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For a semisimple Lie group GC over C, we study the homotopy type
of the symplectomorphism group of the cotangent bundle of the flag
variety and its relation to the braid group. We prove a homotopy
equivalence between the two groups in the case of GC = SL3(C),
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1. Introduction

For a semisimple Lie group GC over C, the cotangent bundle of the flag
variety T ∗B and its relation to the braid group have led to numerous active
research directions in geometric representation theory, algebraic geometry
and symplectic topology. The main driving force for these is due to the fruit-
ful structures underlying the Springer resolutions and the adjoint quotient
maps.

This paper is an attempt to study the homotopy type of the symplecto-
morphism group of T ∗B and its relation to the braid group, from a purely
geometric point of view. We especially focus on the case of GC = SL3(C).
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1.1. Motivation and set-up

The motivation is from the (strong) categorical braid group action on D(B),
the derived category of constructible sheaves on B, by Deligne [1] and Rou-
quier [9]. This action gives rise to GC-equivariant automorphisms of D(B).
One can translate the result to symplectic geometry via the Nadler-Zaslow
correspondence [8]. Recall that the Nadler-Zaslow correspondence gives a
categorical equivalence between D(X) and DFuk(T ∗X), the derived Fukaya
category of T ∗X, for any compact analytic manifold X (see Section 2.1.1 for
more details). Since symplectomorphisms of T ∗B with reasonable behavior
near infinity induce automorphisms of DFuk(T ∗B), it is natural to form the
following conjecture.

Conjecture 1.1. The “GC-equivariant” symplectomorphism group of T ∗B
is homotopy equivalent to the braid group.

To rigorously state the conjecture, one has to give a definition of “GC-
equivariance” on symplectomorphisms. The global GC-equivariance condi-
tion on a symplectomorphism would force it to be the identity. The reason
is the following. The Springer resolution (see (2.2) for the definition)

µC : T ∗B → N ,

gives a GC-equivariant isomorphism from the dense GC-orbit in T ∗B to Nreg,
the orbit of regular nilpotent elements in N . Suppose ϕ is a GC-equivariant
symplectomorphism, then the graph of ϕ|µ−1

C (Nreg) is a complex Lagrangian

submanifold in T ∗B− × T ∗B, hence the graph of ϕ is a closed complex La-
grangian. Therefore, ϕ preserves the holomorphic symplectic form and then
preserves µC (see Lemma 2.4), so we can conclude that ϕ = id.

A natural replacement of the global GC-equivariance condition is to re-
quire ϕ to be GC-equivariant at infinity. It can be formulated via the La-
grangian correspondence Lϕ, i.e. the graph of ϕ, in T ∗B− × T ∗B ' T ∗(B ×
B) and its relation to the Steinberg variety Z. Recall that the Steinberg vari-
ety Z is the union of the conormal varieties to the GC-orbits in B × B under
the diagonal action. Using the R+-action on T ∗(B × B), one can projectivize
the cotangent bundle and get a compact symplectic manifold with a contact
boundary. We denote the boundary by T∞(B × B), and for any Lagrangian
L in the cotangent bundle, we use L∞ to denote for L ∩ T∞(B × B). Then
we make the following definition (see Section 2.1.2 for more discussions).
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Definition 1.2. A symplectomorphism ϕ of T ∗B is GC-equivariant at in-
finity if L∞ϕ ⊂ Z∞. We denote by SymplZ(T ∗B) for the group of symplec-
tomorphisms that are GC-equivariant at infinity.

We are content with this definition since the Steinberg variety is one of
the key players in geometric representation theory, and this definition builds
a natural bridge between geometric representation theory and symplectic
geometry.

For example, if GC = SL2(C), then the symplectomorphisms that we
are considering are the compactly supported ones. For general GC, ϕ has to
preserve the Springer fibers, i.e. fibers of µC, at infinity. If we fix a maximal
compact subgroup G in GC (e.g. SU(n) inside SLn(C) and identify B with
G/T ), then we can consider the subgroup SymplGZ(T ∗B) of (genuine) G-
equivariant symplectomorphisms. We make the following conjecture.

Conjecture 1.3. There is a sequence of homotopy equivalences

SymplZ(T ∗B) ' SymplGZ(T ∗B) ' BW.

Our main results provide evidence for this conjecture.

1.2. Main Theorem

Theorem 1.4. (1) There is a natural surjective group homomorphism

βG : SymplGZ(T ∗B)→ BW, for G = SU(n).

(2) βG is a homotopy equivalence for G = SU(2), SU(3).

The construction of βG is purely geometric as apposed to the alterna-
tive categorical construction (see Remark 1.5 below). As mentioned before,
every ϕ ∈ SymplGZ(T ∗B) must preserve each reduced space of the Hamil-
tonian G-action. So the problem of studying the (weak) homotopy type of
SymplGZ(T ∗B) can be roughly reduced to the study of homotopy classes (and
homotopy between homotopies and so on) of the symplectomorphisms on the
Hamiltonian reductions over a Weyl chamber W in the dual of the Cartan
subalgebra t∗ ∼= it, with some further restrictions at infinity.

For n = 2, the reduced space over each element p ∈W is a point. How-
ever, we have to divide them into two cases. If p 6= 0, then µ−1(p) is an orbit
of the T -action, so ϕ|µ−1(p) is a rotation and corresponds to an element in
S1. If p = 0, then the restriction of ϕ on µ−1(0) = T ∗BB is a G-equivariant
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W

Figure 1: The fibers of µ over a Weyl chamber W for G = SU(2) and the
Dehn twist. The Dehn twist moves the lower straight red line to the upper
red curve.

automorphism of G/T . Since AutG(G/T ) ∼= W, ϕ|µ−1(0) corresponds to an
element in W ∼= Z2. Note that the circles over the interior of W approach
the zero section to a big circle, we see that ϕ corresponds to a path in S1

starting from ±1 and ending at 1, and that ϕ is a (iterated) Dehn twist (see
Figure 1). It is then easy to see that SymplGZ(T ∗B) is homotopy equivalent
to B2 = Z, which is homotopy equivalent to Symplc(T ∗S2), by the result of
Seidel [10].

For n ≥ 3, things are more interesting and we will not have all ϕ being
compactly supported. The picture in the case of G = SU(3) is very illus-
trating. Let µ : T ∗B → isu(3) ∼= su(3)∗ be the moment map. Along the ray
generated by p = diag(1, 0,−1) ∈ it, the reduced spaces are all S2 with three
distinguished points corresponding to the singular loci of µ. There are ex-
actly two types Springer fibers contained in µ−1(p): one is the Springer fiber
over a regular nilpotent element (a 3× 3-nilpotent matrix having one single
Jordan block in its Jordan normal form), which is just a point; the other
is the Springer fiber over a subregular nilpotent element (a 3× 3-nilpotent
matrix having two Jordan blocks), which is the wedge of two 2-spheres. The
union of subregular Springer fibers in µ−1(p) projects to two line segments
connecting the three special points in the reduced space Mp (see Figure 2).
Now we draw a small disc Us around these line segments in µ−1(s · p) for
each s > 0, which forms a R+-invariant family. Let ϕs be the induced map
on Ms·p by ϕ. As s→∞, ϕs tends to fix all the points outside of Us, hence
after a small homotopy near ∂(Us), ϕs|Us becomes a symplectomorphism of
Us, which permutes the three marked points and fixes each point on the
boundary. Therefore, it gives rise to an element in B3, the braid group of
three strands.
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R+ · p

W

Figure 2: The reduced spaces over R+ · p, p = diag(1, 0,−1) ∈ it, and an il-
lustration of one symplectomorphism for G = SU(3). The reduced spaces
have been rescaled to be of the same size. The union of the two arcs in the
leftmost reduced space is the projection of the subregular Springer fibers.
The symplectomophism restricts to the identity near the zero section of T ∗B,
so fixes every point in the reduced spaces near the vertex of W . The arcs in
the two reduced spaces on the right illustrate how the symplectomorphism
moves the Springer fibers.

For G = SU(n), we focus on certain region in µ−1(pn), where pn =
diag(1,−1, 0, . . . , 0) ∈ isu(n), and use similar argument. To prove surjec-
tivity of βG, we explicitly construct fiberwise Dehn twists associated to each
simple root α (see Remark 1.6 below), and we show that their image under
βG generates BW.

Remark 1.5. One could compare the map in Theorem 1.4 with the com-
position SymplGZ(T ∗B)→ Aut(DFuk(T ∗B)) ∼= Aut(D(B)) through the cat-
egorical action of SymplGZ(T ∗B). Conjecture 1.3 implies that this construc-
tion gives βG as well. The reason is that the Lagrangian correspondences for
the fiberwise Dehn twists in T ∗(B × B) represent exactly the integral kernels
for the braid group action on D(B).

For part (2) of Theorem 1.4, we have seen the proof when G = SU(2).
The proof for G = SU(3) consists of two steps. The first step is to construct
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local symplectic charts for µ−1(W ) and “trivialize” each chart by certain
reduced spaces. The main techniques are the Duistermaat-Heckman theorem
on the normal form of a moment map near a regular value (see [4]), and
Weinstein’s Lagrangian tubular neighborhood theorem. The second step is
to find the homotopy type of the symplectomorphism groups over the local
charts by constructing various fibrations, and then realize kerβG as the fiber
product of these spaces. One of the difficulties along the way is to take special
care for the singular loci of the moment map.

Remark 1.6. This is a remark on some related result by Seidel-Smith and
Thomas. Seidel-Smith [11] considered symplectic fibrations that naturally
arise in the adjoint quotient maps in Lie theory, and constructed link in-
variants by the symplectic monodromies. It is described in [13] that the
braid group actions are exactly the “family Dehn twists” about the family
of isotropic spheres over T ∗(GC/P ), which are the image of the left map in
the standard correspondence

T ∗(GC/B)← GC/B ×GC/P T
∗(GC/P )→ T ∗(GC/P ),

associated to the P1-fibration GC/B → GC/P , for a minimal parabolic sub-
group P . This is essentially the same as the fiberwise Dehn twists that we
consider here, though we identify T ∗B as a symplectic fiber bundle over
T ∗(GC/P ) using the Killing form on g (rather than gC), and we explicitly
make the fiberwise Dehn twists all G-equivariant.
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2. Preliminaries and Set-ups

Notations: Throughout this paper, we will use GC to denote a semisimple
Lie group over C, with Lie algebra gC, and G to denote for a maximal
compact subgroup in GC with Lie algebra g. We will mostly focus on type
A, e.g. GC = SLn(C) and G = SU(n). Fix a Borel subgroup B in GC with
Lie algebra b and nilradical n, and let B denote for GC/B. Then T := B ∩G
is a maximal torus in G, with Lie algebra t, and we have the canonical
identification B ∼= G/T . For GC = SLn(C), we will mostly take B to be the
subgroup of upper triangular matrices, then T consists of diagonal matrices
in SU(n).

2.1. Set-up for the symplectomorphism group

We consider T ∗B as a real symplectic manifold, and would like to study the
homotopy type of its symplectomorphism group. Since T ∗B is noncompact,
we must put some restrictions on the behavior of the symplectomorphisms
near the infinity of T ∗B, so that the resulting group has “nice” structures. A
typical restriction is to make the symplectomorphisms compactly supported,
which will turn out to be too small (see the discussion below). Instead we
pose the condition that the symplectomorphisms are GC-equivariant at in-
finity, where the GC-action is the standard Hamiltonian action induced from
the left action of GC on B. We will make the restriction more precise after
a brief discussion of the motivation.

2.1.1. Motivation for the definition. Let D(B) be the constructible
derived category of sheaves on B, and let DFuk(T ∗B) be the derived Fukaya
category of T ∗B. There is a categorical equivalence (the Nadler-Zaslow cor-
respondence) between D(M) and DFuk(T ∗M), for any real analytic man-
ifold M . Motivated by the results of [1] and [9] on the braid group action
on D(B), which are GC-equivariant automorphisms of the category, and the
Nadler-Zaslow correspondence between D(B) and DFuk(T ∗B), we would
like to study the group of “GC-equivariant” symplectomorphisms of T ∗B,
and to see its relation to the braid group. As discussed in the Introduction,
the most natural interpretation of “GC-equivariancy” is to impose that ϕ is
GC-equivariant at infinity.

