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The Dehn surgery characterization of the

trefoil and the figure eight knot

Peter Ozsváth† and Zoltán Szabó‡

We give a Dehn surgery characterization of the trefoil and the
figure eight knots. These results are obtained by combining surgery
formulas in Heegaard Floer homology from an earlier paper with
the characterization of these knots in terms of their knot Floer
homology due to Ghiggini.

1. Introduction

In [4], it was shown that the unknot is characterized by its Dehn surgeries,
in the sense that if Dehn surgery with some slope on a knot K in S3 is
orientation-preserving homeomorphic to Dehn surgery with the same slope
on the unknot, then K is in fact unknotted. The computation uses calcula-
tional techniques for Seiberg-Witten monopole Floer homology (the surgery
exact triangle), to reduce to the case of the 0-surgery, where the techniques
of Gabai [2] apply.

A proof of this fact can also be given using Heegaard Floer homology [10].
Specifically, there is a Heegaard Floer homology theory for knots introduced
in [9] and [14]. Surgery formulas for this invariant [12] allow one to express
the Heegaard Floer homology for p/q-Dehn surgery of K in terms of the knot
Floer homology of K. The hypothesis that p/q surgery on K agrees with
that of the unknot forces the knot Floer homology of K to agree with that of
the unknot. Combining this with the fact that knot Floer homology detects
the unknot [8], the Dehn surgery characterization of the unknot follows.

In a beautiful paper, Ghiggini [3] shows that Heegaard Floer homology
also detects the trefoil and the figure eight knot. Appealing to the same
strategy outlined above, in the form of the surgery formulas for knot Floer
homology, we obtain here a similar Dehn surgery characterization of both
of these knots. Specifically, we have the following:
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Theorem 1.1. Let T be a trefoil knot. If K is a knot with the property that
there is a rational number r and an orientation-preserving diffeomorphism
S3
r (K) ∼= S3

r (T ), then K is in fact the trefoil T .

In a similar vein, we have the following

Theorem 1.2. Let S be the figure eight knot. If K is a knot with the
property that there is a rational number r and an orientation-preserving
diffeomorphism S3

r (K) ∼= S3
r (S), then K is in fact the figure eight knot S.

The case where r = 0, the above theorems follow from results of Gabai [2,
Corollary 8.23].

The condition that the diffeomorphism preserves orientations is impor-
tant, here. For example, there are identifications S3

+1(T`) ∼= −S3
+1(S), and

also S3
+5(Tr) ∼= −S3

+5(O), where here O is the unknot.
Similarly, the condition that the surgery coefficient is fixed is also cru-

cial; S3
1/n(K0) where K0 is a trefoil or the figure eight knot can be realized

alternatively as +1 surgery on a suitable twist knot.
In his paper, Ghiggini proves that the trefoil is the only knot in S3 which

admits a surgery giving the Poincaré homology sphere. A consequence of
Theorems 1.1 and 1.2, we obtain a similar result for the Brieskorn sphere
Σ(2, 3, 7).

Corollary 1.3. The only surgeries on knots in S3 which realize the
Brieskorn sphere Σ(2, 3, 7) (with either orientation) are S3

−1(Tr) ∼= S3
+1(S) ∼=

Σ(2, 3, 7) and S3
+1(T`) ∼= S3

−1(S) ∼= −Σ(2, 3, 7).

In Section 2, we review the relevant aspects of Heegaard Floer homology
which are used in the proofs of the above results. In Section 3 we give the
proofs of the above two theorems and the corollary.

2. Background

2.1. Heegaard Floer homology

In its most basic form, Heegaard Floer homology is a Z/2Z-graded Abelian
group associated to a three-manifold, but it comes in several variants and
can be endowed with additional structure [10].

In this paper, we will consider primarily the version HF+(Y ) for rational
homology three-spheres Y . This group admits a splitting according to Spinc
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structures over Y

HF+(Y ) ∼=
⊕

t∈Spinc(Y )

HF+(Y, t).

