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Introduction

In complex geometry, besides Dolbeault and de Rham cohomologies, also
Bott-Chern and Aeppli cohomologies deserve much interest. For a complex
manifold X, the Bott-Chern cohomology and the Aeppli cohomology are de-
fined as

H•,•BC(X) :=
ker ∂ ∩ ker ∂

im ∂∂
, respectively H•,•A (X) :=

ker ∂∂

im ∂ + im ∂
.

In fact, they appear as natural tools in studying the geometry of complex
(possibly non-Kähler) manifolds, see, e.g., [1–3, 6, 11, 13, 23, 37, 52, 57, 58].

Let X be a 2n-dimensional manifold endowed with a symplectic struc-
ture ω. We define the co-differential operator dΛ := [d,−ιω−1 ] on the de
Rham complex ∧•X which was introduced by J.-L. Koszul, [38], and by
J.-L. Brylinski, [14]. In [55–57], L.-S. Tseng and S.-T. Yau introduced and
studied the cohomologies

H•BC(X;R) :=
ker d∩ ker dΛ

im d dΛ
and H•A(X;R) :=

ker d dΛ

im d + im dΛ
.

Since they are analogous to Bott-Chern and Aeppli cohomologies of com-
plex manifolds respectively, we call H•BC(X;R) the symplectic Bott-Chern
cohomology and H•A(X;R) the symplectic Aeppli cohomology. We notice that
Tseng and Yau did not use this terminology. But this terminology is very
useful in this paper for using the result in [5], see Corollary 1.3 and its
proof. Moreover, we remark that H•BC(X;R) and H•A(X;R) can be consid-
ered as the Bott-Chern and Aeppli cohomologies of a “generalized” complex
manifold, (see [8],) where we regard a symplectic structure as a generalized
complex structure of type 0, (see [16, 29]).

We recall that solvmanifolds are compact quotients Γ\G of connected
simply-connected solvable Lie groups G by co-compact discrete subgroups
Γ. When G is nilpotent, we call Γ\G nilmanifold. The purpose of this paper
is to study the symplectic Bott-Chern and Aeppli cohomologies of symplec-
tic solvmanifolds. Let Γ\G be a solvmanifold and g the Lie algebra of G.
Consider the cochain complex ∧•g∗ of left-invariant differential forms and
the inclusion

ι : ∧•g∗ ↪→ ∧• Γ\G .

This inclusion induces the map H•(g;R)→ H•dR(Γ\G ;R) where H•(g;R)
is the cohomology of ∧•g∗ and H•dR(Γ\G ;R) is the de Rham cohomology of
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Γ\G . Suppose that Γ\G admits a left-invariant symplectic structure. Then
the co-differential dΛ is defined on ∧•g∗ and we can define the symplectic
Bott-Chern and Aeppli cohomologies H•BC(g;R) and H•A(g;R) of the Lie
algebra g. We consider the maps

H•BC(g;R)→ H•BC(X;R) and H•A(g;R)→ H•A(X;R)

induced by the inclusion ι : ∧•g∗ ↪→• Γ\G . In [40], M. Macr̀ı prove that if
the map H•(g;R)→ H•dR(Γ\G ;R) is an isomorphism, then the maps

H•BC(g;R)→ H•BC(X;R) and H•A(g;R)→ H•A(X;R)

are also isomorphisms. Hence, by Hattori’s theorem in [34], if G is completely
solvable, then the maps

H•BC(g;R)→ H•BC(X;R) and H•A(g;R)→ H•A(X;R)

are isomorphisms. In this paper, we give a new proof of Macr̀ı’s result (The-
orem 3.2). Moreover, in this paper, we will reach a more general case. In
fact, on a general solvmanifold Γ\G , the map H•(g;R)→ H•dR(Γ\G ;R) is
not an isomorphism and we can not apply Macr̀ı’s result to general solv-
manifolds. In [36], for any solvmanifold Γ\G , the second author construct
an explicit finite-dimensional sub-complex A•Γ ⊆ ∧• Γ\G ⊗R C so that the
inclusion induces a cohomology isomorphism

H•(A•Γ) ∼= H•dR(Γ\G ;R)⊗R C.

In this paper, we show the following result.

Theorem (see Theorem 6.8). Suppose that a left-invariant symplectic
structure ω on a solvmanifold Γ\G satisfies ω ∈ A2

Γ. Then, the finite-dimen-
sional sub-complex A•Γ allows to compute the symplectic Bott-Chern and
Aeppli cohomologies of Γ\G .

For a compact 2n-dimensional symplectic manifold X with a symplec-
tic form ω, the cohomologies H•BC(X;R) and H•A(X;R) relate to the Hard
Lefschetz Condition, namely, for every k ∈ Z with 0 ≤ k ≤ n, the map[

ωk
]
^ · : Hn−k

dR (X;R)→ Hn+k
dR (X;R)

is an isomorphism. The Hard Lefschetz Condition is equivalent to the natural
map H•BC(X;R)→ H•dR(X;R) being injective: in such a case, we say that
X satisfies the d dΛ-Lemma.
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As similar to the complex case, [6], there is an inequality à la Frölicher
relating the dimensions of the symplectic Bott-Chern and Aeppli cohomolo-
gies and the Betti numbers, [8]: for every k ∈ Z,

dimRH
k
BC(X;R) + dimRH

k
A(X;R)− 2 dimRH

k
dR(X;R) ≥ 0;

furthermore, the equality holds for every k ∈ Z if and only if X satisfies the
d dΛ-Lemma.

It is known that a non-toral nilmanifold does not satisfy the Hard Lef-
schetz Condition, [10]. In Section 4, we compute the symplectic cohomologies
for 4-dimensional solvmanifolds, for 6-dimensional nilmanifolds, and for the
Nakamura manifold. In this sense, the numbers{

dimRH
k
BC(X;R) + dimRH

k
A(X;R)− 2 dimRH

k
dR(X;R)

}
k∈Z

provide a measure of the non-Kählerianity of the nilmanifold X.

We further consider symplectic cohomologies with values in a local sys-
tem in Section 5. By using sl2(C)-representations on bi-differential Z-graded
complexes, we study twisted Hard Lefschetz Condition and DφD

Λ
φ -Lemma.

Finally, in Section 6, we investigate twisted symplectic cohomologies on solv-
manifolds. As similar to the non-twisted case, by the Hattori theorem, [34],
and the Mostow theorem, [47], we compute the symplectic cohomologies of
special solvmanifolds with values in a local system by using Lie algebras.
Moreover, considering the spaces of differential forms on the solvmanifolds
with values in certain local systems so that these spaces have structures
of differential graded algebras given in Hain’s paper [31], we compute the
symplectic cohomologies of these differential graded algebras by using the
Sullivan minimal models constructed by the second author in [36], see Theo-
rem 6.6, Theorem 6.7. In fact, the cohomology computation by A•Γ as above
is a consequence of such results. By these results, we compute the twisted
symplectic cohomologies of Sawai’s examples of symplectic solvmanifolds
which satisfy the Hard Lefschetz Condition but do not satisfy the twisted
Hard Lefschetz Condition.

In general, twisted cohomologies do not have self-duality and so, when
considering the Lefschetz operators on twisted cohomologies, surjectivity
and injectivity are not equivalent. By this, as regards twisted Hard Lefschetz
Conditions and DφD

Λ
φ -Lemma, we have differences between the twisted case

and the non-twisted case. We explain such a difference by using Sawai’s
examples.
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1. Preliminaries and notations on cohomology computations

In this section, we briefly recall the results in [5], about several cohomolo-
gies associated to a bounded double complex, respectively bi-differential
Z-graded complex, of C-vector spaces. In particular, we are concerned with
studying when such cohomologies can be recovered by means of a suitable
(possibly finite-dimensional) sub-complex. We also consider Lefschetz con-
ditions and ∂∂-Lemma for bi-differential Z-graded complexes.

Remark 1.1. For a graded vector space V • and endomorphisms A ∈
Endp(V •) and B ∈ Endq(V •) of degrees p and q respectively, we denote
[A,B] = AB − (−1)pqBA.

1.1. Cohomologies of double complexes

Consider a bounded double complex
(
A•,•, ∂, ∂

)
of C-vector spaces. Namely,

∂ ∈ End1,0 (A•,•) and ∂ ∈ End0,1 (A•,•) are such that ∂2 = ∂
2

=
[
∂, ∂

]
= 0,

and Ap,q = {0} but for finitely-many (p, q) ∈ Z2.
One can consider several cohomologies associated to

(
A•,•, ∂, ∂

)
. More

precisely, for p ∈ Z and for q ∈ Z, one has the cohomologies

H•,q∂ (A•,•) := H•,q (A•,q, ∂) and Hp,•
∂

(A•,•) := Hp,• (Ap,•, ∂) .
By denoting the total complex associated to

(
A•,•, ∂, ∂

)
by(

Tot• (A•,•) :=
⊕
p+q=•

Ap,q,d := ∂ + ∂

)
,

one has the cohomology

H•dR(A•,•) := H• (Tot• (A•,•) , d) .
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Furthermore, for (p, q) ∈ Z2, one can consider the Bott-Chern cohomology,
[13],

Hp,q
BC(A•,•) := H

(
Ap−1,q−1 ∂∂−→ Ap,q

∂+∂−→ Ap+1,q ⊕Ap,q+1

)
,

and the Aeppli cohomology, [1],

Hp,q
A (A•,•) := H

(
Ap−1,q ⊕Ap,q−1 (∂, ∂)

−→ Ap,q
∂∂−→ Ap+1,q+1

)
.

1.2. Frölicher inequalities

Let
(
A•,•, ∂, ∂

)
be a bounded double complex of C-vector spaces.

We recall that the natural filtrations induce naturally two spectral se-
quences such that

′E
•1,•2
1

(
A•,•, ∂, ∂

)
' H•2

(
A•1,•, ∂

)
⇒ H•1+•2 (Tot• (A•,•) , d) ,

and

′′E
•1,•2
1

(
A•,•, ∂, ∂

)
' H•1 (A•,•2 , ∂)⇒ H•1+•2 (Tot• (A•,•) , d) ,

see, e.g., [44, §2.4], see also [26, §3.5], [22, Theorem 1, Theorem 3]. In par-
ticular, one gets the Frölicher inequalities:

dimC Tot•H•,•
∂

(A•,•) ≥ dimCH
•
dR (A•,•)

and dimC Tot•H•,•∂ (A•,•) ≥ dimCH
•
dR (A•,•) .

Furthermore, the first author and A. Tomassini proved in [8] the follow-
ing inequality à la Frölicher for the Bott-Chern cohomology: assuming that
dimCH

•,•
∂ (A•,•) < +∞ and dimCH

•,•
∂

(A•,•) < +∞, it holds that

dimC Tot•H•,•BC (A•,•) + dimC Tot•H•,•A (A•,•) ≥ 2 dimCH
•
dR (A•,•) ,

and the equality holds if and only if
(
A•,•, ∂, ∂

)
satisfies the ∂∂-Lemma,

namely, the natural map Tot•H•,•BC (A•,•)→ H•dR (A•,•) is injective.

1.3. Bi-differential Z-graded complexes

In the symplectic case, the space of differential forms has just a Z-graduation.
Hence we consider the case of a bounded bi-differential Z-graded complex
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(
A•, ∂, ∂

)
of K-vector spaces, where K ∈ {R, C}. Namely, A• is a Z-graded

K-vector space endowed with ∂ ∈ End1 (A•) and ∂ ∈ End−1 (A•) such that

∂2 = ∂
2

=
[
∂, ∂

]
= 0, and Ak = {0} but for finitely-many k ∈ Z.

Define

H•dR(A•) :=
ker(∂ + ∂)

im(∂ + ∂)
, H•∂(A•) :=

ker ∂

im ∂
, H•

∂
(A•) :=

ker ∂

im ∂
,

and

H•BC(A•) :=
ker ∂ ∩ ker ∂

im ∂∂
, H•A(A•) :=

ker ∂∂

im ∂ + im ∂
.

Starting with a bi-differential Z-graded complex, one can construct a
double complex. Following [14, §1.3], [16, §4.2], see [27, §II.2], [21, §II],
take an infinite cyclic multiplicative group {βm : m ∈ Z}, and define the
Z2-graded K-vector space

Doub•1,•2 A• := A•1−•2 ⊗K Kβ•2

endowed with

∂ ⊗K id ∈ End1,0 (Doub•,•A•) and ∂ ⊗K β ∈ End0,1 (Doub•,•A•) ,

which satisfy (∂ ⊗K id)2 =
(
∂ ⊗K β

)2
=
[
∂ ⊗K id, ∂ ⊗R β

]
= 0.

For ] ∈
{
dR, ∂, ∂, BC, A

}
, there are natural isomorphisms of K-vector

spaces, [8, Lemma 1.5]:

H•1,•2] (Doub•,•A•) ' H•1−•2] (A•)⊗K Kβ•2 .

1.4. Cohomology computations

We recall the following result in [5], concerning the relations between the
Bott-Chern cohomology of a double complex and the Bott-Chern cohomol-
ogy of a suitable sub-complex.