2.1.2. Definition of SymplGZ(T ∗B). Let ϕ be any symplectomorphism
of T ∗B, then its graph Lϕ is a Lagrangian correspondence in (T ∗B)− ×
T ∗B ∼= T ∗(B × B). Using the R+-action on the cotangent fibers of T ∗(B ×
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B), we can projectivize the space with the boundary divisor T∞(B × B)
being a contact manifold, with contact form θ∞. We require ϕ to be well-
behaved near the infinity divisor, in the sense that L∞ϕ := Lϕ ∩ T∞(B × B)
is θ∞-isotropic.

As discussed in the Introduction, global GC-equivariancy on a symplec-
tomorphism ϕ forces ϕ to preserve each Springer fiber, which implies that
ϕ must be the identity. However, if we only require the GC-equivariancy
condition “at infinity”, this would give a reasonable constraint on ϕ by

L∞ϕ ⊂ (Ñ ×N Ñ )∞,

where Ñ = T ∗B and the fiber product is taken for the Springer resolution
µC. Note that Ñ ×N Ñ is just the Steinberg variety Z, which is a Lagrangian
subvariety by an alternative description as the union of conormal varieties to
the diagonal GC-orbitsOw, w ∈W in B × B (hereO1 = ∆B). Thus, we make
the following definition, which adds to Definition 1.2 a partially compactly
supported requirement for ϕ.

Definition 2.1. A symplectomorphism ϕ of T ∗B is GC-equivariant at in-
finity if

(1) L∞ϕ ⊂ Z∞,

(2) (Partially compactly supported) There is an open neighborhood of
Z∞ −

⋃
w∈W−{1}

T∞Ow(B × B) in Lϕ that is contained in T
∗
O1

(B × B);

We denote by SymplZ(T ∗B) for the group of symplectomorphisms with
GC-equivariancy at infinity.

We define the C∞-topology on SymplZ(T ∗B) as follows.

lim
n→∞

fn = f ∈ SymplZ(T ∗B)⇔(2.1)

(a) lim
n→∞

fn|K = f |K in C∞(K,T ∗B) for all compact subdomain K;

(b) for any sequence of points yn ∈ Lfn , if lim
n→∞

yn exists

in T∞(B × B), then it lies in Z∞.

It is easy to see that SymplZ(T ∗B) endowed with this topology is a
topological group. The main concern about the topology of symplectomor-
phisms on a non-compact symplectic manifold M is that the induced au-
tomorphisms on the Fukaya category Fuk(M) of a continuous family of
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symplectomorphisms should remain the same, i.e. there should be a well
defined map π0(Sympl(M))→ Aut(Fuk(M)). In our setting, we view each
ϕ ∈ SymplZ(T ∗B) as a Lagrangian correspondence Lϕ with L∞ϕ ⊂ Z∞, and
it corresponds to a sheaf (or an integral kernel) Fϕ in ShZ(B × B), the full
subcategory of sheaves with singular support contained in Z (cf. [8], [7]).
Now if we have a continuous family {ϕs}0≤s≤1 in the C1-topology defined by
(2.1), then the family of sheaves Fϕs remain the same. This can be argued
using the test branes representing the micolocal stalk functors in Fuk(T ∗B)
and the fact that the isotopy of the branes Lϕs is non-characteristic with
respect to any fixed finite set of test branes; for more details see [5] and [7].

We also consider the subgroup of G-equivariant symplectomorphisms,
denoted as SymplGZ(T ∗B). As stated in the Introduction, we conjecture that

SymplZ(T ∗B) ' SymplGZ(T ∗B) ' BW.

2.2. Moment maps

2.2.1. Moment maps for the GC-action and G-action on T ∗B. For
any element x ∈ GC, let Lx (resp. Rx) denote the action of left (resp. right)
multiplication by x on GC. We will use the left action to identify GC × g∗C
with T ∗GC:

GC × g∗C → T ∗GC
(x, ξ) 7→ (x, L∗x−1ξ)

.

Using the Killing form to identify g∗C with gC, the moment maps for the
left and right GC-action (with respect to the holomorphic symplectic form)
under the above identification are given by

µL : GC × gC → gC
(x, ξ) 7→ Adxξ

, and
µR : GC × gC → gC

(x, ξ) 7→ ξ
, respectively.

For the right Hamiltonian B-action on T ∗GC induced from the right
GC-action, the moment map is given by

µR,B : GC × gC → b∗ ∼= gC/n

(x, ξ) 7→ ξ
,

where ξ means the image of ξ under the quotient map gC → gC/n. Then
we have T ∗B = µ−1

R,B(0)/B = GC ×B n, where B acts on the right on GC
and acts adjointly on n in the last twisted product. In the following, we
will also use (x, ξ), ξ ∈ n, to denote a point in T ∗B, though it should be
understood as a representative in the equivalence class under the relation
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(x, ξ) ∼ (xb,Adb−1ξ). Now the moment map for the left GC-action on T ∗B
is given by

(2.2)
µC : T ∗B → gC

(x, ξ) 7→ Adxξ
.

Since the image of µC is the nilpotent cone N ⊂ g, we will sometimes write
the codomain of µC as N , and then it becomes the Springer resolution.
The fiber of the Springer resolution over u ∈ N is called a Springer fiber,
and is denoted by Bu. Here we recall some basic facts about the Springer
resolutions.

The nilpotent cone N is stratified by GC-orbits, and they form a par-
tially ordered set. The greatest one in the poset is the open dense orbit
consisting of regular nilpotent elements, and is denoted by Nreg. Nreg cov-
ers a unique orbit called the subregular orbit and is denoted by Nsub. The
least element in the poset is the zero orbit and it is covered by a unique
orbit called the minimal orbit, denoted by Nmin. For GC = SLn(C), N is
the set of all nilpotent matrices, the orbits are determined by the Jordan
normal form, and are classified by partitions of n. We will use the nota-
tion (nk1

1 , n
k2

2 , . . . , n
k`
` ) to denote the partition of n by ki copies of ni, for

i = 1, . . . , ` and n1 > n2 > · · · > n` ≥ 1.
The Springer fibers Bu have irreducible components indexed by Young

tableaux, and over the above mentioned orbits, the geometry is well-known:
if u ∈ Nreg, then Bu is a point; for u ∈ Nsub, Bu is the Dynkin curve deter-
mined by the root system; for u = 0, Bu = B; for u ∈ Nmin, if GC = SLn(C),
then each component is a fiber bundle over the Grassmannian of k-planes
in keru with fiber a product of flag varieties determined by the k-plane,
0 ≤ k < n− 1. Except for some specific types, the geometry and topology of
Springer fibers (mostly about their singularities) are largely unknown. The
celebrated Springer correspondence gives a correspondence between the ir-
reducible representations of the Weyl group and the Weyl group action on
the top homology of the Springer fibers.

Similar formulas for the above moment maps apply to the left and right
G-action on T ∗G and T ∗B ∼= T ∗(G/T ), with respect to the real symplectic
forms. In particular, we have the identification T ∗B ∼= G×T t⊥, and we will
use (x, ξ), ξ ∈ t⊥ to denote a point in T ∗B, and the moment map for the left
G-action, after identifying g∗ with ig, is given by

(2.3)
µ : T ∗B → ig

(x, ξ) 7→ Adxξ
.
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Lemma 2.2. For G = SU(n), the singular values of µ in a (open) Weyl
chamber of it are exactly those p such that p has a proper subset of eigen-
values that sum up to zero.

Proof. Let
◦
W be a (open) Weyl chamber in it. We first show that µ−1(

◦
W )

is a symplectic manifold with a Hamiltonian T -action, and the restriction
of µ is just the moment map for the T -action. For this to hold, we need the
composition

(2.4) T ∗B µ→ ig→ ig/it ∼= t⊥

to be a submersion along µ−1(
◦
W ), and we need to specify the symplectic

complement to each tangent space of µ−1(
◦
W ). For any point (x, ξ) ∈ T ∗B,

we have the relation dµ(x,ξ)(Lη) = [η, µ(x, ξ)]. Since for any p ∈
◦
W , we have

[it⊥, p] = t⊥, by the regularity of p as an element in it, we see that (2.4) is a

submersion along µ−1(
◦
W ) and {Lη : η ∈ it⊥} naturally gives a complement

to the tangent spaces of µ−1(
◦
W ). Now we just need to show that Hη, η ∈ it⊥

is constant on µ−1(
◦
W ) and {Lη : η ∈ it⊥} at any point (x, ξ) ∈ T ∗B is a

symplectic subspace of T(x,ξ)(T
∗B). The first one follows from the fact that

Hη(µ
−1(

◦
W )) = 〈µ, η〉(µ−1(

◦
W )) = 〈

◦
W, η〉 = {0}.

For the second one, because of the equality

ω(x,ξ)(Lη1
, Lη2

) = 〈[η1, η2], µ(x, ξ)〉 = 〈η1, [η2, µ(x, ξ)]〉,

if µ(x, ξ) ∈
◦
W and η2 ∈ it⊥ − {0}, then the 1-form 〈−, [η2, µ(x, ξ)]〉 is nonzero

on it⊥.
Since there is a nontrivial center in G, to make the T -action quasi-free

(i.e. the stabilizer of any point is a connected subgroup of T ), we quotient
out the center in G and consider the action by the adjoint group. Then

(x, ξ) ∈ µ−1(
◦
W ) is a singular point of µ if and only if (x, ξ) has a nontrivial

stabilizer by the T -action. This is exactly when ξ has a nontrivial stabilizer
in T .

If p has a proper subset of eigenvalues that sum up to zero, then p =[
p1

p2

]
up to conjugation, for some p1 ∈ isu(k) and p2 ∈ isu(n− k), then

we can find ξ ∈ µ−1(p) of the form

[
ξ1

ξ2

]
(up to conjugation) with ξi ∈
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µ−1(pi), i = 1, 2. Then ξ has nontrivial stabilizers containing diag(eiθ, . . . , eiθ,
eiρ, . . . , eiρ) with kθ + (n− k)ρ ∈ 2Zπ. Conversely, assume ξ is fixed by an
element of the form diag(eiθ, . . . , eiθ, eiθ1 , . . . , eiθn−k) (up to conjugation),
where the first 0 < k < n entries are all eiθ, and θj − θ /∈ 2Zπ for j = 1, . . . ,
n− k. Then we have ξj` = 0 for j ∈ {1, . . . , k}, ` ∈ {k + 1, . . . , n}, thus ξ is

of the form

[
ξ1

ξ2

]
(up to conjugation), where ξi ∈ µ−1(pi), i = 1, 2 for

some p1 ∈ isu(k) and p2 ∈ isu(n− k). �

For any p ∈ ig, we will useGp to denote the stabilizer of p in the coadjoint
action by G, and Mp to denote for the (possibly singular) reduced space
µ−1(p)/Gp.

Proposition 2.3. For any p ∈ it, Mp is naturally identified with the re-
duced space at zero of the T -action on the coadjoint orbit O(p).

Proof. Note that O(p) is the reduced space at p of the left G-action on
T ∗G. Since the left and right G-actions on T ∗G commute, taking 2-step
Hamiltonian reductions in both orders are the same. �

Lemma 2.4. Any G-equivariant symplectomorphism ϕ of T ∗B must pre-
serve µ, i.e. µ ◦ ϕ = µ.

Proof. Since ϕ is G-equivariant, µ ◦ ϕ is also a moment map for the G-
action on T ∗B. Note the dual of the moment map g→ C∞(T ∗B) is unique
up to a functional σ ∈ g∗ such that σ vanishes on [g, g] (see 5.2 in [6]). By
semisimplicity of g, [g, g] = g, so σ = 0. Therefore, µ ◦ ϕ = µ. �

3. Construction of the surjective homomorphism
βG : SymplGZ(T

∗B)→ BW, G = SU(n)

Since the moment map µ : T ∗B → ig factors through µC : T ∗B → N , every
Spinger fiber is contained in µ−1(p) for some p. For G = SU(n), µ is the com-
position of µC with the map N → isu(n), u 7→ i

2(u− u∗) = 1
2((iu) + (iu)∗).

Also the two descriptions of T ∗B by GC ×B n and G×T it are identified by
(x, u) 7→ (x, i2(u− u∗)), where we only choose x ∈ G. In the following, we
will call a Springer fiber nontrivial if it is not a point, and we will denote
its type by the type of the nilpotent orbit it corresponds to.