Moreover, HF+(Y, t) is equipped with an absolute grading (defined in [11,
Section 7] and studied extensively in [6]). Recall that there is a natural
involution on the space of Spinc structures over Y , denoted t 7→ t. There is
a corresponding isomorphism

(1) HF+(Y, t) ∼= HF+(Y, t),

which, in the case of rational homology spheres Y , is an isomorphism of
Q-graded Abelian groups.

The group HF+(Y, t) has the following algebraic structure.

HF+(Y, t) =
⊕
d∈Q

HF+
d (Y, t).

In fact, HF+(Y, t) is supported only in rational degrees d within some fixed
equivalence class (depending on Y and t) modulo the integers. For any de-
gree d ∈ Q, HF+

d (Y, t) is a finitely generated Z-module. There is an endo-
morphism U of HF+(Y, t) that lowers degree by 2, i.e.

U : HF+
d (Y, t) −→ HF+

d−2(Y, t).

Moreover, HF+
d (Y, t) = 0 for all sufficiently small d. Finally, for any suffi-

ciently large rational number d0, if we consider the quotient module
HF+

≥d0(Y, t) of HF+(Y, t), obtained by dividing out by all elements with
degree less than d0, then that module is isomorphic to the Z[U ]-module

T + =
Z[U,U−1]

U · Z[U ]
.

From the above properties, it is clear that there is a canonical short
exact sequence

0 −−−−→ T + −−−−→ HF+(Y, t) −−−−→ HF+
red(Y, t) −−−−→ 0,

where HF+
red(Y, t) a Z[U ] module, which is also finitely generated as a Z-

module. There is a three-manifold invariant,

d : Spinc(Y ) −→ Q,
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the correction terms of Y , where d(Y, t) is the minimal Q-grading of any
homogeneous element of HF+(Y, t;Q) in the image of T + ⊗Q. The cor-
rection terms are analogous to a gauge-theoretic invariant introduced by
Frøyshov [1]; for more information on the correction terms, see [6]. Replac-
ing Q by Z/pZ, we obtain analogous d-invariants d(Y, t,Z/pZ). We will drop
the field when it is clear from the context.

The Floer homology group HF+(Y, t) also inherits a Z/2Z-grading; a
non-zero element in HF+

d (Y, t) has even parity if d ≡ d(Y, t) (mod 2Z), and
it has odd parity if d ≡ d(Y, t) + 1 (mod 2Z).

If C is a chain complex of F[U ]-modules (where F = Q or Z/nZ for prime
n), we can form

Hred(C) = lim
←
d

H∗(C)

UdH∗(C)
.

Then, if CF+(Y, t) is the chain complex calculating HF+(Y, t), then
Hred(CF+(Y, t)) = HF+

red(Y, t).

2.2. Knot Floer homology and the surgery formula

Heegaard Floer homology can be extended as in [9] and [14] to invariants for
null-homologous knots K in closed three-manifolds. We restrict attention to
the case where the ambient three-manifold is the three-sphere S3. We recall
now the notation of knot Floer homology, following [9]. This data can be
used to calculate Heegaard Floer homology groups of Dehn fillings of S3

along K, cf. [12]. After setting up notation for knot Floer homology, we
state this surgery formula.

A Z⊕ Z-filtered chain complex is a free Abelian group which splits as a
direct sum C =

⊕
(i,j)∈Z⊕Z C{(i, j)} and which is endowed with a boundary

operator which carries elements in C{(i, j)} to elements in⊕
(i′,j′)≤(i,j)

C{(i′, j′)},

writing (i′, j′) ≤ (i, j) if i′ ≤ i and j′ ≤ j. In the present paper, we will con-
sider Z⊕ Z-filtered Z[U ]-complexes. These come equipped with a chain map
isomorphism U : C −→ C which carries C{(i, j)} to C{(i− 1, j − 1)}.

