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Local middle dimensional symplectic

non-squeezing in the analytic setting

Lorenzo Rigolli

We prove the following middle dimensional non-squeezing result
for analytic symplectic embeddings of domains in R2n.

Let ϕ : D ↪→ R2n be an analytic symplectic embedding of a do-
main D ⊂ R2n and P be a symplectic projector onto a linear 2k-
dimensional symplectic subspace V ⊂ R2n. Then there exists a pos-
itive function r0 : D → (0,+∞), bounded away from 0 on compact
subsetsK ⊂ D, such that the inequality V ol2k(Pϕ(Br(x)), ωk

0|V ) ≥
πkr2k holds for every x ∈ D and for every r < r0(x). This claim will
be deduced from an analytic middle dimensional non-squeezing re-
sult (stated by considering paths of symplectic embeddings) whose
proof will be carried on by taking advantage of a work by Álvarez
Paiva and Balacheff.

Introduction

Let ω0 =
∑n

i=1 dxi ∧ dyi be the standard symplectic form on R2n, BR the
ball of radius R

BR =

{
(x1, y1, . . . , xn, yn) ∈ R2n

∣∣∣ n∑
i=1

x2
i +

n∑
i=1

y2
i < R2

}
,

and Zr the cylinder

Zr = {(x1, y1, . . . , xn, yn) ∈ R2n |x2
1 + y2

1 < r2}.

The Gromov’s non-squeezing theorem (see [Gro85] or [HZ94]) states that if
ϕ(BR) ⊂ Zr, where ϕ is a symplectic (open) embedding, then r ≥ R. Sym-
plectic diffeomorphisms are volume preserving, due to the fact that they
preserve the multiple of the volume form ω0

n, but the non-squeezing theo-
rem shows that, unlike volume preserving diffeomorphisms, they also present
two-dimensional rigidity phenomena.

This work is partially supported by the DFG grant AB 360/1-1.
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420 Lorenzo Rigolli

Since symplectic diffeomorphisms preserve the 2k-form ω0
k for every

integer 1 ≤ k ≤ n, after Gromov’s pioneering result one may ask if there are
also middle dimensional rigidity phenomena.

Some work in this direction, concerning symplectic embeddings of poly-
disks, has been done by Guth. In [Gut08] he considers symplectic embed-
dings of a polydisk Γ := B2(R1)× · · · ×B2(Rn) with R1 ≤ · · · ≤ Rn into a
polydisk Γ′ := B2(R′1)× · · · ×B2(R′n) with R′1 ≤ · · · ≤ R′n. By the Gromov’s
non-squeezing theorem and the conservation of the volume under symplec-
tic diffeomorphism, such symplectic embeddings may exist only if R1 ≤ R′1
and R1 · · ·Rn ≤ R′1 · · ·R′n. On the other hand Guth proved that such em-
beddings exist if and only if for a certain constant C(n), the inequalities
C(n)R1 ≤ R′1 and C(n)R1 · · ·Rn ≤ R′1 · · ·R′n hold. In particular this result
exclude every middle dimensional non-squeezing phenomena in the case of
polydisks embeddings.

In this paper we proceed in a different way, namely we keep the ball as
domain of symplectic embeddings and in order to search for middle dimen-
sional non-squeezing phenomena we follow the strategy pursued in [AM13].

First, as in [EG91], we introduce an alternative formulation of Gromov’s
theorem, which is that the two-dimensional shadow of the image of a radius
R ball in R2n under a symplectic diffeomorphism has area at least πR2.
More precisely the claim is that every symplectic embedding ϕ : BR ↪→ R2n

satisfies the inequality

area(Pϕ(BR), ω0|V ) ≥ πR2,(1)

where P denotes the symplectic projector onto a symplectic plane V , i.e.
the projector along the symplectic orthogonal complement of V .

This second formulation easily implies the classic one. On the other
hand, if it were area(Pϕ(BR), ω0|V ) < πR2, then, by a theorem of Moser’s
(see [Mos65] or [HZ94]), there would exist a smooth area preserving diffeo-
morphism φ mapping Pϕ(BR) into a subset of B2

r ∩ V for some r < R, and
then the symplectic embedding (φ× idV ⊥) ◦ ϕ mapping BR into Zr would
violate the classic formulation of Gromov’s theorem.

The alternative formulation of Gromov’s theorem has a natural general-
ization to higher dimensional shadows of a symplectic ball.

In other words, if V is a 2k-dimensional symplectic subspace of R2n and
P is the symplectic projector onto V , we may ask whether it is true that

V ol2k(Pϕ(BR), ωk0|V ) ≥ πkR2k,(2)

for every symplectic embedding ϕ : BR ↪→ R2n.
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Local middle dimensional symplectic non-squeezing 421

Notice that in the inequality above and throughout all the paper we
always consider the symplectic volume induced by the volume form ωk0|V ,
which is k! times the standard Euclidean volume.

If k = 1 or k = n the inequality holds respectively by the non-squeezing
theorem and by the volume preserving property of symplectic diffeomor-
phisms. So we are interested only in the middle dimensional case when
2 ≤ k ≤ n− 1.

If the symplectic diffeomorphism ϕ is a linear map an affirmative an-
swer to the middle dimensional non-squeezing question has been given in
[AM13], nevertheless in the same paper Abbondandolo and Matveyev show
that if P is the symplectic projector onto a 2k-dimensional symplectic sub-
space with 2 ≤ k ≤ n− 1, then for every ε > 0 there exists an open symplec-
tic embedding ϕ : B1 ↪→ R2n such that V ol2k(Pϕ(B1), ωk0|V ) < ε. Since this
counterexample deforms very strongly the unitary ball, one may ask how far
can the ball be deformed before the middle non-squeezing ends his validity
and whether the middle dimensional non-squeezing holds locally. In [AM13]
the authors give two different formulations of the local question.

The first one asks whether, fixed a symplectic embedding ϕ : D ↪→ R2n

of a domain D ⊂ R2n, the inequality

V ol2k(Pϕ(BR(x)), ωk0|V ) ≥ πkR2k(3)

holds for any x ∈ D and for R positive and small enough.
The second formulation is the following.
Let us fix a path of symplectic embeddings of the unit 2n-dimensional

ball

ϕt : B1 ↪→ R2n t ∈ [0, 1],

such that ϕ0 is linear (i.e. it is the restriction to B1 of a linear symplecto-
morphism).

