra cocycle on C∞(M) given by

ψ(f, g) =
1

volµ(P )
σQ(π∗f, π∗g) =

1

volµ(P )

∫
Q
π∗
(
gdf ∧ ωn−1

)
/(n− 1)!.

Expressing the volume of P as volµ(P ) = 2π
n+1vol(M), we find

ψ(f, g) =
n+ 1

2πvol(M)
ψπ∗Q(f, g),

where π∗Q is the pushforward along π : P →M of the singular (2n− 1)-
cycle represented by the embedded closed submanifold Q ⊆ P , and ψπ∗Q is
the singular cocycle of (5.2). By Remark 3.3, every class in H2(P,R)Z can be
represented by an oriented, embedded submanifold Q, so with [C] = π∗[Q]
in H2n−1(M,R)Z, the result follows. �

Remark 5.6 (Triviality of Lie algebra extensions). Note that from
the above proof, it follows that the Lie algebra extension corresponding to
the Hamiltonian action of Diff(P, θ)0 on the connected component M of
Q in Gr2n−1(P ) is trivial if and only if [ψπ∗Q] ∈ H2(C∞(M),R) is zero. By
Proposition 5.4, this is the case if and only if π∗[Q] ∈ H2n−1(M,R) vanishes.
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Using Poincaré duality, we translate this to Roger cocycles and de Rham
cohomology. For a smooth map f : M → N , we denote by

f! : H
∗(M,Z)→ H∗(N,Z)

the map that corresponds to f∗ : H∗(M,Z)→ H∗(N,Z) under Poincaré
duality. For the prequantum bundle π : P →M , the induced map π! :
Hk(P,R)Z → Hk−1(M,R)Z on integral classes in de Rham cohomology is
fiber integration.

Corollary 5.7 (de Rham version). For every class [α] in the sublattice
π!(H

2(P,R)Z) of H1(M,R), the Lie algebra extension corresponding to the
class

n+ 1

2πvol(M)
[ψα]

in H2(C∞(M),R) integrates to a central extension of Diff(P, θ)0 by S1.

Proof. The Roger cocycle ψα is cohomologous to the singular cocycle ψC if
[C] ∈ H2n−1(M,R)Z is Poincaré dual to [α] ∈ H1(M,R)Z. If [C] = π∗[Q] for
[Q] ∈ H2n−1(Q,R)Z, then [α] = π![ηQ] for the Poincaré dual [ηQ] of Q, as∫

M
π!ηQ ∧ γ =

∫
P
ηQ ∧ π∗γ =

∫
Q
π∗γ =

∫
C
γ.

The result now follows from Corollary 5.5. �

The lattice π!(H
2(P,R)Z), which yields the integrable classes in Lie alge-

bra cohomology, is contained in the lattice (π!H
2(P,R))Z of integral classes

in π!H
2(P,R). Note however that it can be strictly smaller, cf. §5.3.3. The

following proposition is helpful in determining this lattice.

Proposition 5.8. The image of π! : H
2(P,Z)→ H1(M,Z) is the kernel of

taking the cup product with the Euler class [P ] ∈ H2(M,Z) of the bundle P ,

(5.4) π!H
2(P,Z) = {[α] ∈ H1(M,Z); [P ] ` [α] = 0}.

Note that the image of [P ] in H2(M,R) is the class [ω] of the symplectic
form.
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Proof. This follows immediately from the Gysin long exact sequence in in-
tegral cohomology, associated to the principal S1-bundle P →M ,

· · · → H2(P,Z)
π!→ H1(M,Z)

[P ]`·→ H3(M,Z)
π∗→ H3(P,Z)→ · · · ,

see e.g. [3, §VI.13]. �

Similarly, it follows from Poincaré duality (or the Gysin sequence in
homology, [26, §9.3]), that

(5.5) π∗(H2n−1(P,Z)) = {[C] ∈ H2n−1(M,Z); [CP ] a [C] = 0},

where [CP ] ∈ H2n−2(M,Z), Poincaré dual to [P ], is the zero set of a transver-
sal section of the prequantum line bundle P ×S1 C→M .

5.3. Examples

We calculate the integrable classes in H2(C∞(M),R) that correspond to
our group extensions for a number of explicit examples. For compact sur-
faces, they span the second Lie algebra cohomology, whereas for compact
Kähler manifolds of dimR ≥ 4, they are all trivial. For non-Kähler symplectic
manifolds, our method yields non-trivial integrable classes, but they do not
necessarily spanH2(C∞(M),R). We illustrate this at the hand of Thurston’s
nilmanifold, which was historically the first example of a non-Kähler sym-
plectic manifold.