Theorem 1.2 ([5, Theorem 1.3]). Let
(
A•,•, ∂, ∂

)
be a bounded double

complex of C-vector spaces, and let
(
C•,•, ∂, ∂

)
↪→
(
A•,•, ∂, ∂

)
be a sub-

complex. Suppose that

(i) the induced map H•,•
∂

(C•,•)→ H•,•
∂

(A•,•) is an isomorphism,

(ii) the induced map H•,•∂ (C•,•)→ H•,•∂ (A•,•) is an isomorphism, and
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(iii) for any (p, q) ∈ Z2, the induced map

ker
(
d: Totp+q (C•,•)→ Totp+q+1 (C•,•)

)
∩ Cp,q

im
(
d: Totp+q−1 (C•,•)→ Totp+q (C•,•)

)
→

ker
(
d: Totp+q (A•,•)→ Totp+q+1 (A•,•)

)
∩Ap,q

im
(
d: Totp+q−1 (A•,•)→ Totp+q (A•,•)

)
is surjective.

Then the induced map H•,•BC (C•,•)→ H•,•BC (A•,•) is surjective.

As a corollary, we get the following result concerning cohomology com-
putations for bi-differential Z-graded complexes.

Corollary 1.3. Let
(
A•, ∂, ∂

)
be a bounded bi-differential Z-graded com-

plex and B• ⊆ A• be a bi-differential Z-graded sub-complex. Suppose that:

(i) the cohomologies H•∂(A•) and H•
∂
(A•), and H•∂(B•) and H•

∂
(B•) are

finite-dimensional;

(ii) the inclusion ι : B• ↪→ A• induces the isomorphisms H•∂(B•)
'→ H•∂(A•)

and H•
∂
(B•)

'→ H•
∂
(A•);

(iii) there exists a map µ : A• → B• of bi-differential Z-graded complexes
such that µ ◦ ι = idB•.

Then the inclusion ι : B• ↪→ A• induces the isomorphism

H•BC(B•)
'→ H•BC(A•).

Proof. We have the induced map ι : H•BC(B•)→ H•BC(A•) and µ : H•BC(A•)
→ H•BC(B•) such that µ ◦ ι = id. Hence ι : H•BC(B•)→ H•BC(A•) is injec-
tive.

We prove the surjectivity of the map ι : H•BC(B•)→ H•BC(A•) by us-
ing Theorem 1.2. Consider the double complex (Doub•1,•2 A• := A•1−•2 ⊗K
Kβ•2 , ∂ ⊗K id, ∂ ⊗K β), as in Section 1.3, and the double sub-complex
Doub•,•B•. Then, by the assumption, the inclusion ι⊗ id : Doub•,•B• ↪→
Doub•,•A• induces the isomorphisms

H•,•∂⊗Kid(Doub•,•B•)
'→ H•,•∂⊗Kid(Doub•,•A•)

and

H•,•
∂⊗Kβ

(Doub•,•B•)
'→ H•,•

∂⊗Kβ
(Doub•,•A•).
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Considering the spectral sequences of double complexes, by [44, Theorem 3.5],
the inclusion ι⊗ id : Doub•,•B• ↪→ Doub•,•A• induces the isomorphism

H•dR(Tot•Doub•,•B•)
'→ H•dR(Tot•Doub•,•A•).

We prove that, for any (p, q) ∈ Z2, the induced map

ι⊗ id :
ker
(
d: Totp+q (Doub•,•B•)→Totp+q+1 (Doub•,• ∧B•)

)
∩Doubp,q B•

im
(
d: Totp+q−1 (Doub•,•B•)→ Totp+q (Doub•,•B•)

)
→

ker
(
d: Totp+q (Doub•,•A•)→ Totp+q+1 (Doub•,•A•)

)
∩Doubp,q A•

im
(
d: Totp+q−1 (Doub•,•A•)→ Totp+q (Doub•,•A•)

)
is surjective.

Consider the map µ⊗ id : Doub•,•B• → Doub•,•A•. This map is a ho-
momorphism of double complexes. Then, by the assumption that µ ◦ ι = id,
for the induced map

µ⊗ id : H•dR (Tot•Doub•,•A•)→ H•dR (Tot•Doub•,•B•) ,

we have (µ⊗ id) ◦ (ι⊗ id) = id. Since

ι⊗ id : H•dR (Tot•Doub•,•B•)
'→ H•dR (Tot•Doub•,•A•)

is an isomorphism, µ⊗ id : H•dR (Tot•Doub•,•A•)→ H•dR (Tot•Doub•,•B•)
is its inverse map. Consider

ker
(
d: Totp+q (Doub•,•B•)→ Totp+q+1 (Doub•,•B•)

)
∩Doubp,q B•

im
(
d: Totp+q−1 (Doub•,•B•)→ Totp+q (Doub•,•B•)

)
⊆ H•dR (Tot•Doub•1,•2 B•)

and

ker
(
d: Totp+q (Doub•,•A•)→ Totp+q+1 (Doub•,•A•)

)
∩Doubp,q A•

im
(
d: Totp+q−1 (Doub•,•A•)→ Totp+q (Doub•,•A•)

)
⊆ H•dR (Tot•Doub•1,•2 A•) .
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By µ⊗ id(Doubp,q A•) ⊆ Doubp,q B•, the induced map

ι⊗ id :
ker
(
d: Totp+q (Doub•,•B•)→Totp+q+1 (Doub•,• ∧B•)

)
∩Doubp,q B•

im
(
d: Totp+q−1 (Doub•,•B•)→ Totp+q (Doub•,•B•)

)
→

ker
(
d: Totp+q (Doub•,•A•)→ Totp+q+1 (Doub•,•A•)

)
∩Doubp,q A•

im
(
d: Totp+q−1 (Doub•,•A•)→ Totp+q (Doub•,•A•)

)
is an isomorphism with the inverse map

µ⊗ id :
ker
(
d: Totp+q (Doub•,•A•)→Totp+q+1 (Doub•,• ∧A•)

)
∩Doubp,q A•

im
(
d: Totp+q−1 (Doub•,•A•)→ Totp+q (Doub•,•A•)

)
→

ker
(
d: Totp+q (Doub•,•B•)→ Totp+q+1 (Doub•,•B•)

)
∩Doubp,q B•

im
(
d: Totp+q−1 (Doub•,•B•)→ Totp+q (Doub•,•B•)

) .

By Theorem 1.2, for any (p, q) ∈ Z2, the induced map

ι⊗ id : Hp−q
BC (B•)⊗K Kβq ' Hp,q

BC(Doub•,•B•)

→ Hp,q
BC(Doub•,•A•) ' Hp−q

BC (A•)⊗K Kβq

is surjective and so Hp,q
BC(B•)→ Hp,q

BC(A•) is surjective. Hence the corollary
follows. �

1.5. Hard Lefschetz condition for bi-differential Z-graded
complexes

We recall here some definitions and results concerning sl2(C)-representations,
and Hard Lefschetz Condition for bi-differential Z-graded complexes; we re-
fer to [60].

Consider a (possibly non-finite-dimensional) C-vector space V . Let φ :
sl2(C)→ End(V ) be a representation of the Lie algebra sl2(C). Take the
basis

X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
and Z =

(
−1 0
0 1

)
of sl2(C). We recall that φ is said of finite Z-spectrum, [60, Definition 2.2],
if

(i) V can be decomposed as the direct sum of the eigenspaces of φ(Z),
and
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(ii) φ(Z) has only finitely many distinct eigenvalues.

For sl2(C)-representations of finite Z-spectrum, one has the following results,
[60, Corollary 2.4, Corollary 2.5, Corollary 2.6]:

(i) all eigenvalues of φ(Z) are integers;

(ii) consider, for k ∈ Z, the eigenspace Vk of φ(Z) with respect to the eigen-
value k; for any k ∈ N, the maps φ(X)k : Vk → V−k and φ(Y )k : V−k →
Vk are isomorphisms;

(iii) consider, for k ∈ Z, the set

Pk = {v ∈ Vk : φ(X)v = 0} =
{
v ∈ Vk : φ(Y )k+1v = 0

}
of primitive elements; then one has the following decompositions:
a) Vk = Pk ⊕ imφ(X) for any k ∈ Z;
b) Vk =

⊕
j∈N φ(X)j (Pk+2j) for any k ∈ N;

c) V−k =
⊕

j∈N φ(X)k+j (Pk+2j) for any k ∈ N \ {0}.

Now let
(
A•, ∂, ∂

)
be a bounded bi-differential Z-graded complex such

that Ak = {0} for k < 0 or k > 2n, for some n ∈ N \ {0}. We define H ∈
End0(A•) as H =

∑
k∈Z(n− k)πAk where πAk : A• → Ak denotes the projec-

tion. We suppose that we have operators L ∈ End2(A•) and Λ ∈ End−2(A•)
satisfying the following relations:

(1) [∂, L] = 0,
[
∂, L

]
= −∂,

[
∂,Λ

]
= 0, [∂,Λ] = ∂,

and

(2) [Λ, L] = H, [L,H] = 2L, [Λ, H] = −2Λ.

Then we have the representation φ : sl2(C)→ End(A•) of finite Z-spectrum
given by

φ(X) = Λ, φ(Y ) = L, and φ(Z) = H.

Hence, in particular, Lk : An−k → An+k is an isomorphism, for any k ∈
{0, . . . , n}.

An element α ∈ A• is called harmonic if ∂α = 0 and ∂α = 0. Let H•hr(A
•)

be the space of all the harmonic elements. Then, by the above relations,
H•hr(A

•) is a sl2(C)-submodule of finite Z-spectrum. Hence, in particular,
Lk : Hn−k

hr (A•)→ Hn+k
hr (A•) is an isomorphism, for any k ∈ {0, . . . , n}.

The same argument in [60, Section 3] still works in yielding the following
result.



i
i

“2-Kasuya” — 2019/5/8 — 10:24 — page 52 — #12 i
i

i
i

i
i

52 D. Angella and H. Kasuya

Theorem 1.4 (see [60, Theorem 0.1]). Let
(
A•, ∂, ∂

)
be a bounded bi-

differential Z-graded complex such that Ak = {0} for k < 0 or k > 2n, for
some n ∈ N \ {0}, and that (1) and (2) hold. The following conditions are
equivalent:

(i) the inclusion H•hr(A
•) ↪→ A• induces the surjection H•hr(A

•)→ H•∂(A•);

(ii) for any k ∈ {0, . . . , n}, the induced map Lk : Hn−k
∂ (A•)→ Hn+k

∂ (A•)
is surjective.

Remark 1.5. Note that the surjectivity ofH•hr(A
•)→ H•∂(A•) does not im-

ply the injectivity of Lk : Hn−k
∂ (A•)→ Hn+k

∂ (A•). In the second part of the

above theorem, we can not state that Lk : Hn−k
∂ (A•)→ Hn+k

∂ (A•) is an iso-
morphism, unless the cohomology H•∂(A•) is self-dual and finite-dimensional.

In fact, the following result holds.

Corollary 1.6. Let
(
A•, ∂, ∂

)
be a bounded bi-differential Z-graded com-

plex such that Ak = {0} for k < 0 or k > 2n, for some n ∈ N \ {0}, and
that (1) and (2) hold. Furthermore, assume that the cohomology H•∂(A•)
is finite-dimensional and, for each k ∈ {0, . . . , n}, we have dimHn−k

∂ (A•) =

dimHn+k
∂ (A•). Then the following conditions are equivalent:

(i) the inclusion H•hr(A
•) ↪→ A• induces the surjection H•hr(A

•)→ H•∂(A•);

(ii) for any k ∈ {0, . . . , n}, the induced map Lk : Hn−k
∂ (A•)→ Hn+k

∂ (A•)
is an isomorphism.

Arguing by induction as in [16, Proposition 5.4], thanks to the above
relations for ∂, ∂, L, and Λ, we have the following result.

Proposition 1.7 (see [16, Proposition 5.4]). Let
(
A•, ∂, ∂

)
be a bounded

bi-differential Z-graded complex such that Ak = {0} for k < 0 or k > 2n,
for some n ∈ N \ {0}, and that (1) and (2) hold. Suppose that for any k ∈
{0, . . . , n}, the induced map Lk : Hn−k

∂ (A•)→ Hn+k
∂ (A•) is an isomorphism.

Moreover, suppose that, for α ∈ A1, if ∂∂α = 0, then ∂α is ∂-exact. Then
we have

im ∂ ∩ ker ∂ = im ∂ ∩ im ∂.
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1.6. ∂∂-Lemma for bi-differential Z-graded complexes

In this section, we prove some results concerning ∂∂-Lemma for bi-differential
Z-graded complexes, in relation with the Hard Lefschetz Condition.

As for the following result, compare also [16, Theorem 4.3] and [25,
Proposition 2].

Proposition 1.8. Let
(
A•, ∂, ∂

)
be a bounded bi-differential Z-graded com-

plex such that Ak = {0} for k < 0 or k > 2n, for some n ∈ N \ {0}. Suppose
that:

(i) the inclusion H•hr(A
•) ⊆ A• induces the surjection H•hr(A

•)→ H•∂(A•);

(ii) im ∂ ∩ ker ∂ = im ∂ ∩ ker ∂.

Then we have im ∂ ∩ ker ∂ = im ∂∂ = im ∂ ∩ ker ∂.