We would like to know whether there exists a positive number t0 ≤ 1
such that

V ol2k(Pϕt(B1), ωk0|V ) ≥ πk, for every 0 ≤ t ≤ t0.(4)

The second formulation implies the first one by taking the path of symplectic
embeddings

ϕt(y) :=


1

t

(
ϕ(x+ ty)− ϕ(x)

)
if t ∈]0, 1],

Dϕ(x)[y] if t = 0,
(5)
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in fact

V ol2k(Pϕt(B1(0)) = V ol2k

(
P

1

t
ϕ(Bt(x)), ωk0|V

)
=
V ol2k(Pϕ(Bt(x)), ωk0|V )

t2k
.

In this setting Abbondandolo, Bramham, Hryniewicz and Salomão
[ABH+18] have recently proved that if the symplectic projection is onto
a 4-dimensional symplectic subspace V , then both these local non-squeezing
results hold (in the first formulation the diffeomorphism is required to be
C3).

In this paper we address the same question but we do not impose for
any assumption on the dimension of V , instead we require an analiticity
hypothesis. First we focus on the second local formulation of the middle
dimensional non-squeezing and we prove its validity under the additional
assumption that the path of embeddings t 7→ ϕt is analytic in t, i.e. ∀x ∈ B1

the function t 7→ ϕt(x) is analytic.

Theorem 1 (Analytic local non-squeezing). Let [0, 1] 3 t 7→ ϕt be an
analytic path of symplectic embeddings ϕt : B1 ↪→ R2n, such that ϕ0 is linear.
Then the middle dimensional non-squeezing inequality

V ol2k(Pϕt(B1), ωk0|V ) ≥ πk

holds for t small enough.

To prove this theorem we need some ingredients.
In Section 1 we recall some facts about contact geometry together with

some results about the minimal action of a Reeb orbit in a contact manifold
and we introduce Zoll contact manifolds (also known as regular contact type
manifolds), namely manifolds with the property that all Reeb orbits are
periodic with the same period.

In Section 2 we prove a weaker version of the main theorem in [AB14],
which says that if a constant volume deformation of the unit ball does not
start tangent to all orders to a deformation by convex domains with Zoll
boundaries (i.e. the deformation is not formally trivial), then the minimal
action Amin on the ball is strictly larger than the one of its small deforma-
tions.

In Section 4 we will see that this result implies the validity of the non-
squeezing inequality (4) for not formally trivial deformations of the unit
ball.
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On the other hand in case of a formally trivial deformation we will have
to proceed in a different way. Namely, using some results from Section 3, we
will prove that if the deformation of the ball is analytic and trivial then the
function t 7→ V ol(Pϕt(B1), ωk0|V ) is analytic and has all vanishing derivatives
in t = 0. This will enable us to deduce that the function above is constant
and consequently that the equality in (4) holds.

Using Theorem 1 we will deduce the local non-squeezing formulation for
any fixed analytic symplectic embedding. Moreover, in this latter setting we
will prove that, on compact subsets of R2n, the minimal radius R for which
the estimate (3) holds is bounded away from 0. More precisely we shall prove
the following result.

Theorem 2. Let ϕ : D ↪→ R2n be an analytic symplectic embedding of a
domain D ⊂ R2n. Then there exists a function r0 : D → (0,+∞) such that
the inequality V ol2k(Pϕ(Br(x)), ωk0|V ) ≥ πkr2k holds, for every x ∈ D and

for every r < r0(x). Moreover r0 is bounded away from 0 on compact subsets
K ⊂ D.

Acknowledgments. I would like to warmly thank Alberto Abbondandolo
for all the precious help and advice he gave me concerning this paper.

1. Zoll contact manifolds and minimal action

Let us start recalling some basic facts in contact geometry.
A 1-form α on the (2n− 1)-dimensional manifold M is a contact form if

α ∧ (dα)n−1 is a volume form. In this case (M,α) is called contact manifold
and the volume of M with respect to the volume form induced by α is
denoted by V ol(M,α).

Moreover the contact form α induces a vector field Rα on M , which is
called the Reeb vector field of α and is determined by the requirements:

iRαdα = 0 & α(Rα) = 1.

The action A(γ) of a periodic Reeb orbit γ on a contact manifold (M,α)
is defined as

A(γ) :=

∫
γ
α ∈ R.

and coincides with the period of γ.
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Definition 3. Given any contact manifold (M,α) with at least a closed
Reeb orbit we define a function as follows

Amin(M,α) := min
γ
{A(γ) | γ is a closed Reeb orbit on (M,α)}.

Both the volume and the function Amin are invariant under strict con-
tactomorphism. Indeed we have the following simple result.

Proposition 4. Let (M,α) and (N, β) be two 2n− 1 dimensional contact
manifolds and φ : M → N a strict contactomorphism (i.e. φ∗β = α). Then

1) to each closed Reeb orbit γ of (M,α) corresponds a closed Reeb orbit
φ ◦ γ of (N, β),

2) A(γ) = A(φ ◦ γ),

3) Amin(M,α) = Amin(N, β),

4) V ol(M,α) = V ol(N, β).

Another straightforward fact we will use is the following.

Remark 5. Let λ0 :=
∑n

i=1 xidyi be the standard Liouville 1-form on R2n,
which is a primitive of ω0, let f : S2n−1 → (0,+∞) be a C1 function and
define the set Mf := {f(x)x | x ∈ S2n−1} ⊂ R2n. Then (S2n−1, f2λ0|S2n−1)
and (Mf , λ0|Mf

) are strictly contactomorphic.

Indeed the radial projection θ : (S2n−1, f2λ0|S2n−1)→ (Mf , λ0|Mf
) de-

fined by θ(x) = f(x)x is a strict contactomorphism:

θ∗(λ0|Mf
)(x)[v] = λ0|Mf

(θ(x))[dθ(x)[v]] = λ0|Mf
(f(x)x)[f(x)[v] + df(x)[v]x]

= f(x)λ0|S2n−1(x)[f(x)[v]] + f(x)df(x)[v]λ0|S2n−1(x)[x]

= f(x)2λ0|S2n−1(x)[v].

