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Superheavy Lagrangian immersions

in surfaces

Morimichi Kawasaki

We show that the union of some circles in a closed Riemannian
surface with positive genus is superheavy in the sense of Entov-
Polterovich. By a result of Entov and Polterovich, this implies that
the product of this union and the Clifford torus of CPn with the
Fubini-Study symplectic form cannot be displaced by any symplec-
tomorphisms.

1. Introduction

A diffeomorphism f of a symplectic manifold (M,ω) is called symplectomor-
phism if f preserves the symplectic form ω. A subset U is said to be strongly
non-displaceable if f(U) ∩ Ū 6= ∅ for any symplectomorphism f .

Entov and Polterovich [EP09] defined superheaviness for closed subsets
in symplectic manifolds and showed that for a closed symplectic manifold M ,
[M ]-superheavy subsets are strongly non-displaceable. Our main theorem is
the following one.

Theorem 1.1. Let g be a positive integer. Let (Σg, ω) be a closed Rie-
mannian surface with genus g and a symplectic (area) form ω and e0 ∪ e1

1 ∪
· · · ∪ e1

2g ∪ e2 its CW-decomposition. Then e1
1 ∪ · · · ∪ e1

2g is a [Σg]-superheavy
subset of (Σg, ω),

Remark 1.2. In the first draft of the present paper, Theorem 1.1 was
written in the case only when g = 1 (for example, see Section 4 of [E]).
After that work, Humiliére, Le Roux and Seyfaddini [HLS] and Ishikawa
[Is] gave other proofs of the above result. They [HLS] also found its same
generalization as Theorem 1.1 independently (see also [Is]).

Remark 1.3. As pointed out in (2) of Proposition 6 of [HLS], the removal
of any curve e1

i destroy its superheaviness i.e. e1
1 ∪ · · · e1

i−1 ∪ e1
i+1 ∪ · · · e1

2g is
not superheavy for any i.
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The subset e1
1 ∪ · · · ∪ e1

2g of Σg is not displaceable by any homeomor-
phisms of Σg for topological reasons, however it gives rise to a non-trivial
example of a strongly non-displaceable subset in CPn × Σg. In fact, for the
symplectic manifolds M1, M2, the product of superheavy subsets is super-
heavy in M1 ×M2. Thus we have the following corollary.

Corollary 1.4. Let (CPn, ωFS) be the complex projective space with the
Fubini-Study form ωFS and C the Clifford torus {[z0 : · · · : zn] ∈ CPn; |z0| =
· · · = |zn|} of CPn. Then C×(e1

1 ∪ · · · ∪ e1
2g) is a strongly non-displaceable

subset of CPn × Σg.

The present paper is organized as follows. We review the definitions in
symplectic geometry and spectral invariants in Section 2 which are needed
to prove Theorem 1.1. We introduce and prove the important proposition
(Proposition 3.1) to prove Theorem 1.1. In Section 4, we prepare some defi-
nitions, proposition and theorem which are useful to prove Theorem 1.1. In
Section 5, we prove Theorem 1.1 and Corollary 1.4.
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2. Preliminaries

2.1. Definitions

For a function F : M → R with compact support, we define the Hamiltonian
vector field sgradF associated with F by

ω(sgradF, V ) = −dF (V ) for any V ∈ X (M),

where X (M) denotes the set of smooth vector fields on M .
For a function F : M×[0, 1]→ R and t ∈ [0, 1], we define Ft : M → R

by Ft(x) = F (x, t). We denote by {ft} the isotopy which satisfies f0 = id
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and d
dtft(x) = (sgradFt)ft(x). We call this the Hamiltonian path generated

by the Hamiltonian function Ft. The time-1 map f1 of {ft} is called the
Hamiltonian diffeomorphism generated by the Hamiltonian function Ft. A
diffeomorphism f is called a Hamiltonian diffeomorphism if there exists a
Hamiltonian function Ft with compact support generating f . A Hamiltonian
diffeomorphism is a symplectomorphism.

For a symplectic manifold (M,ω), let Symp(M,ω), Ham(M,ω) and

H̃am(M,ω) denote the group of symplectomorphisms, the group of Hamil-
tonian diffeomorphisms of (M,ω) and its universal cover, respectively.