Proof. For s ∈ N \ {0}, we show that im ∂ ∩ ker ∂ = im ∂∂ = im ∂ ∩ ker ∂ on
A2n−s. We will prove this by induction on s ∈ N \ {0}.

First we consider the case s = 0. By im ∂ = {0}, we have im ∂ ∩ ker ∂ =
{0} = im ∂ ∩ ker ∂, and im ∂∂ = im(−∂∂) = {0}.

Then we consider the case s = 1. Let β ∈ im ∂ ∩ ker ∂ ∩A2n−1 = im ∂ ∩
ker ∂ ∩A2n−1 such that β = ∂α for some α ∈ A2n. Then we have ∂∂α =
∂β = 0. By the assumption and by ∂A2n = 0, we have αhr ∈ H2n

hr (A•) such
that α = αhr + ∂γ for some γ ∈ A2n−1. Hence we have β = ∂αhr + ∂∂γ =
∂∂γ = ∂∂(−γ).

Assume now that im ∂ ∩ ker ∂ = im ∂∂ = im ∂ ∩ ker ∂ on A2n−r with r ≤
s. We need to prove im ∂ ∩ ker ∂ = im ∂∂ = im ∂ ∩ ker ∂ on A2n−s−1. Let

α2n−s−1 ∈ im ∂ ∩ ker ∂ ∩A2n−s−1 = im ∂ ∩ ker ∂ ∩A2n−s−1

such that α2n−s−1 = ∂α2n−s for some α2n−s ∈ A2n−s. Then we have 0 =
∂α2n−s−1 = ∂∂α2n−s = −∂∂α2n−s. Hence ∂α2n−s ∈ im ∂∂ ∩A2n−s+1 follows
from induction hypothesis and we have ∂α2n−s = ∂∂α2n−s+1 for some
α2n−s+1 ∈ A2n−s+1. By the assumption that H2n−s

hr (A•)→ H2n−s
∂ (A•) is

surjective, we have that there exist β2n−s ∈ A2n−s harmonic and γ2n−s−1 ∈
A2n−s−1 such that

α2n−s − ∂α2n−s+1 − β2n−s = ∂γ2n−s−1.
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Hence we have

α2n−s−1 = ∂α2n−s = ∂∂γ2n−s−1 = ∂∂(−γ2n−s−1) ∈ im ∂∂.

Thus the proposition follows. �

As for the following result, compare also [16, Theorem 4.2] and [25,
Theorem 2].

Proposition 1.9. Let
(
A•, ∂, ∂

)
be a bounded bi-differential Z-graded com-

plex such that Ak = {0} for k < 0 or k > 2n, for some n ∈ N \ {0}. Suppose
that

im ∂ ∩ ker ∂ = im ∂∂ = im ∂ ∩ ker ∂.

Then the inclusion H•hr(A
•) ⊆ A• induces the surjection H•hr(A

•)→ H•∂(A•).

Proof. For a ∂-closed k-element α ∈ Ak, we have ∂∂α = −∂∂α = 0. By ∂α ∈
im ∂ ∩ ker ∂ = im ∂∂, we have β ∈ Ak−1 such that ∂α = ∂∂β. Hence α− ∂β
is a harmonic element which is cohomologous to α. �

We summarize the contents of Proposition 1.8 and Proposition 1.9 in
the following corollary.

Corollary 1.10. Let
(
A•, ∂, ∂

)
be a bounded bi-differential Z-graded com-

plex such that Ak = {0} for k < 0 or k > 2n, for some n ∈ N \ {0}. Suppose
that im ∂ ∩ ker ∂ = im ∂ ∩ ker ∂. The following conditions are equivalent:

(i) the inclusion H•hr(A
•) ⊆ A• induces the surjection H•hr(A

•)→ H•∂(A•);

(ii) im ∂ ∩ ker ∂ = im ∂∂ = im ∂ ∩ ker ∂

2. Preliminaries and notations on symplectic structures

In this section, we set the notations concerning symplectic structures on
manifolds and symplectic Hodge theory, referring to, e.g., [14–16, 42, 55, 60]
for more details.

2.1. Symplectic structures

Let X be a 2n-dimensional compact manifold endowed with a symplectic
structure ω, namely, a non-degenerate d-closed 2-form on X. The symplectic
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form ω yields the natural isomorphism

I : TX → T ∗X, I(·)(··) := ω(·, ··).

Define the canonical Poisson bi-vector associated to ω as

Π := ω−1 := ω
(
I−1·, I−1··

)
∈ ∧2TX,

and, for k ∈ N, let
(
ω−1

)k
be the bi-linear form on ∧kX defined, on the

simple elements α1 ∧ · · · ∧ αk ∈ ∧kX and β1 ∧ · · · ∧ βk ∈ ∧kX, as(
ω−1

)k (
α1 ∧ · · · ∧ αk, β1 ∧ · · · ∧ βk

)
:= det

(
ω−1

(
αi, βj

))
i,j∈{1,...,k} .

Define the symplectic-?-operator, [14, §2],

?ω : ∧• X → ∧2n−•X

by requiring that, for every α, β ∈ ∧kX,

α ∧ ?ωβ =
(
ω−1

)k
(α, β) ωn.

The operators

L ∈ End2 (∧•X) , L(α) := ω ∧ α,

Λ ∈ End−2 (∧•X) , Λ(α) := −ιΠα,

H ∈ End0 (∧•X) , H(α) :=
∑
k∈Z

(n− k) π∧kXα,

yield an sl2(C)-representation on ∧•X ⊗ C, see, e.g., [60, Corollary 1.6]
(where ιξ : ∧• X → ∧•−2X denotes the interior product with ξ ∈ ∧2 (TX),
and π∧kX : ∧• X → ∧kX denotes the natural projection onto ∧kX, for k ∈
Z).

Define the symplectic co-differential operator as

dΛ := [d, Λ] ∈ End−1 (∧•X) .

One has that

d2 =
(
dΛ
)2

=
[
d, dΛ

]
= 0,

see, e.g., [38, page 266, page 265], [14, Proposition 1.2.3, Theorem 1.3.1].
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2.2. Symplectic cohomologies

Let X be a 2n-dimensional compact manifold endowed with a symplectic
structure ω.

By considering the bi-differential Z-graded complex
(
∧•X,d, dΛ

)
, one

has the symplectic cohomologies

H•] (X;R) := H•] (∧•X) , for ] ∈
{
dR,dΛ, BC,A

}
.

More precisely, other than the cohomologies

H•dR(X;R) :=
ker d

im d
and H•dΛ(X;R) :=

ker dΛ

im dΛ
,

one can define, following L.-S. Tseng and S.-T. Yau, [55, §3.2, §3.3], see also
[56, 57],

H•BC(X;R) :=
ker d∩ ker dΛ

im d dΛ
and H•A(X;R) :=

ker d dΛ

im d + im dΛ
.

In view of generalized complex geometry, [16, 17, 29], these cohomologies
are the symplectic counterpart of the Bott-Chern and Aeppli cohomologies
for complex manifolds, [57].

Note that ?2
ω = id∧•X , [14, Lemma 2.1.2], and that dΛb∧kX= (−1)k+1 ?ω

d ?ω for any k ∈ N, [14, Theorem 2.2.1]. In particular, it follows that the
symplectic Hodge-?-operator induces the isomorphism, [14, Corollary 2.2.2],

?ω : H•dR(X;R)
'→ H2n−•

dΛ (X;R).

In [55], L.-S. Tseng and S.-T. Yau developed a Hodge theory for the
symplectic cohomologies. More precisely, fixed an almost-Kähler structure
(J, ω, g := ω (·, J ··)) on X, they defined self-adjoint elliptic differential op-
erators whose kernel is isomorphic to the above cohomologies, [55, Propo-
sition 3.3, Theorem 3.5, Theorem 3.16]. In particular, X being compact,
it follows that dimRH

•
] (X;R) < +∞ for ] ∈

{
dR, dΛ, BC, A

}
, [55, Corol-

lary 3.6, Corollary 3.17]. As another consequence, the Hodge-∗-operator
∗g : ∧• X → ∧2n−•X induces the isomorphism, [55, Corollary 3.25],

∗g : H•BC(X;R)
'→ H2n−•

A (X;R).
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2.3. Hard Lefschetz Condition

Several special cohomological properties can be defined on symplectic man-
ifolds. More precisely, a compact 2n-dimensional manifold X endowed with
a symplectic structure ω is said to satisfy:

• the Hard Lefschetz Condition if, for any k ∈ N, the map
[
ωk
]
^ · :

Hn−k
dR (X;R)→ Hn+k

dR (X;R) is an isomorphism;

• the Brylinski conjecture, [14, Conjecture 2.2.7], if every de Rham coho-
mology class admits a d-closed dΛ-closed representative, namely, the
natural map H•BC(X;R)→ H•dR(X;R) induced by the identity is sur-
jective;

• the d dΛ-Lemma if every d-exact dΛ-closed form is also d dΛ-exact,
namely, if the natural map H•BC(X;R)→ H•dR(X;R) induced by the
identity is injective.

By [42, Corollary 2], [60, Theorem 0.1], [43, Proposition 1.4], [30], [55,
Proposition 3.13], [16, Theorem 5.4], it follows that, for compact symplec-
tic manifolds, the Hard Lefschetz Condition, the Brylinski conjecture, and
the d dΛ-Lemma are equivalent properties. In this case, it follows that the
natural maps

H•BC(X;R)

ww ''
H•dR(X;R)

''

H•
dΛ(X;R)

ww
H•A(X;R)

induced by the identity are actually isomorphisms.
(See also, e.g., [55, Proposition 3.13], [12], [40, §3, Theorem 4], [7, Re-

mark 2.3], [8, Theorem 4.4], [36, §8], [35, §5].)

3. Symplectic cohomologies for solvmanifolds

In this section, we apply the results in [5] in order to provide tools for the
computations of the symplectic cohomologies for solvmanifolds. In partic-
ular, we recover a theorem by M. Macr̀ı, [40], for completely-solvable solv-
manifolds, see Theorem 3.2, and we extend the result to the general case in
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Theorem 6.8. Such results will be used in Section 4 to investigate explicit
examples.

3.1. Notations

In order to fix notations, let X = Γ\G be a solvmanifold (that is, a compact
quotient of a connected simply-connected solvable Lie group by a co-compact
discrete subgroup) endowed with a G-left-invariant symplectic structure ω.
Denote the Lie algebra associated to G by g: it is endowed with the linear
symplectic structure ω ∈ ∧2g∗. Denote the complexification of g by gC :=
g⊗R C.

Given a bi-differential Z-graded sub-complex
(
A•, d, dΛ

)
↪→
(
∧•X, d, dΛ

)
,

consider, for ] ∈
{
dR, dΛ, BC, A

}
,

ι : H•] (A•)→ H•] (X;R).

In particular, by means of left-translations, one has the Z-graded R-
vector sub-space ι : ∧• g∗ ↪→ ∧•X. Since ω is G-left-invariant, the space ∧•g∗
is endowed with the (restrictions of the) differentials d and dΛ. In particular,(
∧•g∗, d, dΛ

)
is a bi-differential Z-graded sub-complex of

(
∧•X, d, dΛ

)
. For

] ∈
{
dR, dΛ, BC, A

}
, denote

ι : H•] (g;R) := H•] (∧•g∗)→ H•] (X;R) .

3.2. Subgroups of symplectic cohomologies

We firstly note the following result, as a consequence of the symplectic Hodge
theory developed by L.-S. Tseng and S.-T. Yau in [55].

Corollary 3.1. Let Γ\G be a 2n-dimensional solvmanifold endowed with
a G-left-invariant symplectic structure ω. Let (A•, d) be a sub-complex of
(∧•X, d) such that A2 3 ω, and suppose that there exists an almost-Kähler
structure (J, ω, g) on X such that the Hodge-∗-operator associated to g satis-
fies ∗gbA• : A• → A2n−•. Then, for ] ∈

{
dR, dΛ, BC, A

}
, the natural map

ι : H•] (A•)→ H•] (X;R)

is injective.

Proof. Take an almost-Kähler structure (J, ω, g) as in the statement. In par-
ticular, J is an almost-complex structure being compatible with ω, that is,
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g := ω(·, J ··) is a J-Hermitian metric with associated fundamental form ω.
Consider the Hodge-∗-operator ∗g : ∧• X → ∧2n−•X associated to g. By [55,
Theorem 3.5, Corollary 3.6], the 4th-order self-adjoint differential operator

Dd + dΛ :=
(
d dΛ

) (
d dΛ

)∗
+
(
d dΛ

)∗ (
d dΛ

)
+
(
d∗ dΛ

) (
d∗ dΛ

)∗
+
(
d∗ dΛ

)∗ (
d∗ dΛ

)
+ d∗ d +

(
dΛ
)∗

dΛ

is elliptic, and it induces an orthogonal decomposition

∧•X = kerDd + dΛ

⊥
⊕ d dΛ ∧•X

⊥
⊕
(

d∗ ∧•+1X +
(
dΛ
)∗ ∧•−1 X

)
,

and hence the isomorphism

H•BC(X;R) ' kerDd + dΛ ,

By the hypotheses, one has that d and dΛ, and ∗g, restricts to A•. In
particular, Dd + dΛbA• : A• → A• induces an isomorphism

H•BC(A•) ' kerDd + dΛ .