Proposition 3.1. If p ∈ isu(n) has n− 1 positive eigenvalues or n− 1
negative eigenvalues, then µ−1(p) does not contain any nontrivial Springer
fibers.
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Proof. For an element u = [aij ] ∈ n, u is nonregular exactly when ai,i+1 = 0
for some i. Then by conjugation of some permutation matrix, i

2(u− u∗) has
the 2× 2 submatrix on the upperleft corner to be zero. If i

2(u− u∗) has
n− 1 positive eigenvalues or n− 1 negative eigenvalues, then the top 2× 2
submatrix must have one positive eigenvalue and one negative eigenvalue.
So the lemma follows. �

3.1. A study of certain loci in µ−1(diag(1,−1, 0, . . . , 0))

Let pn = diag(1,−1, 0, . . . , 0) ∈ isu(n). Given (x, ξ) ∈ µ−1(pn), let [ξ]i de-
note for the matrix obtained by deleting the i-th row and column of ξ. Then
[ξ]n−1 lies in O(εpn−1) for some ε ≥ 0, by the Gelfand-Tsetlin pattern or
basic facts about Hermitian matrices. Therefore, ξ can be conjugated to the
matrix zn in (3.1) below, by a matrix yn−1 ∈ SU(n− 1) under the obvious

embedding SU(n− 1) ↪→ SU(n) (taking yn−1 to

[
yn−1

1

]
). Now we cal-

culate the characteristic polynomial of zn and see the possible values for
a1, . . . , an−1 in (3.1).

det(zn − λI) = det



ε− λ a1

−ε− λ a2

−λ a3

. . .
...

−λ an−1

ā1 ā2 ā3 · · · ān−1 −λ



(3.1)

= det



ε− λ a1

−ε− λ a2

−λ a3

. . .
...

−λ an−1

0 0 0 · · · 0 −λ+ |a1|2
λ−ε + |a2|2

λ+ε + 1
λ

n−1∑
i=3
|ai|2


= (−1)n(λ− ε)(λ+ ε)λn−3

(
λ− |a1|2

λ− ε
− |a2|2

λ+ ε
− 1

λ

n−1∑
i=3

|ai|2
)
.

There are three cases.
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(1) If ε 6= 0, 1, then we must have

1− |a1|2

1− ε
− |a2|2

1 + ε
−
n−1∑
i=3

|ai|2 = 0, −1− |a1|2

−1− ε
− |a2|2

−1 + ε
+

n−1∑
i=3

|ai|2 = 0

1

ε
|a1|2 −

1

ε
|a2|2 = 0,

n−1∑
i=3

|ai|2 = 0.

These are equivalent to

|a1|2 = |a2|2 =
1

2
(1− ε2), a3 = · · · = an−1 = 0.

Since we only care about ξ up to the adjoint T -action, we can quotient out
the adjoint actions by {diag(eiα, eiα, . . . , eiα, e−i(n−1)α), α ∈ [0, 2π)} on zn,
which commute with the image of SU(n− 1) in SU(n), and assume that

a1 =
√

1
2(1− ε2) and a2 =

√
1
2(1− ε2)eiθ.

(2) If ε = 0, then we have

n−1∑
i=1

|ai|2 = 1.

(3) If ε = 1, then

a1 = · · · = an−1 = 0.

In summary, if ε 6= 0, 1, then

(3.2) zn =



ε
√

1
2(1− ε2)

−ε
√

1
2(1− ε2)eiθ

0 0
. . .

...
0 0√

1
2(1− ε2)

√
1
2(1− ε2)e−iθ 0 · · · 0 0


;

if ε = 0, then [ξ]n−1 = 0 and the last column of ξ has length square equal to
1; if ε = 1, then [ξ]n−1 = pn−1 and the last column and row of ξ are zero. In
addition, if ε 6= 0, 1, by a direct calculation, we see that if ξ = yn−1zny

∗
n−1

and yn−1 = [bjk]1≤j,k≤n−1, then |bj1| = |bj2| for all j. Furthermore, one can
check that if [ξ]n−1 is regular, then (x, ξ) is subregular if and only if ε = 1 or
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0 < ε < 1 and b̄n−1,1 + eiθ b̄n−1,2 = 0 with bn−1,1 6= 0, and (x, ξ) is fixed by a
nontrivial S1-action if and only if ε = 1.

Lemma 3.2. There is a small neighborhood U of the union of projection of
all the subregular Springer fibers in Mpn (inside the open set of the projec-
tion of all the regular and subregular Springer fibers), which is topologically
the product of Y = µ−1(pn−1)reg/Gpn−1

with a disc Σ on which a subregular
Springer fiber projects down to n ordered points Qi, i = 1, . . . , n with a line
segment connecting each pair of consecutive points.

Proof. For any subregular element (x, ξ), we have [ξ]i must be regular for
some 1 ≤ i ≤ n. Let µ−1(pn)i denote for the sublocus in µ−1(pn) where [ξ]i
is regular. Then the projection πi : µ−1(pn)i → µ−1(pn−1)reg/Gpn−1

, (x, ξ) 7→
ˆ[ξ]i (modulo the adjoint T -action) is a submersion, where ˆ[ξ]i means the
rescaling of [ξ]i by a positive number so that it has eigenvalues 1,−1, 0, . . . , 0.
By the calculations above, one gets that each fiber of πi quotient out by
the Gpn-action is a disc with polar coordinate ((1− ε), θ), where 0 < ε ≤ 1.
The center ε = 1 corresponds to the i-th fixed point of an S1-action on a
subregular Springer fiber, and there is a ray (resp. two rays) when i = 1, n
(resp. i 6= 1, n) in the disc that is the projection of (a portion of) subregular
Springer fibers in µ−1(pn).

Since every subregular Springer fiber is fixed by an S1-action, we know
the family of subregular Springer fibers in µ−1(pn) modulo the Gpn-action
is precisely parametrized by µ−1(pn−1)reg/Gpn−1

. Now the lemma easily fol-
lows. �

3.2. Construction of βG : SymplGZ(T ∗B)→ BW

Let us continue on using the notations from Lemma 3.2. Fix a slice of the
family of discs Σ0 = {y0} × Σ, choose two distinct points Q0, Qn+1 on the
boundary and draw line segments connecting Q0 (resp. Qn) with Q1 (resp.
Qn+1).

Now let Us be a family of open sets in Ms·pn , s > 0, which are identified
under the R+-action, and which has U1 = U . We denote the image of Σ0 ⊂ U
in Us under the R+-action also by Σ0. Given any ϕ ∈ SymplGZ(T ∗B), we look
at ϕs|Us as s→∞, where ϕs is the induced automorphism on Ms·pn . Since ϕ
has to preserve each Springer fiber at infinity and has to preserve the isotropy
group of each point, we see that for s very large, ϕs fixes every point on
the vertical boundary ∂Σ0 × Y, and ϕs(Σ0) is contained in a neighborhood
Σ×Bε(y0), where Bε(y0) is a small ball in Y centered at y0. Note that the
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projection of the image of the paths ϕs(
−→

QiQi+1), 0 ≤ i ≤ n to Σ0 can be
isotoped to be disjoint except at the endpoints, relative to ∂Σ0 and {Qi}ni=1,
otherwise ϕs(QiQi+1 ×Bε(y0)) will intersect ϕs(QjQj+1 ×Bε(y0)) for some
i 6= j away from {Qi}ni=1 × Y. Therefore, as s becomes sufficiently large, the

isotopy classes of the paths ϕs(
−→

QiQi+1), 0 ≤ i ≤ n within that neighborhood

relative to the boundary ∂(Σ×Bε(y0)) and
n⋃
i=1
{Qi} ×Bε(y0) corresponds

to an element in Bn, the braid group of n-strands, and this gives the desired
homomorphism for G = SU(n):

(3.3) βG : SymplGZ(T ∗B) −→ BW

3.3. Fiberwise Dehn twists and the surjectivity of βG

Fix a Borel subgroup B in GC. Let α be a simple root, and PC
α be the corre-

sponding minimal parabolic subgroup. Let Pα = PC
α ∩G. Since T ∗(G/T ) ∼=

G×T t⊥ and T ∗(G/Pα) ∼= G×Pα pα⊥ by the Killing form, we have a natural
smooth fibration

(3.4) T ∗P1 // T ∗(G/T )

��
T ∗(G/Pα),

where the vertical arrow is given by the orthogonal projection

pα : t⊥ → p⊥α .

Lemma 3.3. The fibration (3.4) is a symplectic fibration.

Proof. For any smooth fibration Y → B, when Y is a symplectic manifold
and each fiber is a symplectic submanifold, then there is a unique symplectic
connection on the fibration defined by the symplectic complement to each
fiber. If for any smooth curve γ : [0, 1]→ B, the integration along the hor-
izontal liftings of the tangent vector field of γ exists for all time, then the
fibration is a symplectic fibation.

Let’s check that each fiber of (3.4) is a symplectic submanifold and is
isomorphic to T ∗P1. Since the fibration is G-equivariant, we just need to
check for the fiber over a point of the form (e, s) ∈ G×Pα p⊥α , where e is the
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identity in G. The fiber is

{(p,Adp−1s+ ξ) ∈ G×T t⊥ : p ∈ Pα, ξ ∈ ker pα}.

The fiber can be canonically identified with Pα ×T ker pα, the fiber at (e, 0),
by forgetting the term Adp−1s, which preserves the respective restriction
of the ambient symplectic form. Using the identity (pα/t)

∗ ∼= ker pα, we see
that Pα ×T ker pα is symplectically T ∗P1.

Lastly, for any smooth curve γ : [0, 1]→ T ∗(G/Pα), suppose there is a
curve γ̃ : [0, t1)→ T ∗(G/T ) that is an integral of the horizontal liftings of
γ′(t), but only exists up to t1 < 1. Under the dilating R+-action δs, s > 0,
which preserves the symplectic fibration (up to scaling of the symplectic
form) and contracts both T ∗(G/T ) and T ∗(G/Pα) towards their zero sec-
tions, the curve δs(γ) will be eventually very close to the zero section of
T ∗(G/Pα), and there exist 0 < t0s < t1s < t1 for 0 < s� 1 such that

(1) δs(γ̃)([0, t0s]) ⊂ (T ∗(G/T ))||ξ|≤ε for a fixed very small ε > 0,

(2) δs(γ̃)([0, t1s]) ⊂ (T ∗(G/T ))||ξ|≤1, and δs(γ̃)(t1s) ∈ (T ∗(G/T ))||ξ|=1,

(3) t1s − t0s → 0 and t1s → t1 as s→ 0.

Let tMs ∈ [t0s, t
1
s] be a moment where the ratio |(δs(γ̃))′(t)|

|(δs(γ))′(t)| reaches its maximum

in [t0s, t
1
s]. Then there exists a sequence sn, sn → 0 such that both

lim
n→∞

δs(γ̃)(tMsn), lim
n→∞

(δs(γ))′(tMsn)

|(δs(γ))′(tMsn)|

exist. This would imply that

lim
n→∞

(δs(γ̃))′(tMsn)

|(δs(γ))′(tMsn)|

doesn’t exist, for its length has limit∞, but it should because it is the hori-

zontal lifting of lim
n→∞

(δs(γ))′(tMsn )

|(δs(γ))′(tMsn )| . This gives a contradiction to the existence

of such a γ̃. �

As before, we will use (x, ξ), ξ ∈ t⊥(resp. p⊥α ) to denote a point (up to
equivalence relation) inG×T t⊥ ∼= T ∗(G/T ) (resp.G×Pα pα⊥ ∼= T ∗(G/Pα)).
For each simple root α and ξ ∈ t⊥, let ξα denote −i(ξ − pα(ξ)) for the projec-
tion pα : t⊥ → p⊥α . Now we can define a fiberwise Dehn twist (the justification
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of the notion is included in the proof of Lemma 3.4).

(3.5) τα(x, ξ) =


(
x exp(h(|ξα|) ξα

|ξα|),Adexp(−h(|ξα|) ξα
|ξα|

)ξ
)
, if ξα 6= 0(

x exp(π2Eα),Adexp(−π
2
Eα)ξ

)
, otherwise,

where h : R→ R is a smooth increasing function satisfying h(t) + h(−t) = π
and h(t) = π for t� 0, and Eα is any vector v ∈ pα such that exp(tv) ∈ T
if and only if t ∈ Z · π. For example, if G = SU(n), then Eα is of the form
eiθεij − e−iθεji for some i, j with i− j = 1, where εij is the elementary matrix
with all entries being zero except that the (i, j)-entry is 1. It is easy to check
that τα is well-defined, i.e. it doesn’t depend on the representative for a point
in G×T t⊥, and it preserves the fibration. The proof of the following Lemma
also implies that parallel transport with respect to the canonical symplectic
connection preserves τα, and in particular, τα is smooth.