Now we introduce a special type of contact form.

Definition 6. A contact form on a manifold M is Zoll (or regular) if its
Reeb flow is periodic and all the Reeb orbits have the same period, and
hence the same action.

For example the contact form λ0|S2n−1 induced on the unit sphere S2n−1

in R2n by the standard Liouville 1-form is Zoll.
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Later on we will consider two different kinds of deformations of a contact
form: formally trivial and not formally trivial.

Definition 7. A smooth deformation αt, t ∈ [0, t0), of a contact form α0 is
trivial if there exists a smooth real valued function r(t) and an isotopy φt
such that αt = r(t)φ∗tα0. A deformation αt is formally trivial if for every non

negative m there exists a trivial deformation α
(m)
t that has order of contact

m with αt at t = 0. Otherwise the deformation is not formally trivial.

If instead of deformations of contact forms we choose to consider defor-
mations of convex domains, we give the following definition.

Definition 8. Consider a smooth convex domain C0 ⊂ R2n with the stan-
dard Liouville 1-form λ0|∂C0

. A smooth deformation Ct of C0 is trivial (resp.
formally trivial, resp. not formally trivial) if θ∗t (λ0|∂Ct) is trivial (resp. for-
mally trivial, resp. not formally trivial), where θt : S2n−1 → ∂Ct is the radial
projection.

It is a result by Weinstein that trivial deformations of a Zoll contact
form can be characterized in the following way.

Proposition 9. [Wei74] Let αt, t ∈ [0, t0), be a smooth deformation of a
Zoll contact form α0. The deformation is trivial if and only if αt is a Zoll
contact form for every t ∈ [0, t0).

In our case it will turn out that every contact deformation can be reduced
to a normal form.

Definition 10. Let αt = ρtα0 be a smooth deformation of the Zoll contact
form α0, where ρt is a smooth family of positive functions on M , and let m
be a non negative integer. The deformation αt is in normal form up to order
m if

αt = (1 + tµ(1) + · · ·+ tmµ(m) + tm+1rt)α0

where, for i = 1, . . . ,m, the functions µ(i) are integrals of motion for the
Reeb flow of α0 (i.e. they are constant on the orbit of that flow) and rt is a
smooth function on M depending smoothly on the parameter t.



i
i

“4-Rigolli” — 2019/7/25 — 23:22 — page 426 — #8 i
i

i
i

i
i

426 Lorenzo Rigolli

Using a technique known as the method of Dragt and Finn (see [DF76]
and [Fin86]), which consist of constructing the required isotopy as composi-

tion of isotopies φ
(m)
t which are flows of some particular vector fields, Álvarez

Paiva and Balacheff proved the following result.

Theorem 11. [AB14] Let αt = ρtα0 be a smooth deformation of a Zoll
contact form α0, where ρt is a smooth family of real valued functions on M
with ρ0 = 1. Given a non negative integer m, there exists a contact isotopy

φ
(m)
t such that φ

(m)
t

∗
αt is in normal form up to order m.

Proof. (Idea) The theorem is proved by induction. The case m = 0 follows
from the Taylor expansion ρt = 1 + trt around t = 0. Supposing that αt is
already in normal form up to order m− 1, the point is to find a function
hm in such a way that the flow φt,hm of the Hamiltonian vector field Xhm

determines an isotopy t 7→ φt,hm for which φ∗t,hmαt is in normal form up to
order m. �

The following proposition will be crucial in the next section.

Proposition 12. [AB14] Let (M,α) be a Zoll contact manifold and let
ρ : M → R+ be a smooth positive function invariant under the Reeb flow of
α. Then Amin(M,ρα) ≤ Amin(M,α) min ρ.

Proof. This essentially follows from the fact that if u ∈M is a minimum
point for ρ, then the Reeb orbit γ of (M,α) passing through u is also a Reeb
orbit for (M,ρα). Once one checks this by a straightforward computation,
we have that the action of γ in (M,ρα) is∫

γ
ρα = min ρ

∫
γ
α = Amin(M,α) min ρ

and the proof is complete. �

We shall make use of the following classical result.

Theorem 13. [Rab78] [Wei78] Let C be a smooth convex bounded domain
of R2n. The contact manifold (∂C, λ0|∂C) admits at least one periodic Reeb
orbit.

An important fact is that the function Amin coincides with some well
known symplectic capacities such as Hofer-Zehnder and Ekeland-Hofer ca-
pacities.
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Theorem 14. [EH89] [Vit89] Let C be a smooth convex bounded domain
of R2n. There exists a distinguished closed characteristic γ ⊂ ∂C such that
Amin(∂C, λ0) = A(γ). Moreover, restricting to smooth convex domains of
R2n, the function Amin is a symplectic capacity that we will denote with c.

Due to the two theorems above, the function Amin(∂C, λ0|∂C) is well
defined.

Besides the usual property of a capacity, choosing in a carefully way one
among the equivalent definitions of c, the following result can be proved.

Proposition 15. [AM15] Let C ⊂ R2n be a smooth convex bounded domain
and P the symplectic projector onto a symplectic linear subspace V ⊂ R2n.
Then c(PC, ω0|V ) ≥ c(C,ω0).

2. Deformations of S2n−1

In this section we would like to get some information on how Amin behaves in
case of a contact deformation on the unit sphere. The results we are going to
state hold in the case of an arbitrary Zoll contact manifold, but in this paper
we are interested just in deformations of the standard contact form on the
sphere S2n−1, so we can simplify the proof about the Lipschitz continuity of
Amin that relies on a result from [Gin87].

Lemma 16. Fix two real numbers 0 < δ < ∆ <∞ and consider the fam-
ily Cδ,∆ of the convex domains C ⊂ R2n which satisfy the (δ,∆)-pinching
condition Bδ ⊂ C ⊂ B∆. Every symplectic capacity c : Cδ,∆ → R is Lipschitz
continuous with respect to the Hausdorff distance.

Proof. Let us take two elements C,D ∈ Cδ,∆ and let d be their Hausdorff
distance.