Hence, (as in [5, Theorem 1.6],) one gets the commutative diagram

kerDd + dΛbA• ' //
� _

��

H•BC(A•)

��
kerDd + dΛ

' //' // H•BC(X;R)

from which it follows that the natural map H•BC(A•)→ H•BC(X;R) is in-
jective.

The theorem follows, by considering the differential elliptic operators

[d,d∗] and
[
dΛ,
(
dΛ
)∗]

and, [55, Theorem 3.16],

Dd dΛ :=
(
d dΛ

) (
d dΛ

)∗
+
(
d dΛ

)∗ (
d dΛ

)
+
(

d
(
dΛ
)∗)(

d
(
dΛ
)∗)∗

+
(

d
(
dΛ
)∗)∗ (

d
(
dΛ
)∗)

+ d d∗+ dΛ
(
dΛ
)∗
,

such that H•A(X;R) ' kerDd dΛ , [55, Corollary 3.17], or by noting that

∗gDd + dΛ = Dd dΛ∗g, from which one has the isomorphism ∗g : H•BC(X;R)
'→

H2n−•
A (X;R), [55, Lemma 3.23, Proposition 3.24, Corollary 3.25]. �
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3.3. Symplectic cohomologies for completely-solvable
solvmanifolds

By A. Hattori’s theorem [34, Corollary 4.2], if G is completely-solvable, (that
is, for any g ∈ G, all the eigen-values of Ad g are real,) then the natural map
H•dR (g;R)→ H•dR (X;R) is an isomorphism.

The following result states that, for a completely-solvable solvmanifold,
the L.-S. Tseng and S.-T. Yau symplectic cohomologies can be computed
using just left-invariant forms; we refer to [40, Theorem 3] by M. Macr̀ı for
a different proof of the same result.

Theorem 3.2 (see [40, Theorem 3]). Let Γ\G be a solvmanifold en-
dowed with a G-left-invariant symplectic structure ω. Suppose that the
natural map H•dR (g;R)→ H•dR (X;R) is an isomorphism. Then, for ] ∈{

dΛ, BC, A
}

, the natural map

ι : H•] (g;R)→ H•] (X;R)

is an isomorphism.

Proof. We split the proof in the following steps.

Step 1 – The symplectic dΛ-cohomology.

Since ω is G-left-invariant, then the symplectic-?-operator ?ω : ∧• X →
∧dimX−•X induces the isomorphism ?ωb∧•g∗ : ∧• g∗ → ∧dimR g−•g∗. Hence,
since

(?ωb∧•g∗)2 = ?2
ωb∧•g∗= id∧•g∗

and dΛb∧•g∗= (−1)k+1 ?ω b∧•g∗ db∧•g∗ ?ωb∧•g∗

for any k ∈ N, one has the isomorphism ?ω : H•dR(g;R)
'→ HdimR g−•

dΛ (g;R).
Therefore one gets the commutative diagram

H•dR (g;R)
'
ι

//

'?ω
��

H•dR (X;R)

'?ω
��

HdimR g−•
dΛ (g;R) ι

// HdimX−•
dΛ (X;R) ,

from which it follows that the natural map ι : H•
dΛ (g;R)→ H•

dΛ (X;R) is an
isomorphism.
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Step 2 – The symplectic Bott-Chern cohomology.

Apply Corollary 1.3 to ι :
(
∧•g∗, d, dΛ

)
↪→
(
∧•X, d, dΛ

)
, where the map

µ : ∧• X → ∧•g∗ is the F. A. Belgun symmetrization map, [9, Theorem 7]:
namely, by [45, Lemma 6.2], consider a G-bi-invariant volume form η on G
such that

∫
X η = 1, and define

µ : ∧• X ⊗R C→ ∧•g∗C, µ(α) :=

∫
X
αbx η(x).

Step 3 – The symplectic Aeppli cohomology.

Let J be a G-left-invariant ω-compatible almost-complex structure on
X, (see, e.g., [15, Proposition 12.6],) and consider the G-left-invariant J-
Hermitian metric g :=ω (·, J ··). By [55, Corollary 3.25], the Hodge-∗-operator
∗g : ∧• X → ∧2n−•X induces the isomorphism

∗g : H•BC(X;R)
'→ H2n−•

A (X;R),

and, since g is G-left-invariant, also the isomorphism

∗g : H•BC(g;R)
'→ H2n−•

A (g;R).

Hence one has the commutative diagram

H•BC (g;R)
'
ι

//

'∗g
��

H•BC (X;R)

'∗g
��

HdimR g−•
A (g;R) ι

// HdimX−•
A (X;R) ,

from which it follows that also the natural map ι : H•A (g;R)→ H•A (X;R)
is an isomorphism. �

4. Applications

In this section, as an application of Theorem 3.2, we explicitly compute the
symplectic cohomologies of some low-dimensional nilmanifolds and solvman-
ifolds.
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We recall that, by [8, Theorem 4.4], for a compact manifold X endowed
with a symplectic structure, for any k ∈ Z, the inequality

∆k := dimRH
k
BC(X;R) + dimRH

k
A(X;R)− 2 dimRH

k
dR(X;R) ≥ 0

holds. Furthermore, the equality holds for any k ∈ Z if and only if X sat-
isfies the Hard Lefschetz Condition. Non-tori nilmanifolds never satisfy the
Hard Lefschetz Condition by [10, Theorem A]. Hence, for nilmanifolds, the
numbers

{
∆k
}
k∈Z provide a degree of non-Kählerianity. As regards Hard

Lefschetz Condition for solvmanifolds, we refer to [35, 36]. Finally, recall
that, by [54, Theorem 4.3], for compact symplectic manifolds, it holds al-
ways ∆1 = 0.

(As a matter of notations, by writing the structure equations of the Lie
algebra g associated to a solvmanifold, we write, e.g., (0, 0, 0, 12): we mean
that there exists a basis

{
e1, e2, e3, e4

}
of g∗ such that d e1 = d e2 = d e3 =

0 and d e4 = e1 ∧ e2; furthermore, we shorten e1 ∧ e2 =: e12; we follow the
notations in [12, 19, 50].)

4.1. 4-dimensional solvmanifolds

According to [12, Theorem 6.2, Table 2], the compact 4-dimensional man-
ifolds that are diffeomorphic to a solvmanifold admitting a left-invariant
symplectic structure are the following:

(a) the torus 4 g1 = (0, 0, 0, 0) endowed with the left-invariant symplectic
structure ω := e12 + e34: the Lie algebra is Abelian, and the symplectic
structure satisfies the Hard Lefschetz Condition;

(b) the differentiable manifold underlying the primary Kodaira surface g3.1 ⊕
g1 = (0, 0, 0, 23) endowed with the left-invariant symplectic structure
ω := e12 + e34: the Lie algebra is nilpotent, and hence no left-invariant
symplectic structure on such manifold satisfies the Hard Lefschetz Con-
dition;

(c) the solvmanifold associated to g1 ⊕ g−1
3.4 = (0, 0, −23, 24) endowed with

the left-invariant symplectic structure ω := e12 + e34: the Lie algebra
is completely-solvable, and the symplectic structure satisfies the Hard
Lefschetz Condition;

(d) the differentiable manifold underlying the hyper-elliptic surface, whose
associated Lie algebra is g1 ⊕ g0

3.5 = (0, 0, −24, 23), endowed with the
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left-invariant symplectic structure ω := e12+e34: it yields a Kähler struc-
ture on a solvmanifold, and hence the symplectic structure satisfies the
Hard Lefschetz Condition;

(e) the manifold associated to g4.1 = (0, 0, 12, 13) endowed with the left-
invariant symplectic structure ω := e14 + e23: the Lie algebra is nilpo-
tent, and hence no left-invariant symplectic structure on such manifold
satisfies the Hard Lefschetz Condition.

We compute the symplectic cohomologies of the above manifolds en-
dowed with the indicated left-invariant symplectic structures. Note that, in
case of the nilmanifolds (a), (b), and (e), by Theorem 6.8, see also [40, The-
orem 3], it suffices to consider the left-invariant forms. On the other hand,
since the symplectic structures on the manifolds (c) and (d) satisfy the Hard
Lefschetz Condition, we know that the Bott-Chern, Aeppli, and de Rham
cohomologies are all isomorphic.

In Table 1 we list the harmonic representatives with respect to the left-
invariant metric g :=

∑4
j=1 e

j � ej , and in Table 2 we summarize the di-
mensions of the symplectic cohomologies and the non-Kählerianity degrees{

∆k
}
k∈{1,2,3}.

H•] H1
] H2

] H3
]

4 g1
H•BC R

〈
e1, e2, e3, e4

〉
R
〈
e12, e13, e14, e23, e24, e34

〉
R
〈
e123, e124, e134, e234

〉
H•A R

〈
e1, e2, e3, e4

〉
R
〈
e12, e13, e14, e23, e24, e34

〉
R
〈
e123, e124, e134, e234

〉
g3.1 ⊕ g1

H•BC R
〈
e1, e2, e3

〉
R
〈
e12, e13, e23, e24, e34

〉
R
〈
e123, e134, e234

〉
H•A R

〈
e1, e2, e4

〉
R
〈
e12, e13, e14, e24, e34

〉
R
〈
e124, e134, e234

〉
g−1

3.4 ⊕ g1
H•BC R

〈
e1, e2

〉
R
〈
e12, e34

〉
R
〈
e134, e234

〉
H•A R

〈
e1, e2

〉
R
〈
e12, e34

〉
R
〈
e134, e234

〉
g0

3.5 ⊕ g1
H•BC R

〈
e1, e2

〉
R
〈
e12, e34

〉
R
〈
e134, e234

〉
H•A R

〈
e1, e2

〉
R
〈
e12, e34

〉
R
〈
e134, e234

〉
g4.1

H•BC R
〈
e1, e2

〉
R
〈
e12, e13, e14, e23

〉
R
〈
e123, e124

〉
H•A R

〈
e3, e4

〉
R
〈
e14, e23, e24, e34

〉
R
〈
e134, e234

〉
Table 1: The symplectic Bott-Chern and Aeppli cohomologies for 4-
dimensional solvmanifolds.
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dimRH
•
] 4 g1 g3.1 ⊕ g1 g−1

3.4 ⊕ g1 g0
3.5 ⊕ g1 g4.1

(0, 0, 0, 0) (0, 0, 0, 23) (0, 0, −23, 24) (0, 0, −24, 23) (0, 0, 12, 13)

k=1

dimRH
1
dR 4 3 2 2 2

dimRH
1
BC 4 3 2 2 2

dimRH
1
A 4 3 2 2 2

∆1 0 0 0 0 0

k=2

dimRH
2
dR 6 4 2 2 2

dimRH
2
BC 6 5 2 2 4

dimRH
2
A 6 5 2 2 4

∆2 0 2 0 0 4

k=3

dimRH
3
dR 4 3 2 2 2

dimRH
3
BC 4 3 2 2 2

dimRH
3
A 4 3 2 2 2

∆3 0 0 0 0 0

HLC? X × X X ×

Table 2: Summary of the dimensions of symplectic Bott-Chern and Aeppli
cohomologies for 4-dimensional solvmanifolds.

4.2. 6-dimensional nilmanifolds

The 6-dimensional nilmanifolds can be classified in terms of their Lie algebra,
up to isomorphisms, in 34 classes, according to V. V. Morozov’s classifica-
tion, [46], see also [41].

As regards the complex geometry of 6-dimensional nilmanifolds, S. Sala-
mon proved in [50] that just 18 of these 34 classes admit a complex structure.
A complete classification, up to equivalence, of the left-invariant complex
structures on 6-dimensional nilmanifolds follows from the works by several
authors, and was completed in [20]. In [4, 39], the Bott-Chern cohomology
for each of such structures is computed. In view of [6], such computations
provide a measure of the non-Kählerianity of 6-dimensional nilmanifolds,
but for nilmanifolds associated to the Lie algebra h7 = (0, 0, 0, 12, 13, 23)
possibly.

As regards the symplectic geometry of 6-dimensional nilmanifolds, M.
Goze and Y. Khakimdjanov proved that 26 of the 34 classes of 6-dimensional
Lie algebras admit a symplectic structure, [28].

Finally, G. R. Cavalcanti and M. Gualtieri proved in [19] that every
6-dimensional nilmanifolds admit a generalized-complex structure.

By applying Theorem 3.2, see also [40, Theorem 3], one can compute the
symplectic cohomologies of the 6-dimensional nilmanifolds endowed with a
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left-invariant symplectic structure. The results of the computations, which
we performed with the aid of Sage [49], are summarized in Table 3.

5. Twisted symplectic cohomologies and twisted Hard
Lefschetz Condition

In this section, we study twisted symplectic cohomologies, and in particular
twisted Hard Lefschetz Condition and DφD

Λ
φ -Lemma.

Let X be be a 2n-dimensional compact manifold endowed with a sym-
plectic structure ω. For a real or complex vector space V , consider a trivial
vector bundle Eφ = X × V with a connection form φ ∈ ∧1X × End(V ).