Consider a subset X ⊂ Z⊕ Z with the property that if (i, j) ∈ X, then
for any (i′, j′) ≤ (i, j), we also have that (i′, j′) ∈ X. If C is any Z⊕ Z-
filtered chain complex, we can form a subcomplex C{X} ⊂ C generated by⊕

(i,j)∈X C{(i, j)}.
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Suppose Y ⊂ Z⊕ Z a set with the property that for any (i, j) ∈ Y , if
(i′, j′) ≥ (i, j), then (i′, j′) ∈ Y . In this case, we can endow

⊕
(i,j)∈Y C{(i, j)}

with the structure of a quotient complex, which we will also denote by C{Y }.
IfK ⊂ S3 is a knot, we obtain an associated Z⊕ Z-filtered chain complex

C with total homology isomorphic to Z[U,U−1]. The filtered chain homotopy
type of this complex C = CFK∞(S3,K) is a knot invariant, [9, 14].

The differential on C induces also a differential on each summand
C{(i, j)}. The homology group H∗(C{(0, s)}) is called the knot Floer ho-

mology group in filtration level s, and it is denoted ĤFK(K, s).
The filtered chain homotopy type CFK∞(S3,K) gives rise to some fur-

ther algebraic structure.
Let B+ = C{i ≥ 0}. This is a model for CF+(S3), and indeed, so is

C{j ≥ 0}. Since both represent S3, we can fix a chain homotopy equivalence
between them.

We have also chain complexes A+
s (K) = C{max(i, j − s) ≥ 0}, equipped

with a pair of maps

v+
s : A+

s (K) −→ B+ and h+
s : A+

s (K) −→ B+,

the first of which is simply the projection map (from C{max(i, j − s) ≥
0} to C{i ≥ 0}), while the second is a composite of the projection map
C{max(i, j − s) ≥ 0} to C{j ≥ s}, followed by the identification with C{j ≥
0} (induced by multiplication by U s), followed by a chain homotopy equiv-
alence of this with B+. These maps are the data necessary to calculate the
Heegaard Floer homology of arbitrary Dehn fillings of S3 along K.

Recall that the Heegaard Floer homology of Y admits a direct sum
splitting indexed by the set of Spinc structures over Y , which in turn is an
affine space for H2(Y ;Z). In particular, if K ⊂ S3, then there is a splitting

HF+(S3
p/q(K)) ∼=

⊕
i∈Z/pZ

HF+(S3
p/q(K), i).

Fix an integer i, and consider the chain complexes

A+
i =

⊕
s∈Z

(s,A+
b i+ps

q
c(K)) and B+

i =
⊕
s∈Z

(s,B+),

where here bxc denotes the greatest integer smaller than or equal to x. We
view the above chain homomorphisms v+ and h+ as maps

v+ : (s,A+
b i+ps

q
c(K)) −→ (s,B+) and h+ : (s,A+

b i+ps

q
c(K)) −→ (s+ 1, B+).
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Adding these up, gives a chain map D+
i,p/q : A+

i −→ B+
i , where

D+
i,p/q{(s, as)}s∈Z = {(s, bs)}s∈Z,

is given by

bs = v+
b i+ps

q
c(as) + h+

b i+p(s−1)

q
c
(as−1).

Let X+
i,p/q denote the mapping cone of D+

i,p/q. Note that X+
i,p/q depends

on i only through its congruence class modulo p. Note also that A+
s and

B+
s are relatively Z-graded, and the homomorphisms v+

s and h+
s respect

this relative grading. The mapping cone X+
i can be endowed with a relative

grading, with the convention that D+
i,p/q drops the grading by one.

The following is proved (in somewhat more generality) in [12, Theo-
rem 1.1 and 6.1]; see also [12, Section 7.2] for the absolute gradings:

Theorem 2.1. Let K ⊂ S3 be a knot, and let p, q be a pair of relatively
prime integers. Then, there is an identification σ : Z/pZ −→ Spinc(S3

p/q(K))

such that for each i ∈ Z/pZ, there is a relatively graded isomorphism of
groups

ΦK,i : H∗(X+
i,p/q(K))

∼=−→ HF+(S3
p/q(K), σ(i)).