5.3.1. Compact surfaces. Let M be a compact orientable 2-dimensional
manifold of genus g, with generators [a1], . . . , [ag] and [b1], . . . , [bg] of the first
homology group H1(M,Z). A symplectic form ω ∈ Ω2(M) is prequantizable
if and only if vol(M) ∈ Z. As H3(M,Z) = {0}, equation (5.5) shows that
π∗H1(P,Z) = H1(M,Z). From Corollary 5.5, we thus obtain:

Corollary 5.9. For ki, li ∈ Z, the Lie algebra cocycles on the Poisson Lie
algebra C∞(M)

(5.6) ψ(f, h) =
1

πvol(M)

(
g∑
i=1

ki

∫
ai

hdf +

g∑
i=1

li

∫
bi

hdf

)

integrate to central S1-extensions of the group Diff(P, θ)0 of quantomor-
phisms.
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By Theorem 5.2, the R-span of this integrable lattice is the full second
Lie algebra cohomology of the Poisson Lie algebra C∞(M). The above result
on integrable cocycles appears to be new.

5.3.2. Kähler manifolds. If M is a prequantizable compact Kähler man-
ifold of dimension 2n, n ≥ 2, then the map

H1(M,R)→ H2n−1(M,R); [α] 7→ [ω]n−1 ∧ [α]

is an isomorphism by the Hard Lefschetz Theorem. Since n ≥ 2, the map
[α] 7→ [ω] ∧ [α] is injective, so Proposition 5.8 implies that π!H

2(P,R)Z = {0}.
From Remark 5.6, we then obtain the following result.

Corollary 5.10. If M is a compact Kähler manifold of real dimension ≥ 4,
then the central Lie group extension derived from the Hamiltonian action of
Diff(P, θ)0 on the connected component M of Gr2n−1(P ) splits at the Lie
algebra level.

In particular, the Hamiltonian action of Diff(P, θ)0 on M lifts to an ac-

tion of the universal cover D̃iff(P, θ)0 on the prequantum bundle P →M.
For compact Kähler manifolds of dimR ≥ 4, we thus obtain a linear rep-
resentation of D̃iff(P, θ)0 on the space of sections of the prequantum line
bundle L →M associated to P. This marks a qualitative difference with
the case dimR = 2, where the central Lie algebra deformation (5.6) occurs.

5.3.3. Thurston’s nilmanifold. A nilmanifold M = Γ\N is a compact
homogeneous space for a connected nilpotent Lie group N . Without loss of
generality, one may assume thatN is 1-connected, and that Γ ⊆ N is discrete
and co-compact [16]. If n is the Lie algebra of N , then by [20], the inclusion∧
n∗ ↪→ Ω(M) as left invariant forms yields an isomorphism between the Lie

algebra cohomology H∗(n,R) of n and the de Rham cohomology H∗(M,R)
of M . This remains true over rings of integers localized at small primes [14].

To illustrate that nontrivial lattices of integrable cocycles for C∞(M)
exist in dimension ≥ 4, we consider the quotient Mr = Γ\N with N =
Heis(R, r)× R and Γ = Heis(Z, r)× Z, where Heis(R, r) is the Heisenberg
group over the ring R at level r ∈ N,

Heis(R, r) :=


1 u h/r

0 1 v
0 0 1

 ; u, v, h ∈ R

 .

For r = 1, this is Thurston’s symplectic manifold M4 [27].
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The Lie algebra n is generated by x, p, h and z, with h, z central and
[x, p] = rh. The left invariant forms corresponding to the dual basis are x∗ =
du, p∗ = dv, z∗ = dz and h∗ = dh+ rudv. The differential δ :

∧
n∗ →

∧
n∗

in (2.5) is determined by its action on the generators: δh∗ = rx∗ ∧ p∗ and
δx∗ = δp∗ = δz∗ = 0.

The cohomology of the Eilenberg-MacLane space Mr ' K(Γ, 1) is read-
ily calculated from H∗(BΓ,Z). From [14, §6.1] and the Künneth formula,
one finds

H∗(Mr,Z) ' H∗(n,Z) =
∧

[x∗, p∗, z∗, x∗ ∧ h∗, p∗ ∧ h∗] /(rx∗ ∧ p∗).

For a, b ∈ Z− {0}, we define the (integral) symplectic form ωab ∈ Ω2(Mr)
by

ωab = ah∗ ∧ x∗ + bz∗ ∧ p∗ = a(dh ∧ du− rudu ∧ dv) + bdz ∧ dv.