5.1. Twisted symplectic cohomologies

Define the operator

Dφ := d +φ

on the space ∧• (X;Eφ) of the differential forms with values in the vector
bundle Eφ.

Define the operators

∗ω : ∧• (X;Eφ)→ ∧2n−• (X;Eφ) ,

and

L : ∧• (X;Eφ)→ ∧•+2 (X;Eφ) ,

Λ: ∧• (X;Eφ)→ ∧•−2 (X;Eφ) ,

H : ∧• (X;Eφ)→ ∧• (X;Eφ) ,

as the natural extensions of the operators in Section 2.1.
Define

DΛ
φ := [Dφ,Λ] .

By the same way as in [14, Theorem 2.2.1], (see also [16, Proposition 5.1],)
on ∧k (X;Eφ), we have

DΛ
φ b∧k(X;Eφ)= (−1)k+1 ?ω Dφ ?ω .

We suppose now that φ is flat, i.e., dφ+ φ ∧ φ = 0. Then the pair
(∧• (X;Eφ) , Dφ) is a differential graded module over the differential graded



i
i

“2-Kasuya” — 2019/5/8 — 10:24 — page 66 — #26 i
i

i
i

i
i

66 D. Angella and H. Kasuya

d
im

R
H
•]

k
=

1
k

=
2

k
=

3

[12]
[1

9
]

ω
ω

=
12

+
34

+
56

d
im

R
H

1dR
d
im

R
H

1B
C

d
im

R
H

1A
∆

1
d
im

R
H

2dR
d
im

R
H

2B
C

d
im

R
H

2A
∆

2
d
im

R
H

3dR
d
im

R
H

3B
C

d
im

R
H

3A
∆

3

g
6
.N

2
30

1
(0,0,1

2,13,1
4,1

5
)

16
+

34
−

2
5

(0,15,16
,13,14,0)

2
2

2
0

3
5

5
4

4
6

6
4

g
6
.N

1
9

31
3

(0,0
,12

,1
3,14,23

+
15

)
16

+
2
4

+
3
4
−

2
5

(0,63
+

15
,16

,13
−

16,14,0)
2

2
2

0
3

5
5

4
4

6
6

4
g

6
.N

1
1

27
4

(0,0,1
2,13,2

3,1
4
)

15
+

2
4

+
3
4
−

2
6

(0,63,16,13
−

16,14,0)
2

2
2

0
4

6
6

4
6

6
6

0
g

16
.N

1
8

29
5

(0,0
,12

,1
3,23,14

−
2
5)

15
+

2
4
−

3
5

+
16

(35
,35

+
13
,0
,15,0,54

+
23)

2
2

2
0

4
6

6
4

6
6

6
0

g
−

1
6
.N

1
8

28
6

(0,0
,12

,1
3,23,14

+
25

)
15

+
2
4

+
3
5

+
1
6

(53
,31
−

35,0,51,0,54
+

32)
2

2
2

0
4

6
6

4
6

6
6

0
g

6
.N

2
0

32
8

(0
,0
,12,1

3,1
4

+
2
3
,2

4
+

15)
1
6

+
2
×

34
−

2
5 (0

,6
4

+
15
,2
×

16,
12
×

13,14
+

12
×

63,0 )
2

2
2

0
3

5
5

4
4

6
6

4

g
6
.N

6
13

1
0

(0,0,0,1
2,13

,14
+

23)
1
6
−

2
×

34
−

25
(0
,13

+
12
×

64,16,0
,

12
×

14,0 )
3

3
3

0
6

9
9

6
8

11
11

6
g

6
.N

7
14

1
1

(0,0,0,1
2,13

,2
4)

26
+

14
+

3
5

(0,14,0,31,0
,35)

3
3

3
0

6
9

9
6

8
9

9
2

g
6
.N

1
12

1
2

(0,0,0,1
2,13

,1
4)

16
+

24
+

3
5

(0,14,0,13,0
,15)

3
3

3
0

6
9

9
6

8
10

10
4

g
6
.N

3
11

1
3

(0,0,0,1
2,13

,2
3)

15
+

24
+

3
6

(0,15,0,13,0
,35)

3
3

3
0

8
1
1

11
6

12
13

13
2

g
6
.N

1
7

25
1
4

(0,0,0,1
2,14

,15
+

23)
13

+
26
−

4
5

(0,0
,0
,15

+
32
,16,13)

3
3

3
0

5
6

6
2

6
7

7
2

g
6
.N

1
5

24
1
5

(0
,0,0,1

2,14
,15

+
23

+
24

)
13

+
26
−

4
5

(0,0,0,15
+

32
+

36,16,13)
3

3
3

0
5

6
6

2
6

7
7

2
g

5
.6 ⊕

g
1

17
1
6

(0,0,0,1
2,14,1

5
+

2
4)

13
+

26
−

4
5

(0,0
,0
,15

+
36
,16,13)

3
3

3
0

5
6

6
2

6
7

7
2

g
5
.2 ⊕

g
1

15
1
7

(0,0,0,12,14
,1

5
)

13
+

26
−

4
5

(0,0
,0
,15,16,13)

3
3

3
0

5
6

6
2

6
7

7
2

g
6
.N

9
19

1
9

(0,0,0,1
2,14

,13
+

42)
15

+
26

+
3
4

(0,16,0,15
+

63
,0
,13)

3
3

3
0

5
8

8
6

6
10

10
8

g
6
.N

8
18

2
0

(0,0,0,1
2,14

,23
+

24)
16
−

3
4

+
25

(0,54
+

53
,15,0

,0
,13)

3
3

3
0

5
8

8
6

6
10

10
8

g
6
.N

1
6

26
2
3

(0
,0,0,1

2,14
−

23
,1

5
+

3
4)

16
+

35
+

2
4

(0,14
+

36
,0,16

+
35
,0,15)

3
3

3
0

4
7

7
6

4
7

7
6

g
6
.N

1
0

20
2
4

(0
,0,0,1

2,14
+

2
3
,1

3
+

4
2)

1
5

+
2
×

26
+

34
(0
,16

+
12
×

35,0
,15

+
12
×

63,0,
12
×

13 )
3

3
3

0
5

8
8

6
6

10
10

8

g
4
.1 ⊕

2g
1

9
2
6

(0,0
,0
,0
,12,15)

16
+

25
+

3
4

(0,14
,0
,13,0,0)

4
4

4
0

7
9

9
4

8
12

12
8

g
5
.5 ⊕

g
1

8
2
7

(0,0
,0
,0
,12,14

+
25)

13
+

26
+

4
5

(0,0
,0
,15

+
36
,0
,13)

4
4

4
0

7
9

9
4

8
12

12
8

g
6
N
.4

6
2
8

(0,0
,0
,0
,12,14

+
23)

13
+

26
+

4
5

(0,0
,0
,15

+
32
,0
,13)

4
4

4
0

8
1
0

10
4

10
12

12
4

2g
3
.1

5
2
9

(0,0
,0
,0
,12,34)

15
+

36
+

2
4

(0,15
,0
,36,0,0)

4
4

4
0

8
1
0

10
4

10
11

11
2

g
5
.1 ⊕

g
1

4
3
0

(0,0
,0
,0
,12,13)

16
+

25
+

3
4

(0,15
,0
,13,0,0)

4
4

4
0

9
1
1

11
4

12
14

14
4

g
6
N
.5

7
3
1

(0
,0,0,0,1

3
+

4
2
,14

+
23)

16
+

25
+

3
4

(0,16
+

35
,0
,15

+
63
,0
,0)

4
4

4
0

8
1
0

10
4

10
11

11
2

g
3
.1 ⊕

3g
1

2
3
3

(0,0
,0
,0
,0
,1

2
)

16
+

23
+

4
5

(0,13,0
,0
,0
,0)

5
5

5
0

1
1

1
2

12
2

14
16

16
4

6g
1

1
3
4

(0,0,0,0,0,0)
12

+
34

+
5
6

(0,0
,0
,0
,0
,0)

6
6

6
0

1
5

1
5

15
0

20
20

20
0

T
ab

le
3
:

S
u

m
m

ary
of

th
e

d
im

en
sion

s
of

th
e

sy
m

p
lectic

B
ott-C

h
ern

an
d

A
ep

p
li

coh
om

ologies
for

6-d
im

en
sion

al
n

ilm
an

ifo
ld

s.



i
i

“2-Kasuya” — 2019/5/8 — 10:24 — page 67 — #27 i
i

i
i

i
i

Symplectic Bott-Chern cohomology of solvmanifolds 67

algebra ∧•X. Moreover we have(
DΛ
φ

)2
= 0.

Now we define the twisted symplectic cohomologies

H•dR(X;Eφ) :=
kerDφ

imDφ
and H•DΛ

φ
(X;Eφ) :=

kerDΛ
φ

imDΛ
φ

,

and

H•BC(X;Eφ) :=
kerDφ ∩ kerDΛ

φ

imDφD
Λ
φ

and H•A(X;Eφ) :=
kerDφD

Λ
φ

imDφ + imDΛ
φ

.

By the same way as in [60, Section 1], (see also [16, Proposition 5.2],)
we have the relations

[Dφ, L] = 0,
[
DΛ
φ , L

]
= −Dφ, L = − ?ω Λ?ω,[

DΛ
φ ,Λ

]
= 0, [Dφ,Λ] = DΛ

φ , Λ = − ?ω L ?ω
[Λ, L] = H, [L,H] = 2L, [Λ, H] = −2Λ.

By DΛ
φ = (−1)k+1 ∗ω Dφ?ω, we get that the operator ?ω : ∧• (X;Eφ)→

∧2n−• (X;Eφ) induces the isomorphism

H•dR(X;Eφ)
'→ H2n−•

DΛ
φ

(X;Eφ).

Take an almost-complex structure J being compatible with ω, that is,
g := ω(·, J ··) is a J-Hermitian metric with associated fundamental form ω.
Recall that there is a canonical way to construct J , see, e.g., [15, Proposi-

tion 12.6]. Consider the Hodge-∗-operator ∗g : ∧• (X;Eφ)→ ∧2n−•
(
X;E∗φ

)
associated to g where E∗φ is the dual of Eφ. Consider the 4th-order self-adjoint
differential operators

DDφ+DΛ
φ

:=
(
DφD

Λ
φ

) (
DφD

Λ
φ

)∗
+
(
DφD

Λ
φ

)∗ (
DφD

Λ
φ

)
+
(
D∗φD

Λ
φ

) (
D∗φD

Λ
φ

)∗
+
(
D∗φD

Λ
φ

)∗ (
D∗φD

Λ
φ

)
+D∗φDφ +

(
DΛ
φ

)∗
DΛ
φ

and

DDφDΛ
φ

:=
(
DφD

Λ
φ

) (
DφD

Λ
φ

)∗
+
(
DφD

Λ
φ

)∗ (
DφD

Λ
φ

)
+
(
Dφ

(
DΛ
φ

)∗)(
Dφ

(
DΛ
φ

)∗)∗
+
(
Dφ

(
DΛ
φ

)∗)∗ (
Dφ

(
DΛ
φ

)∗)
+DφD

∗
φ +DΛ

φ

(
DΛ
φ

)∗
.
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Then, as similar to [55], these operators are elliptic, and hence induce or-
thogonal decompositions

∧• (X;Eφ) = kerDDφ+DΛ
φ

⊥
⊕ DφD

Λ
φ ∧• (X;Eφ)

⊥
⊕
(
D∗φ ∧•+1 (X;Eφ) +

(
DΛ
φ

)∗ ∧•−1 (X;Eφ)
)

and

∧• (X;Eφ) = kerDDφDΛ
φ

⊥
⊕
(
Dφ ∧•−1 (X;Eφ) +DΛ

φ ∧•+1 (X;Eφ)
)

⊥
⊕
(
DφD

Λ
φ

)∗ ∧• (X;Eφ) .

Therefore we have the isomorphisms

H•BC(X;Eφ) ' kerDDφ+DΛ
φ

and H•A(X;Eφ) ' kerDDφDΛ
φ
.

By noting that ∗gDDφ+DΛ
φ

= DDφDΛ
φ
∗g, we have the isomorphism

∗g : H•BC(X;Eφ)
'→ H2n−•

A (X;E∗φ).

5.2. Twisted Hard Lefschetz Condition

As in [14, page 102], we define c ∈ ∧• (X;Eφ) to be symplectically-harmonic
if Dφc = DΛ

φ c = 0.
We say that (X, ω) satisfies the Eφ-twisted Hard Lefschetz Condition if,

for each 1 ≤ k ≤ n, the linear map [ωk] ^ · : Hn−k
dR (X;Eφ)→ Hn+k

dR (X;Eφ)
is an isomorphism.

By the above relations, by using the sl2(C)-representation theory, we
have the following result as an application of Theorem 1.4.

Theorem 5.1. Let X be a 2n-dimensional compact manifold endowed with
a symplectic structure ω. Let Eφ = X × V be a trivial vector bundle on X
with a connection form φ ∈ ∧1X × End(V ). Suppose that φ is flat.