By assumption

δB = Bδ ⊂ C,D ⊂ B∆ = ∆B,

hence

C ⊂ D + dB ⊂ D +
d

δ
D =

(
1 +

d

δ

)
D,

and by the monotonicity and conformality property of symplectic capacities

c(C) ≤
(

1 +
d

δ

)2

c(D) =

(
1 + 2

d

δ
+
d2

δ2

)
c(D),
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therefore

c(C)− c(D) ≤ d
(

2

δ
+

d

δ2

)
c(D).

Because of the pinching condition we have c(D) ≤ c(∆B) = ∆2π and d ≤ ∆,
thus there exists a fixed real number M > 0 such that

c(C)− c(D) ≤ dM.

If c(C) ≥ c(D) we have c(C)− c(D) = |c(C)− c(D)| and the claim follows,
otherwise if c(C) < c(D) we repeat the same proof switching the role of sets
C and D. �

Lemma 17. There exists a small open neighbourhood U of zero in the
Banach space C2(S2n−1) such that if f ∈ U , the map f 7→ Amin(S2n−1, (1 +
f)λ0|S2n−1) is Lipschitz continuous on U with respect to the C0-topology.

Proof. Let us set M√1+f := {
√

1 + f(x)x | x ∈ S2n−1} ⊂ R2n.

The map f 7→ Amin(S2n−1, (1 + f)λ0|S2n−1) is well defined because, as
observed in Remark 5, looking for a periodic orbit of (S2n−1, (1 + f)λ0|S2n−1)
is the same as looking for one of (M√1+f , λ0|M√

1+f
), and that exists because

a C2-small deformation of S2n−1 still bounds a convex domain of R2n.
The map f 7→ Amin(S2n−1, (1 + f)λ0|S2n−1) is the composition of the

maps f 7→M√1+f and M√1+f 7→ Amin(M√1+f , λ0|M√
1+f

), the first of which

is clearly Lipschitz from the C0-distance to the Hausdorff distance. So in
order to prove the Lipschitz regularity result we need to show that the min-
imal action (which is a capacity) of a periodic orbit on a convex domain
whose boundary is close to S2n−1, is Lipschitz continuous with respect to
the Hausdorff distance. But this follows from Lemma 16. �

The next theorem is a weaker version, which suits in our case, of the one
in [AB14] which holds for every Zoll contact manifold. The proof is the same
except that in our setting we do not need to use a stronger result about the
Lipschitz continuity that generalizes Lemma 17.

Theorem 18. [AB14] Let (S2n−1, µt), with t ∈ [0, t0), be a smooth constant
volume deformation of the Zoll contact manifold (S2n−1, µ0 := λ0|S2n−1). If
it is not formally trivial, then the function t 7→ Amin(S2n−1, µt) attains a
strict local maximum at t = 0.

Proof. The proof is carried out in four steps.
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1) First we consider the form (1 + tνt + tmrt)µ0, where m > 1 and both
νt and rt are smooth function on S2n−1 depending smoothly on t. By
Lemma 17, the function f 7→ Amin(S2n−1, (1 + f)µ0) is Lipschitz if f is
in a small enough C2-neighbourhood of zero in C∞(S2n−1), then, for
t→ 0 we have

Amin(S2n−1, (1 + tνt + tmrt)µ0) = Amin(S2n−1, (1 + tνt)µ0) +O(tm).

2) Let (1 + tmρ+ tm+1rt)µ0 be a deformation of µ0 and ρ the function ob-
tained by averaging ρ along the orbits of the Reeb vector field of µ0

ρ(x) :=
1

T

∫ T

0
ρ(ϕt(x))dt,

where T is the common period of the periodic orbits of the Reeb flow ϕt.
According to the induction step of the proof of Theorem 11, there exists

a contact isotopy φ
(m)
t : S2n−1 → S2n−1 such that

φ
(m)∗
t (1 + tmρ+ tm+1rt)µ0 = (1 + tmρ+ tm+1r′t)µ0,

where r′t is a smooth function depending smoothly on t.

3) If (1 + tmρ+ tm+1rt)µ0 is a smooth constant volume deformation and ρ
is not identically zero, then

Amin(S2n−1, (1 + tmρ+ tm+1rt)µ0) < Amin(S2n−1, µ0)

for t 6= 0 small enough.
To prove this claim, first note that by 2) and 1) follows

Amin(S2n−1, (1 + tmρ+ tm+1rt)µ0)(6)

= Amin(S2n−1, (1 + tmρ+ tm+1r′t)µ0)

= Amin(S2n−1, (1 + tmρ)µ0) +O(tm+1).

Since ρ is an integral of motion for the Reeb flow of µ0 and m is a
positive integer, we have that (1 + tmρ) is a positive (for small t) integral
of motion of µ0, thus Proposition 12 implies that

Amin(S2n−1, (1 + tmρ)µ0) ≤ (1 + tm min ρ)Amin(S2n−1, µ0).(7)



i
i

“4-Rigolli” — 2019/7/25 — 23:22 — page 430 — #12 i
i

i
i

i
i

430 Lorenzo Rigolli

The deformation (1 + tmρ+ tm+1r′t)µ0 is constant volume because con-
tact isotopies preserve the volume. By the property of the exterior deriva-
tive

V ol(S2n−1, µ0) = V ol(S2n−1, (1 + tmρ+ tm+1r′t)µ0)

=

∫
S2n−1

(1 + tmρ+ tm+1r′t)
n
µ0 ∧ dµ0

n−1

= V ol(S2n−1, µ0) + ntm
∫
S2n−1

ρµ0 ∧ dµ0
n−1 +O(tm+1),

and thus the integral of ρ over S2n−1 is zero. Therefore, if in addition
t 6= 0 and ρ is not identically zero, the extrema of ρ must have opposite
signs and hence its minimum must be negative. Putting together this
fact with (6) and (7), we deduce that the function t 7→ Amin(S2n−1, (1 +
tmρ+ tm+1rt)µ0) attains a strict maximum at t = 0, namely

Amin(S2n−1, (1 + tmρ+ tm+1rt)µ0) < Amin(S2n−1, µ0), for t > 0.