Indeed, there is a uniquely specified absolute grading on the subcomplex
B+
i ⊂ X+

i,p/q(K) (which is independent of K) for which the map ΦO,i is an

isomorphism (where here O is the unknot). With the corresponding induced
grading on X+

i,p/q(K), ΦK becomes an absolutely graded isomorphism.

It is useful to note that there is a conjugation on knot Floer homology
related to the conjugation invariance on closed manifolds, cf. Equation (1).
In the form which we need it, this is an isomorphism

Ψ: H∗(A
+
s )

∼=−→ H∗(A
+
−s)

for all integers s. Indeed, under this isomorphism, we have a commutative
diagram

H(A+
s )

Ψ−−−−→ H(A+
−s)

H(v+s )

y yH(h+
−s)

H(B+)
=−−−−→ H(B+)

It is also useful to note that, although X+
i,p/q(K) is a very large chain

complex, if we are interested in the homology in degrees less than or equal to



i
i

“6-Ozsvath” — 2019/5/11 — 23:54 — page 257 — #7 i
i

i
i

i
i

Trefoil and figure eight knot 257

some fixed quantity d, then this is contained in much smaller chain complex.
More precisely, suppose that p, q > 0. Then, since v+

s is an isomorphism for
all sufficiently large s and h+

s is an isomorphism for all sufficiently small s,
we can consider the subsets

A+
i,≤σ =

⊕
{s∈Z||s|≤σ}

(s,A+
b i+ps

q
c(K)) ⊂ A+

i

B+
i≤σ =

⊕
{s∈Z|−σ<s≤σ}

(s,B+) ⊂ B+
i ,

where σ is sufficiently large. The map D+
i,p/q induces a map from A+

i,≤σ to

B+
i,≤σ, whose mapping cone, denoted X+

i,p/q,≤σ, is a quotient complex of X+
i,p/q.

Since the subcomplex has trivial homology, the homology of the chain com-
plex X+

i,p/q(K) agrees with the homology of its quotient complex X+
i,p/q,≤σ(K)

for some σ.

2.3. Examples

For K the unknot, C has a single generator a as a Z[U,U−1]-module, which
is supported in filtration level (0, 0) and grading zero. The differentials are
trivial.

We let T` denote the left-handed trefoil, Tr denote the right-handed
trefoil, and S denote the figure eight knot.

For K = Tr, the complex C has three generators as a Z[U,U−1]-module,
a, b, c, in filtration levels (−1, 0) (0, 0), and (0,−1) respectively, with the
differential Db = a+ c,Da = Dc = 0.

For K = T`, C has three generators as a Z[U,U−1]-module, a, b, c, in
filtration levels (0, 1) (0, 0), and (1, 0) respectively, with the differential Da =
Dc = b and Db = 0.

Finally, for K = S, C has five generators as a Z[U,U−1] module, a, b, c,
d, and e. Here a is supported in filtration level (1, 1), b in (0, 1), c in (1, 0),
and d and e in (0, 0). Differentials are given by Da = b+ c, Db = −Dc = d,
Dd = De = 0.

These answers are illustrated in Figure 1. These computations are fairly
straightforward; one could find an appropriate Heegaard diagram where the
computations are easy, or refer to more general results [7, 13]. These results
have the following consequences for A+

s .

Proposition 2.2. The groups H∗(A
+
s (K)) and the homomorphisms on ho-

mology induced by v+
s (for s ≥ 0) for K = Tr, T`, and S are determined
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Figure 1: Filtered complexes for Tr, T`, and S. We have illustrated the
Z⊕ Z-filtered complexes associated to the three knots listed above. Dots
represent generators, and arrows represent differentials.

as follows. For all s ∈ Z, H∗(A
+
s (Tr)) ∼= T +; indeed, for all s > 0, the map

induced by vs is an isomorphism, while for s = 0, the map

H(v0) : H∗(A
+
0 (Tr)) ∼= T + −→ HF+(S3) ∼= T +

is modeled on multiplication by U .
For all s > 0, H∗(A

+
s (T`)) ∼= T +, while H∗(A

+
0 (T`)) ∼= T +

(0) ⊕ Z(0), where

the extra Z has grading zero. Moreover, the kernel of H(v0) is one-dimen-
sional.