The following two conditions are equivalent:

(i) for each 1 ≤ k ≤ n, the linear map

[ωk] ^ · : Hn−k
dR (X;Eφ)→ Hn+k

dR (X;Eφ)

is surjective;
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(ii) there is a symplectically-harmonic representative in each cohomology
class in H•dR(X;Eφ).

By the Poincaré duality for local systems and Corollary 1.6, we have the
following result.

Theorem 5.2. Let X be a 2n-dimensional compact manifold endowed with
a symplectic structure ω. Let Eφ = X × V be a trivial vector bundle on X
with a connection form φ ∈ ∧1X × End(V ). Suppose that φ is flat, and that
the dual flat bundle of Eφ is isomorphic to Eφ itself.

Then the following two conditions are equivalent:

(i) (X,ω) satisfies the Eφ-twisted Hard Lefschetz Condition;

(ii) there is a symplectically-harmonic representative in each cohomology
class in H• (X;Eφ).

5.3. DφD
Λ
φ -Lemma

We say that (X, ω) satisfies the DφD
Λ
φ -Lemma if we have

imDΛ
φ ∩ kerDφ = imDφD

Λ
φ = imDφ ∩ kerDΛ

φ ,

namely, the natural maps H•BC(X;Eφ)→ H•dR(X;Eφ) and H•BC(X;Eφ)→
H•

dΛ(X;Eφ) induced by the identity are isomorphisms.

In studying the relations between the twisted Hard Lefschetz Condition
and the DφD

Λ
φ -Lemma, we need the following result.

Proposition 5.3. Let X be a 2n-dimensional compact manifold endowed
with a symplectic structure ω. Let Eφ = X × V be a trivial vector bundle on
X with a connection form φ ∈ ∧1X × End(V ). Suppose that φ is flat.

Suppose that

• either Eφ is isomorphic to trivial flat bundle E0,

• or H0
dR (X;Eφ) = {0}.

Suppose also that (X, ω) satisfies the Eφ-twisted Hard Lefschetz Condition.
Then we have

imDΛ
φ ∩ kerDφ = imDφ ∩ kerDΛ

φ .
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Proof. In the case Eφ ' E0, we have (∧• (X;Eφ) , Dφ) ' (∧•(X)⊗ Cn, d).
Hence we can prove as in the ordinary case, see [16, Proposition 5.4].

Suppose H0
dR (X;Eφ) = {0}. Let α ∈ ∧1 (X;Eφ) with DφD

Λ
φα = 0.

Then, by the assumption, we have DΛ
φα = 0. Hence by Proposition 1.7, we

have

imDΛ
φ ∩ kerDφ = imDφ ∩ imDΛ

φ .

By this equation and the relation DΛ
φ b∧k(X;Eφ)= (−1)k+1 ?ω Dφ?ω, we have

also

imDφ ∩ kerDΛ
φ = imDφ ∩ imDΛ

φ .

Hence the proposition follows. �

By this proposition and Proposition 1.8 and Proposition 1.9, we have
the following result.

Corollary 5.4. Let X be a 2n-dimensional compact manifold endowed with
a symplectic structure ω. Let Eφ = X × V be a trivial vector bundle on X
with a connection form φ ∈ ∧1X × End(V ). Suppose that φ is flat. Suppose
that the monodromy representation of Eφ is semi-simple.

Consider the following two conditions:

(i) (X,ω) satisfies the Eφ-twisted Hard Lefschetz Condition;

(ii) (X,ω) satisfies the DφD
Λ
φ -Lemma.

Then the first condition implies the second one. Moreover if the dual
flat bundle of Eφ is isomorphic to Eφ itself, then the two conditions are
equivalent.

Arguing as in [55, Proposition 3.13], one has the following result.

Corollary 5.5. Let X be a 2n-dimensional compact manifold endowed with
a symplectic structure ω. Let Eφ = X × V be a trivial vector bundle on X
with a connection form φ ∈ ∧1X × End(V ). Suppose that φ is flat. Suppose
that the monodromy representation of Eφ is semi-simple.

Consider the following two conditions :

(i) (X,ω) satisfies the Eφ-twisted Hard Lefschetz Condition;

(ii) the map H•BC (X;Eφ)→ H•dR (X;Eφ) is an isomorphism.

Then the first condition imply the second one. Moreover if the dual flat
bundle of Eφ is isomorphic to Eφ itself, then the two conditions are equiva-
lent.



i
i

“2-Kasuya” — 2019/5/8 — 10:24 — page 71 — #31 i
i

i
i

i
i

Symplectic Bott-Chern cohomology of solvmanifolds 71

The following result is a straightforward corollary.

Corollary 5.6. Let X be a 2n-dimensional compact manifold endowed with
a symplectic structure ω. Let Eφ = X × V be a trivial vector bundle on X
with a connection form φ ∈ ∧1X × End(V ). Suppose that φ is flat. Suppose
that the monodromy representation of Eφ is semi-simple. We assume that
(X,ω) satisfies the Eφ-twisted Hard Lefschetz Condition.

Then for each k ∈ Z, we have dimRH
k
BC (X;Eφ) = dimRH

k
dR (X;Eφ).

In [53], Simpson showed the following result.

Theorem 5.7 ([53, Lemma 2.6]). Let (X,ω) be a compact Kähler mani-
fold and Eφ a flat bundle over X whose monodromy representation is semi-
simple. Then (X,ω) satisfies the Eφ-twisted Hard Lefschetz Condition.

6. Twisted cohomologies on solvmanifolds

In this section, we study twisted symplectic cohomologies for special solv-
manifolds.

Let G be a connected simply-connected solvable Lie group. Denote by g
its associated Lie algebra, and by ρ : G→ GL(Vρ) a representation on a real
or complex vector space Vρ.

We consider the cochain complex ∧•g∗ with the derivation d which is
the dual to the Lie bracket of g. Then the pair

(∧•g∗ ⊗ Vρ, dρ := d +ρ∗)

is a differential graded module over the differential graded algebra ∧•g∗.
Here ρ∗ ∈ g∗ ⊗ gl(Vρ) is the derivation of ρ. We can consider the cochain
complex (∧•g∗ ⊗ Vρ, dρ) given by the twisted G-invariant differential forms
on G.

Suppose that G has a lattice Γ. Since π1(Γ\G) = Γ, we have a flat vector
bundle Eρ∗ with flat connection Dρ∗ on Γ\G whose monodromy is ρbΓ. We
can regard Eρ∗ as the flat bundle Γ\G × Vρ with the connection form ρ∗,
and we have the inclusion

ι : ∧• g∗ ⊗ Vρ ↪→ ∧• (Γ\G ;Eρ∗)

of cochain complexes. Consider the natural extension

µ : ∧• (Γ\G ;Eρ∗)→ ∧•g∗ ⊗ Vρ
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of the F. A. Belgun symmetrization map, [9, Theorem 7]. Then this map
also satisfies

Dρ∗ ◦ µ = µ ◦Dρ∗ and µ ◦ ι = id .

6.1. Twisted symplectic cohomologies of special solvmanifolds

In some special cases, the inclusion ι : ∧• g∗ ⊗ Vρ ↪→ ∧• (Γ\G ;Eρ∗) is a
quasi-isomorphism.

Theorem 6.1 ([34, Corollary 4.2], [47, Theorem 8.2, Corollary 8.1]).
Let G be a connected simply-connected solvable Lie group with a lattice Γ.

If:

(H): either the representation ρ⊕Ad is R-triangular, [34],

(M): or the two images (ρ⊕Ad)(G) and (ρ⊕Ad)(Γ) have the same
Zariski-closure in GL(Vρ)×Aut(gC),

then the inclusion ι : ∧• g∗C ⊗ Vρ ↪→ ∧• (Γ\G ;Eρ∗) induces the isomorphism

H•dR(g;Vρ)
'→ H•dR(Γ\G ;Eρ∗).

We suppose that Γ\G admits a G-left-invariant symplectic structure
ω ∈ ∧2g∗. Then the operators L, Λ, ?ω, and DΛ

φ are defined on ∧•g∗ ⊗ Vρ.
We consider the cohomologies H•Dρ (g;Vρ), H

•
DΛ
ρ

(g;Vρ) and H•BC (g;Vρ) of

∧•g∗C ⊗ Vρ.
We have the following result.

Theorem 6.2. Let Γ\G be a solvmanifold endowed with a G-left-invariant
symplectic structure ω ∈ ∧2g∗. We suppose that either condition (H) or con-
dition (M) in Theorem 6.1 holds.

Then the inclusion ι : ∧• g∗C ⊗ Vρ ⊂ ∧• (Γ\G ;Eρ∗) induces the isomor-
phism

H•BC (g;Vρ)
'→ H•BC (Γ\G ;Eρ∗) .

Proof. By Theorem 6.1, we have that ι induces the isomorphism H•Dρ (g;Vρ)
'→ H•Dρ (Γ\G ;Eρ∗). By using the symplectic-?-operator

?ω : ∧• g∗ ⊗ Vρ → ∧dimX−•g∗ ⊗ Vρ,

we have that ι induces the isomorphism H•DΛ
ρ

(g;Vρ)
'→ H•DΛ

ρ
(Γ\G ;Eρ∗) as

in the proof of Theorem 3.2.
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Consider the F. A. Belgun symmetrization map µ : ∧• (Γ\G ;Eρ∗)→
∧•g∗ ⊗ Vρ as above. Then, since ω is G-left-invariant, µ commutes with the
operators L, Λ, ?ω, and DΛ

φ . Hence we get that ι induces the isomorphism

H•BC (g;Vρ)
'→ H•BC (Γ\G ;Eρ∗)

from Corollary 1.3. �

Corollary 6.3. Let Γ\G be a solvmanifold endowed with a G-left-invariant
symplectic structure ω ∈ ∧2g∗. We suppose that either condition (H) or con-
dition (M) in Theorem 6.1 holds.

Then the inclusion ι : ∧• g∗C ⊗ Vρ ⊂ ∧• (Γ\G ;Eρ∗) induces the isomor-
phism

H•A (g;Vρ)
'→ H•A (Γ\G ;Eρ∗) .

Proof. By the F. A. Belgun symmetrization map µ : ∧• (Γ\G ;Eρ∗)→∧•g∗⊗
Vρ as above, the induced map ι : H•A (g;Vρ)→ H•A (Γ\G ;Eρ∗) is injective.

Hence it is sufficient to show that there exists an isomorphism H•A(g;Vρ)
'→

H•A(Γ\G ;Eρ∗).
Let J be a G-left-invariant ω-compatible almost-complex structure on

X, (see, e.g., [15, Proposition 12.6],) and consider the G-left-invariant J-
Hermitian metric g := ω (·, J ··). Consider the Hodge-∗-operator ∗g : ∧• g∗C ⊗
Vρ → ∧2n−•g∗C ⊗ Vρ̌ on left-invariant forms where ρ̌ is the dual representa-
tion of ρ. Like the duality between Bott-Chern and Aeppli cohomologies
of compact symplectic manifolds, we have the isomorphism H•A(g;Vρ)

'→
H2n−•
BC (g;Vρ̌) induced by ∗g. If ρ satisfies either condition (H) or condition

(M) in Theorem 6.1, the dual representation ρ̌ also does. Hence by Theo-
rem 6.2, we have the isomorphism

H•BC (g;Vρ̌)
'→ H•BC

(
Γ\G ;E∗ρ∗

)
.

By the duality between Bott-Chern and Aeppli cohomologies on Γ\G , we

have H•A(Γ\G ;Eρ∗)
'→ H2n−•

BC (Γ\G ;E∗ρ∗) and hence we have H•A(g;Vρ)
'→

H•A(Γ\G ;Eρ∗). �

6.2. Twisted minimal model of solvmanifolds

Consider a connected simply-connected solvable Lie group G with a lat-
tice Γ. Consider the adjoint action ad: g 3 X 7→ adX := [X, ·] ∈ Der(g), and,
for any X ∈ g, consider its unique Jordan decomposition adX = (adX)s +
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(adX)n, where (adX)s ∈ gl(g) is semi-simple and (adX)n ∈ gl(g) is nilpotent,
see, e.g., [24, II.1.10].

Denote by n the nilradical of g, and let V be an R-vector sub-space of
g such that (i) g = V ⊕ n in the category of R-vector spaces, and, (ii) for
any A,B ∈ V , it holds that (adA)s (B) = 0, see, e.g., [24, Proposition III.1.1].
Hence, define the map

ads : g = V ⊕ n 3 (A,X) 7→ (ads)A+X := (adA)s ∈ Der(g).

Moreover, one has that (iii) [ads(g), ads(g)] = {0}, and (iv) ads : g→ gl(g)
is R-linear, see, e.g., [24, Proposition III.1.1].

The map ads : g→ gl(g) is actually a representation of g such that its
image ads(g) is Abelian and consists of semi-simple elements. Hence denote
by Ads : G→ Aut(g) the unique representation which lifts ads : g→ gl(g),
see, e.g., [59, Theorem 3.27], and by Ads : G→ Aut (gC) its natural C-linear
extension.

Let T be the Zariski-closure of Ads(G) in Aut(gC). Let

C := {β ◦Ads ∈ Hom (G;C∗) : β ∈ Char(T )} .