4) We are finally ready to prove the theorem. Let us consider a constant
volume deformation µt of the Zoll contact form µ0. By Gray’s stability
theorem we can assume that the contact deformation has the form µt =
ρtµ0. Expanding ρt around t = 0, we obtain

µt = (1 + tρ(1) + t2rt)µ0,

where ρ(1) =
dρt
dt
|t=0 and rt is a smooth function depending on t.

By 3), if the average ρ(1) is not identically zero, then

t 7→ Amin(S2n−1, µt)

attains a strict maximum at t = 0.
Otherwise, if ρ(1) is identically zero, by 2) there exists a contact isotopy

φ
(2)
t such that φ

(2)∗
t µt = (1 + t2r′t)µ0. Since φ

(2)
t is a contact isotopy, then

(1 + t2r′t)µ0 is also a constant volume smooth deformation of µ0 and
Amin(S2n−1, (1 + t2r′t)µ0) = Amin(S2n−1, µt), so we can rewrite µt = (1 +
t2r′t)µ0 and start anew.

If we repeat this process an arbitrary number of times, we see that
either t 7→ Amin(S2n−1, µt) attains a strict maximum at t = 0 or that for

any positive integer m, there exist a contact isotopy φ
(m)
t and a smooth

function ν
(m)
t on S2n−1 depending smoothly on the parameter t, such that
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φ
(m)∗
t µt = (1 + tmν

(m)
t )µ0. In other words, either t 7→ Amin(S2n−1, µt) at-

tains a strict maximum at t = 0 or the deformation µt is formally trivial.
�

3. Analyticity of the volume of a projection

Our next goal is to prove that the fixed domain formulation of the local
middle dimensional non-squeezing theorem holds if we consider an analytic
path of symplectic embeddings.

To do this we need a result, whose proof relies on calculations made in
order to prove Theorem 3 of [AM13].

Proposition 19. Let U 3 y0 be a domain of Rn and [0, 1]× U 3 (t, y) 7→
ϕt,y an analytic map such that ϕt,y are embeddings of the unit n-dimensional
ball ϕt,y : B1 ↪→ Rn, with ϕ0,y0 linear. Moreover, let P : Rn → V be the or-
thogonal projector onto a k-dimensional linear subspace V ⊂ Rn and ρ a con-
stant k-volume form on V . Then the function (t, y) 7→ V olk(Pϕt,y(B1), ρ) is
analytic in a neighbourhood of (0, y0) small enough.

In the proof we will use the following lemma.

Lemma 20. Take the hypothesis of the proposition above. The set St,y ⊂
∂B1 defined as

St,y := {x ∈ ∂B1|P|Tϕt,y(x)ϕt,y(∂B1) is not surjective}(8)

has the property that

∂Pϕt,y(B1) = Pϕt,y(St,y)(9)

and can be written as

St,y = {x ∈ ∂B1|Ft,y(x) = 0},(10)

where Ft,y(x) := (I − P )(Dϕt,y(x)∗)−1[x]. If (t, y) is in a small enough
neighbourhood of(0, y0), St,y is a submanifold of ∂B1 such that St,y =
φt,y(S

k−1), where φt,y is an analytic path of diffeomorphisms.

Proof. First observe that (9) is an immediate consequence of the defini-
tion of St,y. The function P|Tϕt,y(x)ϕt,y(∂B1) is not surjective if and only if

PDϕt,y(x)|Tx∂B1
: Tx∂B1 → TPϕt,y(x)V ∼= Rk is not surjective.
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This is true iff

∃u ∈ Rk, u 6= 0, such that < PDϕt,y(x)[ξ], u >= 0

∀ξ ∈ Tx∂B1, i.e. ∀ξ such that < ξ, x >= 0.
Since u = Pu and P = P ∗

< PDϕt,y(x)[ξ], u >=< ξ, (PDϕt,y(x))∗[u] >=< ξ,Dϕt,y(x)∗[u] >

and thus the non surjectivity holds iff

Dϕt,y(x)∗[u] = λx, where λ 6= 0 is a real number.

Equivalently

(Dϕt,y(x)∗)−1[x] ∈ Rk

which is the same as

Ft,y(x) := (I − P )(Dϕt,y(x)∗)−1[x] = 0 ∈ Rn−k.

Now, consider the analytic function G(t, y, x) := (I − P )(ϕt,y(x)∗)−1[x]. We
have that ϕ0,y0 = Dϕ0,y0 because ϕ0,y0 is linear, hence G(0, y, z) = 0 if z ∈
S0,y0 . Applying the analytic implicit function theorem we deduce that, for
(t, y) close to (0, y0), St,y is a submanifold of ∂B1 and St,y = φ′t,y(S0,y0) where
φ′t,y is an analytic path of diffeomorphisms. There is a diffeomorphism given

by (Dϕt,y(x)∗)−1 between Sk−1 and S0,y0 , therefore by composition with
φ′t,y we get an analytic path of diffeomorphisms φt,y such that φt,y(S

k−1) =
St,y. �

Now we are ready to prove Proposition 19.

Proof. Take a primitive α ∈ Ωk−1(V ) of the volume form ρ ∈ Ωk(V ), i.e.
dα = ρ.

As observed in the former lemma ∂Pϕt,y(B1) = Pϕt,y(St,y) and applying
Stokes’ theorem we get

V olk(Pϕt,y(B1), ρ) =

∫
Pϕt,y(B1)

dα =

∫
∂Pϕt,y(B1)

α

=

∫
Pϕt,y(St,y)

α =

∫
St,y

(Pϕt,y)
∗α

=

∫
Sk−1

(Pϕt,yφt,y)
∗α.
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where φt,y : Sk−1 → St,y is the diffeomorphism introduced in the proof of
the lemma above. For (t, y) close to (0, y0), the function (t, y) 7→ Pϕt,yφt,y
is analytic and this implies the analyticity of (t, y) 7→

∫
Sk−1(Pϕt,yφt,y)

∗α.
In fact, we can write

∫
Sk−1(Pϕt,yφt,y)

∗α =
∫
Sk−1 at,y(x)ν where at,y is

analytic.
Differentiating under integral sign, from the Taylor expansion of at,y

we get a local series expansion of the function (t, y) 7→
∫
Sk−1(Pϕt,yφt,y)

∗α =
V olk(Pϕt,y(B1), ρ), which is therefore analytic. �

4. Local non-squeezing

In the following B1 indicates the unit ball in R2n and P : R2n → V the
symplectic projection onto a 2k-dimensional symplectic linear subspace V ⊂
R2n. At first we are interested in proving the local non squeezing formulation
for a path of symplectic embeddings starting from a linear one and to do so
we will use the following middle dimensional linear non-squeezing result.