Let (M,ω) be a symplectic manifold and {ft}t∈[0,1] and {gt}t∈[0,1] be
the Hamiltonian paths generated by Hamiltonian functions Ft and Gt, re-
spectively. Then {ftgt}t∈[0,1] are generated by the Hamiltonian function

(F]G)(x, t) = F (x, t) +G(f−1
t (x), t).

A Hamiltonian function H is called normalized if
∫
M Ht(x)ωn = 0 for

any t ∈ [0, 1].

2.2. Spectral invariants

For a closed connected symplectic manifold (M,ω), put

Γ =
π2(M)

Ker(c1) ∩Ker([ω])
,

where c1 is the first Chern class of TM with an almost complex struc-
ture compatible with ω. The Novikov ring of the closed symplectic manifold
(M,ω) is defined as follows:

Λ =

{∑
A∈Γ

aAA; aA ∈ C, #

{
A; aA 6= 0,

∫
A
ω < R

}
<∞

for any real number R

}
.

The quantum homology QH∗(M,ω) is a Λ-module isomorphic to
H∗(M ;C)⊗C Λ and QH∗(M,ω) has a ring structure with the multiplica-
tion called the quantum product ([O06]). For each element a ∈ QH∗(M,ω),
a functional c(a, ·) : C∞(M × [0, 1])→ R is defined in terms of the Hamilto-
nian Floer theory. The functional c(a, ·) is called a spectral invariant ([O06]).
To describe the properties of a spectral invariant, we define the spectrum of
a Hamiltonian function as follows:
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Definition 2.1 ([O06]). Let H : M × [0, 1]→ R be a Hamiltonian func-
tion on a closed symplectic manifold M . The spectrum Spec(H) of H is
defined as follows:

Spec(H) =

{∫ 1

0
H(ht(x), t)dt−

∫
D2

u∗ω

}
⊂ R,

where {ht}t∈[0,1] is the Hamiltonian path generated by H and x ∈M is a
fixed point of h1 whose orbit defined by γx(t) = ht(x) (t ∈ [0, 1]) is a con-
tractible loop and u : D2→M is a disc in M such that u|∂D2 = γx.

We define the non-degeneracy of Hamiltonian functions as follows:

Definition 2.2. A Hamiltonian function H : M × [0, 1]→ R is called non-
degenerate if for any fixed point x ∈M of h whose orbit γx is a contractible
loop, 1 is not an eigenvalue of the differential (h∗)x.

The following proposition summaries the properties of spectral invariants
which we need.

Proposition 2.3 ([O06], [U]). Spectral invariants has the following prop-
erties.

(1)Non-degenerate spectrality : c(a,H) ∈ Spec(H) for every non-
degenerate H ∈ C∞(M×[0, 1]).

(2)Hamiltonian shift property : c(a,H + λ(t)) = c(a,H) +
∫ 1

0 λ(t)dt.

(3)Lipschitz property : The map H 7→c(a,H) is Lipschitz on C∞(M ×
[0, 1]) with respect to the C0-norm.

(4)Homotopy invariance: c(a,H1) = c(a,H2) for any normalized H1

and H2 generating the same h ∈ H̃am(M). Thus one can define c(a, ·) :

H̃am(M)→ R by c(a, h) = c(a,H), where H is a normalized Hamilto-
nian function generating h.

(5)Triangle inequality : c(a ∗ b, fg) ≤ c(a, f) + c(b, g) for elements f

and g ∈ H̃am(M,ω), where ∗ denotes the quantum product.

2.3. Superheaviness

Entov and Polterovich [EP09] defined superheaviness of closed subsets in
closed symplectic manifolds and gave examples of strongly non-displaceable
subsets.
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For an idempotent a of the quantum homology QH∗(M,ω), define the
functional ζa : C∞(M)→ R by

ζa(H) = lim
l→+∞

c(a, lH)

l
,

where c(a,H) is the spectral invariant.

Definition 2.4 ([EP09]). Let (M,ω) be a 2n-dimensional closed symplec-
tic manifold and a be an idempotent of the quantum homology QH∗(M,ω).
A closed subset X of M is said to be a-superheavy if

ζa(H) ≤ sup
X
H for any Hamiltonian function H : M → R.

A closed subset X of M is called superheavy if X is a-superheavy for some
idempotent a of QH∗(M,ω).

Example 2.5. Let (CPn, ωFS) be the complex projective space with the
Fubini-Study form. The Clifford torus C = {[z0 : · · · : zn] ∈ CPn; |z0| = · · · =
|zn|} ⊂ CPn is a [CPn]-superheavy subset of (CPn, ωFS), hence they are
strongly non-displaceable ([BEP] Lemma 5.1, [EP09] Theorem 1.8).