For α∈C, consider α : G→GL(Vα)'C∗. We consider the differential graded
algebra ⊕

α∈C
∧•g∗ ⊗ Vα

with the T -action. Denote by(⊕
α∈C
∧•g∗ ⊗ Vα

)T

the sub-differential graded algebra which consists of T -invariant elements.
Since Ads(G) ⊆ Aut(gC) consists of simultaneously diagonalizable el-

ements, let {X1, . . . , Xn} be a basis of gC with respect to which Ads =
diag (α1, . . . , αn) : G→ Aut(gC) for some characters α1 ∈ Hom(G;C∗), . . . ,
αn ∈ Hom(G;C∗), and let {x1, . . . , xn} be its dual basis of g∗C. Then we have

(⊕
α∈C
∧•g∗ ⊗ Vα

)T
= ∧• 〈x1 ⊗ vα1

, . . . , xn ⊗ vαn〉
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where
{
vαj
}

is a basis of Vαj for each j ∈ {1, . . . , n}. In [36, Section 5], the
second author showed that we have a differential graded algebra isomorphism

∧• 〈x1 ⊗ vα1
, . . . , xn ⊗ vαn〉 ' ∧•u∗

where u is the Lie algebra of the unipotent hull of G, which is the unipotent
algebraic group determined by G. Since u is nilpotent, ∧•u∗ is a minimal
differential graded algebra.

We also consider the Zariski-closure S of Ads(Γ) in Aut(gC). For β ∈
Char(S), we denote by Eβ the rank one flat bundle with the monodromy
representation β ◦AdsbΓ. Consider the differential algebra⊕

β∈Char(S)

∧• (Γ\G ;Eβ) .

Differential graded algebras of this kind were considered by Hain in [31]
for rational homotopy on non-nilpotent spaces. In [36], the second author
constructed the minimal model of

⊕
β∈Char(S) ∧• (Γ\G ;Eβ). By S ⊆ T , for

β ∈ Char(S), we have characters α ∈ C such that Eα∗ = Eβ. (Since S 6= T
in general, such α is not unique.) Hence we have the map⊕

α∈C
∧•g∗ ⊗ Vα →

⊕
β∈Char(S)

∧• (Γ\G ;Eβ) .

Now we consider the map ι : ∧• u∗ →
⊕

β∈Char(S) ∧• (Γ\G ;Eβ) given by
the composition

∧•u∗ '

(⊕
α∈C
∧•g∗ ⊗ Vα

)T
⊆
⊕
α∈C
∧•g∗ ⊗ Vα →

⊕
β∈Char(S)

∧• (Γ\G ;Eβ) .

The second author proved the following result in [36].

Theorem 6.4 ([36, Theorem 1.1, Theorem 5.4]). Let G be a connected
simply-connected solvable Lie group with a lattice Γ. The above map ι : ∧•
u∗ →

⊕
β∈Char(S) ∧• (Γ\G ;Eβ) induces a cohomology isomorphism. Hence

∧•u∗ is the minimal model of
⊕

β∈Char(S) ∧• (Γ\G ;Eβ).



i
i

“2-Kasuya” — 2019/5/8 — 10:24 — page 76 — #36 i
i

i
i

i
i

76 D. Angella and H. Kasuya

Note 6.5. We consider the maps ι : ∧• u∗ →
⊕

β∈Char(S) ∧• (Γ\G ;Eβ)
given by the composition

∧•u∗ '

(⊕
α∈C
∧•g∗ ⊗ Vα

)T
⊆
⊕
α∈C
∧•g∗ ⊗ Vα →

⊕
β∈Char(S)

∧• (Γ\G ;Eβ) .

as above. Let A•Γ = ι−1 (∧• Γ\G ⊗ C) where we consider ∧• Γ\G ⊗ C =
∧• (Γ\G ;E1S) for the trivial character 1S . Then the map ι : A•Γ ⊂ ∧• Γ\G ⊗
C induces a cohomology isomorphism. Set

CΓ := {β ◦Ads ∈ Hom (G;C∗) : β ∈ Char(T ), (β ◦Ads) bΓ= 1} .

As [36, Corollary 7.6], we have

(3) A•Γ =

(⊕
α∈CΓ

∧•g∗C ⊗ Vα

)T
.

By using the basis {x1, . . . , xn} of g∗C such that(⊕
α∈CΓ

∧•g∗C ⊗ Vα

)T
∼= ∧• 〈x1 ⊗ vα1

, . . . , xn ⊗ vαn〉

as above, since we have ∧•g∗C ⊗ Vα = α · ∧•g∗C in ∧• Γ\G ⊗ C for α ∈ AΓ,
the differential graded algebra A•Γ can be written as

ApΓ = C
〈
αi1···ip xi1 ∧ · · · ∧ xip

∣∣ 1 ≤ i1 < i2 < · · · < ip ≤ n(4)

such that αi1···ipbΓ= 1
〉
,

where we have shortened αi1···ip := αi1 · · · · · αip ∈ Hom (G;C∗).

We suppose now that Γ\G admits a G-left-invariant symplectic struc-
ture ω ∈ ∧2g. We assume that ω is T -invariant (equivalently ω ∈ A2

Γ).
Then the operators L and Λ on

⊕
α∈C ∧•g⊗ Vα commute with the T -

action. Hence L and Λ and the differential DΛ = DΛ− ΛD are defined on
∧•u∗ '

(⊕
α∈C ∧•g∗ ⊗ Vα

)T
, where D is the differential on the differential

graded algebra ∧•u∗. Now we can regard ω as a symplectic form on the Lie
algebra u. The symplectic-?-operator ?ω is defined on ∧•u∗. We consider the
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cohomologies

H•D

 ⊕
β∈Char(S)

∧• (Γ\G ;Eβ)

 ,

H•DΛ

 ⊕
β∈Char(S)

∧• (Γ\G ;Eβ)

 ,

and H•BC

 ⊕
β∈Char(S)

∧• (Γ\G ;Eβ)


of
⊕

β∈Char(S) ∧• (Γ\G ;Eβ) and the cohomologies H•D(u), H•DΛ(u), and
H•BC(u) of ∧•u∗.

Theorem 6.6. Let G be a connected simply-connected solvable Lie group
with a lattice Γ and endowed with a G-left-invariant T -invariant symplectic
structure ω.

The above map ι : ∧• u∗ →
⊕

β∈Char(S) ∧• (Γ\G ;Eβ) induces the Bott-
Chern cohomology isomorphism

H•BC(u)
'→ H•BC

 ⊕
β∈Char(S)

∧• (Γ\G ;Eβ)

 .

Proof. Set

A :=
{
αi1...ip ∈ Hom(G;C∗) : 1 ≤ i1 ≤ · · · ≤ ip ≤ n

}
and

A′ := {β ∈ Char(S) : there exists α ∈ A such that Eβ = Eα∗} .

We consider the projection

p :
⊕

β∈Char(S)

∧• (Γ\G ;Eβ)→
⊕
β∈A′

∧• (Γ\G ;Eβ) .

Let β ∈ A′. Take α ∈ A such that Eβ = Eα∗ . Then we have the inclusion

∧•g∗C ⊗ Vα ⊆ ∧• (Γ\G ;Eβ) ,
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and we consider the F. A. Belgun symmetrization map, [9, Theorem 7],

µα : ∧• (Γ\G ;Eβ)→ ∧•g∗C ⊗ Vα.

We define the map

Φβ :=
∑

α∈A s.t. Eβ=Eα∗

µα : ∧• (Γ\G ;Eβ)→
⊕

α∈A s.t. Eβ=Eα∗

∧•g∗C ⊗ Vα.

Then for distinct characters α and α′ with Eα∗ = Eβ = Eα′∗ , for the in-
clusion ια : ∧• g∗C ⊗ Vα → ∧• (Γ\G ;Eβ), we have µα′ ◦ ια = 0 (see the proof
of [36, Proposition 6.1]). Hence, for

ιβ :
⊕

α∈A s.t. Eβ=Eα∗

∧•g∗C ⊗ Vα → ∧• (Γ\G ;Eβ) ,

we have Φβ ◦ iβ = id. We define the map

Φ :=
∑
β∈A′

Φβ :
⊕
β∈A′

∧• (Γ\G ;Eβ)→
⊕
α∈A
∧•g∗C ⊗ Vα.

Then for ι :
⊕

α∈A ∧•g∗C ⊗ Vα →
⊕

β∈A′ ∧• (Γ\G ;Eβ), we have Φ ◦ ι = id.
Since ω is G-left-invariant, the map Φ commutes with the operators

L and Λ and the operator DΛ. Since the T -action on
⊕

α∈A ∧•g∗C ⊗ Vα is
diagonalizable, we can take the direct sum

⊕
α∈A
∧•g∗C ⊗ Vα =

(⊕
α∈A
∧•g∗C ⊗ Vα

)T
⊕D•

of cochain complexes, where
(⊕

α∈A ∧•g∗C ⊗ Vα
)T

is the sub-complex that
consists of the elements of

⊕
α∈A ∧•g⊗ Vα fixed by the action of T and D•

is its complement for the action. Hence the projection

q :
⊕
α∈A
∧•g∗C ⊗ Vα →

(⊕
α∈A
∧•g∗C ⊗ Vα

)T

is a cochain complex map. Since ω is T -invariant, the map q :
⊕

α∈A ∧•g∗C ⊗
Vα →

(⊕
α∈A ∧•g∗C ⊗ Vα

)T
commutes with the operators L and Λ and the

operator DΛ.
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Since we have(⊕
α∈C
∧•g∗C ⊗ Vα

)T
= ∧•〈x1 ⊗ vα1

, . . . , xn ⊗ vαn〉,

we have (⊕
α∈C
∧•g∗C ⊗ Vα

)T
=

(⊕
α∈A
∧•g∗C ⊗ Vα

)T
and so we have

∧•u∗ '

(⊕
α∈A
∧•g∗C ⊗ Vα

)T
.

We consider the maps ι : ∧• u∗ →
⊕

β∈Char(S) ∧• (Γ\G ;Eβ) given by
the composition

∧•u∗ '

(⊕
α∈A
∧•g∗C ⊗ Vα

)T
→
⊕
α∈A
∧•g∗C ⊗ Vα

→
⊕
β∈A′

∧• (Γ\G ;Eβ)→
⊕

β∈Char(S)

∧• (Γ\G ;Eβ)

and Ψ:
⊕

β∈Char(S) ∧• (Γ\G ;Eβ)→ ∧•u∗ given by the composition

⊕
β∈Char(S)

∧• (Γ\G ;Eβ)
p→
⊕
β∈A′

∧• (Γ\G ;Eβ)
Φ→
⊕
α∈A
∧•g∗C ⊗ Vα

q→

(⊕
α∈A
∧•g⊗ Vα

)T
' ∧•u∗.

Then by the above arguments, ι and Φ commute with the differentials D
and DΛ and satisfy Ψ ◦ ι = id.

By Theorem 6.4 the injection ι : ∧• u∗ →
⊕

β∈Char(S) ∧• (Γ\G ;Eβ) in-
duces the isomorphism

H•D(u)
'→ H•D

 ⊕
β∈Char(S)

∧• (Γ\G ;Eβ)

 .
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By this isomorphism and the symplectic-?-operator ?ω, the injection ι : ∧•
u∗ →

⊕
β∈Char(S) ∧• (Γ\G ;Eβ) induces the isomorphism

H•DΛ(u)
'→ H•DΛ

 ⊕
β∈Char(S)

∧• (Γ\G ;Eβ)

 .

Hence by using the map Ψ:
⊕

β∈Char(S) ∧• (Γ\G ;Eβ)→ ∧•u∗ as above, the
theorem follows from Corollary 1.3. �

Corollary 6.7. Let G be a connected simply-connected solvable Lie group
with a lattice Γ and endowed with a G-left-invariant T -invariant symplectic
structure ω.

The above map ι : ∧• u∗ →
⊕

β∈Char(S) ∧• (Γ\G ;Eβ) induces the Aeppli
cohomology isomorphism

H•A(u)
'→ H•A

 ⊕
β∈Char(S)

∧• (Γ\G ;Eβ)

 .

Proof. By the map Ψ:
⊕

β∈Char(S) ∧• (Γ\G ;Eβ)→ ∧•u∗ constructed in the
proof of Theorem 6.6, the induced map

H•A(u)→ H•A

 ⊕
β∈Char(S)

∧• (Γ\G ;Eβ)


is injective. Hence it is sufficient to show that there exists an isomorphism

H•A(u) ∼= H•A

 ⊕
β∈Char(S)

∧• (Γ\G ;Eβ)

 .

Since u is a nilpotent Lie algebra and ω can be regard as a symplectic
form on u, like the duality between Bott-Chern and Aeppli cohomologies of
compact symplectic manifolds, we have the isomorphism H•A(u)

'→ H2n−•
BC (u)

induced by Hodge-∗-operator. By Theorem 6.6, we have an isomorphism

H2n−•
BC (u) ∼= H2n−•

BC

(⊕
β∈Char(S) ∧• (Γ\G ;Eβ)

)
. Now for β ∈ Char(S), we
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have β−1 ∈ Char(S) and hence by the duality between Bott-Chern and Aep-
pli cohomologies of Γ\G , we have

H2n−•
BC

 ⊕
β∈Char(S)

∧• (Γ\G ;Eβ)

 ∼= H•A

 ⊕
β∈Char(S)

∧•
(

Γ\G ;E∗β
)

= H•A

 ⊕
β∈Char(S)

∧•
(

Γ\G ;Eβ−1

)
= H•A

 ⊕
β∈Char(S)

∧• (Γ\G ;Eβ)

 .