Theorem 21. [AM13], [AM15] Let P be the symplectic projector onto a
2k-dimensional symplectic linear subspace V ⊂ R2n. Then for every linear
symplectic isomorphism L : R2n → R2n there holds

V ol2k(PL(B1), ωk0|V ) ≥ πk.

The equality holds if and only if the linear subspace L−1V is J-invariant,
where J is the standard complex structure on R2n.

We complete the above result by the following statement.

Addendum 22. The equality holds if and only if (B1 ∩ L−1V, ω0|L−1V ) is
linearly symplectomorphic to (PL(B1), ω0|V ) via the symplectic map L|L−1V .

The following result is useful to prove Theorem 21 and the addendum
as well.

Lemma 23. [Fed69, Section 1.8.1]
Let 1 ≤ k ≤ n, then

|ωk[u1, . . . , u2k]| ≤ |u1 ∧ · · · ∧ u2k| ∀u1, . . . , u2k ∈ R2n.

Proof. (Addendum) If a symplectomorphism exists, by Lemma 23 we have
V ol2k(PL(B1), ωk0|V ) = V ol2k(B1 ∩ L−1V, ωk0|L−1V ) ≤ πk. But at the same
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time Theorem 21 yields V ol2k(PL(B1), ωk0|V ) ≥ πk, hence the equality holds.

On the other hand V ol2k(PL(B1), ωk0|V ) = πk iff L−1V is J-invariant; and
if the claim that

PL(B1 ∩ L−1V ) = PL(B1)

is true, then (B1 ∩ L−1V, ω0|L−1∩V ) is symplectomorphic to

(PL(B1), ω0|V ) = (PL(B1 ∩ L−1V ), ω0|V )

via the linear symplectic isomorphism L : L−1V → V .
To prove the claim we reduce it to the easier case in which P is orthog-

onal. First we take an ω-compatible inner product (·, ·)′ on R2n such that
P is orthogonal and we denote with B′1 and J ′ the corresponding unit ball
and complex structure. In particular V is J ′-invariant. Let ψ : (V, ω, J ′)→
(V, ω, J) be a complex and linear isomorphism. It follows that ψ is an isom-
etry from (V, (·, ·)′) to (V, (·, ·)), hence ψ(B′1) = B1. The image of the unit
ball under a linear surjection M is given by

M(B1) = M(B1 ∩ rankM∗).

If we take N = Lψ, M = PN and we denote with ∗′ the adjoint of a matrix
with respect to (·, ·)′, we get

PL(B1) = PLψ(B′1) = PN(B′1) = PN(B′1 ∩ rank(PN)∗
′
)

= PN(B′1 ∩ rank(N∗
′
P ∗
′
)) = PN(B′1 ∩ rank(N∗

′
P ))

= PN(B′1 ∩N∗
′
V ).

The identity ψJ ′ = Jψ implies J ′ = ψ−1Jψ and the fact that L−1V is J-
invariant is equivalent to JψN−1V = ψN−1V , hence

N∗
′
V = N∗

′
J ′V = N∗

′
J ′NN−1V = J ′N−1V

= ψ−1JψN−1V = ψ−1ψN−1V

= N−1V,

thus we obtain

PL(B1) = PN(B′1 ∩N∗
′
V ) = PN(B′1 ∩N−1V )

= PLψ(B′1 ∩ ψ−1L−1V )

= PL(B1 ∩ L−1V ),

and the claim is proved. �
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In order to gain some information about the strong formulation of the lo-
cal non-squeezing inequality we study the function t 7→V ol2k(Pϕt(B1), ωk0|V ).

Proposition 24. Let [0, 1] 3 t 7→ ϕt be a smooth path of symplectic embed-
dings ϕt : B1 ↪→ R2n, such that ϕ0 is linear and ϕ−1

0 V is J-invariant. The
deformation of Pϕ0(B1) given by Pϕt(B1) can be either formally or not
formally trivial:

• if the deformation is formally trivial, then every order m ∈ Z+ deriva-
tive of t 7→ V ol2k(Pϕt(B1), ωk0|V ) vanishes in 0;

• if the deformation is not formally trivial, then the strict middle di-
mensional non-squeezing inequality V ol2k(Pϕt(B1), ωk0|V ) > πk holds
for t > 0 small enough.

Proof. By the previous addendum we have that ψ := ϕ0|ϕ−1
0 V is a linear sym-

plectomorphism between (B1 ∩ ϕ−1
0 V, ω0|ϕ−1

0 V ) and (Pϕ0(B1), ω0|V ). Let us
call Mt := ∂Pϕt(B1) and consider two 1-forms: the Liouville form λ0|ψ−1Mt

and its pullback µt := θt
∗(λ0|ψ−1Mt

), where θt : S2k−1 → ψ−1Mt is the radial

diffeomorphism such that θt
−1(x) =

x

||x||
.

Later we will use the capacity c, which is defined only for convex do-
mains, so let us notice once for all that, for small deformations, ϕt(B1) is
still convex and that the projection of a convex domain is still convex.

Now we compute the relations between the volume of the deformations.
Using Stokes’ theorem we get

V ol2k−1(ψ−1Mt, λ0|ψ−1Mt
) =

∫
ψ−1∂Pϕt(B1)

λ0|ψ−1Mt
∧ (dλ0|ψ−1Mt

)k−1

=

∫
ψ−1Pϕt(B1)

ω0
k

= V ol2k(ψ
−1Pϕt(B1), ωk

0|ϕ−1
0 V

).

On the other hand, since (ψ−1Mt, λ0|ψ−1Mt
) and (S2k−1, µt) are strictly con-

tactomorphic, V ol2k−1(ψ−1Mt, λ0|ψ−1Mt
) = V ol2k−1(S2k−1, µt).

So, if µ′t := µtρ(t), where ρ(t) :=
1

k

√
V ol2k(ψ−1Pϕt(B1), ωk

0|ϕ−1
0 V

)
, it fol-

lows that V ol(S2k−1, µ′t) = 1 and in particular that µ′t is a constant volume
deformation.