For a closed oriented manifold M , we denote its fundamental class by
[M ]. It is known that [M ] is an idempotent of QH∗(M,ω).

Theorem 2.6 (Theorem 1.4 of [EP09]). Every [M ]-superheavy subset
is strongly non-displaceable.

Definition 2.7. Let (M,ω) be a 2n-dimensional closed symplectic man-
ifold. Let a be an idempotent of the quantum homology QH∗(M,ω). An
open subset U of M is said to satisfy the bounded spectrum condition (with
respect to a) if there exists a constant E > 0 such that

|c(a, F )| ≤ E

for any Hamiltonian function F : U × [0, 1]→ R with compact support.

Open subsets satisfying the bounded spectrum condition play an essen-
tial role in the present paper.

Example 2.8. A stably displaceable open subset of a closed symplectic
manifold satisfies the bounded spectrum condition with respect to any idem-
potent a ([S] Lemma 4.1).
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3. Main proposition

Open subsets with volume greater than the half of that of M are strongly
non-displaceable but some of them satisfy the bounded spectrum condition
for non simply connected symplectic manifold.

Proposition 3.1. Let (M,ω) be a closed symplectic manifold. Let α be a
nontrivial free homotopy class of free loops on M ; α ∈ [S1,M ], α 6= 0. Let
U be an open subset of M . Assume that there exists a Hamiltonian function
H : M × [0, 1]→ R which satisfies the following:

(1) h1|U = idU ,

(2) for any x ∈ U , the free loop γx : S1 →M defined by γx(t) = ht(x) be-
longs to α, and

(3) α /∈ i∗([S1, U ]).

Here i : U→M is the inclusion map and {ht}t∈[0,1] is the Hamiltonian path
generated by H. Then U satisfies the bounded spectrum condition with respect
to any idempotent a of QH∗(M,ω).

The proof of Proposition 3.1 is based on the idea of K. Irie in the proof of
Theorem 2.4 of [Ir]. We also use some ideas from [U]. For paths α, β : [0, 1]→
M with α(1) = β(0), α]β means the concatenation of α and β . For free loops
α′, β′ : S1 →M , α′ ' β′ means that α′ and β′ are homotopic.

Proof. Fix a Hamiltonian function F : U × [0, 1]→ R with compact support.
We denote by {fut }t∈[0,1] the Hamiltonian path generated by uF and denote
by φu,x the path defined by φu,x(t) = fut (x). To use the non-degenerate spec-
tral property, we approximate H by non-degenerate Hamiltonian functions.
Take a sequence of non-degenerate Hamiltonian functions Hn which con-
verges to H in the C2-norm. We denote by {hn,t}t∈[0,1] the Hamiltonian
path generated by Hn and denote by γxn the path defined by γxn(t) = hn,t(x).

Choose a smooth function χ : [0, 1
2 ]→ [0, 1] and a positive real number

ε ∈ (0, 1
4) such that

• χ′(t) ≥ 0 for any t ∈ [0, 1
2 ], and

• χ(t) = 0 for any t ∈ [0, ε], and χ(t) = 1 for any t ∈ [1
2 − ε,

1
2 ].
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For u ∈ [0, 1], we define the new Hamiltonian function Lun : M × [0, 1]→
R as follows:

Lun(x, t) =

{
χ′(t)Hn(x, χ(t)) when t ∈ [0, 1

2 ]

uχ′(t− 1
2)F (x, χ(t− 1

2)) when t ∈ [1
2 , 1].

Since χ is constant on neighborhoods of 0 and 1
2 , Lun is a smooth Hamiltonian

function.
We claim that Spec(Lun) ⊂ Spec(Hn) for a large enough integer n and any

u ∈ [0, 1]. We denote by {lun,t}t∈[0,1]
the Hamiltonian path generated by Lun.