Hence we have

H•A(u) ∼= H•A

 ⊕
β∈Char(S)

∧• (Γ\G ;Eβ)

 .

�

We apply these results to untwisted symplectic cohomologies. Consider
A•Γ = ι−1 (∧• Γ\G ⊗ C) as in Note 6.5. Then A•Γ is a sub-complex of the
bi-differential Z-graded ∧• Γ\G ⊗ C and by Theorem 6.6 and Corollary 6.7,
the inclusion A•Γ ⊂ ∧• Γ\G ⊗ C induces isomorphisms

H•BC(A•Γ)
'→ H•BC (Γ\G ;R)⊗R C

and

H•A(A•Γ)
'→ H•A (Γ\G ;R)⊗R C.

Hence we have the result for symplectic Bott-Chern and Aeppli cohomologies
on general solvmanifolds as we give in Introduction.

Theorem 6.8. Let Γ\G be a 2n-dimensional solvmanifold endowed with
a G-left-invariant symplectic structure ω. Consider the sub-complex A•Γ ⊆
∧• Γ\G ⊗R C defined in (3) (or (4)) as in Note 6.5. Suppose that ω ∈ A2

Γ.
Then, the inclusion A•Γ ↪→ ∧• Γ\G ⊗R C induces the isomorphisms

H•BC(A•Γ)
'→ H•BC (Γ\G ;R)⊗R C

and

H•A(A•Γ)
'→ H•A (Γ\G ;R)⊗R C
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6.3. Examples

As an explicit application of Theorem 6.8, we compute the symplectic co-
homologies of the (non-completely-solvable) Nakamura manifold.

Example 6.9 (The complex parallelizable Nakamura manifold).
Consider the Lie group

G := Cnφ C2 where φ(z) :=

(
ez 0
0 e−z

)
.

There exist a+
√
−1 b ∈ C and c+

√
−1 d ∈ C such that Z(a+

√
−1 b) +

Z(c+
√
−1 d) is a lattice in C and φ(a+

√
−1 b) and φ(c+

√
−1 d) are con-

jugate to elements of SL(4;Z), where we regard SL(2;C) ⊂ SL(4;R), see [33].
Hence there exists a lattice Γ :=

(
Z
(
a+
√
−1 b

)
+ Z

(
c+
√
−1 d

))
nφ Γ′′ of

G such that Γ′′ is a lattice of C2. Let X := Γ\G be the complex parallelizable
Nakamura manifold, [48, §2].

For a coordinate set (z1, z2, z3) of CnφC2, we have the basis
{

∂
∂z1
, ez1 ∂

∂z2
,

e−z1 ∂
∂z3

}
of the Lie algebra g+ of the G-left-invariant holomorphic vector

fields on G such that(
Ad(z1,z2,z3)

)
s

= diag
(
1, ez1 , e−z1

)
∈ Aut(g+).

case (a) A•Γ

0 C 〈1〉
1 C 〈d z1,d z1̄〉
2 C 〈d z11̄, d z23, d z23̄, d z32̄, d z2̄3̄〉
3 C 〈d z123, d z123̄, d z132̄,d z31̄2̄,d z21̄3̄,d z1̄2̄3̄, d z1̄23, d z12̄3̄〉
4 C 〈d z1231̄, d z131̄2̄,d z232̄3̄, d z121̄3̄, d z11̄2̄3̄〉
5 C 〈d z231̄2̄3̄,d z1232̄3̄〉
6 C 〈d z1231̄2̄3̄〉

Table 4: The cochain complex A•Γ in (3) for the complex parallelizable Naka-
mura manifold in case (a).
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(a) If b ∈ π Z and d ∈ π Z, then, for z ∈
(
a+
√
−1 b

)
Z +

(
c+
√
−1 d

)
Z, we

have φ(z) ∈ SL(2;R). In this case, the sub-complex A•Γ ⊆ ∧• Γ\G ⊗R
C defined in (3) is summarized in Table 4. (In order to shorten the
notations, we write, for example, d z122̄ := d z1 ∧ d z2 ∧ d z̄2.)

(b) If b 6∈ π Z or d 6∈ π Z, then the sub-complex A•Γ ⊆ ∧• Γ\G ⊗R C defined
in (3) is given in Table 5.

case (b) A•Γ

0 C 〈1〉
1 C 〈d z1, d z1̄〉
2 C 〈d z11̄, d z23, d z2̄3̄〉
3 C 〈d z123,d z1̄2̄3̄,d z1̄23,d z12̄3̄〉
4 C 〈d z1231̄,d z232̄3̄, d z11̄2̄3̄〉
5 C 〈d z231̄2̄3̄, d z1232̄3̄〉
6 C 〈d z1231̄2̄3̄〉

Table 5: The cochain complex A•Γ in (3) for the complex parallelizable Naka-
mura manifold in case (b).

Consider the G-left-invariant symplectic structure

ω := d z1 ∧ d z̄1 + d z2 ∧ d z3 + d z̄2 ∧ d z̄3.

Note that, in both case (a) and case (b), we have ω ∈ A2
Γ. The operator

d on A•Γ is trivial and so also dΛ is. Hence we have the natural isomor-

phism A•Γ
'→ H•BC(Γ\G)⊗R C. Since we have also the natural isomorphism

A•Γ
'→ H•dR(Γ\G ;C), the natural map H•BC(Γ\G)⊗R C→ H•dR(Γ\G ;C) is

an isomorphism. Hence the d dΛ-lemma holds, equivalently, the Hard Lef-
schetz Condition holds.

Remark 6.10 ([35]). In particular, by the direct computations of Lef-
schetz operators, we can show that solvmanifolds Γ\G such that G = Rn nφ

Rm with a semi-simple action φ : Rn → GL(Rm) satisfy the Hard Lefschetz
Condition, [35, Corollary 1.5]. In particular, the completely-solvable Naka-
mura manifold satisfies the Hard Lefschetz Condition, [35].
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We investigate explicitly the Sawai manifold, [51], as an example of a
symplectic solvmanifold satisfying the Hard Lefschetz Condition but not the
twisted Hard Lefschetz Condition and not the DDΛ-Lemma, see also [36].
We compute the twisted symplectic Bott-Chern cohomology and the twisted
minimal model.

Example 6.11 (The Sawai manifold [51], [36, Example 1]). We con-
sider the 8-dimensional solvable Lie group

G := G1 × R

where G1 is the matrix group defined as

G1 :=





ea1t 0 0 0 0 e−a3t x2 y1

0 ea2t 0 e−a1t x3 0 0 y2

0 0 ea3t 0 e−a2t x1 0 y3

0 0 0 e−a1t 0 0 x1

0 0 0 0 e−a2t 0 x2

0 0 0 0 0 e−a3t x3

0 0 0 0 0 0 1


: t, x1, x2, x3, y1, y2, y3 ∈ R


,

where a1, a2, a3 are distinct real numbers such that a1 + a2 + a3 = 0.
Let g be the Lie algebra of G and g∗ the dual of g. The cochain complex

(∧•g∗, d) is generated by a basis {α, β, ζ1, ζ2, ζ3, η1, η2, η3} of g∗ such that

dα = 0,

dβ = 0,

d ζj = aj α ∧ ζj for j ∈ {1, 2, 3},

d η1 = −a1 α ∧ η1 − ζ2 ∧ ζ3,

d η2 = −a2 α ∧ η2 − ζ3 ∧ ζ1,

d η3 = −a3 α ∧ η3 − ζ1 ∧ ζ2.

In [51, Theorem 1], H. Sawai showed that, for some a1, a2, a3 ∈ R, the
group G has a lattice Γ and Γ\G satisfies formality and has a G-invariant
symplectic form,

ω := α ∧ β + ζ1 ∧ η1 − 2 ζ2 ∧ η2 + ζ3 ∧ η3,

satisfying the Hard Lefschetz Condition.
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We have

Ads(G) =





ea1t 0 0 0 0 0 0 0
0 ea2t 0 0 0 0 0 0
0 0 ea3t 0 0 0 0 0
0 0 0 e−a1t 0 0 0 0
0 0 0 0 e−a2t 0 0 0
0 0 0 0 0 e−a3t 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


: t ∈ R


.

Consider the 1-dimensional representation

α1 := ea1t .

Then, in [36, Theorem 9.1], the second author showed that (Γ\G , ω) does
not satisfy the Eα1

-twisted Hard Lefschetz Condition.
We compute the two cohomologiesH•dR (Γ\G ;Eα1

) andH•BC (Γ\G ;Eα1
)

by using Theorem 6.2. The results of the computations are summarized in
Table 6, respectively Table 7.

k Hk
dR (Γ\G ;Eα1

) dimCH
k
dR (Γ\G ;Eα1

)

0 0 0

1 C 〈[ζ1]α1
〉 1

2 C 〈[α ∧ ζ1]α1
, [β ∧ ζ1]α1

〉 2

3 C 〈[α ∧ β ∧ ζ1]α1
, [ζ1 ∧ ζ2 ∧ η2 + ζ1 ∧ ζ3 ∧ η3]α1

〉 2

4 C 〈[α ∧ ζ1 ∧ ζ2 ∧ η2 + α ∧ ζ1 ∧ ζ3 ∧ η3]α1
, [β ∧ ζ1 ∧ ζ2 ∧ η2 + β ∧ ζ1 ∧ ζ3 ∧ η3]α1

〉 2

5 C 〈[α ∧ β ∧ ζ1 ∧ ζ2 ∧ η2 + α ∧ β ∧ ζ1 ∧ ζ3 ∧ η3]α1
〉 1

6 0 0

7 0 0

8 0 0

Table 6: Eα1
-twisted de Rham cohomology H•dR (Γ\G ;Eα1

) of the Sawai
manifold.
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k Hk
BC (Γ\G ;Eα1

) dimCH
k
BC (Γ\G ;Eα1

)

0 0 0

1 C 〈[ζ1]α1
〉 1

2 C 〈[α ∧ ζ1]α1
, [β ∧ ζ1]α1

〉 2

3 C 〈[α ∧ β ∧ ζ1]α1
, [ζ1 ∧ ζ2 ∧ η2]α1

, [ζ1 ∧ ζ3 ∧ η3]α1
〉 3

4 C 〈[α ∧ ζ1 ∧ ζ2 ∧ η2]α1
, [α ∧ ζ1 ∧ ζ3 ∧ η3]α1

, [β ∧ ζ1 ∧ ζ2 ∧ η2]α1
, [β ∧ ζ1 ∧ ζ3 ∧ η3]α1

〉 4

5 C 〈[ζ1 ∧ ζ2 ∧ η2 ∧ ζ3 ∧ η3]α1
, [α ∧ β ∧ ζ1 ∧ ζ2 ∧ η2]α1

, [α ∧ β ∧ ζ1 ∧ ζ3 ∧ η3]α1
〉 3

6 [α ∧ ζ1 ∧ ζ2 ∧ η2 ∧ ζ3 ∧ η3]α1
, [β ∧ ζ1 ∧ ζ2 ∧ η2 ∧ ζ3 ∧ η3]α1

2

7 [α ∧ β ∧ ζ1 ∧ ζ2 ∧ η2 ∧ ζ3 ∧ η3]α1
1

8 0 0

Table 7: Eα1
-twisted Bott-Chern cohomology H•BC (Γ\G ;Eα1

) of the Sawai
manifold.

By these computations, the natural map

H•BC (Γ\G ;Eα1
)→ H•dR (Γ\G ;Eα1

)

induced by the identity is surjective, and hence there is a symplectically-
harmonic representative in each de Rham cohomology class with values in
Eα1

. On the other hand, the natural map

H•BC (Γ\G ;Eα1
)→ H•dR (Γ\G ;Eα1

)

induced by the identity is not injective, and hence the DDΛ-Lemma does
not hold.

Next we consider the twisted minimal model ∧•u. Consider

α2 := ea2t, α3 := ea3t,

and define, for j ∈ {1, 2, 3},

ᾰ := α, β̆ := β, ζ̆j := ζj ⊗ vαj , and η̆j := ηj ⊗ vα−1
j
.

Then we have

∧•u = ∧•
〈
ᾰ, β̆, ζ̆1, ζ̆2, ζ̆3, η̆1, η̆2, η̆3

〉
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such that

d ᾰ = d β̆ = d ζ̆1 = d ζ̆2 = d ζ̆3 = 0,

d η̆1 = ζ̆2 ∧ ζ̆3,

d η̆2 = ζ̆3 ∧ ζ̆1,

d η̆3 = ζ̆1 ∧ ζ̆2.

We have

ω = ᾰ ∧ β̆ + ζ̆1 ∧ η̆1 − 2 ζ̆2 ∧ η̆2 + ζ̆3 ∧ η̆3.

We have

H•BC(u) ' H•BC

 ⊕
β∈Char(S)

∧• (Γ\G ;Eβ)

 .
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