Observing that closed characteristics in (S2k−1, µ′t) are the same as in
(S2k−1, µt) we can establish the relations between the minimal action of their
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closed Reeb orbits

Amin(S2k−1, µ′t) = min
γ
{A(γ) | γ closed characteristic in (S2k−1, µ′t)}

= min
γ

{∫
γ
µ′t | γ closed characteristic in (S2k−1, µ′t)

}
= min

γ

{
ρ(t)

∫
γ
µt | γ closed characteristic in (S2k−1, µ′t)

}
= min

γ

{
ρ(t)

∫
γ
µt | γ closed characteristic in (S2k−1, µt)

}
= ρ(t)Amin(S2k−1, µt).

Since θt is a strict contactomorphism between (ψ−1Mt, λ0|ψ−1Mt
) and

(S2k−1, µt), we also get

Amin(S2k−1, µt) = Amin(ψ−1Mt, λ0|ψ−1Mt
) = c(ψ−1Pϕt(B1)),

where ψ is a symplectomorphism.
Thus the quantitiesAmin(ψ−1Mt, λ0|ψ−1Mt

) and c(ψ−1Pϕt(B1)) are equal
respectively to Amin(Mt, λ0|Mt

) and c(Pϕt(B1)). Notice that the Weinstein
conjecture holds in the convex case (Theorem 13), hence a closed character-
istic for (Mt, λ0|Mt

) always exists, moreover by Theorem 14 the quantities
above are well defined.

Now let us take a deformation (S2k−1, µ′t) of the standard Zoll contact
form µ0 = λ0|S2k−1 on S2k−1, that could be either formally trivial or not
formally trivial.

Suppose the former to be true, which is equivalent to say that the de-
formation Pϕt(B1) is formally trivial.

In this case, in the last part of the proof of Theorem 18 we deduced that
for every m ∈ Z+ there is a contact isotopy φt such that

φ∗tµt = (1 +O(tm))µ0.

The volume function is invariant by contact isotopy, so

V ol2k(ψ
−1Pϕt(B1), ωk

0|ϕ−1
0 V

)

= V ol2k−1(S2k−1, µt)

= ρ(t)V ol2k−1(S2k−1, µ′t)

= ρ(t)V ol2k−1(S2k−1, (1 +O(tm))µ0), ∀m ∈ Z+.
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By the definition of ρ(t) the above equality is equivalent to

V ol2k(ψ
−1Pϕt(B1), ωk

0|ϕ−1
0 V

)
k+1

k = V ol2k(ψ
−1Pϕt(B1), ωk

0|ϕ−1
0 V

)ρ(t)

= V ol2k(S
2k−1, (1 +O(tm))µ0),∀m ∈ Z+.

Therefore each of m-order derivatives of V ol2k(ψ
−1Pϕt(B1), ωk

0|ϕ−1
0 V

)
k+1

k ,

and hence of V ol2k(ψ
−1Pϕt(B1), ωk

0|ϕ−1
0 V

) = V ol2k(Pϕt(B1), ωk0|V ), vanishes

in 0.
Now we suppose that (S2k−1, µ′t) (equivalently Pϕt(B1)) is not formally

trivial. By Theorem 18 and the previous calculations, if t is small enough
the following inequality holds

1 =
π
k
√
πk

=
Amin(ψ−1M0, λ0|ψ−1M0

)
k
√
πk

= ρ(0)Amin(ψ−1M0, λ0|ψ−1M0
)

= Amin(S2k−1, µ′0) > Amin(S2k−1, µ′t)

=
Amin(ψ−1Mt, λ0|ψ−1Mt

)

k

√
V ol2k(ψ−1Pϕt(B1), ωk

0|ϕ−1
0 V

)
.

So, recalling that

Amin(Mt, λ0|Mt
) = Amin(ψ−1Mt, λ0|ψ−1Mt

)

and

V ol2k(ψ
−1Pϕt(B1), ωk

0|ϕ−1
0 V

) = V ol2k(Pϕt(B1), ωk0|V ),

if we prove that Amin(Mt, λ0|Mt
) ≥ π, then V ol2k(Pϕt(B1), ωk0|V )

− 1

k <
1

π
and

the strict local non-squeezing inequality V ol2k(Pϕt(B1), ωk0|V ) > πk holds.
But from the behaviour of the capacity c respect to symplectic projections
(Proposition 15), we deduce

Amin(Mt, λ0|Mt
) = c(Pϕt(B1)) ≥ c(ϕt(B1)) = c(B1) = π,

and hence the result. �

From this result we cannot deduce the general local non-squeezing in-
equality (4) because in the general case we cannot say much if a trivial
deformation occurs. Nevertheless, if the deformation is analytic, the local
non-squeezing inequality follows easily as consequence of the proposition
above.
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Theorem 1 (Analytic local non-squeezing). Let [0, 1] 3 t 7→ ϕt be an
analytic path of symplectic embeddings ϕt : B1 ↪→ R2n such that ϕ0 is linear.
Then the middle dimensional non-squeezing inequality

V ol2k(Pϕt(B1), ωk0|V ) ≥ πk

holds for t small enough.

Proof. By Theorem 21 we have that V ol2k(Pϕ0(B1), ωk0|V ) ≥ πk and the

equality holds if and only if ϕ−1
0 V is J-invariant. If the equality does not hold

the theorem is trivially true by the continuity of the volume. On the other
hand, if the equality holds, Theorem 21 implies that ϕ−1

0 V is J-invariant
and thus we are under the hypothesis of Proposition 24.

Therefore, in the case of a not formally trivial deformation Pϕt(B1)
there is nothing to prove. Otherwise, if the deformation is formally trivial,
the function t 7→ V ol2k(Pϕt(B1), ωk0|V ) has vanishing derivatives in 0, but we
know by Proposition 19 that if t is small enough this function is analytic and
hence constant. Thus we get V ol2k(Pϕt(B1), ωk0|V ) = V ol2k(B

2k
1 , ωk0|V ) = πk

for t small enough. �

We now state a couple of lemmata in order to say something more about
the fixed symplectic embedding formulation of the local non-squeezing.