Lemma 3.4. τα is a G-equivariant symplectomorphism of T ∗B.

Proof. The G-action is simply given by g · (x, ξ) = (gx, ξ) for g ∈ G, so it is
clear that τα is G-equivariant. Away from the locus where ξα = 0, we can add
a parameter t in all the parentheses of exp(·) in (3.5) to get a one parameter
family of diffeomorphism. Then it becomes the integral of some vector field
X. We claim that X is the Hamiltonian vector field of the Hamiltonian
function H = h̃(|ξα|), where h̃ is an antiderivative of h, so τα is the time-1
map of the Hamiltonian flow. To see this, we only need to check for every
vertical vector v in T(x,ξ)T

∗B, because X is G-equivariant and it preserves
µ, and this follows from the computation

dH(v) = h(|ξα|)
〈v, ξα〉
|ξα|

, ω(X, v) =

〈
h(|ξα|)

ξα
|ξα|

, v

〉
.

�

Lemma 3.5. τα is GC-equivariant at infinity.

Proof. Let (xn, ξn) be a sequence of points approaching (x∞, ξ∞) ∈ T∞B,
i.e. with appropriate choices of representatives, we have

lim
n→∞

xn = x∞, lim
n→∞

|ξn| =∞ and lim
n→∞

ξn
|ξn|

= ξ∞.

Here we have identified T∞B with the unit co-sphere bundle.
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There are two cases. The first case is lim
n→∞

|ξn,α|
|ξn| 6= 0, then

lim
n→∞

τα(xn, ξn) = (x∞, ξ∞),

and from here it is clear that τα satisfies the partially compactly supported
condition. The other case is lim

n→∞
|ξn,α|
|ξn| = 0. Let Φ be the set of roots, gC =

hC ⊕
⊕
α∈Φ

gα be the root space decomposition, and ∆(resp. ∆−) be the set of

positive(resp. negative) roots. Using the compact form g, one can define an
R-linear operator on gC ' g⊗ C sending X + iY to (X + iY )∗ := −X + iY .
By standard fact, one can choose a basis for gC as {eα ∈ gα, fα ∈ g−α, hα =
[eα, fα] ∈ hC}α∈∆, where (eα, fα, hα) forms a sl2-triple and fα = e∗α for all
α ∈ ∆. Then t⊥ is generated (over R) by {−1

2(eα + fα), i2(fα − eα)}α∈∆.
For any ξ ∈ t⊥, let ξ+ be the portion of −iξ in n under the decomposition

gC = hC + n + n−. Recall that µC(x, ξ) = −2iAdx(ξ+). Now we need to show
that

(3.6) |µC(τα(x, ξn))− µC(x, ξn)|/|ξn| → 0 as n→∞,

for any fixed norm on gC. Given any α ∈ S (the set of simple roots) and
β(6= α) ∈ ∆, we have

(Adexp(aeα−āfα)(beβ + b̄fβ))+ = Adexp(aeα−āfα)(beβ).

This holds by the standard formula

Adexp(X)Y = Y + [X,Y ] +
1

2!
[X, [X,Y ]] +

1

3!
[X, [X, [X,Y ]]] + · · · ,

and the fact that β − nα /∈ {0} ∪∆− for any n ∈ Z≥0. Write

ξn = ξn,α +
∑

β( 6=α)∈∆

(bβeβ + b̄βfβ)),

then

µC(τα(x, ξn))− µC(x, ξn)

=

−2iAdx(Ad
exp(h(|ξn,α|)

ξn,α

|ξn,α|
)
ξ+
n,α − ξ+

n,α), if ξn,α 6= 0,

0, otherwise,

hence (3.6) holds. �
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Corollary 3.6. βG is surjective for G = SU(n).

Proof. First we prove for the case of G = SU(3). The projection of the union
of subregular Springer fibers and their image under the Weyl group action
in MN ·p3

is a triangle with vertices

Q1 =

x1, N

0 0 0
0 0 1
0 1 0

 , Q2 =

x2, N

0 0 1
0 0 0
1 0 0

 ,

and Q3 =

x3, N

0 1 0
1 0 0
0 0 0

 .

The edges are

Q1Q2 =

(x,N

0 0 a
0 0 b
ā b̄ 0

) : |a|2 + |b|2 = 1

 ,

Q2Q3 =

(x,N

0 a b
ā 0 0
b̄ 0 0

) : |a|2 + |b|2 = 1

 ,

and Q3Q1 =

(x,N

0 a 0
ā 0 b
0 b̄ 0

) : |a|2 + |b|2 = 1

 ,

the first two of which are the projections of the subregular Springer fibers.

If we fix a representative x =


1√
2

0 1√
2

ā√
2
−b − ā√

2
b̄√
2

a − b̄√
2

 for ξ =

0 a b
ā 0 0
b̄ 0 0

, and

x =


a√
2

b̄ a√
2

b√
2
−ā b√

2
1√
2

0 − 1√
2

 for ξ =

0 0 a
0 0 b
ā b̄ 0

. Then e
1

3
iθdiag(1,−2,1) acts on ξ

by

 0 eiθa b

eiθa 0 0
b̄ 0 0

 in the first case, and

0 0 a
0 0 e−iθb

ā e−iθb 0

 in the sec-

ond case. This means we can identify a neighborhood of Q2 in (µ−1(p3 +
R(−ε,ε) · 1

2diag(1,−2, 1)))/{eiθdiag(1,0,−1)} with a neighborhood of the ori-
gin in (C2, ω = Re(λdz1 ∧ dz2)) as S1-equivariant symplectic manifolds, in
which z2 = 0, z1 ↔ a over Q2Q3 and z1 = 0, z2 ↔ b over Q1Q2 and λ is some
complex number.
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We can find out λ by comparing the moment maps. By a direct calcula-

tion, the matrix

 0 z1 α
z̄1 0 z2

ᾱ z̄2 0

 is conjugate to

diag(1, 0,−1) +
t

2
diag(1,−2, 1), t ∈ (−ε, ε)

if and only if |z1|2 + |z2|2 + |α|2 = 1 + 3
4 t

2 and αz̄1z̄2 + ᾱz1z2 = t− t3

4 . By

quotienting out the action of {eiθdiag(1,0,−1)}, we can make α > 0 near Q2, so
the moment map is roughly given by t≈2Re(z1z2). The action of eiθ(z1, z2)=
(eiθz1, e

−iθz2) on (C2, ω = Re(λdz1 ∧ dz2)) has moment map Re(iλz1z2), so
we should put λ = −2i. Then the reduced space can be identified with a disc
with the standard symplectic form in which the projection of z2 = 0 (resp.
z1 = 0) maps to the negative (resp. positive) real line, and {z1z2 ∈ iR+}
(resp. {z1z2 ∈ iR−}) maps to the lower-half (resp. upper-half) plane1.

Now let us see how τα1
acts on the edges Q1Q2 and Q2Q3, where α1

is the simple root whose simple reflection corresponds to the Weyl group
element that permutes the first and the second rows and columns. It is easy

to see then τα1
(
−→
Q1Q2) =

−→
Q2Q1. For

−→
Q2Q3, we have

τα1
:N

 0 ia b
−ia 0 0
b 0 0

 7→N

 0 ia b cos(h(Na))
−ia 0 −b sin(h(Na))

b cos(h(Na)) −b sin(h(Na)) 0

,
where we only record the ξ-component of the points, and a, b are all nonnega-
tive real numbers in the representatives. Note that the image never intersects
the interior of Q1Q2 or Q3Q1, and it intersects Q2Q3 on the interval where
h(Na) = π and this is exactly when b is sufficiently small. Using the same

method, one can test the intersection of τα1
(
−→
Q3Q1) with QiQj , i 6= j. From

these and the fact that −iab sin(h(Na)) ∈ iR−, we can conclude that the
picture for large N is as in Figure 3. One gets a similar picture of τα2

for
the other simple root α2, thus we complete the proof for G = SU(3).

For G = SU(n), we look at ϕs|Σ0
as in Section 3.2. For every three

consecutive marked points Qi, Qi+1, Qi+2, where 1 ≤ i ≤ n− 2, we look at
the submatrix consisting of the entries in the i, (i+ 1), (i+ 2)-th rows and
columns in the ξ-component, this reduces the situation to G = SU(3); see
Figure 4. It is straightforward to check that ταi , for the simple root αi whose

1The reduced space is singular at 0, but we can still identify it with a standard
symplectic disc. This is discussed in more details in Section 4.2.3.
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Q3

Q2

Q1Q3

Q2

Q1

τα1

Figure 3: The transformation of the triangle Q1Q2Q3 under τα1
.

i

i

i+ 1

i+ 1

Qi−1 Qi Qi+1 Qi+2

Figure 4: Local picture of Σ0.

simple reflection corresponds to (i, i+ 1) ∈ Sn ∼= W, reverses
−→

QiQi+1, keeps

the isotopy classes of
−→

QjQj+1 for j < i− 1 and j > i+ 1, and the image of
−→

QjQj+1 for j = i− 1, i+ 1 is similar to that in Figure 3. Therefore, {ταi}n−1
i=1

generates BW. �
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4. βG is a homotopy equivalence for G = SU(3)

In this section, we will prove that kerβG is contractible for G = SU(3). We
first review the Duistermaat-Heckman theorem and prove some basic facts
for equivariant symplectomorphisms in Section 4.1. Then we divide a Weyl
chamber W into three parts: one around the walls, one near the singular
values of µ, and the other for the regular subcones. We construct symplectic
local charts for their preimages under µ and trivialize the reduced spaces
via the Duistermaat-Heckman theorem. We also use the technique of real
blowing up to study the “symplectomorphisms” of the reduced space over
a singular value. These are done in Section 4.2. Lastly, in Section 4.3, we
give the proof that kerβG is contractible. This is accomplished by finding
the homotopy type of the symplectomorphism groups over the local charts
and realizing kerβG as the fiber product of these spaces.

4.1. Duistermaat-Heckman theorem and equivariant
symplectomorphisms

Let’s briefly recall the Duistermaat-Heckman theorem (c.f. [4]) on the local
model of the moment map near a regular value for a quasi-free Hamilto-
nian T -action. Here quasi-free means that the stabilizer of any point is a
connected subgroup of T .

First, the local model is the following. Let π : P →M be a princi-
pal T -bundle over a symplectic manifold (M,ω0), with a connection form
α ∈ Ω1(P, t). Equip P × t∗ with the closed 2-form ω = π∗ω0 + d(τ · α), where
π∗ω0 denotes the pull-back form under the projection P × t∗ → P , and τ
denotes a point in t∗. Since ω is nondegenerate on τ = 0, there is a neigh-
borhood U ⊂ t∗ around 0 such that ω is a symplectic form on P × U . Then
the moment map for the T -action on P × U is given by the projection to
the second factor.

Now suppose 0 is a regular value of a moment map µ : X → t∗ for a quasi-
free Hamiltonian T -action on a symplectic manifold (X,ωX). We assume
that µ is proper. Then P = µ−1(0) is a principal T -bundle over the reduced
space M0. Any connection form α on P defines a trivial T -invariant normal
bundle F , by ω : TX

∼→ T ∗X. Then there is a T -equivariant diffeomorphism
(a fiber bundle map over U) ψ between µ−1(U) and P × U , for a small
neighborhood U ⊂ t∗ of 0, such that ψ|P×{0} = id and dp1 ◦ dψ(v) = 0 for
any normal vector in F , where p1 : P × U → P is the projection to the first
factor. Now take the above constructed ω on P × U from α. We have ψ∗ω
and ωX agree on P × {0}. Therefore, by the equivariant version of Moser’s
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argument, the two manifolds are T -equivariantly symplectomorphic in a
neighborhood of P × {0}, and the symplectomorphism can be chosen to be
the identity on P × {0}.

Fix a pair of dual coordinates (ti)ki=1 and (ti)
k
i=1 on t and t∗ respec-

tively. Let C (U, T ) be the subgroup of C∞(U, T ) coming from exponentiating
the functions (f1, . . . , fk) ∈ C∞(U, t) that satisfy

∑
fidti is an exact 1-form

in Ω1(U,R). In particular, it can be identified with C∞0 (U,R)/
k⊕
i=1

2πZ · ti,

where C∞0 (U,R) means the space of all smooth functions that vanish at the
origin. Note that C (U, T ) is homotopy equivalent to C∞(U, T ), and they are
identical if T is of rank 1.