It determines the Euler class [Pabc] ∈ H2(Mr,Z) of the prequantum line
bundle only up to torsion;

[Pabc] = ah∗ ∧ x∗ + bz∗ ∧ p∗ + cx∗ ∧ p∗,

where c ∈ {0, . . . , r − 1} labels the different prequantum line bundles with
the same curvature class [ωab] ∈ H2(Mr,R). To determine the kernel

K := Ker
(

[Pabc] ` · : H1(Mr,Z)→ H3(Mr,Z)
)

= π!H
2(Pabc,Z)

of the cup product with the Euler class, note that for γ = tx∗ + sp∗ + λz∗,

[Pabc] ` γ = (λc− tb)z∗ ∧ x∗ ∧ p∗ + (as)h∗ ∧ x∗ ∧ p∗ + (λa)h∗ ∧ x∗ ∧ z∗.

Since a 6= 0 and δh∗ = rx∗ ∧ p∗ represents the zero class in cohomology, we
find that [Pabc] ` γ = 0 if and only if λ = 0 and [as] = [tb] = 0 in Z/rZ,
or, equivalently, if there exist kx, kp ∈ Z with t = kxr/gcd(r, b) and s =
kpr/gcd(r, a). It follows that

K = {kx(r/gcd(r, b))x∗ + kp(r/gcd(r, a))p∗; kx, ky ∈ Z}.

From Corollary 5.7 with n = 2 and vol(Mr) = ab, we then obtain the
following lattice of integrable classes in second Lie algebra cohomology:
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Corollary 5.11. For (Mr, ωab) and kx, kp ∈ Z, the 2-cocycles

ψ(f, g) =
3rkp

2πb gcd(r, a)

∫
M
fdg ∧ du ∧ dv ∧ dh

+
3rkx

2πa gcd(r, b)

∫
M
fdg ∧ du ∧ dv ∧ dz

for the Poisson Lie algebra C∞(Mr) are integrable to the identity component
of the quantomorphism group Diff(Pabc, θ)0.

Since H2(C∞(Mr),R) ' H1(Mr,R) by Theorem 5.2, we find a 2-dimen-
sional plane spanned by integrable classes in this 3-dimensional cohomology
space.

6. The Hamiltonian group

In this final section, we briefly describe how the central extensions of the
quantomorphism group Diff(P, θ)0, obtained in Corollary 5.7, can be pulled

back by a homomorphism H̃am(M,ω)→ Diff(P, θ)0. This yields central S1-

extensions of the universal covering group H̃am(M,ω).

The homomorphism H̃am(M,ω)→ Diff(P, θ)0 is obtained as follows.
Since M is compact, the Kostant-Souriau extension (2.4) is split ([9, Corol-
lary 3.5]) by the Lie algebra homomorphisms

R C∞(M) Xham(M),
ρ κ

defined by

ρ(f) :=
1

vol(M)

∫
M
fωn/n!, κ(Xf ) := f − ρ(f).

By Lie’s Second Theorem for regular Lie groups [13, Thm. 40.3], these Lie
algebra homomorphisms integrate to group homomorphisms

R D̃iff(P, θ)0 H̃am(M,ω)
R K

on the universal covering groups. This yields the following commutative
diagram:
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D̂iff(P, θ)0

R D̃iff(P, θ)0 Diff(P, θ)0

H̃am(M,ω) Ham(M,ω).

R Pr

K

The pullback along the homomorphism Pr ◦K : H̃am(M,ω)→ Diff(P, θ)0
of a central S1-extension D̂iff(P, θ)0 → Diff(P, θ)0 then yields a central Lie

group extension Ĥ → H̃am(M,ω) by S1,

Ĥ D̂iff(P, θ)0

H̃am(M,ω) Diff(P, θ)0.
Pr◦K

If ψ is the cocycle of C∞(M) corresponding to the central extension

D̂iff(P, θ)0 of Diff(P, θ)0, then κ∗ψ is the corresponding Lie algebra cocy-
cle on Xham(M). The pullback by κ of the Roger cocycle (5.1) is

(κ∗ψα)(Xf , Xg) =

∫
M
fα(Xg)ω

n/n!,

and the pullback of the singular cocycle (5.2) is

(κ∗ψC)(Xf , Xg) =

∫
C
gdf ∧ ωn−1/(n− 1)!.

Both expressions are independent of the choice of Hamiltonian functions.

Proposition 6.1. If the 2-cocycle ψ on C∞(M) can be integrated to a cen-
tral extension of the group of quantomorphisms Diff(P, θ)0, then κ∗ψ can be

integrated to a central extension of the universal covering group H̃am(M,ω)
of the group of Hamiltonian diffeomorphisms.
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