For all s > 0, H∗(A
+
s (S)) ∼= T +, with an isomorphism induced by v+;

while H∗(A
+
0 (S)) ∼= T +

(0) ⊕ Z(−1), and the kernel of H(v0) is one-dimensional.

Proof. These are straightforward consequences of the chain complexes de-
scribed above. �

Remark 2.3. Recall that the surgery formula uses a chain homotopy equiv-
alence between C{i ≥ 0} and C{j ≥ 0}. Our computations will be indepen-
dent of the choice of homotopy equivalence. This is unsurprising: when the
ambient manifold is S3, any automorphism of CF+(S3) up to homotopy,
is determined by its action on homology, T +. The automorphism group of
T +, in turn is Z/2Z, generated by multiplication by −1. Finally, multiplying
each h+

s by −1 can be shown to give an isomorphic chain complex X+
i,p/q.

2.4. Genus bounds and Ghiggini’s theorem

In [8], it is shown that if K ⊂ S3 is a knot with genus g, then

max{s
∣∣H∗(C{(0, s)}) = ĤFK(K, s) 6= 0} = g.
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It was conjectured that if ĤFK(K, g) ∼= Z, then K is a fibered knot. Ghig-
gini [3] verified this conjecture for knots with genus one; see [5] for the case
g > 1. Since the only genus one fibered knots are the figure eight and the
trefoil, it follows that:

Theorem 2.4. (Ghiggini) Let K be a knot with ĤFK(K, s) = 0 for all

s > 1 and ĤFK(K, 1) is isomorphic to Z. Then, K is a trefoil or the figure
eight knot.

3. Proof of Theorems 1.1 and 1.2

We will fix throughout some field F (which is Q or Z/nZ where n is prime),
computing Floer homology (and d invariants) with coefficients in F. When
writing T +, we mean T + ⊗ F.

Let K0 be a trefoil or the figure eight knot. From a graded isomorphism

HF+(S3
p/q(K)) ∼= HF+(S3

p/q(K0)),

we would like to use the surgery formula to conclude an isomorphism between
the knot Floer homologies of K and K0. To this end, we find it useful to
identify HF+(S3

p/q(K0)).

Proposition 3.1. Let p and q be relatively prime, positive integers. We
have that

rkHF+
red(S3

p/q(Tr)) < q,

while

rkHF+
red(S3

p/q(T`)) = rkHF+
red(S3

p/q(S)) = q.

In the case where K0 = T`, HF
+
red(S3

p/q(T`)) is supported in even degree,

while in HF+(S3
p/q(S)), it is supported in odd degree. Moreover, for K0 = Tr,

T`, and S, we have that

∑
i∈Z/pZ

rkHF+
red(S3

p/q(K0), i)−

(
d(S3

p/q(K0), i)− d(S3
p/q(O), i)

2

)
= q.

Proof. By Proposition 2.2, for K0 = Tr, T`, or S, the map v+
s : A+

s → B+ in-
duces an isomorphism on homology for all s > 0; by symmetry, h+

−s : A+
−s →

B+ induces isomorphisms on homology for s > 0. Let k = ki denote the num-
ber of times A0 appears in the model X+

i,p/q. It follows that, when k > 0, then
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X+
i,p/q is quasi-isomorphic to the subcomplex consisting of k copies of A+

0 and

k − 1 copies of B+, which can be viewed as a mapping cone of maps obtained
by adding up v+

0 and h+
0 . Moreover, the map is surjective on homology, so

we obtain a short exact sequence of the form

0 −−−−→ HF+(S3
p/q(K0), i) −−−−→

⊕kH(A+
0 (K0))

H(δ)−−−−→
⊕k−1H(B+) −−−−→ 0.