Proposition 4.1. Assume that H1(M,R) = 0. Given a smooth family of
symplectomorphisms {ϕτ}τ∈U of M which preserve Fα, there exists a T -
equivariant symplectomorphism ϕ̃ of P × U such that its induced map on
the reduced space at τ is ϕτ . The space of such ϕ is a torsor over C (U, T ).

Proof. Suppose the vector ∂ti at (x, τ0) is sent to ∂ti +
∑
θij∂tj + X̃i, where

X̃i is the horizontal lifting of Xi = ϕτ0∗(
d
dti
|ti=0ϕ

−1
τ0 ϕτ0+tiπ(x)), and any hori-

zonal lifting X̃ of X ∈ TM is sent to ϕ̃τ0∗X +
∑
θXi ∂ti .The condition for ϕ̃

to preserve the symplectic form is that it preserves the symplectic pairing
of ∂ti , ∂tj and that of ∂ti , X for each i, j and X. This is the same as saying
the followings

−θji + θij + ωτ0(Xi, Xj) = 0.(4.1)

−θXi + ωτ0(Xi, X) = 0.(4.2)

Since Xi preserves ωτ0 and H1(M,R) = 0, we have iXiωτ0 = dHτ0,i for a
Hamiltonian function Hτ0,i. So (4.2) is the same as

(4.3) ϕ̃∗τ0α− α = π∗d(Hτ0,i)
k
i=1 ∈ Ω1(P, t),

which can be easily satisfied by composing a gauge transformation with any
lifting ϕ̃τ0 we started with. Now we start from any ϕ̃ satisfying (4.3), and
we have

ϕ̃∗ω − ω =
∑
i<j

fijdti ∧ dtj = d

(
k∑
i=1

gi(τ)dti

)
.

Applying Moser’s argument for ωs = (1− s) · ω + s · ϕ̃∗ω and the primitive

σs =
k∑
i=1

gi(τ)dti, we get one desired ϕ̃.
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If {ϕτ}τ∈U = {id}τ∈U , then (4.1) and (4.2) imply that ϕ̃ ∈ C∞(U, T ),

and a lifting of it to (f1, . . . , fk) ∈ C∞(U, t) satisfies that
k∑
i=1

fidti is exact.

So the collection of ϕ̃ is exactly C (U, T ). �

4.2. Trivialization of the reduced spaces over a Weyl chamber

Now we focus on G = SU(3). Let

w0 = diag(1, 1,−2), w1 = diag(1, 0,−1), w2 = diag(2,−1,−1).

Let W be the Weyl chamber in t∗ ∼= it bounded by the rays R≥0 · w0 and
R≥0 · w2. Also, let Wij denote the subcone of W bounded by R≥0 · wi and
R≥0 · wj for (i, j) = (0, 1) and (1, 2). For any p ∈ it, we will denote the re-
duced space by Mp, and we will use ϕp to denote the induced map on Mp

by any ϕ ∈ SymplGZ(T ∗B).
The action by T is not quasi-free, since the center in SU(3) fixes every

point. This can be resolved by replacing G = SU(3) by GAd = PSU(3) =
SU(3)/µ3, where µ3 is the center.

4.2.1. Trivialization around the ray R≥0 · w0. Fix a p ∈ R>0 · w0.
Then the Lie algebra of Gp is gp = {x ∈ g : [x, p] = 0} ∼= u(2) (we fix such
an identification once for all).

Lemma 4.2. For ε > 0 small, µ−1(p+Bε(0, igp)) is U(2)-equivariantly
symplectomorphic to a neighborhood of the zero section of T ∗(U(2)/µ3),

where µ3 =

{[
ei

2kπ

3

ei
2kπ

3

]
: 0 ≤ k ≤ 2

}
.

Proof. First, we show that µ−1(p+Bε(0, igp)) is a symplectic submanifold
with symplectic complement at each point (x, ξ) consisting of the Hamilto-
nian vector fields Lη, η ∈ ig⊥p . The proof is very similar to the first part of
the proof of Lemma 2.2.

The map T ∗B → ig→ ig/igp ∼= g⊥p is a submersion restricted to µ−1(p+
Bε(0, igp)), for ε > 0 small enough. This is because dµ(x,ξ)(Lη) = [η, µ(x, ξ)]

for any η ∈ g, and [ig⊥p , p] = g⊥p . Therefore, µ−1(p+Bε(0, igp)) is a smooth

submanifold and {Lη(x, ξ) : η ∈ ig⊥p } is a complement to its tangent space at
any point (x, ξ). The tangent space of µ−1(p+Bε(0, igp)) at any point (x, ξ)
is spanned by Lη, η ∈ gp and the vertical vectors L∗x−1ζ, ζ ∈ Adx−1igp, so
clearly ω is nondegenerate on µ−1(p+Bε(0, igp)). Also, iLηω = dHη, η ∈ ig⊥p
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vanishes on µ−1(p+Bε(0, igp)), so the space of Hamiltonian vector fields
Lη, η ∈ ig⊥p at each point is its symplectic complement.

Next, since µ−1(p) ∼= U(2)/µ3 is ω-isotropic, by the equivariant version
of Weinstein’s Lagrangian tubular neighborhood theorem, we get the desired
result. �

Let wε = w0 + ε · diag(1,−1, 0), and W±ε ⊂ it be the cone bounded by

R≥0 · wε and R≥0 · w−ε for ε > 0 small. Identifying AdGp(
◦
W±ε) with a cone

in iu(2) via the map gp ∼= u(2), we have

Corollary 4.3. µ−1(AdGp(
◦
W±ε)) ∼= U(2)/µ3×AdGp(

◦
W±ε) as Hamiltonian

U(2)-spaces, where the latter space is equipped with the symplectic form in-
duced from T ∗(U(2)/µ3) ∼= U(2)/µ3 × iu(2).

Proof. The symplectic form on U(2)/µ3 × iu(2) is invariant under the trans-
lation map (·, ·+ v) for any v ∈ R · diag(1, 1), and it is getting scaled under
the R+-action on iu(2). Note that such change of the symplectic form is com-

patible with the R+-action on µ−1(AdGp(
◦
W±ε)), so combining with Lemma

4.2, we complete the proof. �

4.2.2. Trivialization along W̊ and W̊ij, (i, j) = (0, 1) and (1, 2).
The following lemma has already been obtained within the proof of
Lemma 2.2.

Lemma 4.4. µ−1(
◦
W ) is a symplectic submanifold with symplectic com-

plement consisting of the tangent vectors to the exp(Bε(0,−it⊥))-orbits. In

particular, the same holds for µ−1(
◦
Wij), for (i, j) = (0, 1) and (1, 2).

For any p ∈
◦
W 01, µ−1(p) ∼= U(2)/µ3 as a principal T -bundle over P1(∼=

T\U(2), the quotient of U(2) by the left action of T ). LetA ∈ Ω1(U(2)/µ3, it)
be the unique right U(2)-invariant connection form on U(2)/µ3 determined
by the Killing form, i.e. one takes the Maurer-Cartan form and projects it to
it. Applying Duistermaat-Heckman theorem (see [4]), we get the following.

Proposition 4.5. µ−1(
◦
W 01) is T -equivariantly symplectomorphic to

U(2)/µ3 ×
◦
W 01 with symplectic form c · d(A · τ), where τ ∈ t∗ and c is some

positive constant. The symplectomorphism can be chosen to respect the R+-
action.
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Proof. The only thing to be careful is that we have a global identification

over
◦
W 01 rather than a local identification near some point. First, on each re-

duced space, the cohomology class of cdA · τ agrees with that of the induced
symplectic form, for some fixed c > 0. This is because the latter depends
linearly on τ and the class vanishes on R≥0 · w0.

Fix a T -equivariant isomorphism φ : µ−1(
◦
W 01)→ U(2)/µ3 ×

◦
W 01. The

fact that the reduced spaces are all P1 ensures that we can apply the
equivariant version of Moser’s argument on the family of symplectic forms
(1− t)ω|

µ−1(
◦
W 01)

+ tφ∗d(A · τ), t ∈ [0, 1], and get the statement. �

4.2.3. Real blow-ups and some treatment near the singular loci.

4.2.3.1. Real blowing up operations and local charts near the singular loci of
µ. The material below on real blow-ups is following [4], section 10. Suppose
we have a Hamiltonian S1-action on C× Cn (equipped with the product of
the standard Kähler forms), given by

(4.4) eiθ · (z0, z) = (eiθz0, e
−iθz).

Then the moment map is Φ(z0, z) = −|z0|2 + |z|2. The real blowing up is
a local surgery to C× Cn, so that Φ−1(−∞, 0) is unchanged and the new
moment map is regular over (−∞, δ) for some δ > 0. The construction is as
follows.

Let (t, s) be the standard coordinate on T ∗S1 ∼= S1 × R. Choose ε, δ >
0 very small, remove the set {|z0|2 < ε

2 ,−|z0|2 + |z|2 < δ} in C× Cn and
glue with the set {s < ε,−s+ |z|2 < δ} ⊂ T ∗S1 × Cn using the identifica-
tion { ε2 ≤ |z0|2 < ε,−|z0|2 + |z|2 < δ} ∼= { ε2 ≤ s < ε,−s+ |z|2 < δ}. We will
denote the resulting manifold by Blε,δ(C× Cn). Since the real blowing up
can be done within an arbitrarily small ball around the origin for ε, δ suffi-
ciently small, we can globalize this procedure to any quasi-free Hamiltonian
S1-action on a symplectic manifold M with the moment map having Morse-
Bott singularities of index (2, 2k).

Now let T w̌ denote the subgroup exp(R · w̌) for any w̌ ∈ t. As mentioned
before, we have to replace G by GAd to ensure the action by T to be quasi-
free. Let

u1 =
1

2
diag(1,−2, 1), ǔ1 =

1

3
diag(i,−2i, i), w1 =

1

2
w1, w̌1 = iw1.

For ν > 0 small, let Cν be the cone bounded by R≥0(w1 ± ν · u1). It is clear

that µ−1(
◦
Cν) can be trivialized as µ−1(w1 + R(−ν,ν) · u1)× R+ equipped
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with the symplectic form d(tα), where α is equal to the primitive −pdq of

ω to µ−1(w1 + R(−ν,ν) · u1) and t is the coordinate of R+. Along µ−1(
◦
Cν),

T w̌1 acts freely, so the moment map

µw1,ν : µ−1(
◦
Cν)

µ→
◦
Cν →

◦
Cν/〈u1〉 ∼= R+ · w1

for the T w̌1-action is regular, and the reduced space at any p ∈ R+ · w1

M
w1
p,ν := T w̌1\µ−1

w1,ν
(p)

is a 4-dimensional symplectic manifold with a Hamiltonian T ǔ1-action. The
moment map for the T ǔ1-action on M

w1
p,ν is denoted by

µ
w1
p,ν : M

w1
p,ν → (R · ǔ1)∗ ∼= R · u1.

By Lemma 3.2, T ǔ1 has exactly three fixed points Qj , j = 1, 2, 3 on M
w1
p,ν ,

which are of the formx1,

0 0 0
0 0 1
0 1 0

 ,

x2,

0 0 1
0 0 0
1 0 0

 and

x3,

0 1 0
1 0 0
0 0 0


respectively, when p = w1. Since (C2, ω = Re(−idv1 ∧ dv2)) and (C2, ωst =
i
2(dz0 ∧ dz0 + dz1 ∧ dz1))) are related by z0 = v1 + v2, z1 = −v1 + v2, by the
calculation of Corollary 3.6, we can identify a small neighborhood of each Qj
in M

w1
p,ν with (C2, ωst = i

2(dz0 ∧ dz0 + dz1 ∧ dz1)) in an S1-equivariant way.
The reduced space at 0 for the Hamiltonian action in (4.4) can be identified
with C (with the standard Kähler form) by taking the slice in {|z0|2 = |z1|2}
in which z0 ≥ 0 and z1 is used to be the linear coordinate on C. In particular,
under such identifications, we have Qi−1Qi and QiQi+1 in Figure 3 go to
the positive and negative real lines respectively near Qi, where the indices i
are taken to be modulo 3.