Let x ∈M be a fixed point of lun,1 whose orbit λu,xn defined by λu,xn (t) = lun,t(x)
is contractible. If x /∈

⋃
t∈[0,1] supp(Ft), x is also a fixed point of h1 and

λu,xn (t) coincides with γxn up to parameter change. Hence γxn is contractible.
Since

∫ 1
0 Hn(ht(x), t)dt =

∫ 1
0 L

u
n(lut (x), t)dt, the element of Spec(Lun) given

by the fixed point of x belongs to Spec(Hn). If x ∈
⋃
t∈[0,1] supp(Ft), since

n is assumed to be large enough, there exists a path βxn in U such that
βxn(0) = hn,1(x) and βxn(1) = x and γxn ] β

x
n represents α ∈ [S1,M ]. Since⋃

t∈[0,1]

supp(Ft) ⊂ U and (β̄xn ] γ̄
x
n) ]λu,xn ' (β̄xn ] γ̄

x
n) ](γxn]φ

u,x) ' β̄xn]φu,x,

the free loop (β̄xn ] γ̄
x
n) ]λu,xn is homotopic to a free loop in U . Therefore,

since λu,xn is contractible, β̄xn ] γ̄
x
n ' ((β̄xn ] γ̄

x
n) ]λu,xn )]λ̄u,xn is also homotopic

to a free loop in U and this contradicts α /∈ i∗([S1, U ]). Hence we see x /∈⋃
t∈[0,1] supp(Ft) by contradiction and thus Spec(Lun) ⊂ Spec(Hn) holds. By

this argument, the non-degeneracy of Hn implies the non-degeneracy of Lun.

Since L0
n and Hn generate the same element of H̃am(M,ω), the homotopy

invariance implies

c

(
a, L0

n −
∫
M
L0
nω

n

)
= c

(
a,Hn −

∫
M
Hnω

n

)
.

By the Hamiltonian shift property and
∫ 1

0

∫
M L0

nω
ndt =

∫ 1
0

∫
M Hnω

ndt,

c(a, L0
n) = c

(
a, L0

n −
∫
M
L0
nω

n

)
+

∫ 1

0

∫
M
L0
nω

ndt

= c

(
a,Hn −

∫
M
Hnω

n

)
+

∫ 1

0

∫
M
Hnω

ndt = c(a,Hn).

The Lipschitz property asserts that c(a, Lun) depends continuously on u.
Since Lun is non-degenerate and Spec(Hn) is a measure-zero set (Lemma 2.2
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of [O02]), the non-degenerate spectrality implies that c(a, Lun) is a constant
function of u. Hence c(a, Lun) = c(a,Hn) for any u ∈ [0, 1].

Since L1
n and F]Hn generates the same element of H̃am(M,ω), by a

computation as above, c(a, F ]Hn) = c(a, L1
n). Thus c(a, F ]Hn) = c(a, L1

n) =
c(a,Hn). Then the triangle inequality implies

c(a, F ) ≤ c(a, F ]Hn) + c(a, H̄n)

= c(a, L1
n) + c(a, H̄n)

= c(a,Hn) + c(a, H̄n), and

c(a, F ) ≥ c(a, F ]Hn)− c(a,Hn)

= c(a,Hn)− c(a,Hn) = 0.

Since Lipschitz properties implies

lim
n→∞

c(a,Hn) = c(a,H) and lim
n→∞

c(a, H̄n) = c(a, H̄),

we have

0 ≤ c(a, F ) ≤ c(a,H) + c(a, H̄).
�

4. the bounded spectrum condition and an a-stem

Definition 4.1. An open subset U of M is said to be a-null if for any
Hamiltonian function G : U → R with compact support,

ζa(G) = 0.

An open subset U of M is said to be strongly a-null if for any Hamiltonian
function F : M → R and any Hamiltonian function G : U → R with compact
support with {F,G} = 0,

ζa(F +G) = ζa(F ).

A subset X of M is said to be (strongly) a-null if there exists a (strongly)
a-null open neighborhood U of X.

a-nullity is defined in [MVZ]. If a subset X of M is strongly a-null, X is
a-null.

The arguments in [EP06] shows the following proposition.
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Proposition 4.2. Let (M,ω) be a 2n-dimensional closed symplectic mani-
fold. For an idempotent a of QH∗(M,ω), if an open subset U of M satisfies
the bounded spectrum condition with respect to a, then U is strongly a-null.

Entov and Polterovich defined stems to give examples of superheavy
subsets ([EP09]). We define a-stems which generalizes a little the notion of
stems and they exhibits a-superheaviness.

We generalize the argument of Entov and Polterovich as follows.