When K0 = S, the results of Proposition 2.2 give a ki-dimensional kernel
to H(δ) in odd dimensions, and the portion in even degrees agrees with that
for the knot, giving a summand T +. In fact,

(2) HF+(S3
p/q(S), i) = T +

(d) ⊕ Fk(d−1),

where d = d(S3
p/q(O), i). Moreover for i where ki = 0,

HF+(S3
p/q(S), i) ∼= HF+(S3

p/q(O), i) ∼= T +
(d).

Adding up over all i ∈ Z/pZ, and noting that
∑
ki = q, we obtain the stated

result for S.
When K0 = T`, the argument works similarly, except in this case, when

ki 6= 0, Equation (2) is replaced by

HF+(S3
p/q(T`), i) = T +

(d) ⊕ Fk(d).

When K0 = Tr, the short exact sequence looks like

0 −−−−→ HF+(S3
p/q(Tr, i)) −−−−→

⊕k T +
(d−2)

H(δ)−−−−→ ⊕k−1T +
(d) −−−−→ 0,

where d = d(S3
p/q(O), i), and Equation (2) is replaced by

HF+(S3
p/q(S), i) = T +

(d−2) ⊕ Fk−1
(d−2). �

Proposition 3.2. If K ⊂ S3 is a knot with the property that for some s >
0, the map H∗(A

+
s (K))→ HF+(S3) induced by v+ is not an isomorphism,

then for any p/q > 0, we have that

p−1∑
i=0

rkHF+
red(S3

p/q(K), i)−

(
d(S3

p/q(K), i)− d(S3
p/q(O), i)

2

)
≥ 2q.
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Proof. We start by proving the following extension property for homology
classes in the kernel of H(v+

s ) for s > 0. Fix i ∈ {0, . . . , p− 1} and choose
` ∈ Z so that s = b i+p`q c is positive, and fix some homology class [ξs] ∈
Ker(H(v+

s ) : H∗(A
+
s )→ H∗(B

+)) in with fixed grading δ. Then, there is
a homology class in H(X+

i,p/q) whose projection to H(A+
b i+pj

q
c) vanishes for

j < `, and whose projection to H(A+
b i+p`

q
c) coincides with [ξs]. This follows

from the fact that for t ∈ Z, the map

H(vt) : H(A+
t )→ H(B+)

is surjective, as follows. Fix [ξs] ∈ KerH(v+
s ), and fix a cycle ξs ∈ A+

s rep-
resenting [ξs]. By hypothesis, there is some η` ∈ B+ so that v+

` (ξ`) = ∂η`.
Since

v+ : A+

b i+p(`+1)

q
c
→ B+

induces a surjection in homology, we can find a cycle ξ`+1 ∈ A+

b i+p(`+1)

q
c

and

a chain η`+1 ∈ B+ with

h+
` (ξ`) = v+

b i+p(`+1)

q
c
(ξ`+1) + ∂η`+1.

Proceeding inductively, we end up completing the initial cycle ξ` with a
desired sequence of elements with j ≥ `, ξj ∈ (j, A+

b i+pj

q
c) and ηj ∈ (t, B+)

with t ≥ s, so that

h+
j (ξj) = v+

b i+p(j+1)

q
c
(ξj+1) + ∂ηj+1.

Note that by degree homogeneity, this procedure terminates for sufficiently
large `. Thus, the sum of these elements can be viewed as a homology class
in H∗(X+

i,p/q) whose projection to H∗(A
+
b i+ps

q
c) is [ξs].

By symmetry, if −s = b i+p`q c < 0, if [ξ−s] ∈ Ker(H(h+
−s) : H∗(A

+
−s)→

H∗(B
+)), there is a homology class in H(X+

i,p/q) whose projection to

H(A+
b i+pj

q
c) vanishes for j > `, and whose projection to H(A+

b i+p`

q
c) coincides

with [ξ−s].
With these remarks in place, we turn to the proof of the proposition,

distinguishing two cases according to whether or not Hred(A+
s ) = 0.