Now we can desingularize the action by T ǔ1 along R>0 · w1, and replace
µ|
µ−1(

◦
W )

by µ̃, then µ̃ is regular over the interior of the cone W01,δ bounded

by R≥0 · w0 and R≥0 · (w1 − δ · u1), for some δ > 0. Similarly to Proposi-

tion 4.5, we have µ̃−1(
◦
W 01,δ) ∼= (U(2)/µ3 ×

◦
W 01,δ, c · d(A · τ)).

Remark 4.6. Since the blowing down map from Blε,δ(C× Cn) to C× Cn
identifies the reduced spaces at 0, this gives a way to identify the reduced

spaces over R>0 · w1 with the others over
◦
W 01.
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4.2.3.2. The equivariant linear Symplectic group Sp(4)S
1

.
Let

Sp(4)S
1

:= {P ∈ Sp(4) : P commutes with the S1-action in (4.4)},

where P is relative to the standard basis ∂x0
, ∂y0

, ∂x1
, ∂y1

and zj = xj + iyj
for j = 0, 1.

Lemma 4.7.

Sp(4)S
1

=

{[
λ1e

iθ1 λ2σ ◦ eiθ2

λ2σ ◦ eiθ3 λ1e
iθ4

]
, λi ≥ 0 for i = 1, 2,

λ2
1 − λ2

2 = 1, θ1 + θ2 = θ3 + θ4 if λ2 6= 0

}
,

where σ means taking complex conjugate.

Proof. Let P =

[
A B
C D

]
, where A,B,C,D are all 2× 2-matrices. Let Rθ de-

note the standard rotation matrix on R2 by angle θ. Then P is S1-equivariant
implies that [[

A B
C D

]
,

[
R−θ 0

0 Rθ

]]
= 0,

and this is equivalent to that P is of the form

(4.5)

[
λ1e

iθ1 λ2σ ◦ eiθ2

λ3σ ◦ eiθ3 λ4e
iθ4 ,

]
, λi ≥ 0 for i = 1, . . . , 4

relative to the standard basis ∂z0
, ∂z1

. Now we need P to be symplectic, i.e. it
preserves the Kähler form i

2(dz0 ∧ dz̄0 + dz1 ∧ dz̄1). By direct calculations,
the undetermined quantities in (4.5) should satisfy

λ1 = λ4, λ2 = λ3, λ
2
1 − λ2

2 = 1, and θ1 + θ2 = θ3 + θ4 if λ2 6= 0,

and this completes the proof. �



i
i

“2-Jin” — 2019/7/18 — 23:03 — page 366 — #30 i
i

i
i

i
i

366 Xin Jin

Let C0 be the center of Sp(4)S
1

, i.e.

{[
e−iθ

eiθ

]
, θ ∈ [0, 2π)

}
. By the above

Lemma,

Sp(4)S
1

/C0
∼=
{[

λ1 λ2σ ◦ eiθ2

λ2σ ◦ eiθ3 λ1e
iθ4

]
:(4.6)

λ2
1 − λ2

2 = 1, λi ≥ 0 for i = 1, 2; θ2 = θ3 + θ4 if λ2 6= 0

}
.

There is an S1-action by the left multiplication of the subgroup

{[
1

eiθ

]}
,

and the projection

Sp(4)S
1

/C0 −→ S1[
λ1 λ2σ ◦ eiθ2

λ2σ ◦ eiθ3 λ1e
iθ4

]
7→ {

[
1

eiθ4

]
}

is an S1-equivariant fiber bundle, with each fiber homeomorphic to a disc,
so in particular, this map is a homotopy equivalence.

Lemma 4.8. Let z+(t) = t and z−(t) = −t, t ≥ 0 be the two opposite rays
emitting from the origin in the reduced space C at 0. Let P ∈ Sp(4)S

1

and
P̃ be the induced map on C. Then

(a) there exists a P for any prescribed values of arg( ddt |t=0P̃ (z+(t))) and

arg( ddt |t=0P̃ (z−(t))), except for arg( ddt |t=0P̃ (z+(t))) = arg( ddt |t=0P̃ (z−(t))).

(b) If P̃ ∈ Sp(2), then P =

[
1

eiθ4

]
for some θ4 modulo the center C.

In particular, if P satisfies

(4.7)
d

dt
|t=0P̃ (z+(t)) = 1,

d

dt
|t=0P̃ (z−(t)) = −1,

then P ∈ C. Therefore, the map

(4.8)
Sp(4)S

1

/C0 −→ C× C
P 7→ ( ddt |t=0P̃ (z+(t)), ddt |t=0P̃ (z−(t)))

is an injection.
(c) the map

(4.9)
Sp(4)S

1

/C0 −→ S1

P 7→ exp(i arg( ddt |t=0P̃ (z+(t))))

is a homotopy equivalence of spaces.
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Proof. (a) One lifting of the tangent vector at 0 of the two rays z = t and

z = −t to C2 is v+ =

[
1
1

]
and v− =

[
1
−1

]
, respectively. Take P as in (4.6),

then

Pv+ =

[
λ1 + λ2e

−iθ2

(λ1 + λ2e
−iθ2)eiθ4

]
, Pv− =

[
λ1 − λ2e

−iθ2

−(λ1 − λ2e
−iθ2)eiθ4

]
.

Let β± = arg(λ1 ± λ2e
−iθ2), and w± denote d

dt |t=0P̃ (z±(t)). Then

arg(w+) = θ4 + 2β+, arg(w−) = θ4 + 2β− + π.

It is not hard to see that β+ − β− ranges in (−π
2 ,

π
2 ), and then we can use

θ4 to adjust arg(w±) to the prescribed values.

(b) The claim follows by direction calculations.
(c) It is obvious by looking at the image of the subgroup{[

1 0
0 eiθ

]
, θ ∈ [0, 2π)

}
.

�

4.2.3.3. A deformation retraction of the equivariant symplectomorphism
group of M

w1
p,ν to a point. Let SymplT

ǔ1
(M

w1
p,ν , {Qj}3j=1) denote the subgroup

of T ǔ1-equivariant symplectomorphisms SymplT
ǔ1

(M
w1
p,ν) of M

w1
p,ν that fix

each Qj , j = 1, 2, 3. Let S̃ympl(Mp, {Qj}3j=1) denote the group of automor-

phisms of the reduced space Mp induced from SymplT
ǔ1

(M
w1
p,ν , {Qj}3j=1). For

each Qj , j = 1, 2, 3, we fix an identification between a neighborhood of 0 in
C2 with a neighborhood of Qj in M

w1
p,ν as in Section 4.2.3.1, and this induces

an identification between a neighborhood of 0 in the reduced space C with a
neighborhood of the image of Qj , which we will denote by Qj as well, in Mp.

Lemma 4.9. S̃ympl(Mp, {Qj}3j=1) is contractible.

Proof. Step 1. A fibration S̃ympl(Mp, {Qj}3j=1)→ (Sp(4)S
1

/C0)3.
There is an obvious group homomorphism

(4.10) S̃ympl(Mp, {Qj}3j=1)→ (Sp(4)S
1

/C0)3,

by sending each automorphism to the tangent maps (modulo C0) at 0 ∈ C2

any of its lifting near Qi, i = 1, 2, 3 with respect to the fixed trivializations.
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Let

S̃ympl0(Mp, {Qj}3j=1) =: kernel of (4.10),

It is easy to see that (4.10) is a principal S̃ympl0(Mp, {Qj}3j=1)-bundle.
Let

Sympl0(Mp, {Qj}3j=1)

:= {ϕ ∈ Sympl(Mp, {Qj}3j=1) : (dϕ)Qj = id, j = 1, 2, 3},

where Sympl(Mp, {Qj}3j=1) is the true symplectomorphism group of Mp fix-

ing the three special points. The next step shows that S̃ympl0(Mp, {Qj}3j=1)

is homotopy equivalent Sympl0(Mp, {Qj}3j=1).

Step 2. S̃ympl0(Mp, {Qj}3j=1) ' Sympl0(Mp, {Qj}3j=1).

Let SymplT
ǔ1

] (M
w1
p,ν , {Qj}3j=1) be the subgroup in SymplT

ǔ1
(M

w1
p,ν , {Qj}3j=1)

consisting of elements φ̂ such that φ̂ restricted to a sufficiently small neigh-
borhood of each Qj (within the fixed local chart) is the linear transformation[
e−iθj

eiθj

]
, for some θj ∈ [0, 2π). Also let S̃ympl](Mp, {Qj}3j=1) be the im-

age of SymplT
ǔ1

] (M
w1
p,ν , {Qj}3j=1) in S̃ympl(Mp, {Qj}3j=1).

Now we can construct a deformation retraction from the group

S̃ympl0(Mp, {Qj}3j=1) to S̃ympl](Mp, {Qj}3j=1). Near Qj , the graph of[
eiθj

e−iθj

]
◦ φ̂ is a Lagrangian in (C2)− × C2 ∼= T ∗∆C2 , which is tangent

to the zero section at ((Qj , Qj), 0) ∈ T ∗∆C2 . Equivalently, in a smaller neigh-
borhood of (0, 0), with respect to an appropriate Darboux coordinate sys-

tem, it is the graph of the differential of a

{[
e−iθ

eiθ

]}
-equivariant func-

tion fj with Dfj(0) = 0 and D2fj(0) = 0, where (Qj , Qj) is regarded as the
origin in ∆C2 ∼= C2. Let r(z) = ‖z‖2 and fix a small ball Bj(ε) = {r < ε2} ⊂
∆C2 , and let Dj( 1

16) ⊂ Bj(ε) be the connected component containing 0 where
|D2fj | < 1

16 . Here for a function f on a domain, we adopt the following no-
tations

|D2f | =: sup
x

∑
m,n

∣∣∣∣ ∂2f

∂xm∂xn
(x)

∣∣∣∣ , |Df | =: sup
x

∑
n

∣∣∣∣ ∂f∂xn (x)

∣∣∣∣ .
Now let ε0 = sup{ε ∈ R+ : Bj(ε) ⊂ Dj( 1

16)}, then we have |Dfj | < 1
16ε0

and |fj | < 1
16ε

2
0 on Bj(ε0), if we make fj(0) = 0. Consider a C∞-function

bj,ε0(x1, x2) on the square [0, ε20)× (− 1
16ε

2
0,

1
16ε

2
0) satisfying bj,ε0(x1, x2) = 0
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for |x1| < 1
32ε

2
0, bj,ε0(x1, x2) = x2 for |x1| > 31

32ε
2
0, bj,ε0(x1, 0) = 0, and

|D2bj,ε0 |(|Dr|2 + 2|Dr| · |Dfj |+ |Dfj |2)(4.11)

+ |Dx1
bj,ε0 | · |D2r|+ |Dx2

bj,ε0 | · |D2fj | <
5

6
.

Then the graph of the differential of[
e−iθj

eiθj

]
◦ (s · bj,ε0 ◦ (r, fj) + (1− s) · fj)|Bj(ε0), 0 ≤ s ≤ 1,

which is clearly

{[
e−iθ

eiθ

]}
-equivariant, glues well with the graph of φ̂

outside of Bj(
√

31
32ε0), and gives a family {φ̂s}s∈[0,1] whose induced maps on

Mp lie in S̃ympl0(Mp, {Qj}3j=1), with

φ̂0 = φ̂ and φ̂1 ∈ SymplT
ǔ1

] (M
w1
p,ν , {Qj}3j=1).

Note that for (4.11), if we start with ε small enough, then |Dx1
bj,ε0 | < 1

12 ,
|Dx2

bj,ε0 | < 2 and |D2bj,ε0 | < 5, for instance, are sufficient for it to hold.
We can fix such a small ε once for all, and make bj,ε0 continuously depend
on ε0 (in the C∞-topology). Thus we have a deformation retraction from

S̃ympl0(Mp, {Qj}3j=1) to S̃ympl](Mp, {Qj}3j=1). Similarly, we can easily show

that Sympl0(Mp, {Qj}3j=1) deformation retracts onto S̃ympl](Mp, {Qj}3j=1).

Step 3. S̃ympl(Mp, {Qj}3j=1) is contractible.
There is a natural fiber bundle

Sympl0(Mp, {Qj}3j=1) // Sympl(Mp, {Qj}3j=1)

��
(Sp(2))3

by the same construction as in (4.10). By standard results (c.f. [2]),
Sympl(Mp, {Qj}3j=1) is contractible, therefore

BSympl0(Mp, {Qj}3j=1) ' (Sp(2))3 ' (S1)3.