Definition 4.3. Let A be a finite-dimensional Poisson-commutative sub-
space of C∞(M) and Φ: M → A∗ the moment map defined by 〈Φ(x), F 〉 =
F (x). Let a be a non-trivial idempotent of QH∗(M,ω). A non-empty fiber
Φ−1(p), p ∈ A∗ is called an a-stem of A if all non-empty fibers Φ−1(q) with
q 6= p are strongly a-null. If a subset of M is an a-stem of a finite-dimensional
Poisson-commutative subspace of C∞(M), it is called just an a-stem.

Theorem 4.4. For every idempotent a of QH∗(M,ω), every a-stem is a
a-superheavy subset.

The proof of Theorem 4.4 is same as the one of Theorem 1.8 of [EP09].

5. Proof of Theorem 1.1 and Corollary 1.4

Proof of Theorem 1.1. By cutting Σg open along e1
1 ∪ · · · ∪ e1

2g, we construct

4g-gon Σ̃g and the natural quatient map π : Σ̃g → Σg. We mark all sides of
Σ̃g with eu1 , . . . , e

u
2g and el1, . . . , e

l
2g such that π(eui ) = e1

i and π(eli) = e1
i .

Put A =
∫

Σg
ω and let SA be a square in R2 defined by SA = [0, 1]×

[0, A]. Let su and sl denote the sides [0, 1]× {A} and [0, 1]× {0} of SA,
respectively. Then we can take an area-preserving diffeomorphism f : SA →
Σ̃g such that f(su) = eu1 , f(sl) = el1 and π(f(t, 0)) = π(f(t, A)) for any t ∈
[0, 1].

Consider a function Φ: Σg → R such that Φ(x) = 0 if x ∈ e1
1 ∪ · · · ∪ e1

2g

and Φ(x) > 0 if x /∈ e1
1 ∪ · · · ∪ e1

2g. Take a real number ε 6= 0. We view Φ as
the moment map of the 1-dimensional Poisson-commutative algebra spanned
by Φ itself. Take a positive number ε so that Φ−1(ε) is not empty. Let us
prove that Φ−1(ε) is a-null. There exists a positive number δ and an open
neighborhood U of (Φ ◦ π ◦ f)−1(ε) such that U ⊂ (δ, 1− δ)× (δ, A− δ) ⊂
SA.

Consider a function Ĥ : SA → R such that Ĥ((p, q)) = Ap for any p ∈
[δ, 1− δ] and Ĥ((p, q)) = 0 for any p ∈ [0, δ2 ] ∪ [1− δ

2 , 1]. Since π(f(t, 0)) =
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π(f(t, A)) for any t ∈ [0, 1] and Ĥ((p, q)) = 0 for any p ∈ [0, δ2 ] ∪ [1− δ
2 , 1],

there exists a Hamiltonian function H : Σg → R such that Ĥ = H ◦ π ◦ f .
Define the path γ̂ : [0, 1]→SA by γ̂(t)=(0, At) and the free loop γ : S1→

Σg by γ = π ◦ f ◦ γ̂. Let α ∈ [S1,Σg] be the homotopy class of free loops rep-
resented by γ. Then α, U and H satisfy the assumptions of Proposition 3.1,
hence U satisfies the bounded spectrum condition with respect to any idem-
potent a ∈ QH∗(Σg, ω). Thus, by Proposition 4.2, Φ−1(ε) is strongly a-null
for all ε > 0 such that Φ−1(ε) is non-empty and therefore e1

1 ∪ · · · ∪ e1
2g is an

a-stem, hence it is a-superheavy by Theorem 4.4. �

Though the above example cannot be displaced by homeomorphisms,
it gives rise to a nontrivial strongly non-displaceable example by using the
following theorem.

Theorem 5.1 ([EP09] Theorem 1.7). Let (M1, ω1) and (M2, ω2) be
closed symplectic manifolds. Take non-zero idempotents a1, a2 of QH∗(M1),
QH∗(M1), respectively. Assume that for i = 1, 2, Xi be a ai-superheavy sub-
set. Then the product X1×X2 is a1⊗a2-superheavy subset of (M1×M2, ω1 ⊕
ω2) with respect to the idempotent of QH∗(M1×M2).

Proof of Corollary 1.4. By Example 2.5, Theorem 1.1 and Theorem 5.1,
C×(e1

1 ∪ · · · ∪ e1
2g) is a [CPn × Σg]-superheavy subset of (CPn × Σg, ωFS ⊕

ω) and thus, by Theorem 2.6, strongly non-displaceable. �
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