Suppose first that Hred(A+
s ) 6= 0. There is a homology class [ξs] ∈ H(A+

s )
in Ker(H(v+) : H(A+

s )→ H(B+)) so that [ξs] represents a non-zero element
element of Hred(A+

s ). The extension property verified at the beginning of
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the proof gives linearly independent homology classes in Hred(X+
i,p/q), one

for each times A+
s appears in X+

i,p/q. Thus, the surgery formula gives a q-

dimensional lattice in HF+
red(S3

p/q). Another q-dimensional lattice is supplied

by corresponding element in Hred(A+
−s), showing that rkHF+

red(S3
p/q(K)) ≥

2q.
We argue that d(S3

p/q(K), i) ≤ d(S3
p/q(O), i) for all i, as follows. In the

model of the unknot O, there is some A+
t (O) summand in X+

i,p/q(O) (the min-

imal positive element in { bi+p`q c}`∈Z) so that the non-zero class H0(A+
t (O))

(where now we use the grading on A+
t for which the map H(v+

t ) : H(A+
t )→

H(B+) ∼= T +
(0) is grading preserving) extends to give a homology class in

Hd(S
3
p/q(O), i) with d = d(S3

p/q(O), i). Returning to K, since the projec-

tion maps X+
i,p/q → At

v+t→ B+ induce isomorphisms in homology for all suf-
ficiently large positive degrees, it follows that there is an element from
U `H∗(X+

p/q) for all ` ≥ 0 that restricts to a non-zero element of H0(At),

which in turn corresponds to an element of Hd(S
3
p/q(K)). It follows at once

that d(S3
p/q(K), i) ≤ d(S3

p/q(O)), as stated.

Suppose next that Hred(A+
s ) = 0, but the map on homology induced

by v+
s is not an isomorphism. In this case, H∗(A

+
s ) = T +

(−2n), and the map

H(v+
s ) : H(A+

s )→ H(B+) is modelled on the projection map T +
(−2n) → T

+
(0)

for some n > 0; and in particular its kernel has rank n.
For all 0 ≤ t ≤ s, we claim that H(A+

t ) has a submodule isomorphic to
T +

(−2m) for some m ≥ n. This follows easily from the fact that v+ : A+
t → B+

factors through the natural projection from A+
t to A+

s and also v+ : A+
t →

B+ is an isomorphism in sufficiently large degree. In particular, the kernel of
H(v+

t ) : H∗(A
+
t )→ H∗(B

+) for each such 0 ≤ t ≤ s has dimension at least
n. Moreover, when t = 0, since v+

0 : A+
0 → B+ and h+

0 : A+
0 → B+ have the

same degree shift, we obtain an at least n-dimensional kernel of H(v+
0 )⊕

H(h+
0 ) : H(A+

0 )→ H(B+)⊕H(B+).
Consider a Spinc structure i ∈ Z/pZ modeled on X+

i,p/q(K). Let k = ki

denote the number of copies of A+
t with |t| ≤ s which appear in this model,

and suppose that k > 0. The extension property applied to the above re-
marks gives an element in ξ̃ ∈ H∗(X+

i,p/q) which restricts to a non-zero ele-

ment in ξ ∈ H−2n(A+
t ) to an element, which is in the image of U `H2`−2n(A+

t )
for all ` ≥ 0. Indeed, since the projection map from H∗(X+

i,p/q)→ H∗(A
+
t )

is surjective in all sufficiently large degrees, it follows that ξ̃ ∈ U `H∗(X+
i,p/q)

for all ` ≥ 0.
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On the other hand, in the model for the unknot O, the generator of
Hd(X+

i,p/q(O)) with d = d(S3
p/q(O), i) has some non-trivial component in

H0(A+
t ) where t is chosen with minimal absolute value among all inte-

gers in the set {b i+p`q c}`∈Z. We can thus conclude that d(S3
p/q(K), i) ≤

d(S3
p/q(O), i)− 2n. Moreover, there is a remaining (k − 1)n-dimensional sub-

space in H(X+
i,p/q) corresponding to generators in H2j(A

+
t ) with −2n < 2j <

0 with |t| ≤ s that induce non-trivial elements in HF+
red(S3

p/q(K), i), showing

that rkHFred(S3
p/q(K), i) ≥ n(k − 1). It follows that

rkHF+
red(S3

p/q(K), i)−

(
d(S3

p/q(K), i)− d(S3
p/q(O), i)

2

)
≥ nki.