In particular, the preimage of the fiber bundle over (S1)3 ∼= (U(1))3 ⊂
(Sp(2))3, for which we will denote by Sympl†(Mp, {Qj}3j=1), is homotopy

equivalent to Sympl(Mp, {Qj}3j=1) via the inclusion.
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On the other hand, there is an inclusion2 of the fibration involving
Sympl†(Mp, {Qj}3j=1) into the fibration (4.10). Since Sp(4)S

1

/C0 ' S1 by
Lemma 4.8 (c), using Step 2 and standard facts about classifying spaces, we

deduce that S̃ympl(Mp, {Qj}3j=1) must be contractible as well. �

Let

γp : SymplT
ǔ1

(M
w1
p,ν , {Qj}3j=1)/C∞((−ν, ν), T ǔ1)→ S̃ympl(Mp, {Qj}3j=1)

be the projection map.

Proposition 4.10. γp is a homotopy equivalence, hence

SymplT
ǔ1

(M
w1
p,ν , {Qj}3j=1)/C∞((−ν, ν), T ǔ1)

is contractible.

Proof. First, we have the following commutative diagram
(4.12)

SymplT
ǔ1

(M
w1
p,ν , {Qj}3j=1)/C∞((−ν, ν), T ǔ1)

��

γp // S̃ympl(Mp, {Qj}3j=1)

��
(Sp(4)S

1

/C0)3 id // (Sp(4)S
1

/C0)3

,

where the vertical arrows are both the restriction of the tangent maps at
Qj , j = 1, 2, 3 (modulo C), and they give two fiber bundles. The kernel of
the left map is the subgroup in SymplT

ǔ1
(M

w1
p,ν , {Qj}3j=1)/C∞((−ν, ν), T ǔ1)

consisting of all liftings of elements in S̃ympl0(Mp, {Qj}3j=1) via γp. The
proof of Lemma 4.9 shows that this group deformation retracts onto all lift-

ings of elements in S̃ympl](Mp, {Qj}3j=1). We will apply the technique of
real blow-ups to show that the latter subgroup deformation retracts onto

S̃ympl](Mp, {Qj}3j=1). Therefore γp is a homotopy equivalence. In the fol-
lowing, we will keep using the notations from the proof of Lemma 4.9.

2To be more rigorous, one should replace Sympl†(Mp, {Qj}3j=1) by

Sympl†(Mp, {Qj}3j=1) ∩ S̃ympl(Mp, {Qj}3j=1)

for the inclusion, but the resulting space is homotopy equivalent to
Sympl†(Mp, {Qj}3j=1), by the same technique in Step 2.
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For any φ ∈ S̃ympl](Mp, {Qj}3j=1), let Bj , j = 1, 2, 3 be a small ball

around Qj in M
w1
p,ν on which one of the liftings φ̂ is the linear transfor-

mation

[
e−iθj

eiθj

]
for some θj . For ε, δ > 0 small enough, the surgery for

the real blow-up to Blε,δ(M
w1
p,ν) around each Qj is taken within a smaller

ball B′j ⊂ Bj , j = 1, 2, 3 satisfying B′j ⊂ Bj , and we denote the resulting
moment map for T ǔ1 by

µ̄ε,δ : Blε,δ(M
w1
p,ν)→ R,

where µ̄ε,δ is regular over (−ν, δ). Since we are only interested in µ̄−1
ε,δ (−ν, δ),

in the following we will use the same notation Blε,δ(M
w1
p,ν) to denote this

submanifold. Clearly φ̂ induces a symplectomorphism φ̂ε,δ on Blε,δ(M
w1
p,ν),

whose restriction to the blow-up region near Qj is the action by exp(θj ǔ1).

Conversely, given any φ̂ε,δ on Blε,δ(M
w1
p,ν) of this form, we can recover φ̂ on

(µ
w1
p,ν)−1(−ν, δ).

Now we can describe the space of all liftings of S̃ympl](Mp, {Qj}3j=1) in

SymplT
ǔ1

] (M
w1
p,ν , {Qj}3j=1) as a direct limit of spaces Xε,δ over (ε, δ) ∈ (R+)2,

where we have a natural inclusion Xε1,δ1 ↪→ Xε2,δ2 , when ε1 > ε2 and δ1 > δ2.

The space Xε,δ consists of φ̂ whose restriction to a neighborhood of the
three blow-up regions for Blε,δ(M

w1
p,ν) near each Qj is given by the action of

exp(θj ǔ1) for some θj ∈ R. By Proposition 4.1, after trivializing the reduced
spaces of µ̄ε,δ over (−ν, δ) and the reduced spaces3 of µ

w1
p,ν over (0, ν), we

see that Xε,δ has a free C∞((−ν, ν), T ǔ1)-action, and Xε,δ/C
∞((−ν, ν), T ǔ1)

corresponds to the space of pairs of paths (ρ1, ρ2), where ρ1 : (−ν, δ)→
Sympl(S2), ρ2 : (0, ν)→ Sympl(S2) satisfy that ρ1 restricts to the identity
on a neighborhood of the blowing up loci and ρ1|(0,δ) is identified with ρ2|(0,δ)
after the blowing down map. Then (lim

−→
Xε,δ)/C

∞((−ν, ν), T ǔ1) deformation

retracts onto S̃ympl](Mp, {Qj}3j=1), by deforming ρ1 to the constant path
determined by ρ1(0). �

4.2.4. A deformation retraction for kerβG supported near T ∗BB.
We start with a general set-up for the statement of Lemma 4.11 below. Let
(X,ωX) be a Kähler manifold, and X− ×X be equipped with the symplectic
form ω0 = (−ωX)× ωX . Let N∆X

be the normal bundle to the diagonal
with respect to the Kähler metric g × g (which is the anti-diagonal in the
tangent bundle restricted to ∆X). Then the product symplectic form gives

3The trivialization for any δ determines a trivialization for all δ′ < δ, so we can
fix a uniform trivialization for δ less than a fixed δ0.
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a natural identification of N∆X
with T ∗∆X , thus induces a symplectic form

ω1 on N∆X
. By the Lagrangian tubular neighborhood theorem, there is a

symplectomorphism mapping a tubular neighborhood of the zero section in
T ∗∆X to a tubular neighborhood of ∆X in X− ×X, which fixes each point
in ∆X . We state a slightly stronger statement in the following lemma.

Lemma 4.11. There exists a symplectomorphism ψ from a tubular neigh-
borhood N ε

∆X
of the zero section in N∆X

to a tubular neighborhood Uε(∆X)
of ∆X in X− ×X, such that ψ|∆X

= id and dψ|∆X
= id.

Proof. We first identify N ε
∆X

with Uε(∆X) using the exponential map ψ with
respect to g × g. Then it suffices to show that ‖ψ∗ω0 − ω1‖((x,x),(tv,−tv)) ∼
o(t) for any fixed x and v, since by Moser’s argument, the vector field gener-
ating an isotopy between ψ∗ω0 and ω1 will have length at most proportional
to o(t) in the direction of v, so the resulting diffeomorphism by integrat-
ing this vector field will have differential equal to the identity on the zero
section.

For any v, u, w ∈ TxX, the push-forward of the vertical vector (u,−u)
and the horizontal lifting

(w(t), w(t)) of (w,w) ∈ T(x,x)∆X at ((x, x), (tv,−tv)) to X− ×X

under the exponential map is

((d expx)|tv(u), (d expx)|(−tv)(−u)) and (Jw,v(t), Jw,−v(t))

respectively, where Jw,v(t) denotes for the Jacobi vector field for the family
of geodesics expexpx(τw)(tΓ(expx(sw))τ0(v)), where Γ(expx(sw))τ0 means the
parallel transport along the geodesic expx(sw) from time 0 to time τ .

The Kähler property implies that the covariant derivative Dexpx(tv)(ω) =
0, thus

ω(Γ(expx(sv))t0(u),Γ(expx(sv))t0(w)) = ω(u,w).

Now we only need to show that

‖(d expx)|tv(u)− Γ(expx(sv))t0(u)‖ ∼ o(t),
‖Jw,v(t)− Γ(expx(sv))t0(w)‖ ∼ o(t),
ω1(w1(t), w2(t)) = ω1(w1, w2), for any two vectors w1, w2 ∈ TxX.

These properties hold for any Riemannian manifold X. In fact, one can take
the geodesic coordinate at x, and use the fact that the Christoffel symbols
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vanish at x to deduce that the covariant derivative of the first two of the
above vectors along expx(tv) has norm o(1). One can prove the last equality
similarly. �

Let kerβ]G be the subgroup of kerβG consisting of ϕ that restricts to the
identity in a neighborhood of T ∗BB.

Lemma 4.12. (1) For any ϕ ∈ kerβG, after sufficient conjugation by the
conical dilations on T ∗B, the tangent space of graph(ϕ) can be made
arbitrarily close to the tangent space of ∆T ∗B along ∆B.

(2) There is a deformation retraction from kerβG to kerβ]G.

Proof. If we conjugate ϕ by the dilation action δλ on T ∗B, i.e. we define

ϕλ(x, ξ) = δλ−1(ϕ(x, λξ))

then the limit as λ→ 0+ of the tangent space of the graph of ϕλ is the
tangent space of ∆T ∗B along ∆B. To see this, we just need to check that for
any curve (x, tξ), t ∈ [0, 1],

lim
t→0

Dist(ϕλ(x, tξ), (x, tξ))

t

uniformly approaches 0 as λ→ 0+, for all ξ with |ξ| = 1. Here Dist(−,−)
denotes the distance between any two points with respect to any fixed metric
on T ∗B. Let (x(t), ξ(t)) be a smooth family of representatives of ϕ(x, tξ)
with x(0) = x, ξ(0) = ξ. Then we have ϕλ(x, tξ) = (x(λt), λ−1ξ(λt)). First,
we have

lim
t→0

Dist(x(λt), x)

t
= lim

t→0

Dist(x(λt), x)

λt
λ = |x′(0)|λ

(note that x′(0) is regarded as an element in g/t), so this is uniformly ap-
proaching 0 as λ→ 0+. Second, using the fact that

ta =: txξx−1 = x(t)ξ(t)x(t)−1,

we have

lim
t→0

λ−1ξ(λt)− tξ
t

= lim
t→0

x(λt)−1tax(λt)− tx−1ax

t
= lim
t→0

x(λt)−1ax(λt)− x−1ax = 0.

Now (1) easily follows. (2) is a direct consequence of (1), Lemma 4.11 and
a similar argument as in Lemma 4.9 to give a deformation retraction. �
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4.3. kerβG is contractible

This section is devoted to the proof that kerβG is contractible. By Lemma
4.12, we only need to prove that kerβ]G is contractible. In the following, we
identity Ms·p with Mp for all s > 0 using the R+-action, where p is usually
reserved for denoting any fixed element in R+ · w1, unless otherwise specified.

Let σ denote the projection of the subregular Springer fibers in Mp (cf.
Lemma 3.2), and let T0 be the union of σ with its image under the right Weyl
group action on T ∗B (induced from the right W-action onG/T ). Fix an open
tubular neighborhood of σ with a smooth boundary in Mp and denote it by
Uσ. We assume that T0 t ∂Uσ = {P1, P3}, where P1 (resp. P3) is near Q1

(resp. Q3); see Figure 5. Using a fixed trivialization of the reduced spaces
over (−ν, δ0) of the blow-up Blε,δ0(M

w1
p,ν) as in the proof of Proposition 4.10,

for some δ0 sufficiently small, we can choose a family of open sets Uσ,c with
Uσ,0 = Uσ in Mp+c·u1

for c ∈ (−ν, δ0), after applying the blowing down map.
We also choose a family of vector fields Xσ,c on a neighborhood of Uσ,c
whose horizontal lifting to M

w1
p,ν can be lifted further to a smooth vector

field on Blε,δ0(M
w1
p,ν) which vanishes on {s ≤ 0} in the local coordinates as

in Section 4.2.3.1. We require that the time t flow φtXσ,c of Xσ,c scales the

symplectic area of Uσ,c by e−t, and when c = 0, it is tangent to T0 on the
portion connecting P1 (resp. Q3) and Q1 (resp. P3) and deformation retracts
Uσ onto σ (see Figure 5 below).

Now let

S(
◦
Cν) := {ϕ ∈ SymplT (µ−1(

◦
Cν)) : ϕ preserves the Springer fibers

at infinity, ϕ = id near the vertex of Cν ,

and it is partially compactly supported}.

Similarly to βG, we have a group homomorphism

β
G,
◦
Cν

: S(
◦
Cν) −→ BW.