First a result on the local structure of the zero set of an analytic function.

Theorem 25. (Lojasiewicz’s Structure Theorem) [KP92, Theorem 5.2.3]
Let f(x1, . . . , xn) be a real analytic function in a neighbourhood of a point
y = (y1, . . . , yn) in Rn and assume that xn 7→ f(y1, . . . , yn−1, xn) is not iden-
tically zero. After a suitable rotation of the coordinates x1, . . . , xn−1, there
exist numbers δj > 0, j = 1, . . . n, and a neighbourhood Qn (where we define
Qk := {(x1, . . . , xk) | |yj − xj | < δj , 1 ≤ j ≤ k}) such that the zero set

Z := {x ∈ Qn | f(x) = 0}

has a decomposition

Z = V 0 ∪ · · · ∪ V n−1,

where the set V 0 is either empty or consists of the point y alone, while
for 1 ≤ k ≤ n− 1 we may write V k as a finite disjoint union V k = ∪λΓkλ
of k-dimensional subvarieties Γkλ. Each Γkλ is defined by a system of n− k
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equations:

xk+1 =ληkk+1(x1, . . . , xk),

. . .

xn =ληkn(x1, . . . , xk),

where each function ληkk+1 is real analytic on an open subset Ωk
λ ⊆ Qk ⊆ Rk.

Lemma 26. Let ϕ : D → R2n be an analytic symplectic embedding and x ∈
D. As long as x+ ry ∈ D, the map

ϕr,x(y) :=


1

r

(
ϕ(x+ ry)− ϕ(x)

)
if r > 0,

Dϕ(x)[y] if r = 0,

is analytic.

Proof. The function ϕ(x+ ry) is analytic in r because it is a composition

of analytic maps, thus the map
1

r

(
ϕ(x+ ry)− ϕ(x)

)
is analytic in r > 0.

Since ϕ(x+ ry)− ϕ(x) is analytic in r = 0, we can express it as a convergent
Taylor series centred in 0. But the 0-th coefficient of this expansion must
vanish since ϕ(x+ 0y)− ϕ(x) = 0, hence we can divide by r and we obtain

a convergent Taylor expansion for
1

r

(
ϕ(x+ ry)− ϕ(x)

)
in r = 0. �

Theorem 2. Let ϕ : D ↪→ R2n be an analytic symplectic embedding, with D
domain of R2n. Then there exists a function r0 : D → (0,+∞) such that the
inequality V ol2k(Pϕ(Br(x)), ωk0|V ) ≥ r2kπk holds, for every x ∈ D and for

every r < r0(x). Moreover r0 is bounded away from 0 on compact subsets
K ⊂ D.

Proof. Let ϕr,x be the map defined in the lemma above. Observing that

V ol2k(Pϕr,x(B1(0)), ωk0|V ) = V ol2k

(
P

1

r
ϕ(Br(x)), ωk0|V

)
=
V ol2k(Pϕ(Br(x)), ωk0|V )

r2k
,

for every fixed x ∈ D we can apply Theorem 1 to the path r 7→ ϕr,x and we
deduce the first part of the theorem.

Now we prove the estimate on compact sets.
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Define a function

f(x, r) := V ol2k(Pϕr,x(B1(0)), ωk0|V )− πk.

There is a subset D = {(x, r) ∈ D × [0,+∞)
∣∣ 0 ≤ r < R(x)} on which f

is analytic, indeed to see this it is enough to apply Proposition 19 to the
analytic map (r, x) 7→ ϕr,x.

Now, take an arbitrary point x0 ∈ D. If f(x0, 0) > 0, then by continuity
there exists a small neighbourhood Bεx0 × [0, rx0

) of (x0, 0) in D, on which f
is positive. On the other hand, if f(x0, 0) = 0, we denote with γx0

A : [0, 1]→ D
a simple analytic curve such that γx0

A (0) = (x0, 0). A consequence of Theo-
rem 1 is that f(γx0

A (r)) must be non negative in a neighbourhood of r = 0,
i.e. (x0, 0) is a local minimum for the restriction of f to every analytic curve
γx0

A . From this we can deduce that (x0, 0) is a minimum for f in D.
To see it, we first extend f to an analytic function in a neighbour-

hood of (x0, 0) in R2n+1. By Theorem 25, there is a small ball Bδ(x0, 0) ⊂
R2n+1 in which we know how the zeros are distributed, in particular D ∩
(Bδ(x0, 0)\f−1(0)) has at most a finite number N of different connected
components Ai ⊂ D ∩Bδ(x0, 0) such that (x0, 0) ∈ Ai.

The set (f−1(0) ∪Ni=1 Ai) ∩ (D ∩Bδ(x0, 0)) contains a neighbourhood of
(x0, 0) in D, hence if we prove that f|Ai > 0 for every i ∈ {1, . . . , N}, we get
the desired result. But if it were f|Ai < 0, by Theorem 25 we would be able
to conclude that there exists an analytic curve γx0

A laying in the connected
component Ai and this would imply that 0 is not a minimum for γx0

A , hence
a contradiction.

Therefore (x0, 0) is a minimum for f in D and hence there exists a small
neighbourhood Bεx0 × [0, rx0

) of (x0, 0) in D on which f is positive.
Now we consider an arbitrary compact set K ⊂ D. As we have just seen,

to every x0 ∈ D we can associate two positive real numbers rx0
and εx0

. The
balls of radius εx0

centred in an arbitrary x0 ∈ K produce an open cover of
K. From this cover we can extract a finite subcover of balls of radius εxi
and if we define r0 as the minimum in the set of the corresponding rxi we
get the result. �
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physique mathématique, Éditions Centre Nat. Recherche Sci.,
Paris (1975), 289–298.

[Wei78] A. Weinstein, Periodic orbits for convex Hamiltonian systems,
Ann. Math. 108 (1978), 507–518.

Department of Mathematics, Ruhr University of Bochum

44801 Bochum, Germany

E-mail address: lorenzo.rigolli@rub.de

Received March 22, 2016

Accepted November 17, 2017


	Introduction
	Zoll contact manifolds and minimal action
	Deformations of S2n-1
	Analyticity of the volume of a projection
	Local non-squeezing
	References