Summing over all i = 0, . . . , p− 1, and noting that
∑p−1

i=0 ki = q(2|s|+
1), we see that

p−1∑
i=0

rkHF+
red(S3

p/q(K), i)−

(
d(S3

p/q(K), i)− d(S3
p/q(O), i)

2

)
≥ 2q,

completing the proposition in the case where Hred(A+
s ) = 0.

�

Lemma 3.3. Let K ⊂ S3 be a knot with genus g. Then, there is a short
exact sequence

0 −−−−→ ĤFK(K, g) −−−−→ H∗(A
+
g−1)

H(v+g−1)
−−−−−→ H∗(B

+) −−−−→ 0

Proof. There is an obvious short exact sequence

0 −−−−→ C{(−1, g − 1)} −−−−→ A+
g−1

v+g−1−−−−→ B+ −−−−→ 0

inducing a long exact sequence in homology. On the other hand, the map
on homology v+

g−1 is surjective for simple algebraic reasons. (as it is an
isomorphism in all sufficiently large degrees, it is U -equivariant, and the
automorphism of H∗(B

+) induced by U is surjective.) Finally, note that

H∗(C{(−1, g − 1)}) ∼= ĤFK(K, g). �

Proof of Theorems 1.1 and 1.2. The case where p = 0 follows from [2,
Corollary 8.23]. Thus, by reflecting the knot if necessary, we can assume
that p/q > 0. Assume that K is a knot with S3

p/q(K) ∼= S3
p/q(K0), with K0 ∈
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{Tr, T`, S}. Combining Propositions 3.1 and 3.2, we conclude that for all s >
0, v+

s : A+ → B+ induces an isomorphism on homology. From Lemma 3.3,

we conclude that ĤFK(K, s) = 0 for all s > 1. In view of [8], this already
proves that K has genus one.

Let M denote the rank of the kernel of H(v+
0 ) : H(A+

0 )→ H(B+). Using
the extension property from the proof of Proposition 3.2 (now for kerH(v+

0 ),
instead of kerH(v+

s ) with s > 0) it follows that

q ·M ≤ rkHF+
red(S3

p/q(K))−
∑

i∈Z/pZ

(
d(S3

p/q(K), i)− d(S3
p/q(O), i)

2

)
.

From Proposition 3.1, it follows that M = 1. Thus, by Lemma 3.3, we see
that ĤFK(K, 1) has rank one, computed choosing F = Q or Z/nZ (for any

prime n), so ĤFK(K, 1) ∼= Z. By Ghiggini’s theorem, it follows that K is
either the figure eight knot or the trefoil.

Another look at the Floer homology groups S3
p/q(K0) as stated in Propo-

sition 3.1 then allows one to conclude that K = K0. �

Proof of Corollary 1.3. Note that Σ(2, 3, 7) cannot be realized as 1/n
surgery on any knot in S3 with |n| > 1. This follows from the surgery formula
for Casson’s invariant λ, together with the fact that |λ(Σ(2, 3, 7))| = 1. The
corollary is now a direct application of Theorems 1.1 and 1.2. �

Remark 3.4. Let K0 ∈ {T`, Tr, S}. The proof we gave shows that if the
knot Floer homology of K is different from that of K0, then for all r 6= 0,
the Heegaard Floer homology of S3

r (K) is different from that of S3
r (K0). In

fact, this result also holds when r = 0. This follows by reducing to the case
r = ±1, using the surgery exact sequence in gradings, as in [6, Section 8].
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