Lemma 4.13. The primitive −pdq of ω vanishes on the subregular Springer
fibers and their images under the right W-action.

Proof. Consider the line segment

x =




1√
2

0 1√
2

cos θ√
2
− sin θ − cos θ√

2
sin θ√

2
cos θ − sin θ√

2

 , ξ =

 0 cos θ sin θ
cos θ 0 0
sin θ 0 0


 ,
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θ ∈ [0, π2 ] in µ−1(p3). By a direct calculation, we see that −pdq restricted
to this segment is zero. It is also easy to check that −pdq restricted to
any T ǔ1-orbit in µ−1(p3) vanishes. Therefore, using the invariance of −pdq
under the G-action and the right W-action, we complete the proof. �

Remark 4.14. A direct consequence of Lemma 4.13 is one can take a
smooth horizontal section of the T w̌1-bundle over (µ

w1
p,ν)−1(

⋃
|c|<ν
Uσ,c) con-

taining a whole subregular Springer fiber and its image under the Weyl
group action (intersecting the section), with respect to the connection form
−pdq. We will fix such a section and denote it by sσ.

Suppose we are given a smooth path

ρ : (0,∞)→ SymplT
ǔ1

(M
w1
p,ν , {Qj}3j=1)

such that for s sufficiently large, ρ(s) = id away from a neighborhood of the
subregular Springer fibers. We assume that the neighborhood deformation
retracts onto the subregular Springer fibers as s→∞, and we assume that
when s is sufficiently large, the induced automorphism on Ms·p3

from ρ(s)
restricted to Uσ corresponds to the identity element in BW. Then we have
the following.

Lemma 4.15. Given any ρ as above, we can stretch the parameter space
R+ enough so that ρ can be lifted to a symplectomorphism ϕρ in kerβ

G,
◦
Cν

.

Proof. Note that we can always have a lifting ϕρ such that ϕρ = id away
from a neighborhood of the subregular Springer fibers when s is sufficiently
large, but we also need to make sure that in the limit ϕρ sends every sub-
regular Springer fiber into itself but not to others in the T w̌1-orbits. By
Remark 4.14 and the proof of Proposition 4.1, we can start from a lifting ϕρ
(as an T w̌1-equivariant diffeomorphism) such that that (ϕρ)s preserves sσ,
for s sufficiently large, then by (4.3) we modify (ϕρ)s by the gauge transfor-
mation determined by a Hamiltonian function for the Hamiltonian vector
field d

dsρ(s) (note that H1(M
w1
p,ν ,R) = 0). Therefore, we only need that the

integral of the length of the vector field d
dsρ(s) along ρ(s)(T̃0) converges to

zero as s→∞, where T̃0 is any smooth lifting of T0 in M
w1
p,ν . This can be

achieved by sufficiently stretching the parameter space R+. �
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Q3

Q2

Q1

Uσ

P3 P1

Xσ

Figure 5: A vector field Xσ on Uσ shrinking it towards σ.

Now for every ϕ ∈ kerβ
G,
◦
Cν

, it is determined by a smooth path

ρϕ,ν : (0,∞)→ SymplT
ǔ1

(M
w1
p,ν , {Qj}3j=1)/C∞((−ν, ν), T ǔ1),

up to the action of C (
◦
Cν , T ). By Lemma 4.15, it is not hard to see that the

space of such paths is homotopy equivalent to the space of paths satisfying
the following properties:

(1) ρϕ,ν(s) = id for s sufficiently small,

(2) whenever s ≥ N0, for some fixed integer N0 >
1
δ0

, the induced map of
ρϕ,ν(s) on the reduced spaces Ms·(p+c·u1), c ∈ (−ν, ν), is the identity

for |c| ≥ 1
s ,

(3) for s ≥ N0 and |c| < 1
s , the induced map of ρϕ,ν(s) on the reduced

spaces Ms·(p+c·u1) is the identity outside φsXσ,c(Uσ,c), and it lies in the

identity component of S̃ympl
c
(D, 3pts) ' Symplc(D, 3pts), where we

have chosen a symplectic identification between (Uσ, {Qj}3j=1) and a

2-disc D with three marked points, and S̃ympl
c
(D, 3pts) is defined

similarly as S̃ympl(Mp, {Qj}3j=1) to indicate the special behavior of
the automorphisms near the marked points.

A direct consequence of Proposition 4.10 and the fact that Symplc(D) ' ∗
is the following.

Lemma 4.16. kerβ
G,
◦
Cν
/C (

◦
Cν , T ) is contractible.
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Lemma 4.17. The quotient map

kerβ
G,
◦
Cν
→ kerβ

G,
◦
Cν
/C (

◦
Cν , T )

is a trivial fiber bundle with fiber homotopy equivalent to the based loop space
Ω∗(T ).

Proof. The kernel of the map is obviously homotopy equivalent to Ω∗(T ).
We just need to show that there is a global section to the quotient map.

For any ϕ ∈ kerβ
G,
◦
Cν

, it induces an R+-family of T ǔ1-invariant Hamil-

tonian vector fields on M
w1
p,ν , where p is any fixed element in R+ · w1, by dif-

ferentiating its induced actions on M
w1
s·p,ν . So we get a family of Hamiltonian

functions Hϕ,s on M
w1
p,ν , by requiring that Hϕ,s(Z0) = 0 for some chosen Z0 ∈

(µ
w1
p,ν)−1(0)−{Qi}3i=1. On the other hand, given any ϕ∈kerβ

G,
◦
Cν
/C (

◦
Cν , T ),

we can differentiate the actions on the reduced spaces of T and get a family
of Hamiltonian functions {Hϕ,s}s∈R+

up to the addition of a smooth func-
tion on (−ν, ν) which has value 0 at the origin. To fix this ambiguity, we
can choose a smooth section (−ν, ν)→

⋃
t∈(−ν,ν)

Mp+t·u1
passing through Z0,

which avoids the singularities of the T ǔ1-action and is submersive to the
base, and require each Hϕ,s restricted to the zero function on this section.

Once we have obtained {Hϕ,s}s∈R+
, we can integrate their Hamiltonian

vector fields along the radial directions and get a family of T ǔ1-equivariant
symplectomorphism ϕ̃s on M

w1
s·p,ν . For s ≥ N0 (this is the bound as in con-

dition (2)), on the complement to the preimage of φsXσ,c(Uσ,c) in M
w1
p,ν , ϕ̃s is

given by an element in C∞(R(−ν,ν), T
ǔ1). We can choose a global lifting of

the restriction of ϕ̃s there to C∞(R(−ν,ν),R · u1), denoted by log ϕ̃s, because

kerβ
G,
◦
Cν
/C (

◦
Cν , T ) is contractible. Since we need ϕ̃s = id (still on that com-

plement) for s sufficently large (we change the bound to 2N0), we can fix a
smooth bump function b : R+ → R, such that b(s) = 0 for s ≤ N0 + 1 and
b(s) = 1 for s ≥ 2N0 − 1, and replace ϕ̃s by its composition with the expo-
nential of −b(s) · log ϕ̃s. Alternatively, we can add to {Hϕ,s}s∈R+

a unique
family of Hamiltonian functions {Fs(t)}s∈R+

such that Fs(0) = 0 for all s,
and their Hamiltonian vector fields are d

ds exp(−b(s) · log ϕ̃s).
Next, similarly to the proof of Lemma 4.15, we start from a T -equivariant

diffeomorphism that lifts ϕ̃ and preserves sσ, and then apply the procedure in
the proof of Proposition 4.1 to the family of Hamiltonian functions {Hϕ,s +
Fs(t)}s∈R+

, to get a T -equivariant symplectomorphism ϕ̃ . We further repeat
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the process before to make ϕ = id over {s ≥ 2N0}, away from the preimages
of φsXσ,c(Uσ,c). �

Proposition 4.18. kerβ]G is contractible.

Proof. In the following, we use p to denote for a fixed element in R+ · w0,
unless otherwise specified.

Step 1. A deformation retraction of kerβ]G supported on (the G-orbits

of) µ−1(AdGp(
◦
W±ε))

Note that R+ · w0 can be viewed as the image of the moment map µw0

for the T
1

3
iw0-action on µ−1(AdGp(

◦
W±ε)). Since ϕ|µ−1(p) is the right mul-

tiplication by an element in U(2)/µ3, ϕ|µ−1(R+·w0) corresponds to a loop
in U(2)/µ3. On the other hand, given any C∞-map Λ : R+ · w0 → U(2)/µ3

with Λ(s) = 1 when s is close to 0 and lim
s→∞

Λ(s) = 1, repeating the steps

in Proposition 4.1 from the right action by Λ(p) on each reduced space
along R+ · w0, we get a canonical U(2)-equivariant symplectomorphism φΛ

on µ−1(AdGp(
◦
W±ε)), such that φΛ|µ−1(p) = RΛ(p), p ∈ R+ · w0, where RΛ(p)

means the right multiplication by Λ(p).
Now let Λϕ : R+ · w0 → U(2)/µ3 be the loop defined by ϕ, then φ−1

Λϕ
ϕ

becomes the identity on µ−1(R+ · w0). By Lemma 4.2, and the fact that
T ∗(U(2)/µ3) has a natural Kähler structure, we can run the same argument
as in Lemma 4.12 to make φ−1

Λϕ
ϕ isotopic to the identity in a neighbor-

hood of µ−1(R+ · w0). Then composing it back with φΛϕ , we get a symplec-

tomorphism of µ−1(AdGp(
◦
W±ε)), which agrees with ϕ near the boundary

and is φΛϕ near µ−1(R+ · w0). Since ϕ is the identity map near the infin-
ity, the region of φΛϕ contains a conical neighborhood of µ−1(R+ · w0), and
we can push it to contain a fixed conical neighborhood of µ−1(R+ · w0), say

µ−1(
◦
W± ε

2
). Similarly, we can deform ϕ over µ−1(AdGw2

(
◦
W ′± ε

2
)) in the same

way, where W ′± ε

2

is the cone bounded by R≥0 · (w2 ± ε
2 · diag(0, 1,−1)).

From now on, we can restrict ourselves to the space of ϕ ∈ kerβ]G where

ϕ restricted to µ−1(AdGw0
(
◦
W± ε

2
)) is φΛϕ and it has similar behavior over

µ−1(AdGw2
(
◦
W ′± ε

2
)). For simplicity, we still denote this space by kerβ]G.

Step 2. kerβ]G is contractible. Any ϕ ∈ kerβ]G is determined by its re-

striction to µ−1(AdGw0
(
◦
W± ε

2
)), µ−1(AdGw2

(
◦
W ′± ε

2
)), µ−1(

◦
W 01), µ−1(

◦
W 12)

and µ−1(
◦
Cν), with the obvious matching conditions. Using Lemma 4.17, we
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have kerβ]G is homotopy equivalent to the fiber product

Ω∗(U(2)/µ3)×
SymplT (µ−1(

◦
W 01))

Ω∗(T )×
SymplT (µ−1(

◦
W 12))

Ω∗(U(2)/µ3).(4.13)

Here SymplT (µ−1(
◦
W ij)) (with the obvious restriction as before on the ver-

tex and infinity of Wij) is homotopy equivalent to a fiber bundle over
Ω∗(Sympl(S2)) ' Ω∗(SO(3)) (c.f. [12]) for (i, j) = (0, 1) and (1, 2) with the
fiber homotopy equivalent to Ω∗(T ). The restriction map

Ω∗(T )→ SymplT (µ−1(
◦
W ij))

in (4.13) is homotopic to the inclusion as the fiber over the constant loop.
On the other hand the restriction maps

Ω∗(U(2)/µ3)→ SymplT (µ−1(
◦
W ij))

for (i, j) = (0, 1) and (1, 2) are respectively induced from (in the homotopic
sense) the inclusion of the sequence Ω∗(T

1

3
iw0)→ Ω∗(U(2)/µ3)→ Ω∗(SO(3))

(this sequence is a fibration if we replace Ω∗(SO(3)) by the image of
Ω∗(U(2)/µ3) under the quotient map), coming from the quotient map
U(2)/µ3 → SO(3) by the center T

1

3
iw0 , via the inclusion T

1

3
iw0 ↪→ T , and

Ω∗(T
1

3
iw2)→ Ω∗(U(2)/µ3)→ Ω∗(SO(3)) via the inclusion T

1

3
iw2 ↪→ T .

Therefore, the resulting space is contractible. �
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